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Abstract		15	

A	rapidly	warming	climate	has	become	one	of	the	primary	forces	driving	changes	in	16	
biodiversity	worldwide.	The	impact	of	warming	temperatures	on	insect	communities	is	of	17	
particular	interest	given	their	importance	for	ecosystem	function	and	service	provision	and	18	
the	uncertainty	around	whether	insect	communities	can	keep	pace	with	the	rate	of	19	
increasing	temperatures.	We	use	a	long-term	dataset	on	bumble	bee	species	occurrence	20	
and	data	on	summer	maximum	temperature	trends	across	North	America	to	characterize	21	
community-level	responses	to	recent	climate	warming.	Bumble	bees	are	relatively	well	22	
recorded	historically	and	are	sensitive	to	warming	temperatures.	We	examined	responses	23	
using	the	community	temperature	index	(CTI)	–	a	measure	of	the	balance	of	cool-	and	24	
warm-adapted	species	within	local	communities.	Starting	in	2010,	bumble	bee	average	CTI	25	
across	North	America	has	rapidly	increased	after	a	period	of	slight	increase	from	1989	to	26	
the	late	2000s.	This	increase	is	strongly	associated	with	recent	increases	in	maximum	27	
summer	temperatures.	The	increase	in	CTI	is	spatially	extensive,	occurring	throughout	28	
North	America,	but	the	areas	of	greatest	concern	include	mid	to	high	latitudes	as	well	as	29	
low	and	high	elevations	-	areas	relatively	shielded	from	other	intensive	global	changes	(e.g.,	30	
land-use).	On	average,	bumble	bee	CTI	has	increased	0.99°C	from	1989	to	2018,	a	change	of	31	
similar	magnitude	to	the	increase	in	maximum	summer	temperatures.	The	rapid	shift	in	32	
bumble	bee	communities	appears	to	be	at	pace	with	shifting	summer	temperatures,	with	33	
an	approximate,	equivalent	northward	shift	of	~104	km	from	1989-2018	for	both.	This	34	
indicates	an	adaptive	capacity	among	some	bumble	bee	species.	However,	warming	35	
temperatures	are	also	likely	reducing	the	occurrence	and	local	abundance	of	cool-adapted	36	
species	that	may	serve	important	ecological	roles	within	their	range.	Our	results	provide	37	
strong	evidence	of	the	pervasive	impacts	posed	to	insect	communities	by	temperature	38	
increases	in	the	past	few	decades.	 	39	
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Introduction	40	

Climate	change	is	driving	profound	changes	in	animal	occurrence	and	community	41	
composition	worldwide.	Long-term	increases	in	average	temperature	as	well	as	increases	42	
in	acute,	extreme	weather	events	(e.g.,	heat	waves)	have	been	linked	to	both	positive	43	
(Kammerer	et	al.,	2021;	Crossley	et	al.,	2021)	and	negative	outcomes	for	biodiversity	44	
(Kammerer	et	al.,	2021;	I.	Oliver	et	al.,	2016;	Outhwaite	et	al.,	2022;	Sirois-Delisle	&	Kerr,	45	
2018).	Regardless	of	the	direction	of	such	outcomes,	a	rapidly	changing	climate	has	the	46	
potential	to	fundamentally	alter	biological	processes,	including	ecosystem	services	that	47	
maintain	biodiversity	and	support	global	agricultural	production	(Johnson	et	al.,	2023;	48	
Settele	et	al.,	2016).	49	
Insect	responses	to	climate	change	are	of	specific	interest	given	the	growing	50	
documentation	of	declines	in	a	variety	of	taxa	and	regions	(Halsch	et	al.,	2021;	Raven	&	51	
Wagner,	2021).	Although	several	anthropogenic	drivers	of	global	change	are	at	play	(J.	52	
Hemberger	et	al.,	2021),	a	changing	climate	is	particularly	menacing	given	the	number	of	53	
potential	direct	and	indirect	impacts	it	has	on	insects	and	its	capacity	to	be	a	force-54	
multiplier,	interacting	with	other	factors	to	exacerbate	changes	in	insect	populations	55	
(Hoover	et	al.,	2012;	Forrest	et	al.,	2018;	Kenna	et	al.,	2023).	Like	many	global	change	56	
drivers,	rapidly	increasing	temperatures	may	favor	some	species	while	leading	to	local	57	
extirpations	of	others.	Though	temperatures	above	the	critical	limits	of	species	(e.g.,	CTmax;	58	
Oyen	et	al.,	2018)	are	unlikely,	the	extent	to	which	climate	warming	has	contributed	to	59	
local	shifts	in	insect	abundance	and	species’	range	remains	mostly	unknown	-	placing	a	60	
host	of	ecological	processes	and	services	in	limbo.	61	
Even	among	the	most	studied	insect	taxa	there	is	debate	about	the	extent,	severity,	and	62	
direction	of	effects	associated	with	climate	change.	Bumble	bees	are	a	prime	example	with	63	
some	studies	revealing	extensive	declines	(Soroye	et	al.,	2020;	but	see	Guzman	et	al.,	2021)	64	
and	others	suggesting	resilience	and	relative	stability	(Guzman	et	al.,	2021;	Maebe	et	al.,	65	
2021)	or	mixed	patterns	of	decline	and	increases	over	time(Jackson	et	al.,	2022).	Most	66	
current	approaches	examining	the	long-term	influence	of	climate	on	bumble	bees	use	67	
occupancy	models	to	relate	changes	in	species	occurrence	to	trends	in	climate,	such	as	68	
increases	in	temperature	and	changes	in	precipitation	(Janousek	et	al.,	2023).	Although	this	69	
method	can	yield	valuable	insights,	it	can	be	challenging	to	align	the	framework	with	the	70	
incidental	and	imperfect	occurrence	data	that	abounds	in	large-scale	insect	databases,	71	
making	model	outcomes	sensitive	to	occupancy	assumptions	(Guzman	et	al.,	2021).	72	
Moreover,	the	occupancy	approach	framework	does	not	capture	the	physiological	73	
mechanisms	driving	species	responses	to	warming	temperatures.	As	such,	a	more	thorough	74	
understanding	of	where/when	insects	are	most	impacted	by	climate	change	requires	75	
exploring	alternative	analytical	methods	that	better	tie	climatic	changes	to	estimates	of	76	
insect	physiological	preferences	and	limits.	77	

We	characterize	bumble	bee	community	responses	to	recent	climate	warming	at	the	78	
continental	scale	by	examining	changes	in	the	community	temperature	index	(CTI),	a	79	
physiological	metric	of	community	responses	to	climate	based	on	the	composition	of	cool-	80	
and	warm-adapted	species.	This	metric	can	be	used	to	assess	the	rate	of	change	in	81	
community	composition	based	on	historical	species	temperature	preferences	(species	82	
temperature	index,	STI),	as	well	as	the	spatial	velocity	of	community	changes	(Devictor	et	83	
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al.,	2008,	2012).	When	examined	over	time	along	with	temperature,	CTI	can	help	determine	84	
whether	species	are	keeping	pace	with	the	velocity	of	temperature	trends	(i.e.,	an	increase	85	
in	warm-adapted	species	and	a	loss	of	cool-adapted	species	in	rapidly	warming	areas;	86	
Fourcade	et	al.	2019),	or	whether	communities	are	accruing	“climate	debts”,	as	rising	87	
temperatures	outpace	species	turnover	(Devictor	et	al.,	2012).	88	

Using	50	years	of	records	from	the	Bumble	bees	of	North	America	database	(Richardson	89	
2023),	we	test	for	changes	in	bumble	bee	communities	using	CTI	across	North	America	and	90	
quantify	CTI	shifts’	association	with	trends	in	maximum	summer	temperatures.	91	
Specifically,	we	wanted	to	address	the	following	questions:	(1)	is	there	evidence	of	an	92	
increase	in	bumble	bee	CTI	over	time?	(2)	are	changes	in	CTI	associated	with	increases	in	93	
summer	temperatures?	(3)	are	CTI	changes	greater	in	areas	particularly	vulnerable	to	a	94	
changing	climate	(e.g.,	higher	latitudes	and	elevations)?	(4)	are	the	observed	shifts	in	CTI	95	
keeping	pace	with	the	rate	of	temperature	increases	(i.e.,	are	communities	accruing	96	
“climate	debt”)	and	(5)	which	species	are	driving	any	observed	changes	in	CTI?	We	97	
predicted	a	steady	increase	in	bumble	bee	CTI	in	accordance	with	documented	increases	in	98	
average	maximum	summer	temperatures	over	the	past	century	and	that	changes	would	be	99	
more	dramatic	at	higher	latitudes	and	elevations.	We	also	expected	that	a	host	of	common	100	
species	that	have	increased	in	occurrence	over	the	past	several	decades	would	be	the	101	
strongest	drivers	of	change	in	CTI	across	the	continent.		 	102	
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Methods	103	

North	American	bumble	bee	occurrence	and	community	data	104	
We	used	occurrence	records	for	59	species	of	North	American	bumble	bees	from	the	105	
bumble	bees	of	North	America	database	(BBNA;	Richardson	2023).	This	database	106	
composes	781,280	records	from	1805-2020	from	a	variety	of	sources	(e.g.,	natural	history	107	
collections,	research	studies,	citizen	science	programs).	Because	the	database	consists	of	an	108	
amalgam	of	sources,	we	took	several	steps	to	account	for	known	biases	(Bartomeus	et	al.,	109	
2019;	Gotelli	et	al.,	2021).	The	species	and	community	temperature	indices	at	large	scales	110	
of	our	analysis	are	robust	to	imprecision	in	the	underlying	distributional	data	(Devictor	et	111	
al.,	2008);	nonetheless	we	filtered	the	original	dataset	to	include	only	complete	records	112	
(i.e.,	identified	to	species,	containing	complete	coordinates)	and	unique	collection	events	113	
(distinct	combinations	of	species,	date,	coordinates,	and	observer;	Figure	S1A).	This	step	114	
helps	to	minimize	the	bias	associated	with	unequal	sampling	efforts	and	differential	data	115	
collection	methods	across	all	observers.	Moreover,	we	conducted	a	range	of	sensitivity	116	
analyses	(see	below)	to	determine	whether	our	results	were	robust	given	our	assumptions	117	
and	methodological	decisions.	118	
Is	there	evidence	of	an	increase	in	bumble	bee	CTI	over	time?	119	

Calculating	the	CTI	first	requires	the	species	temperature	index	(STI;	i.e.,	the	historical	120	
average	summertime	temperature	experienced	over	a	species’	approximate	range;	Figure	121	
S1B)	to	be	calculated.	We	used	a	subset	of	occurrence	records	from	1970-2000	to	extract	122	
historical	summertime	temperature	associations	and	calculate	the	STI	for	each	species.	In	123	
this,	we	assumed	that	the	records	contained	within	this	period	are	representative	of	the	124	
entire	range	of	each	species.	Using	the	raster	package	(Hijmans,	2023),	we	extracted	125	
temperatures	at	the	specific	location	(i.e.,	raster	pixel)	of	each	occurrence	record	from	the	126	
raster	of	average	historical	maximum	summer	temperatures	using	WorldClim	version	2.1	127	
historical	climate	data	for	maximum	monthly	temperatures	at	30	arc-second	(~1	km2)	128	
resolution	(Fick	&	Hijmans,	2017).	To	create	a	raster	of	historical	maximum	summer	129	
temperatures,	we	calculated	the	average	maximum	monthly	temperature	for	summer	130	
months	(defined	here	as	June-September)	for	a	historical	period	of	1970	to	2000.	We	then	131	
used	this	raster	to	extract	STI	values	using	our	bumble	bee	occurrence	records.	132	

Our	analysis	framework	required	us	to	assign	records	to	communities	to	calculate	CTI	for	133	
given	locations/times	(Figure	S1C.	Although	the	species	assemblages	we	define	below	are	134	
considerably	larger	than	the	scale	of	an	ecological	community,	the	analysis	is	ultimately	135	
agnostic	to	this	point,	and	it	does	not	affect	our	specific	questions.	We	refer	to	them	as	136	
communities/CTI	to	maintain	consistency	with	the	existing	literature.	Also,	because	we	137	
used	occurrence	records	from	a	variety	of	sources	whose	spatial	locations	varied	over	time,	138	
using	fixed	sampling	locations	was	not	possible.	Instead,	we	created	a	hexagonal	grid	139	
across	North	America	at	a	broad	spatial	scale	(50	km	hexagonal	grid	resolution,	center	to	140	
side:	~	6600	km2)	to	act	as	stand-in	“community”	boundaries.	We	chose	a	50	km	resolution	141	
to	ensure	we	would	capture	sufficient	records	within	each	grid	cell	to	robustly	estimate	the	142	
broad	spatiotemporal	trend	of	CTI	(Jackson	et	al.,	2022).	To	determine	if	the	resolution	of	143	
our	grid	cells	impacted	our	results,	we	also	conducted	our	analyses	using	10	and	100	km	144	
center-to-side	hexagonal	grid	cells.	We	assigned	bumble	bee	occurrence	records	to	each	145	
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grid	cell	to	create	quasi-communities,	requiring	each	cell	to	contain	at	least	2	species	for	a	146	
given	year	to	calculate	CTI.	We	used	hexagonal	grid	cells	to	minimize	possible	edge	effects	147	
and	provide	a	better	fit	across	the	curvature	of	the	earth	at	large	spatial	scales	(e.g.,	148	
continental;	Birch	et	al.	2007).	149	
Using	STI	values,	we	then	calculated	CTI	within	each	grid	cell	where	at	least	2	species	150	
records	were	present	in	the	grid	using	the	full	set	of	bumble	bee	occurrence	records	from	151	
1961-2018	(Figure	S1D.	We	calculated	CTI	using	two	different	methods,	first	using	152	
occurrence	records	for	species	i	occurring	within	a	given	community	(grid	cell)	j	153	

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	1:	𝑂𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒	𝐶𝑇𝐼! =	
∑ 𝑆𝑇𝐼",!$
"%&

𝑛 	154	

and	then	using	abundance	weighted	estimates	of	species	within	each	community:	155	

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	1:	𝑂𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒	𝐶𝑇𝐼! =	
∑ 𝑆𝑇𝐼",!$
"%&

𝑛 	156	

where	𝑎",! 	is	the	abundance	of	species	i	at	site	j,	and	n	is	the	total	number	of	species	within	157	
a	grid	cell	(Princé	&	Zuckerberg,	2015).	These	two	approaches,	though	similar,	estimate	the	158	
two	mechanisms	of	change	in	CTI.	Using	occurrence	records	(Equation	1)	allowed	us	to	test	159	
shifts	in	CTI	due	to	changes	in	occurrence	(i.e.,	immigration/extirpation),	while	calculating	160	
CTI	using	abundance	weighting	(Equation	2)	allowed	us	to	understand	shifts	in	CTI	as	a	161	
function	of	changes	in	local	relative	abundance	(i.e.,	species	becoming	more	common/rare	162	
within	a	given	community).	163	
Are	changes	in	CTI	associated	with	increases	in	summer	temperatures?	164	

To	determine	long-term	warming	trends	across	North	America,	we	used	WorldClim	165	
gridded	historical	monthly	weather	data	from	1961-2018	for	our	defined	summer	months	166	
(Fick	&	Hijmans,	2017).	First,	we	averaged	the	maximum	monthly	temperature	for	each	167	
year.	Second,	we	extracted	the	mean	maximum	temperature	within	each	of	the	bumble	bee	168	
community	grid	cells	(Figure	S1E).	This	procedure	created	a	time	series	of	the	average	169	
maximum	summer	temperature	for	each	year/grid	cell	from	1961-2018.	Third,	we	170	
calculated	the	average	maximum	summer	temperature	for	a	historical	period	from	1961-171	
2000	for	each	grid	cell;	this	is	our	baseline,	and	we	refer	to	it	as	the	temperature	“normal”.	172	
Last,	we	calculated	the	summer	maximum	temperature	anomaly	(defined	here	as	the	173	
deviation	from	long-term	normal)	and	averaged	these	using	3	moving-window	scales	of	3,	174	
10,	and	30	years	to	capture	metrics	of	relatively	short-,	medium-,	and	long-term	changes	in	175	
maximum	summer	temperatures,	respectively.	To	illustrate	the	estimated	trends	in	176	
maximum	summertime	temperatures,	we	calculated	the	change	in	our	3	scales	of	177	
anomalies	by	subtracting	the	1989	average	anomaly	(first	possible	year	to	calculate	30-178	
year	average)	from	the	2018	average	anomaly	for	each	grid	cell.	179	
We	used	generalized	additive	models	(GAM)	to	quantify	trends	in	CTI	over	space	and	time	180	
and	determine	whether	changes	in	CTI	were	related	to	short-,	medium-,	and	long-term	181	
trends	in	temperature	anomalies	(Figure	S1F).	Generalized	additive	models	provide	a	182	
highly	flexible	computational	framework	to	account	for	variable	trends	in	spatiotemporal	183	
processes	(Pedersen	et	al.,	2019)	and	are	especially	well-suited	for	the	analysis	of	184	
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potentially	complex	time	series	and	can	readily	identify	periods	of	significant	change	185	
(Simpson,	2018).	186	
For	each	measure	of	CTI	(occurrence	and	abundance-weighted),	we	fitted	a	GAM	to	model	187	
the	effects	of	spatial	location	(latitude,	longitude,	and	elevation),	long-term	trend	(year),	188	
short-,	medium-,	and	long-term	estimates	of	rising	temperatures	(3,	10,	and	30-year	189	
summertime	maximum	temperature	anomalies).	For	the	remainder	of	this	manuscript,	we	190	
refer	to	this	GAM	as	the	global	model.	191	
𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	3:	𝐶𝑇𝐼! 	~	𝑠(𝑙𝑎𝑡, 𝑙𝑜𝑛𝑔) + 𝑠(𝑦𝑒𝑎𝑟) + 𝑠(𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛) + 𝑡𝑖(𝑙𝑎𝑡, 𝑙𝑜𝑛𝑔, 𝑦𝑒𝑎𝑟, 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛)192	

+ 𝑠(𝑒𝑐𝑜	𝑟𝑒𝑔𝑖𝑜𝑛, 𝑏𝑠 = "re")	+	s(𝑇F'()*) + 	s(𝑇F'()&+) + 	s(𝑇F'()*+)	193	
We	fit	the	model	using	the	mgcv	package	in	R	(Wood,	2011).	The	goal	of	each	model	was	to	194	
identify	any	temporal	trends	in	CTI	and	determine	where	and	when	significant	changes	195	
have	occurred.	Because	of	the	differences	in	geography,	land-use,	and	climate	across	North	196	
America,	we	included	a	2-dimensional	smooth	of	latitude	and	longitude,	and	we	allowed	197	
the	estimated	temporal	trend	in	CTI	to	vary	according	to	spatial	location	by	including	a	198	
tensor	product	interaction	of	latitude,	longitude,	elevation,	and	year	(Equation	3).	We	also	199	
included	a	random	effect	smooth	of	ecological	region	(level	1)	to	further	account	for	200	
variation	in	the	response	of	CTI	in	accordance	with	common	biophysical	characteristics	201	
within	ecological	regions,	such	as	commonalities	in	vegetation	and	other	climate	variables	202	
(e.g.,	precipitation).	We	included	smooths	of	3-,	10-,	and	30-year	summertime	maximum	203	
temperature	anomalies	to	determine	whether	changes	in	CTI	were	correlated	with	trends	204	
in	warming	maximum	summer	temperatures.	Including	three	different	anomaly	scales	205	
allowed	us	to	assess	the	temporal	scale	of	temperature	change	bumble	bee	communities	206	
respond	most	strongly	to.	This	model	was	fit	to	CTI	estimates	from	1989-2018	because	207	
1989	was	the	first	year	for	which	30-year	temperature	anomalies	could	be	calculated.	We	208	
tested	the	model	for	spatial	and	temporal	autocorrelation	in	the	residuals.	For	spatial	209	
autocorrelation,	we	tested	simulated	residuals	with	a	Moran’s	I	test	using	the	DHARMa	210	
package	(Hartig,	2022).	For	temporal	autocorrelation,	we	visually	examined	the	211	
autocorrelation	function	using	scaled,	simulated	residuals.	212	
To	visualize	the	change	in	CTI	over	time,	we	generated	CTI	predictions	across	the	spatial	213	
and	temporal	extents	of	our	dataset	using	the	global	model	for	each	grid	cell.	We	then	214	
determined	the	change	in	CTI	from	1989-2018	by	subtracting	the	CTI	estimate	for	1990	215	
from	that	of	2018	for	each	grid	cell.	To	visualize	model	uncertainty,	we	calculated	the	216	
average	standard	error	of	global	model	predictions	for	each	grid	cell	from	1990-2018.	We	217	
visualized	the	effect	of	the	three	moving-average	temperature	anomalies	on	CTI	by	plotting	218	
the	partial	effects	(prediction	of	CTI	as	a	function	of	temperature	holding	other	variables	219	
are	at	their	mean	value)	of	each	anomaly	from	the	global	model	using	the	gratia	(Simpson,	220	
2023)	package.	221	

Are	CTI	changes	greater	in	areas	particularly	vulnerable	to	a	changing	climate	(e.g.,	222	
higher	latitudes	and	elevations)?	223	
To	determine	whether	CTI	changes	were	most	drastic	(i.e.,	greater	slope	in	fitted	GAM)	in	224	
areas	known	to	be	experiencing	accelerated	climatic	changes,	we	examined	the	rate	of	225	
change	in	the	slope	(i.e.,	first	derivative)	of	our	fitted	model	smooth	(Fig.	S2).	To	do	this,	we	226	
first	fitted	a	GAM	to	CTI	predictions	with	a	single	smooth	of	year	to	create	a	spatially	227	
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explicit,	estimated	trend	of	CTI	for	each	grid	cell.	Then,	for	each	grid	cell’s	fitted	GAM	year	228	
smooth,	we	extracted	the	first	derivative	with	respect	to	time	(1990-2018)	using	the	229	
derivatives()	function	from	the	gratia	package	(Simpson,	2023).	For	elevation	and	latitude,	230	
we	calculated	the	mean	derivative	value	for	each	grid	cell	(i.e.,	the	average	rate	of	change	of	231	
the	CTI	of	a	grid	cell	from	1989-2018)	and	then	plotted	this	against	the	mean	elevation	and	232	
latitude	of	the	grid	cell.	We	visualized	the	relationship	with	a	GAM	fit	using	the	233	
geom_smooth()	function	in	the	ggplot	(Wickham	et	al.,	2019)	package.	To	determine	234	
whether	CTI	changes	were	consistent	or	have	accelerated	over	time,	we	calculated	the	235	
derivative	values	for	the	year	smooth	for	each	grid	cell	and	plotted	these	values	against	the	236	
year.	Like	elevation,	this	relationship	was	visualized	with	a	simple	GAM	fit.	237	
Are	the	observed	shifts	in	CTI	keeping	pace	with	the	rate	of	temperature	increases	238	
(i.e.,	are	communities	accruing	“climate	debt”)	239	
By	calculating	the	ratio	of	the	temporal	rate	of	change	in	CTI	(i.e.,	how	much	is	CTI	changing	240	
per	year)	with	that	of	the	spatial	rate	of	change	(i.e.,	how	much	is	CTI	changing	per	degree	241	
of	latitude),	we	can	approximate	the	velocity	of	the	northward	shift	for	bumble	bee	242	
communities	(°C	yr-1/°C	km-1	=	km	yr-1).	This	metric	provides	an	approximation	of	how	243	
much	communities	have	effectively	shifted	northward	in	terms	of	their	composition	244	
(Devictor	et	al.,	2008,	2012)	A	similar	procedure	can	be	performed	to	calculate	the	spatial	245	
velocity	in	temperature.	We	estimated	the	rates	of	change	for	CTI	over	time	by	calculating	246	
the	average	derivative	value	of	the	“year”	smooth	in	the	model.	For	the	spatial	trend,	we	fit	247	
a	GAM	to	the	model	predictions	of	CTI	and	related	these	to	a	single	smooth	of	latitude	and	248	
then	calculated	the	average	derivative	value	of	the	“latitude”	smooth.	We	compared	the	249	
approximate	spatial	velocities	of	CTI	and	temperature	to	determine	whether	there	is	a	lag	250	
between	the	shifts	in	temperature	and	the	communities’	response.	A	lag	would	indicate	251	
that	temperatures	are	increasing	faster	than	communities	are	able	to	respond,	thus	252	
accruing	“climate	debt”.	253	

Which	species	are	driving	any	observed	changes	in	CTI?	254	
Although	quantifying	the	trend	in	CTI	provides	evidence	for	whether	communities	are	255	
being	restructured	in	response	to	a	changing	climate,	the	procedure	does	not	implicitly	256	
identify	which	species	are	responsible	for	driving	any	observed	increases.	To	address	this,	257	
we	used	a	jackknife	analysis	(Princé	&	Zuckerberg,	2015),	iteratively	eliminating	one	258	
species	from	our	model	dataset	and	refitting	the	global	model.	For	this	analysis,	we	filtered	259	
to	the	grid	cells	that	were	within	the	range	of	the	given	species.	The	range	was	determined	260	
by	creating	a	convex	hull	around	all	species	occurrence	records	used	in	STI	calculations	261	
and	extracting	the	grid	cells	within	this	estimated	range.	To	determine	whether	a	species	262	
contributed	to	the	trend	in	CTI,	we	fit	a	GAM	with	a	single	smooth	of	year	to	the	predicted	263	
CTI	values	of	grid	cells	within	a	species’	range	and	then	calculated	the	percent	difference	264	
between	the	mean	first	derivative	of	the	fitted	year	smooth	in	the	reduced	model	265	
predictions	to	that	of	the	global	model	predictions.	In	this	context,	a	positive	percentage	266	
change	indicated	that	a	species	had	a	positive	contribution	toward	the	CTI	trend	(i.e.,	the	267	
average	slope	of	the	year	smooth	increases	when	the	species	is	included).	That	is,	either	268	
more	occurrences,	or	an	increase	in	the	local	abundance	of	this	species	leads	to	an	increase	269	
in	CTI.	Conversely,	species	with	a	negative	percent	change	had	a	negative	contribution	270	
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toward	the	CTI	trend;	as	those	species	occur	less	frequently	or	decrease	in	local	abundance,	271	
the	CTI	trend	should	increase.	272	
Model	validation	273	
We	performed	cross	validation	on	our	global	model	using	testing	data	that	was	filtered	out	274	
of	the	full	BBNA	database.	These	collection	events,	while	not	“unique”	(i.e.,	not	necessarily	275	
fully	independent	given	our	strict	definition),	were	still	valid	records	that	could	be	used	to	276	
calculate	the	CTI	for	any	given	location.	Upon	calculating	the	CTI	for	grid	cells	using	these	277	
records,	we	compared	the	values	against	predictions	from	the	global	model	by	using	the	278	
coefficient	of	determination	(R2),	root	mean	square	error	(RMSE)	and	mean	absolute	error	279	
(MAE).	280	
Despite	the	vast	number	of	individual	occurrence	records	within	our	dataset,	there	were	281	
many	grid	cells	that	did	not	contain	species	occurrence	data	for	fitting	the	model.	Given	282	
that	we	explicitly	model	CTI	over	space,	we	presented	our	results	above	using	predictions	283	
within	all	grid	cells	given	the	strength	of	our	global	model	fits.	However,	we	also	assessed	284	
the	results	when	using	model	predicted	values	of	CTI	only	for	grid	cells	containing	285	
occurrence	data.	This	approach	was	primarily	meant	to	provide	conservative	estimates	of	286	
CTI	changes,	particularly	where	in	space	(i.e.,	latitude,	elevation)	and	time	changes	were	287	
greatest.	288	
We	conducted	all	data	wrangling,	GIS	operations,	modeling,	and	visualization	using	R	(R	289	
Core	Team,	2017)	using	the	aforementioned	and	following	packages:	tidyverse	(Wickham	290	
et	al.,	2019),	raster	(Hijmans,	2023),	sf	(Pebesma,	2018),	performance	(Lüdecke	et	al.,	291	
2021),	janitor	(Firke,	2021),	paletteer	(Hvitfeldt,	2021),	exactextractr	(Daniel	Baston,	292	
2022),	foreach	(Microsoft	&	Weston,	2022),	and	data.table	(Dowle	&	Srinivasan,	2023)	293	
packages.		 	294	
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Results	295	

Bumble	bee	community	temperature	index	has	increased	across	a	majority	of	North	296	
America	297	
From	1989-2018	bumble	bee	CTI	increased	substantially	across	most	of	North	America,	298	
but	the	magnitude	of	change	was	spatially	variable	-	with	an	overall	average	increase	of	299	
0.99	±	1.98	°C	(mean	±	SD)	and	a	range	of	a	decrease	of	6.30	°C	to	an	increase	of	7.99	°C	300	
(Fig.	1A).	The	predictions	were	most	certain	across	the	coterminous	United	States	where	301	
there	is	a	high	density	of	bumble	bee	records	and	less	certain	in	the	most	northern	grid	302	
cells	of	our	study	region	in	the	high	Tundra	and	Queen	Elizabeth	Islands	as	well	as	in	the	303	
tropical	wet	forests	of	Mexico	(Fig.	1B).	The	spatial	trends	of	the	increase	in	CTI	were	304	
nearly	identical	between	occurrence	and	abundance-weighted	CTI;	however,	changes	in	305	
occurrence	CTI	were	marginally	smaller	(0.78	±	1.75	°C).	The	global	model,	which	306	
quantified	the	change	in	CTI	as	a	function	of	space,	time,	and	changes	in	short-,	medium-,	307	
and	long-term	temperature	increases,	explained	a	substantial	portion	of	the	deviance	in	308	
both	the	abundance-weighted	(Table	S1;	86.0%,	adj-R2	=	0.849)	and	occurrence	models	309	
(Table	S1;	86.3%,	adj-R2	=	0.851).	310	
The	results	of	our	analysis	were	consistent	irrespective	of	the	grid	scale	used	in	311	
aggregating	communities	(Fig.	S3;	Table	S2).	The	exception	was	in	areas	of	British	312	
Columbia	and	Alaska	where	a	highly	concentrated	spatial	pattern	of	bumble	bee	records	313	
likely	led	to	a	predicted	decrease	in	CTI	in	grid	cells	when	aggregated	at	the	50	and	25	km	314	
grid	scale.	Aggregating	at	the	largest	scale	(100	km	center-to-side	hexagonal	grid)	revealed	315	
the	most	wide-spread	increases	in	CTI,	with	nearly	all	grid	cells	exhibiting	an	increase	in	316	
CTI	from	1989	to	2018.	317	
Our	models	performed	well	when	cross-validated	using	withheld	data	from	the	BBNA	318	
database	(Fig.	S4).	Coefficient	of	determination	(R2)	values	ranged	from	0.79-0.81,	root	319	
mean	squared	error	(RMSE)	ranged	from	1.22-1.31,	and	mean	absolute	error	(MAE)	320	
ranged	from	0.91-0.96.	In	addition,	our	model	performance	was	consistent	across	the	three	321	
tested	grid	scales.	Predictions	were	most	accurate	for	CTI	values	ranging	from	23-28°C	322	
which	corresponded	to	the	regions	where	the	bulk	of	the	occurrence	records	were	323	
collected.	Prediction	accuracy	was	most	variable	among	cool	regions	in	the	north	and	sub-324	
arctic	(CTI	<	23°C).	325	

Shifts	in	CTI	are	strongly	related	to	long-term	increases	in	summer	temperature	326	
Summertime	maximum	temperatures	have	increased	by	1989-2018	(Fig.	1C-E),	with	327	
increases	most	apparent	at	10-	(0.630	±	0.405	°C)	and	30-year	average	anomalies	(0.969	±	328	
0.342°C;	Fig.	1D,	E;	Fig.	S5).	Increases	in	the	30-year	summertime	maximum	temperature	329	
anomaly	showed	a	strong	statistical	association	with	increases	in	bumble	bee	CTI	(Fig.	2C;	330	
F	=	4.561,	p	=	0.002).	Increases	in	the	30-year	temperature	anomaly	between	0-0.5°C	had	331	
no	impact	on	CTI.	However,	increases	beyond	0.5°C	were	associated	with	a	rapid	increase	332	
of	up	to	1°C	in	bumble	bee	CTI	(partial	effect	due	solely	to	30-year	temperature	anomaly).	333	
Of	the	2,425	grid	cells,	1,753	exhibited	parallel	increases	in	change	in	CTI	and	the	change	in	334	
the	30-year	temperature	anomaly	between	1989-2018	(Fig.	3A).	Beyond	a	1°C	change	in	335	
the	30-year	temperature	anomaly	the	changes	in	CTI	rapidly	increase,	with	gains	of	1	to	336	
6.8°C.	The	relationship	of	CTI	with	short	term,	3-year	moving	average	shifts	in	summer	337	
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temperature	anomalies,	while	statistically	supported,	was	weak	and	variable	over	the	338	
range	of	the	anomalies	(Fig.	2A;	F	=	2.584,	p	=	0.032).	There	was	no	statistically	supported	339	
relationship	between	the	10-year	average	anomaly	and	bumble	bee	CTI	(Fig.	2B;	F	=	0.064,	340	
p	=	0.802).	341	
CTI	is	increasing	fastest	at	low	and	high	elevations,	latitudes,	and	more	recent	years	342	

We	examined	patterns	in	the	rate	of	change	in	CTI	across	the	continent	to	determine	where	343	
and	when	the	most	extreme	changes	in	CTI	were	occurring	and	whether	these	areas	344	
overlapped	with	areas	known	to	be	heavily	impacted	by	a	warming	climate	(Janousek	et	al.,	345	
2023).	The	rate	of	change	in	CTI	was	greatest	at	low	(<	800	m)	and	high	elevations	(>	2000	346	
m;	Fig.	4A)	and	increased	with	increasing	latitude	(Fig.	4B).	Moreover,	the	rate	of	change	in	347	
CTI	has	increased	from	1989-2018,	with	CTI	increasing	most	rapidly	after	2010	(Fig.	4C).	348	
These	results	varied	slightly	when	analyzed	with	predictions	from	only	grid	cells	349	
containing	occurrence	records,	with	changes	in	CTI	being	greatest	at	high	elevations	(Fig.	350	
S6A;	>	2000	m)	and	mid-high	latitudes	(Fig.	S6B;	35	–	60°).	The	temporal	patterns	of	the	351	
rate	of	change	were	largely	similar	but	were	positive	only	from	2003	and	beyond	(Fig.	352	
S6C),	confirming	the	accelerating	rate	of	CTI	change	from	2010	onward	that	is	exhibited	353	
when	using	predictions	from	all	grid	cells	(Fig.	4C).	354	

Bumble	bee	community	changes	are	keeping	pace	with	climate	warming	355	
The	spatial	velocity	of	bumble	bee	CTI	increases	(3.58	km	yr-1)	was	nearly	identical	to	that	356	
of	summer	temperature	increases	(3.59	km	yr-1).	Over	the	course	of	the	study	(29	years),	357	
bumble	bee	communities	and	summer	temperatures	have	exhibited	an	equivalent	358	
northward	shift	of	approximately	104	km.	This	comparison,	while	highly	dependent	on	the	359	
complexity	of	the	GAM	smooths	used	to	estimate	the	spatial	and	temporal	trends,	indicates	360	
that	shifts	within	bumble	bee	community	composition	are	effectively	keeping	pace	with	the	361	
rate	of	climate	warming.	362	
Species	contributions	to	changes	in	CTI	363	

All	but	3	species	had	positive	contributions	toward	the	mean	derivative	of	the	temporal	364	
trend	in	bumble	bee	CTI	from	1989-2018	(Table	S3).	Of	the	most	represented	species	in	the	365	
dataset,	B.	occidentalis	(%	change	=	70.42%),	B.	nevadensis	(%	change	=	69.65%),	B.	366	
ephippiatus	(%	change	=	66.87%),	B.	bifarius	(%	change	=	66.71%),	and	B.	vosnesenskii	(%	367	
change	=	64.32%)	had	the	greatest	contribution	for	both	abundance-weighted	and	368	
occurrence	CTI	trends.	Of	the	top	25	contributors	to	the	increase	in	CTI,	14	(56%)	are	in	369	
the	subgenus	Pyrobombus	(and	3	of	the	top	5).	In	general,	species	with	wider	ranges	and	370	
more	variable	STI	tended	to	be	those	that	had	the	biggest	contributions	toward	the	long-371	
term	increase	in	CTI.		 	372	
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Discussion	373	

We	documented	significant,	spatially	extensive	shifts	in	the	thermal	tolerance	of	species	374	
within	North	American	bumble	bee	communities	in	response	to	long-term	increases	in	375	
summer	temperatures.	Over	the	last	29	years	across	the	continent,	bumble	bee	community	376	
assemblages	increasingly	consist	of	either	more	warm-adapted	or	fewer	cold-adapted	377	
species,	with	increases	in	community	temperature	index,	the	measure	of	the	balance	of	378	
warm-	and	cool-adapted	species,	most	pronounced	at	mid-	to	high	latitudes,	and	high	379	
elevations	in	the	American	Rockies,	Intermountain	West,	and	central	Mexico.	The	380	
community	temperature	index	increased	according	to	both	occurrence	and	abundance-381	
weighted	indices,	suggesting	that	shifts	in	both	local	abundance	and	broader	changes	in	382	
species	occurrence	(i.e.,	range	shifts)	underlie	the	changes	in	community	composition.	The	383	
rapid	shift	in	bumble	bee	communities	appears	to	be	on	pace	with	shifting	summer	384	
temperatures,	with	an	approximate,	equivalent	northward	shift	of	~104	km	from	1989-385	
2018	for	both	CTI	and	temperature.	Our	work	provides	additional	evidence	of	the	386	
pervasive	impacts	a	warming	planet	has	for	insect	biodiversity	and	identifies	regions	of	387	
concern	where	anthropogenic	climate	warming	is	rapidly	restructuring	the	communities	of	388	
an	ecologically	important	group	of	insects.	389	

An	increase	of	warm-adapted	species	within	biological	communities	is	a	logical	390	
consequence	of	a	rapidly	warming	climate	(Tingley	&	Beissinger,	2013).	Similar	shifts	have	391	
been	observed	in	bird	communities	in	response	to	both	warming	summer	(Devictor	et	al.,	392	
2008,	2012)	and	winter	(Princé	&	Zuckerberg,	2015)	temperatures.	Because	insects	are	393	
ectotherms,	temperature-induced	shifts	in	range	and	abundance	may	be	even	more	394	
pronounced.	Indeed,	large	changes	in	insect	CTI	have	been	observed	for	both	bumble	bees	395	
(Fourcade	et	al.,	2019)	and	butterflies	(Devictor	et	al.,	2012);	however,	trends	in	CTI	are	396	
often	not	explicitly	tied	to	spatial	and	temporal	patterns	of	warming	temperatures.	Our	397	
results	provide	this	link	and	show	a	clear	statistical	relationship	between	increases	in	CTI	398	
and	long-term	increases	in	maximum	summer	temperatures	across	North	America,	with	399	
areas	experiencing	a	30-year	temperature	anomaly	of	greater	than	or	equal	to	0.5°C	400	
strongly	associated	with	a	rapid	increase	in	bumble	bee	CTI.	These	results	identify	areas	of	401	
ample	concern	where	rates	of	bumble	bee	community	change	and	summer	temperature	402	
increases	are	the	greatest	(Fig.	1;	dark	orange	and	red	areas).	403	
The	frontline	of	species’	responses	to	climate	have	tended	to	be	at	high	latitudes	and	404	
elevations.	Northern	regions	have	experienced	rapid	increases	in	temperature	leading	to	405	
pronounced	phenological	shifts	across	taxa	(Parmesan,	2007).	Our	results	support	this	406	
trend,	finding	greatest	rates	of	bumble	bee	CTI	change	at	higher	latitudes	and	high	407	
elevation.	The	bumble	bee	species	in	these	locations	tend	to	have	narrower	ranges	and	be	408	
cold-adapted,	traits	identical	to	other	insect	taxa	that	have	exhibited	declines	due	to	409	
climate	(Engelhardt	et	al.,	2022;	Halsch	et	al.,	2021;	Neff	et	al.,	2022).	The	rapidly	410	
increasing	CTI,	particularly	at	high	elevations,	suggests	that	cold-adapted	species	are	being	411	
displaced	by	warm-adapted,	low-elevation	species.	This	phenomenon	has	been	observed	in	412	
the	US	Rocky	Mountains	where	bumble	bee	communities	are	increasingly	dominated	by	413	
low-elevation	species	using	high-elevation	habitats	as	a	thermal	refugia	(Miller-Struttmann	414	
et	al.,	2022).	An	upslope	range	expansion	appears	to	be	a	common	response	of	bumble	bee	415	
communities	to	warming	temperatures	rather	than	expansions	of	northern	ranges	(Kerr	et	416	
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al.,	2015;	Sirois-Delisle	&	Kerr,	2018).	Despite	the	rapid	changes	observed	at	higher	417	
latitudes,	biological	communities	in	southern	latitudes	and	lower	elevations	are	not	418	
protected	from	a	changing	climate	(Dillon	et	al.,	2010),	and	we	documented	some	shifts	in	419	
CTI	in	central	Mexico	and	at	low	elevations.	That	said,	if	species	lost	from	communities	420	
have	STI	values	comparable	to	those	species	remaining,	large	shifts	in	CTI	may	be	421	
effectively	masked,	highlighting	a	limitation	of	our	approach.	422	
An	increase	in	CTI	could	be	the	result	of	two	mechanisms.	First,	shifts	in	the	occurrence	of	423	
bees	within	a	community	(i.e.,	immigration/extirpation	of	warm-/cool-adapted	species	via	424	
range	expansion/contraction)	and	second,	changes	in	the	local	abundance	of	warm-/cool-425	
adapted	species.	We	found	evidence	supporting	both	mechanisms	by	modeling	occurrence	426	
and	abundance-weighted	measures	of	CTI.	Shifts	in	local	relative	abundance	align	with	427	
existing	research	(Cameron	et	al.,	2011;	J.	Hemberger	et	al.,	2021);	however,	substantial	428	
range	expansion	of	warm-adapted	bumble	bees	has	not	been	described	(Kerr	et	al.,	2015)	429	
and	may	be	unlikely	given	bumble	bee	dispersal	capacities	Fijen	(2021).	That	said,	select	430	
species	of	bumble	bees	may	be	capable	of	long-distance	dispersal	(Fijen,	2021),	and	431	
significant	range	shifts	observed	in	other	insect	taxa	have	been	observed	(Warren	et	al.,	432	
2001;	Hinckling.2005).	Regardless,	our	jackknife	analysis	revealed	that	the	largest	433	
contributors	to	increasing	abundance	and	occurrence-based	CTI	within	their	range	are	434	
common	species	that	have	exhibited	both	range	increases	(Looney	et	al.,	2019;	e.g.,	B.	435	
impatiens	Palmier	et	al.,	2019)	and	increases	in	local	abundance.	This	result	indicates	that	436	
certain	species	are	sensitive	to	and	more	capable	of	effectively	tracking/adapting	to	ideal	437	
climatic	conditions	(Maebe	et	al.,	2021).	The	equivalent,	northward	spatial	shift	in	bumble	438	
bee	community	composition	that	we	observed	was	nearly	identical	to	that	of	the	spatial	439	
shift	in	maximum	summer	temperatures.	This	result	provides	further	evidence	that,	at	least	440	
some	species,	are	successfully	tracking	warming	climates	and	not	accruing	climate	debts	441	
(Devictor	et	al.,	2012).	However,	other	species	(e.g.,	B.	occidentalis)	are	not	able	to	442	
successfully	track	warming	and	are	likely	to	suffer	substantial	reductions	in	range	as	a	443	
result	(Janousek	et	al.,	2023).	Such	contrasts	highlight	the	species-specific	nature	of	bumble	444	
bee	responses	to	a	rapidly	changing	climate	(Jackson	et	al.,	2022;	Whitehorn	et	al.,	2022).	445	
Additional	research	is	needed	detailing	species-specific	responses	to	warming	conditions	–	446	
focusing	on	identifying	the	physiological	and	evolutionary	mechanisms	that	drive	species’	447	
plasticity	to	changing	environmental	conditions.	448	
An	increase	in	the	occurrence	and	abundance	of	warm	adapted	species	does	suggest	a	449	
physiological/climate	preference	mechanism	is	at	play	(i.e.,	direct	effect).	Several	studies	450	
document	significant,	direct	effects	of	warming	on	insect	pollinators	(CaraDonna	et	al.,	451	
2018;	Hemberger	et	al.,	2023;	Kenna	et	al.,	2021),	however	indirect	effects	mediated	452	
through	biotic	interactions	may	be	just	as	if	not	more	important	(Ockendon	et	al.,	2014).	In	453	
the	context	of	our	study,	such	indirect	effects	imply	that	shifts	in	bumble	bee	community	454	
composition	are	occurring	in	part	in	response	to	climate-induced	changes	in	the	resource	455	
landscape	(i.e.,	indirect	effects).	For	example,	warming	climates	can	widen	the	temporal	456	
availability	of	resources	due	to	earlier	snowmelts,	which	in	turn	lead	to	an	increase	in	457	
bumble	bee	abundance	(Ogilvie	et	al.,	2017).	Warming	may	also	create	phenological	458	
mismatches	that	reduce	available	forage	for	bees	(Pyke	et	al.	2016,	but	see	Bartomeus	et	459	
al.,	2011).	Similarly,	an	increase	in	hot,	dry	summer	conditions	can	significantly	reduce	460	
floral	resources	and	the	bumble	bees	that	depend	on	them	(Iserbyt	&	Rasmont,	2013),	and	461	
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similar	patterns	have	been	observed	for	butterflies	(Crossley	et	al.,	2021).	Unfavorable	462	
conditions,	often	a	result	of	extreme	weather	events	such	as	heat	waves	and	droughts,	can	463	
create	resource	bottlenecks	that	have	the	potential	to	lead	to	population	declines	and	local	464	
extirpation	(Maron	et	al.,	2015).	Heat	waves,	for	example,	are	expected	to	increase	465	
significantly	in	the	coming	century	(Lopez	et	al.,	2018;	Meehl	&	Tebaldi,	2004;	Thompson	et	466	
al.,	2022).	As	our	study	could	not	differentiate	between	direct	and	indirect	pathways,	467	
parsing	their	relative	impacts	on	bumble	bees	and	other	taxa	is	a	critical	research	need.	In	468	
the	meantime,	supporting	bumble	bees	in	the	face	of	both	direct	and	indirect	effects	may	be	469	
accomplished	by	maintaining	climate	refugia,	such	as	heterogeneity	in	vegetation	structure,	470	
that	can	provide	microclimatic	respite	from	temperature	extremes	to	bees	(Pincebourde	&	471	
Woods,	2020)	and	other	taxa	(e.g.,	birds,	Kim	et	al.,	2022)	in	addition	to	increasing	472	
spatial/temporal	resource	continuity	to	minimize	negative	indirect	effects	(Maron	et	al.,	473	
2015).	474	

Given	the	spatiotemporal	extent	of	our	study,	it	is	likely	that	warming	summer	475	
temperatures	and	the	temperature	profile	of	a	given	bumble	bee	assemblage	may	co-vary	476	
with	other,	known	factors	of	bumble	bee	community	composition	and	occurrence.	For	477	
example,	losses	in	certain	species	across	their	range	may	be	linked	to	disease	Szabo	et	al.	478	
(2012).	Additionally,	at	large-scales,	a	loss	of	suitable	habitat	via	land-use	intensification	479	
and	change	is	also	of	concern.	However,	when	examined	together	with	shifts	in	land-use,	480	
climatic	variables	(and	their	associated	indirect	effects)	tend	to	have	as	much	or	more	481	
power	to	explain	long-term	species	trends	than	land-use	or	resource	availability	in	bumble	482	
Kerr	et	al.	(2015)	and	other	wild	bee	species	(Duchenne	et	al.,	2020).	Moreover,	the	areas	483	
of	greatest	increase	in	CTI	are	in	areas	removed	from	the	most	significant	effects	of	land-484	
use	change	(e.g.,	high	latitudes	and	elevations;	Halsch	et	al.	2021).	Regardless,	managing	485	
habitat	offers	a	critical	tool	that	can	be	used	to	mitigate	the	impacts	of	a	changing	climate	486	
(Kim	et	al.,	2022;	Oliver	et	al.,	2016;	Oliver	et	al.,	2015;	Outhwaite	et	al.,	2022).	487	

Conclusions	488	
Climate	change	is	poised	to	have	significant,	cross-scale	impacts	on	insect	behavior,	489	
populations,	and	communities	(Halsch	et	al.,	2021;	Høye	et	al.,	2021;	Lehmann	et	al.,	2020;	490	
Raven	&	Wagner,	2021).	In	this	paper,	we	document	a	substantial	shift	in	the	functional	491	
composition	of	bumble	bee	communities	with	respect	to	climate	that	is	tied	to	a	long-term	492	
increase	of	summer	temperatures	in	North	America.	Due	to	changes	in	both	occurrence	and	493	
abundance,	several	species	within	bumble	bee	communities	appear	to	be	tracking	climate	494	
warming,	however	this	is	likely	at	the	expense	of	other	species	that	lack	the	adaptive	495	
capacity	to	cope	with	rapidly	climbing	temperatures.	Although	the	exact	mechanisms	of	496	
these	community-level	shifts	remain	unknown	(i.e.,	direct	vs.	indirect	effect	of	warming),	497	
our	work	adds	to	a	growing	body	of	evidence	that	suggests	climate	change	will	result	in	498	
many	climate	losers	with	unknown	consequences	for	ecosystems.	It	is	critical	that	we	focus	499	
on	designing	adaptation	measures,	such	as	climate	refugia	and	climate-focused	habitat	500	
conservation,	to	help	combat	the	ongoing	direct	and	indirect	impacts	a	rapidly	warming	501	
planet	threatens.	However,	such	efforts	will	only	be	successful	in	conjunction	with	502	
substantial	decreases	in	emissions	(Oliver	et	al.,	2015)	–	an	essential	solution	to	safeguard	503	
the	planet’s	biodiversity	for	generations	to	come.	 	504	
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Figures	and	Tables	509	

	510	
Figure	1:	(A)	Extrapolated	spatial	projection	of	the	estimated	change	in	community	511	
temperature	index	from	1990-2018	across	North	America.	Differences	in	CTI	were	512	
calculated	for	each	grid	cell	by	subtracting	the	model	predicted	CTIt	=	1989	from	predicted	513	
CTIt	=	2018.	(B)	Spatial	projection	of	the	mean	uncertainty	estimates	across	years	from	514	
1989-2018.	(C)	Spatial	projection	of	the	change	in	the	3-year,	10-year	(D)	and	30-year	(E)	515	
average	temperature	anomaly.	Differences	were	calculated	by	subtracting	the	1989	516	
anomaly	from	the	2018	anomaly	for	each	grid	cell.	Hexagonal	grid	cells	are	100	km	from	517	
side	to	side	(~8600	km2).	 	518	
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		519	
Figure	2:	Generalized	additive	model	partial	plots	(i.e.,	marginal	effects)	show	the	model	520	
predicted	effect	of	(A)	3,	(B)	10,	and	(C)	30-year	moving	average	temperature	anomalies	on	521	
the	community	temperature	index.	Positive	values	on	the	y-axes	indicate	an	increase	in	CTI,	522	
while	positive	values	on	the	x-axes	indicate	an	increase	in	the	average	temperature	relative	523	
to	the	long-term	average.	Solid	line	indicates	strong	evidence	of	a	relationship.		 	524	
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	525	
Figure	3:	A	significant	increase	in	bumble	bee	CTI	is	strongly	associated	with	long-term	526	
warming	and	has	accelerated	in	the	last	15	years.	(A)	Biplot	of	change	in	30-year	527	
temperature	anomaly	and	change	in	bumble	bee	CTI	for	each	grid	cell	across	North	528	
America.	Trendline	is	a	GAM	fit	including	the	95%	confidence	interval.	Dashed	lines	529	
indicate	no	change	in	anomaly	or	CTI	for	the	X	and	Y	axes,	respectively.	(B)	Model	530	
estimated	temporal	trend	in	CTI	across	North	America.	Yearly	predictions	are	calculated	531	
from	the	global	model	for	each	grid	cell,	and	the	trend	within	each	region	is	illustrated	with	532	
a	GAM	fit	including	the	95%	confidence	interval.		 	533	
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	534	
Figure	4:	Estimates	of	the	rate	of	change	in	CTI	over	time	across	(A)	elevation,	(B)	latitude,	535	
and	(C)	year.	Yearly	predictions	of	CTI	are	calculated	from	the	global	model	for	each	grid	536	
cell	using	a	generalized	additive	model	with	a	single	smooth	of	year	to	determine	the	537	
temporal	trend	in	CTI	within	the	grid	cell.	For	each	fitted	smooth	(except	for	the	year,	C),	538	
we	then	calculated	the	mean	derivative	across	its	range	(1989-2018)	for	each	grid	cell.	We	539	
then	plotted	these	derivative	estimates	against	elevation	and	latitude	to	explore,	across	the	540	
extent	of	North	America,	where	the	rate	CTI	change	is	greatest.	We	visualized	the	541	
relationships	(red	lines)	using	a	simple	GAM.	Model	fits	include	the	95%	confidence	542	
interval.		#	References	543	



	 20	

Supplementary	Materials	544	

	545	
Figure	S1:	Conceptual	figure	of	data	cleaning	(A),	STI	calculation	(B),	community	546	
assignment	(C),	CTI	calculation	(D),	temperature	anomaly	calculations	(E)	and	modeling	547	
procedures	used	in	our	analyses	(F).		 	548	
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	549	
Figure	S2:	Conceptual	diagram	of	the	derivative	calculations	conducted	to	determine	550	
whether	the	rate	of	increase	(i.e.,	derivative)	of	bumble	bee	CTI	has	remained	steady	or	551	
accelerated	over	space	and	time.	(1)	We	use	the	global	model	to	predict	the	CTI	in	each	grid	552	
cell	for	each	year	of	the	study,	from	1989-2018.	(2)	For	each	grid	cell,	we	fit	a	GAM	through	553	
the	predicted	points	to	visualize	and	quantify	the	trend	in	CTI	from	1989-2018.	From	these	554	
data,	we	also	calculated	the	change	in	CTI	from	1989-2018	(change	in	CTI)	which	is	plotted	555	
in	Fig.	1A.	The	overall	change,	however,	tells	us	nothing	of	the	functional	form	of	the	556	
relationship	between	CTI	and	time,	elevation,	etc.	To	address	this,	we	calculated	the	first	557	
derivative	across	the	fitted	smooth	to	determine	how	the	rate	of	change	in	CTI	varied	558	
across	time,	elevation,	and	latitude	(Fig.	2).	(3)	For	each	grid	cell’s	fitted	GAM,	we	559	
calculated	the	derivative	of	the	year	smooth	at	a	range	of	values	between	1989-2018.	In	560	
this	example,	because	CTI	is	increasing	throughout	the	entire	study	period,	the	derivative	is	561	
>	0	at	all	years.	(4)	We	then	took	the	derivative	estimates	for	all	grid	cells	and	fit	a	GAM	to	562	
visualize	the	trend	between	the	derivative	and	time.	For	elevation	(5)	and	latitude	(6),	we	563	
first	averaged	the	derivative	value	from	1989-2018	to	determine	the	mean	slope	for	each	564	
grid	cell	before	plotting	that	against	the	mean	elevation	and	latitude	of	each	grid	cell	and	565	
visualizing	the	relationship	with	a	GAM.	Transparent	points	are	illustrative	(not	actual	566	
values)	of	individual	hex	grid	derivative	values	across	the	range	of	elevation	and	latitude.	567	
The	black	star	represents	a	hypothetical	mean	derivative	value	from	the	example	plot	in	568	
(3)	to	illustrate	how	mean	derivative	values	are	used	to	assess	the	trend.		 	569	
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	570	
Figure	S3:	Predicted	change	in	bumble	bee	CTI	across	North	America	between	1989-2018	571	
at	three	different	spatial	resolutions	of	hexagonal	grid	(distance	indicates	side-to-side):	(A)	572	
50	km;	(B)	100	km;	(C)	200	km;	along	with	the	mean	prediction	uncertainty	at	the	same	573	
resolutions.		 	574	
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	575	
Figure	S4:	Abundance-weighted	global	model	cross	validation	results	at	three	different	576	
scales	of	(A)	25	km,	(B)	50	km,	and	(C)	100	km	center-to-edge	hexagonal	grids.	Cross	577	
validation	metrics	are	given	in	the	top	left	of	each	panel	including	coefficient	of	578	
determination	(R2),	root	mean	squared	error	(RMSE),	and	mean	absolute	error	(MAE).		 	579	
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	580	
Figure	S5:	Trend	in	summer	(June	–	September)	maximum	temperature	anomalies	at	(A)	581	
3-year,	(B)	10-year,	and	(C)	30-year	moving	averages.	Transparent	points	are	raw	values	582	
and	red	lines	are	GAM	trendlines.		 	583	
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		584	
Figure	S6:	Estimates	of	the	rate	of	change	in	CTI	over	time	across	(A)	elevation,	(B)	585	
latitude,	and	(C)	year	using	predictions	only	from	grid	cells	containing	occurrence	records	586	
(conservative	approach).	Yearly	predictions	are	calculated	from	the	global	model	for	each	587	
grid	cell	using	simple	generalized	additive	models	with	a	single	smooth	of	year	to	588	
determine	CTI	trend	within	the	grid	cell.	For	each	fitted	smooth	(except	for	the	year,	C),	we	589	
then	calculated	the	mean	derivative	across	its	range	(1989-2018)	for	each	grid	cell.	We	590	
then	plotted	these	derivative	estimates	to	explore,	across	the	extent	of	North	America,	591	
whether	increases	in	CTI	were	varied	with	elevation	or	over	time.	We	calculated	592	
predictions	(red	lines)	from	a	generalized	additive	model	using	a	thin-plate	basis	function	593	
and	3	knots	for	visual	purposes	only.	Estimates	include	the	95%	confidence	interval.		 	594	
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Table	S1:	Results	from	a	generalized	additive	model	for	CTI	using	occurrence-only	and	595	
abundance-weighted	records	from	1989-2018.	596	

		 	597	
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Table	S2:	Results	from	a	generalized	additive	model	for	CTI	using	occurrence-only	records	598	
at	three	different	spatial	resolutions	(community	grid	scale)	at	25,	50,	and	100	km	from	599	
1989-2018.	600	

		 	601	
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Table	S3:	Jackknife	analysis	for	both	abundance-weighted	and	occurrence	CTI	estimates	602	
for	all	species	in	the	dataset.	Species	temperature	index	(STI),	STI	standard	deviation,	and	603	
number	of	records	in	the	CTI	dataset	are	also	given.	Percent	difference	is	the	difference	604	
between	the	global	(including	all	species)	and	jackknife	model	(excluding	single	species)	605	
mean	derivative	(dx/dt)	across	the	temporal	range	(1989-2018)	of	the	respective	global	606	
model.	Positive	percentages	indicate	that	the	species	contributes	to	the	CTI	trend	(i.e.,	that	607	
an	increase	in	abundance/occurrence	leads	to	an	increase	in	CTI).	608	

		 	609	
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