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Abstract	
A	rapidly	warming	climate	has	become	one	of	the	primary	forces	driving	changes	in	
biodiversity	worldwide.	The	impact	of	warming	temperatures	on	insect	communities	is	of	
particular	interest	given	their	importance	for	ecosystem	function	and	service	provision	and	
the	uncertainty	around	whether	insect	communities	can	keep	pace	with	the	rate	of	
increasing	temperatures.	We	use	a	long-term	dataset	on	bumble	bee	species	occurrence	
and	data	on	summer	maximum	temperature	trends	across	North	America	to	characterize	
community-level	responses	to	recent	climate	warming.	Bumble	bees	are	relatively	well	
recorded	historically	and	are	sensitive	to	warming	temperatures.	We	examined	responses	
using	the	community	temperature	index	(CTI)	–	a	measure	of	the	balance	of	cool-	and	
warm-adapted	species	within	local	communities.	Starting	in	2010,	bumble	bee	average	CTI	
across	North	America	has	rapidly	increased	after	a	period	of	slight	increase	from	1989	to	
the	late	2000s.	This	increase	is	strongly	associated	with	recent	increases	in	maximum	
summer	temperatures.	The	increase	in	CTI	is	spatially	extensive,	occurring	throughout	
North	America,	but	the	areas	of	greatest	concern	include	mid	to	high	latitudes	as	well	as	
low	and	high	elevations	-	areas	relatively	shielded	from	other	intensive	global	changes	(e.g.,	
land-use).	On	average,	bumble	bee	CTI	has	increased	0.99°C	from	1989	to	2018,	a	change	of	
similar	magnitude	to	the	increase	in	maximum	summer	temperatures.	The	rapid	shift	in	
bumble	bee	communities	appears	to	be	at	pace	with	shifting	summer	temperatures,	with	
an	approximate,	equivalent	northward	shift	of	~104	km	from	1989-2018	for	both.	This	
indicates	an	adaptive	capacity	among	some	bumble	bee	species.	However,	warming	
temperatures	are	also	likely	reducing	the	occurrence	and	local	abundance	of	cool-adapted	
species	that	may	serve	important	ecological	roles	within	their	range.	Our	results	provide	
strong	evidence	of	the	pervasive	impacts	posed	to	insect	communities	by	temperature	
increases	in	the	past	few	decades.	 	
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Introduction	
Climate	change	is	driving	profound	changes	in	animal	occurrence	and	community	
composition	worldwide.	Long-term	increases	in	average	temperature	as	well	as	increases	
in	acute,	extreme	weather	events	(e.g.,	heat	waves)	have	been	linked	to	both	positive	
[CITE]	and	negative	outcomes	for	biodiversity	[CITE].	Regardless	of	the	direction	of	such	
outcomes,	a	rapidly	changing	climate	has	the	potential	to	fundamentally	alter	biological	
processes,	including	ecosystem	services	that	maintain	biodiversity	and	support	global	
agricultural	production	[CITE].	
Insect	responses	to	climate	change	are	of	specific	interest	given	the	growing	
documentation	of	declines	in	a	variety	of	taxa	and	regions	[CITE].	Although	several	
anthropogenic	drivers	of	global	change	are	at	play	[@Hemberger.2021,	MORE],	a	changing	
climate	is	particularly	menacing	given	the	number	of	potential	direct	and	indirect	impacts	
it	has	on	insects	and	its	capacity	to	be	a	force-multiplier,	interacting	with	other	factors	to	
exacerbate	changes	in	insect	populations	[CITE].	Like	many	global	change	drivers,	rapidly	
increasing	temperatures	may	favor	some	species	while	leading	to	local	extirpations	of	
others.	Though	critical	limits	of	species	[e.g.,	CTmax.	Oyen.2018]	are	unlikely	to	be	breached,	
the	extent	to	which	climate	warming	has	contributed	to	local	shifts	in	insect	abundance	and	
species’	range	remains	unknown	-	placing	a	host	of	ecological	processes	and	services	in	
limbo.	
Even	among	the	most	studied	insect	taxa	there	is	debate	about	the	extent,	severity,	and	
direction	of	effects	associated	with	climate	change.	Bumble	bees	are	a	prime	example	with	
some	studies	revealing	extensive	declines	[@Soroye.2020;	but	see	@Guzman.2021]	and	
others	suggesting	resilience	and	relative	stability	[@Maebe.2021;	@Guzman.2021]	or	
mixed	patterns	of	decline	and	increases	over	time[@Jackson.2022].	Most	current	
approaches	examining	the	long-term	influence	of	climate	on	bumble	bees	use	occupancy	
models	to	relate	changes	in	species	occurrence	to	trends	in	climate,	such	as	increases	in	
temperature	and	changes	in	precipitation	[@Januosek.2023].	Although	this	method	can	
yield	valuable	insights,	it	can	be	challenging	to	align	the	framework	with	the	incidental	and	
imperfect	occurrence	data	that	abounds	in	large-scale	insect	databases,	making	model	
outcomes	sensitive	to	occupancy	assumptions	[@Guzman.2021].	Moreover,	the	occupancy	
approach	framework	does	not	capture	the	physiological	mechanisms	driving	species	
responses	to	warming	temperatures.	As	such,	a	more	thorough	understanding	of	
where/when	insects	are	most	impacted	by	climate	change	requires	exploring	alternative	
analytical	methods	that	better	tie	climatic	changes	to	estimates	of	insect	physiological	
preferences	and	limits.	
We	characterize	bumble	bee	community	responses	to	recent	climate	warming	at	the	
continental	scale	by	examining	changes	in	the	community	temperature	index	(CTI),	a	
physiological	metric	of	community	responses	to	climate	based	on	the	composition	of	cool-	
and	warm-adapted	species.	This	metric	can	be	used	to	assess	the	rate	of	change	in	
community	composition	based	on	historical	species	temperature	preferences	(species	
temperature	index,	STI),	as	well	as	the	spatial	velocity	of	community	changes	
[@Devictor.2008;	@Devictor.2012].	When	examined	over	time	along	with	temperature,	CTI	
can	help	determine	whether	species	are	keeping	pace	with	the	velocity	of	temperature	
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trends	[i.e.,	an	increase	in	warm-adapted	species	and	a	loss	of	cool-adapted	species	in	
rapidly	warming	areas;	@Fourcade.2019],	or	whether	communities	are	accruing	“climate	
debts”,	as	rising	temperatures	outpace	species	turnover	[@Devictor.2012].	This	method	
also	simultaneously	assesses	changes	at	the	edge	of	species’	ranges	(i.e.,	
colonization/extirpation)	and	those	in	the	core	(i.e.,	increases	in	abundance).	
Using	50	years	of	records	from	the	Bumble	bees	of	North	America	database	(Richardson	
202X),	we	test	for	changes	in	bumble	bee	communities	using	CTI	across	North	America	and	
quantify	CTI	shifts’	association	with	trends	in	maximum	summer	temperatures.	
Specifically,	we	wanted	to	address	the	following	questions:	(1)	is	there	evidence	of	an	
increase	in	bumble	bee	CTI	over	time?	(2)	are	changes	in	CTI	associated	with	increases	in	
summer	temperatures?	(3)	are	CTI	changes	greater	in	areas	particularly	vulnerable	to	a	
changing	climate	(e.g.,	higher	latitudes	and	elevations)?	(4)	are	the	observed	shifts	in	CTI	
keeping	pace	with	the	rate	of	temperature	increases	(i.e.,	are	communities	accruing	
“climate	debt”)	and	(5)	which	species	are	driving	any	observed	changes	in	CTI?	We	
predicted	a	steady	increase	in	bumble	bee	CTI	in	accordance	with	documented	increases	in	
average	maximum	summer	temperatures	over	the	past	century	and	that	changes	would	be	
more	dramatic	at	higher	latitudes	and	elevations.	We	also	expected	that	a	host	of	common	
species	that	have	increased	in	occurrence	over	the	past	several	decades	would	be	the	
strongest	drivers	of	change	in	CTI	across	the	continent.	 	
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Methods	
North	American	bumble	bee	occurrence	and	community	data	

We	used	occurrence	records	for	59	species	of	North	American	bumble	bees	from	the	
bumble	bees	of	North	America	database	[BBNA;	@Richardson.2022].	This	database	
composes	781,280	records	from	1805-2020	from	a	variety	of	sources	(e.g.,	natural	history	
collections,	research	studies,	citizen	science	programs).	Because	the	database	consists	of	an	
amalgam	of	sources,	we	took	several	steps	to	account	for	known	biases	
[@Bartomeus.2019;	@Gotelli.2021].	The	species	and	community	temperature	indices	at	
large	scales	of	our	analysis	are	robust	to	imprecision	in	the	underlying	distributional	data	
[@Devictor.2008];	nonetheless	we	filtered	the	original	dataset	to	include	only	complete	
records	(i.e.,	identified	to	species,	containing	complete	coordinates)	and	unique	collection	
events	(distinct	combinations	of	species,	date,	coordinates,	and	observer;	Figure	S1A).	This	
step	helps	to	minimize	the	bias	associated	with	unequal	sampling	efforts	and	differential	
data	collection	methods	across	all	observers.	Moreover,	we	conducted	a	range	of	sensitivity	
analyses	(see	below)	to	determine	whether	our	results	were	robust	given	our	assumptions	
and	methodological	decisions.	

Is	there	evidence	of	an	increase	in	bumble	bee	CTI	over	time?	
Calculating	the	CTI	first	requires	the	species	temperature	index	(STI;	i.e.,	the	historical	
average	summertime	temperature	experienced	over	a	species’	approximate	range;	Figure	
S1B)	to	be	calculated.	We	used	a	subset	of	occurrence	records	from	1970-2000	to	extract	
historical	summertime	temperature	associations	and	calculate	the	STI	for	each	species.	In	
this,	we	assumed	that	the	records	contained	within	this	period	are	representative	of	the	
entire	range	of	each	species.	Using	the	`raster`	package	[@raster],	we	extracted	
temperatures	at	the	specific	location	(i.e.,	raster	pixel)	of	each	occurrence	record	from	the	
raster	of	average	historical	maximum	summer	temperatures	using	WorldClim	version	2.1	
historical	climate	data	for	maximum	monthly	temperatures	at	30	arc-second	(~1	km2)	
resolution	[@Fick.2017].	To	create	a	raster	of	historical	maximum	summer	temperatures,	
we	calculated	the	average	maximum	monthly	temperature	for	summer	months	(defined	
here	as	June-September)	for	a	historical	period	of	1970	to	2000.	We	then	used	this	raster	to	
extract	STI	values	using	our	bumble	bee	occurrence	records.	
Our	analysis	framework	required	us	to	assign	records	to	communities	to	calculate	CTI	for	
given	locations/times	(Figure	S1C.	Although	the	species	assemblages	we	define	below	are	
considerably	larger	than	the	scale	of	an	ecological	community,	the	analysis	is	ultimately	
agnostic	to	this	point,	and	it	does	not	affect	our	specific	questions.	We	refer	to	them	as	
communities/CTI	to	maintain	consistency	with	the	existing	literature.	Also,	because	we	
used	occurrence	records	from	a	variety	of	sources	whose	spatial	locations	varied	over	time,	
using	fixed	sampling	locations	was	not	possible.	Instead,	we	created	a	hexagonal	grid	
across	North	America	at	a	broad	spatial	scale	(50	km	hexagonal	grid	resolution,	center	to	
side:	~	6600	km2)	to	act	as	stand-in	“community”	boundaries.	We	chose	a	50	km	resolution	
to	ensure	we	would	capture	sufficient	records	within	each	grid	cell	to	robustly	estimate	the	
broad	spatiotemporal	trend	of	CTI	[Jackson.2021].	To	determine	if	the	resolution	of	our	
grid	cells	impacted	our	results,	we	also	conducted	our	analyses	using	10	and	100	km	
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center-to-side	hexagonal	grid	cells.	We	assigned	bumble	bee	occurrence	records	to	each	
grid	cell	to	create	quasi-communities,	requiring	each	cell	to	contain	at	least	2	species	for	a	
given	year	to	calculate	CTI.	We	used	hexagonal	grid	cells	to	minimize	possible	edge	effects	
and	provide	a	better	fit	across	the	curvature	of	the	earth	at	large	spatial	scales	[e.g.,	
continental;	@Birch.2007].		
Using	STI	values,	we	then	calculated	CTI	within	each	grid	cell	where	at	least	2	species	
records	were	present	in	the	grid	using	the	full	set	of	bumble	bee	occurrence	records	from	
1961-2018	(Figure	S1D.	We	calculated	CTI	using	two	different	methods,	first	using	
occurrence	records	for	species	i	occurring	within	a	given	community	(grid	cell)	j	

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	1:	𝑂𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒	𝐶𝑇𝐼! =	
∑ 𝑆𝑇𝐼",!$
"%&

𝑛 	

and	then	using	abundance	weighted	estimates	of	species	within	each	community:	

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	2:	𝐴𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒	𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑	𝐶𝑇𝐼! =	
∑ 𝑎",!$
"%& 	× 	𝑆𝑇𝐼",!
∑ 𝑎",!$
"%&

	

where	𝑎",! 	is	the	abundance	of	species	i	at	site	j,	and	n	is	the	total	number	of	species	within	
a	grid	cell	[@Prince.2014].	These	two	approaches,	though	similar,	estimate	the	two	
mechanisms	of	change	in	CTI.	Using	occurrence	records	(Equation	1)	allowed	us	to	test	
shifts	in	CTI	due	to	changes	in	occurrence	(i.e.,	immigration/extirpation),	while	calculating	
CTI	using	abundance	weighting	(Equation	2)	allowed	us	to	understand	shifts	in	CTI	as	a	
function	of	changes	in	local	relative	abundance	(i.e.,	species	becoming	more	common/rare	
within	a	given	community).		

Are	changes	in	CTI	associated	with	increases	in	summer	temperatures?		
To	determine	long-term	warming	trends	across	North	America,	we	used	WorldClim	
gridded	historical	monthly	weather	data	from	1961-2018	for	our	defined	summer	months	
[@Fick.2017].	First,	we	averaged	the	maximum	monthly	temperature	for	each	year.	
Second,	we	extracted	the	mean	maximum	temperature	within	each	of	the	bumble	bee	
community	grid	cells	(Figure	S1E).	This	procedure	created	a	time	series	of	the	average	
maximum	summer	temperature	for	each	year/grid	cell	from	1961-2018.	Third,	we	
calculated	the	average	maximum	summer	temperature	for	a	historical	period	from	1961-
2000	for	each	grid	cell;	this	is	our	baseline	and	we	refer	to	it	as	the	temperature	“normal”.	
Last,	we	calculated	the	summer	maximum	temperature	anomaly	(defined	here	as	the	
deviation	from	long-term	normal)	and	averaged	these	using	3	moving-window	scales	of	3,	
10,	and	30	years	to	capture	metrics	of	relatively	short-	,	medium-,	and	long-term	changes	in	
maximum	summer	temperatures,	respectively.	To	illustrate	the	estimated	trends	in	
maximum	summertime	temperatures,	we	calculated	the	change	in	our	3	scales	of	
anomalies	by	subtracting	the	1990	anomaly	(first	year	possible	to	calculate	30-year	
average)	from	the	2018	anomaly	for	each	grid	cell.		

We	used	generalized	additive	models	(GAM)	to	quantify	trends	in	CTI	over	space	and	time	
and	determine	whether	changes	in	CTI	were	related	to	short-,	medium-,	and	long-term	
trends	in	temperature	anomalies	(Figure	S1F).	Generalized	additive	models	provide	a	
highly	flexible	computational	framework	to	account	for	variable	trends	in	spatiotemporal	
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processes	[@Pedersen.2019]	and	are	especially	well-suited	for	the	analysis	of	potentially	
complex	time	series	and	can	readily	identify	periods	of	significant	change	
[@Simpson.2018].		

For	each	measure	of	CTI	(occurrence	and	abundance-weighted),	we	fitted	a	GAM	to	model	
the	effects	of	spatial	location	(latitude,	longitude,	and	elevation),	long-term	trend	(year),	
short-,	medium-,	and	long-term	estimates	of	rising	temperatures	(3,	10,	and	30-year	
summertime	maximum	temperature	anomalies).	For	the	remainder	of	this	manuscript,	we	
refer	to	this	GAM	as	the	global	model.	
𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	3:	𝐶𝑇𝐼! 	~	𝑠(𝑙𝑎𝑡, 𝑙𝑜𝑛𝑔) + 𝑠(𝑦𝑒𝑎𝑟) + 𝑠(𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛) + 𝑡𝑖(𝑙𝑎𝑡, 𝑙𝑜𝑛𝑔, 𝑦𝑒𝑎𝑟, 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛)

+ 𝑠(𝑒𝑐𝑜	𝑟𝑒𝑔𝑖𝑜𝑛, 𝑏𝑠 = "re")	+	s(𝑇L'()*) + 	s(𝑇L'()&+) + 	s(𝑇L'()*+)	
We	fit	the	model	using	the	`mgcv`	package	in	R	[@mgcv].	The	goal	of	each	model	was	to	
identify	any	temporal	trends	in	CTI	and	determine	where	and	when	significant	changes	
have	occurred.	Because	of	the	differences	in	geography,	land-use,	and	climate	across	North	
America,	we	included	a	2-dimensional	smooth	of	latitude	and	longitude,	and	we	allowed	
the	estimated	temporal	trend	in	CTI	to	vary	according	to	spatial	location	by	including	a	
tensor	product	interaction	of	latitude,	longitude,	elevation,	and	year	(Equation	3).	We	also	
included	a	random	effect	smooth	of	ecological	region	(level	1)	to	further	account	for	
variation	in	the	response	of	CTI	in	accordance	with	common	biophysical	characteristics	
within	ecological	regions,	such	as	commonalities	in	vegetation	and	other	climate	variables	
(e.g.,	precipitation).	We	included	smooths	of	3-,	10-,	and	30-year	summertime	maximum	
temperature	anomalies	to	determine	whether	changes	in	CTI	were	correlated	with	trends	
in	warming	maximum	summer	temperatures.	Including	three	different	anomaly	scales	
allowed	us	to	assess	the	temporal	scale	of	temperature	change	bumble	bee	communities	
respond	most	strongly	to.	This	model	was	fit	to	CTI	estimates	from	1989-2018	because	
1989	was	the	first	year	for	which	30-year	temperature	anomalies	could	be	calculated.	We	
tested	the	model	for	spatial	and	temporal	autocorrelation	in	the	residuals.	For	spatial	
autocorrelation,	we	tested	simulated	residuals	with	a	Moran’s	I	test	using	the	`dHARMA`	
package	[@dharma].	For	temporal	autocorrelation,	we	visually	examined	the	
autocorrelation	function	using	scaled,	simulated	residuals.	
To	visualize	the	change	in	CTI	over	time,	we	generated	CTI	predictions	across	the	spatial	
and	temporal	extents	of	our	dataset	using	the	global	model	for	each	grid	cell.	We	then	
determined	the	change	in	CTI	from	1989-2018	by	subtracting	the	CTI	estimate	for	1990	
from	that	of	2018	for	each	grid	cell.	To	visualize	model	uncertainty,	we	calculated	the	
average	standard	error	of	global	model	predictions	for	each	grid	cell	from	1990-2018.	We	
visualized	the	effect	of	the	three	moving-average	temperature	anomalies	on	CTI	by	plotting	
the	partial	effects	(prediction	of	CTI	as	a	function	of	temperature	holding	other	variables	
are	at	their	mean	value)	of	each	anomaly	from	the	global	model	using	the	`gratia`	[@gratia]	
package.		
Are	CTI	changes	greater	in	areas	particularly	vulnerable	to	a	changing	climate	(e.g.,	
higher	latitudes	and	elevations)?		

To	determine	whether	CTI	changes	were	most	drastic	(i.e.,	greater	slope	in	fitted	GAM)	in	
areas	known	to	be	experiencing	accelerated	climatic	changes,	we	examined	the	rate	of	
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change	in	the	slope	(i.e.,	first	derivative)	of	our	fitted	model	smooth	(Fig.	S2).	To	do	this,	we	
first	fitted	a	GAM	to	CTI	predictions	with	a	single	smooth	of	year	to	create	a	spatially	
explicit,	estimated	trend	of	CTI	for	each	grid	cell.	Then,	for	each	grid	cell’s	fitted	GAM	year	
smooth,	we	extracted	the	first	derivative	with	respect	to	time	(1990-2018)	using	the	
`derivatives()`	function	from	the	`gratia`	package	[@gratia].	For	elevation	and	latitude,	we	
calculated	the	mean	derivative	value	for	each	grid	cell	(i.e.,	the	average	rate	of	change	of	the	
CTI	of	a	grid	cell	from	1989-2018)	and	then	plotted	this	against	the	mean	elevation	and	
latitude	of	the	grid	cell.	We	visualized	the	relationship	with	a	GAM	fit	using	the	
`geom_smooth()`	function	in	the	ggplot	[@tidy]	package.	To	determine	whether	CTI	
changes	were	consistent	or	have	accelerated	over	time,	we	calculated	the	derivative	values	
for	the	year	smooth	for	each	grid	cell	and	plotted	these	values	against	the	year.	Like	
elevation,	this	relationship	was	visualized	with	a	simple	GAM	fit.		
Are	the	observed	shifts	in	CTI	keeping	pace	with	the	rate	of	temperature	increases	
(i.e.,	are	communities	accruing	“climate	debt”)	

By	calculating	the	ratio	of	the	temporal	rate	of	change	in	CTI	(i.e.,	how	much	is	CTI	changing	
per	year)	with	that	of	the	spatial	rate	of	change	(i.e.,	how	much	is	CTI	changing	per	degree	
of	latitude),	we	can	approximate	the	velocity	of	the	northward	shift	for	bumble	bee	
communities	(°C	yr-1/°C	km-1	=	km	yr-1).	This	metric	provides	an	approximation	of	how	
much	communities	have	effectively	shifted	northward	in	terms	of	their	composition	
(Devictor	et	al.,	2008,	2012)	A	similar	procedure	can	be	performed	to	calculate	the	spatial	
velocity	in	temperature.	We	estimated	the	rates	of	change	for	CTI	over	time	by	calculating	
the	average	derivative	value	of	the	“year”	smooth	in	the	model.	For	the	spatial	trend,	we	fit	
a	GAM	to	the	model	predictions	of	CTI	and	related	these	to	a	single	smooth	of	latitude	and	
then	calculated	the	average	derivative	value	of	the	“latitude”	smooth.	We	compared	the	
approximate	spatial	velocities	of	CTI	and	temperature	to	determine	whether	there	is	a	lag	
between	the	shifts	in	temperature	and	the	communities’	response.	A	lag	would	indicate	
that	temperatures	are	increasing	faster	than	communities	are	able	to	respond,	thus	
accruing	“climate	debt”.		

Which	species	are	driving	any	observed	changes	in	CTI?	
Although	quantifying	the	trend	in	CTI	provides	evidence	for	whether	communities	are	
being	restructured	in	response	to	a	changing	climate,	the	procedure	does	not	implicitly	
identify	which	species	are	responsible	for	driving	any	observed	increases.	To	address	this,	
we	used	a	jackknife	analysis	[@Prince.2014],	iteratively	eliminating	one	species	from	our	
model	dataset	and	refitting	the	global	model.	For	this	analysis,	we	filtered	to	the	grid	cells	
that	were	within	the	range	of	the	given	species.	The	range	was	determined	by	creating	a	
convex	hull	around	all	species	occurrence	records	used	in	STI	calculations	and	extracting	
the	grid	cells	within	this	estimated	range.	To	determine	whether	a	species	contributed	to	
the	trend	in	CTI,	we	fit	a	GAM	with	a	single	smooth	of	year	to	the	predicted	CTI	values	of	
grid	cells	within	a	species’	range	and	then	calculated	the	percent	difference	between	the	
mean	first	derivative	of	the	fitted	year	smooth	in	the	reduced	model	predictions	to	that	of	
the	global	model	predictions.	In	this	context,	a	positive	percentage	change	indicated	that	a	
species	had	a	positive	contribution	toward	the	CTI	trend	(i.e.,	the	average	slope	of	the	year	
smooth	increases	when	the	species	is	included).	That	is,	either	more	occurrences,	or	an	
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increase	in	the	local	abundance	of	this	species	leads	to	an	increase	in	CTI.	Conversely,	
species	with	a	negative	percent	change	had	a	negative	contribution	toward	the	CTI	trend;	
as	those	species	occur	less	frequently	or	decrease	in	local	abundance,	the	CTI	trend	should	
increase.	

Model	validation	
We	performed	cross	validation	on	our	global	model	using	testing	data	that	was	filtered	out	
of	the	full	BBNA	database.	These	collection	events,	while	not	“unique”	(i.e.,	not	necessarily	
fully	independent	given	our	strict	definition),	were	still	valid	records	that	could	be	used	to	
calculate	the	CTI	for	any	given	location.	Upon	calculating	the	CTI	for	grid	cells	using	these	
records,	we	compared	the	values	against	predictions	from	the	global	model	by	using	the	
coefficient	of	determination	(R2),	root	mean	square	error	(RMSE)	and	mean	absolute	error	
(MAE).	
Despite	the	vast	number	of	individual	occurrence	records	within	our	dataset,	there	were	
many	grid	cells	that	did	not	contain	species	occurrence	data	for	fitting	the	model.	Given	
that	we	explicitly	model	CTI	over	space,	we	presented	our	results	above	using	predictions	
within	all	grid	cells	given	the	strength	of	our	global	model	fits.	However,	we	also	assessed	
the	results	when	using	model	predicted	values	of	CTI	only	for	grid	cells	containing	
occurrence	data.	This	approach	was	primarily	meant	to	provide	conservative	estimates	of	
CTI	changes,	particularly	where	in	space	(i.e.,	latitude,	elevation)	and	time	changes	were	
greatest.	
We	conducted	all	data	wrangling,	GIS	operations,	modeling,	and	visualization	using	R	
[@rcite]	using	the	aforementioned	and	following	packages:	`tidyverse`	[@tidy],	`raster`	
[@raster],	`sf`	[@sf],	`performance`	[@performance],	`janitor`	[@janitor],	`paletteer`	
[@paletteer],	exactextractr	[@exactextract],	`foreach`	[@foreach],	and	`data.table`	
[@datatable]	packages.		
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Results	
Bumble	bee	community	temperature	index	has	increased	across	a	majority	of	North	
America	
From	1989-2018	bumble	bee	CTI	increased	substantially	across	most	of	North	America,	
but	the	magnitude	of	change	was	spatially	variable	-	with	an	overall	average	increase	of	
0.99	±	1.98	°C	(mean	±	SD)	and	a	range	of	a	decrease	of	6.30	°C	to	an	increase	of	7.99	°C	
(Fig.	1A).	The	predictions	were	most	certain	across	the	coterminous	United	States	where	
there	is	a	high	density	of	bumble	bee	records	and	less	certain	in	the	most	northern	grid	
cells	of	our	study	region	in	the	high	Tundra	and	Queen	Elizabeth	Islands	as	well	as	in	the	
tropical	wet	forests	of	Mexico	(Fig.	1B).	The	spatial	trends	of	the	increase	in	CTI	were	
nearly	identical	between	occurrence	and	abundance-weighted	CTI;	however,	changes	in	
occurrence	CTI	were	marginally	smaller	(0.78	±	1.75	°C).	The	global	model,	which	
quantified	the	change	in	CTI	as	a	function	of	space,	time,	and	changes	in	short-,	medium-,	
and	long-term	temperature	increases,	explained	a	substantial	portion	of	the	deviance	in	
both	the	abundance-weighted	(Table	S1;	86.0%,	adj-R2	=	0.849)	and	occurrence	models	
(Table	S1;	86.3%,	adj-R2	=	0.851).	
The	results	of	our	analysis	were	consistent	irrespective	of	the	grid	scale	used	in	
aggregating	communities	(Fig.	S3;	Table	S2).	The	exception	was	in	areas	of	British	
Columbia	and	Alaska	where	a	highly	concentrated	spatial	pattern	of	bumble	bee	records	
likely	led	to	a	predicted	decrease	in	CTI	in	grid	cells	when	aggregated	at	the	50	and	25	km	
grid	scale.	Aggregating	at	the	largest	scale	(100	km	center-to-side	hexagonal	grid)	revealed	
the	most	wide-spread	increases	in	CTI,	with	nearly	all	grid	cells	exhibiting	an	increase	in	
CTI	from	1989	to	2018.	

Our	models	performed	well	when	cross-validated	using	withheld	data	from	the	BBNA	
database	(Fig.	S4).	Coefficient	of	determination	(R2)	values	ranged	from	0.79-0.81,	root	
mean	squared	error	(RMSE)	ranged	from	1.22-1.31,	and	mean	absolute	error	(MAE)	
ranged	from	0.91-0.96.	In	addition,	our	model	performance	was	consistent	across	the	three	
tested	grid	scales.	Predictions	were	most	accurate	for	CTI	values	ranging	from	23-28°C	
which	corresponded	to	the	regions	where	the	bulk	of	the	occurrence	records	were	
collected.	Prediction	accuracy	was	most	variable	among	cool	regions	in	the	north	and	sub-
arctic	(CTI	<	23°C).		

Shifts	in	CTI	are	strongly	related	to	long-term	increases	in	summer	temperature		
Summertime	maximum	temperatures	have	increased	by	1989-2018	(Fig.	1C-E),	with	
increases	most	apparent	at	10-	(0.630	±	0.405	°C)	and	30-year	average	anomalies	(0.969	±	
0.342°C;	Fig.	1D,	E;	Fig.	S5).	Increases	in	the	30-year	summertime	maximum	temperature	
anomaly	showed	a	strong	statistical	association	with	increases	in	bumble	bee	CTI	(Fig.	2C;	
F	=	4.561,	p	=	0.002).	Increases	in	the	30-year	temperature	anomaly	between	0-0.5°C	had	
no	impact	on	CTI.	However,	increases	beyond	0.5°C	were	associated	with	a	rapid	increase	
of	up	to	1°C	in	bumble	bee	CTI	(partial	effect	due	solely	to	30-year	temperature	anomaly).	
Of	the	2,425	grid	cells,	1,753	exhibited	parallel	increases	in	change	in	CTI	and	the	change	in	
the	30-year	temperature	anomaly	between	1989-2018	(Fig.	3A).	Beyond	a	1°C	change	in	
the	30-year	temperature	anomaly	the	changes	in	CTI	rapidly	increase,	with	gains	of	1	to	
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6.8°C.	The	relationship	of	CTI	with	short	term,	3-year	moving	average	shifts	in	summer	
temperature	anomalies,	while	statistically	supported,	was	weak	and	variable	over	the	
range	of	the	anomalies	(Fig.	2A;	F	=	2.584,	p	=	0.032).	There	was	no	statistically	supported	
relationship	between	the	10-year	average	anomaly	and	bumble	bee	CTI	(Fig.	2B;	F	=	0.064,	
p	=	0.802).	
CTI	is	increasing	fastest	at	low	and	high	elevations,	latitudes,	and	more	recent	years	

We	examined	patterns	in	the	rate	of	change	in	CTI	across	the	continent	to	determine	where	
and	when	the	most	extreme	changes	in	CTI	were	occurring	and	whether	these	areas	
overlapped	with	areas	known	to	be	heavily	impacted	by	a	warming	climate	
[@Januosek.2023].	The	rate	of	change	in	CTI	was	greatest	at	low	(<	800	m)	and	high	
elevations	(>	2000	m;	Fig.	4A)	and	increased	with	increasing	latitude	(Fig.	4B).	Moreover,	
the	rate	of	change	in	CTI	has	increased	from	1989-2018,	with	CTI	increasing	most	rapidly	
after	2010	(Fig.	4C).	These	results	varied	slightly	when	analyzed	with	predictions	from	only	
grid	cells	containing	occurrence	records,	with	changes	in	CTI	being	greatest	at	high	
elevations	(Fig.	S6A;	>	2000	m)	and	mid-high	latitudes	(Fig.	S6B;	35	–	60°).	The	temporal	
patterns	of	the	rate	of	change	were	largely	similar	but	were	positive	only	from	2003	and	
beyond	(Fig.	S6C),	confirming	the	accelerating	rate	of	CTI	change	from	2010	onward	that	is	
exhibited	when	using	predictions	from	all	grid	cells	(Fig.	4C).	
Bumble	bee	community	changes	are	keeping	pace	with	climate	warming	

The	spatial	velocity	of	bumble	bee	CTI	increases	(3.58	km	yr-1)	was	nearly	identical	to	that	
of	summer	temperature	increases	(3.59	km	yr-1).	Over	the	course	of	the	study	(29	years),	
bumble	bee	communities	and	summer	temperatures	have	exhibited	an	equivalent	
northward	shift	of	approximately	104	km.	This	comparison,	while	highly	dependent	on	the	
complexity	of	the	GAM	smooths	used	to	estimate	the	spatial	and	temporal	trends,	indicates	
that	shifts	within	bumble	bee	community	composition	are	effectively	keeping	pace	with	the	
rate	of	climate	warming.	
Species	contributions	to	changes	in	CTI	

All	but	3	species	had	positive	contributions	toward	the	mean	derivative	of	the	temporal	
trend	in	bumble	bee	CTI	from	1989-2018	(Table	S3).	Of	the	most	represented	species	in	the	
dataset,	B.	occidentalis	(%	∆	=	70.42%),	B.	nevadensis	(%	∆	=	69.65%),	B.	ephippiatus	(%	∆	=	
66.87%),	B.	bifarius	(%	∆	=	66.71%),	and	B.	vosnesenskii	(%	∆	=	64.32%)	had	the	greatest	
contribution	for	both	abundance-weighted	and	occurrence	CTI	trends.	Of	the	top	25	
contributors	to	the	increase	in	CTI,	14	(56%)	are	in	the	subgenus	Pyrobombus	(and	3	of	the	
top	5).	In	general,	species	with	wider	ranges	and	more	variable	STI	tended	to	be	those	that	
had	the	biggest	contributions	toward	the	long-term	increase	in	CTI.		 	
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Discussion	
We	documented	significant,	spatially-extensive	shifts	in	the	thermal	tolerance	of	species	
within	North	American	bumble	bee	communities	in	response	to	long-term	increases	in	
summer	temperatures.	Over	the	last	29	years	across	the	continent,	bumble	bee	community	
assemblages	increasingly	consist	of	either	more	warm-adapted	or	fewer	cold-adapted	
species,	with	increases	in	community	temperature	index,	the	measure	of	the	balance	of	
warm-	and	cool-adapted	species,	most	pronounced	at	mid-	to	high	latitudes,	and	high	
elevations	in	the	American	Rockies,	Intermountain	West,	and	central	Mexico.	The	
community	temperature	index	increased	according	to	both	occurrence	and	abundance-
weighted	indices,	suggesting	that	shifts	in	both	local	abundance	and	broader	changes	in	
species	occurrence	(i.e.,	range	shifts)	underlie	the	changes	in	community	composition.	The	
rapid	shift	in	bumble	bee	communities	appears	to	be	on	pace	with	shifting	summer	
temperatures,	with	an	approximate,	equivalent	northward	shift	of	~104	km	from	1989-
2018	for	both	CTI	and	temperature.	Our	work	provides	additional	evidence	of	the	
pervasive	impacts	a	warming	planet	has	for	insect	biodiversity	(CITE	OTHER)	and	
identifies	regions	of	concern	where	anthropogenic	climate	warming	is	rapidly	
restructuring	the	communities	of	an	ecologically	important	group	of	insects.		
An	increase	of	warm-adapted	species	within	biological	communities	is	a	logical	
consequence	of	a	rapidly	warming	climate	[@Beissinger.2013].	Similar	shifts	have	been	
observed	in	bird	communities	in	response	to	both	warming	summer	[@Devictor.2009;	
@Devictor.2012]	and	winter	[@Prince.2014]	temperatures.	Because	insects	are	
ectotherms,	temperature-induced	shifts	in	range	and	abundance	may	be	even	more	
pronounced.	Indeed,	large	changes	in	insect	CTI	have	been	observed	for	both	bumble	bees	
[@Fourcade.2018]	and	butterflies	[@Devictor.2012];	however,	trends	in	CTI	are	often	not	
explicitly	tied	to	spatial	and	temporal	patterns	of	warming	temperatures.	Our	results	
provide	this	link	and	show	a	clear	statistical	relationship	between	increases	in	CTI	and	
long-term	increases	in	maximum	summer	temperatures	across	North	America,	with	areas	
experiencing	a	30-year	temperature	anomaly	of	greater	than	or	equal	to	0.5°C	strongly	
associated	with	a	rapid	increase	in	bumble	bee	CTI.	These	results	identify	areas	of	ample	
concern	where	rates	of	bumble	bee	community	change	and	summer	temperature	increases	
are	the	greatest	(Fig.	1;	dark	orange	and	red	areas).	

The	frontline	of	species’	responses	to	climate	have	tended	to	be	at	high	latitudes	and	
elevations.	Northern	regions	have	experienced	rapid	increases	in	temperature	leading	to	
pronounced	phenological	shifts	across	taxa	[@Parmesan.2007].	Our	results	support	this	
trend,	finding	greatest	rates	of	bumble	bee	CTI	change	at	higher	latitudes	and	high	
elevation.	The	bumble	bee	species	in	these	locations	tend	to	have	narrower	ranges	and	be	
cold-adapted,	traits	identical	to	other	insect	taxa	that	have	exhibited	declines	due	to	
climate	[@Neff.2022;	@Engelhardt.2022;	@Halsch.2021].	The	rapidly	increasing	CTI,	
particularly	at	high	elevations,	suggests	that	cold-adapted	species	are	being	displaced	by	
warm-adapted,	low-elevation	species.	This	phenomenon	has	been	observed	in	the	US	
Rocky	Mountains	where	bumble	bee	communities	are	increasingly	dominated	by	low-
elevation	species	using	high-elevation	habitats	as	a	thermal	refugia	[@Miller-
Struttmann.2022].	An	upslope	range	expansion	appears	to	be	a	common	response	of	
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bumble	bee	communities	to	warming	temperatures	rather	than	expansions	of	northern	
ranges	[@Kerr.2015;	@Sirois-Delisle.2018].	Despite	the	rapid	changes	observed	at	higher	
latitudes,	biological	communities	in	southern	latitudes	and	lower	elevations	are	not	
protected	from	a	changing	climate	[@Dillon.2010],	and	we	documented	some	shifts	in	CTI	
in	central	Mexico	and	at	low	elevations.	That	said,	if	species	lost	from	communities	have	
STI	values	comparable	to	those	species	remaining,	large	shifts	in	CTI	may	be	effectively	
masked,	highlighting	a	limitation	of	our	approach.		
An	increase	in	CTI	could	be	the	result	of	two	mechanisms.	First,	shifts	in	the	occurrence	of	
bees	within	a	community	(i.e.,	immigration/extirpation	of	warm-/cool-adapted	species	via	
range	expansion/contraction)	and	second,	changes	in	the	local	abundance	of	warm-/cool-
adapted	species.	We	found	evidence	supporting	both	mechanisms	by	modeling	occurrence	
and	abundance-weighted	measures	of	CTI.	Shifts	in	local	relative	abundance	align	with	
existing	research	[@Hemberger.2021;	@Cameron.2011];	however,	substantial	range	
expansion	of	warm-adapted	bumble	bees	has	not	been	described	[@Kerr.2015]	and	may	be	
unlikely	given	bumble	bee	dispersal	capacities	[@SiroisDelise.2018	but	see	@Fijen.2021].	
That	said,	select	species	of	bumble	bees	may	be	capable	of	long-distance	dispersal	
[@Fijen.2021],	and	significant	range	shifts	observed	in	other	insect	taxa	have	been	
observed	[@Warren.2001;	@Hinckling.2005].	Regardless,	our	jackknife	analysis	revealed	
that	the	largest	contributors	to	increasing	abundance	and	occurrence-based	CTI	within	
their	range	are	common	species	that	have	exhibited	both	range	increases	[e.g.,	B.	impatiens	
@Palmier.2019;	@Looney.2019]	and	increases	in	local	abundance.	This	result	indicates	
that	certain	species	are	sensitive	to	and	more	capable	of	effectively	tracking/adapting	to	
ideal	climatic	conditions	[@Maebe.2021].	The	equivalent,	northward	spatial	shift	in	bumble	
bee	community	composition	that	we	observed	was	nearly	identical	to	that	of	the	spatial	
shift	in	maximum	summer	temperatures.	This	result	provides	further	evidence	that,	at	least	
some	species,	are	successfully	tracking	warming	climates	and	not	accruing	climate	debts	
[@Devictor.2012].	However,	other	species	(e.g.,	B.	occidentalis)	are	not	able	to	successfully	
track	warming	and	are	likely	to	suffer	substantial	reductions	in	range	as	a	result	
[@Januosek.2023].	Such	contrasts	highlight	the	species-specific	nature	of	bumble	bee	
responses	to	a	rapidly	changing	climate	[@Jackson.2021;	@Whitehorn.2021].	Additional	
research	is	needed	detailing	species-specific	responses	to	warming	conditions	–	focusing	
on	identifying	the	physiological	and	evolutionary	mechanisms	that	drive	species’	plasticity	
to	changing	environmental	conditions.	
An	increase	in	the	occurrence	and	abundance	of	warm	adapted	species	does	suggest	a	
physiological/climate	preference	mechanism	is	at	play	(i.e.,	direct	effect).	Several	studies	
document	significant,	direct	effects	of	warming	on	insect	pollinators	[@Carradonna.2018;	
@Kenna.2021;	@Hemberger.2022],	however	indirect	effects	mediated	through	biotic	
interactions	may	be	just	as	if	not	more	important	[@Ockendon.2014].	In	the	context	of	our	
study,	such	indirect	effects	imply	that	shifts	in	bumble	bee	community	composition	are	
occurring	in	part	in	response	to	climate-induced	changes	in	the	resource	landscape	(i.e.,	
indirect	effects).	For	example,	warming	climates	can	widen	the	temporal	availability	of	
resources	due	to	earlier	snowmelts,	which	in	turn	lead	to	an	increase	in	bumble	bee	
abundance	[@Ogilvie.2017].	Warming	may	also	create	phenological	mismatches	that	
reduce	available	forage	for	bees	[@Pyke.2016,	but	see	@Bartomeus.2011.	Similarly,	an	
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increase	in	hot,	dry	summer	conditions	can	significantly	reduce	floral	resources	and	the	
bumble	bees	that	depend	on	them	[@Iserbyt.2013],	and	similar	patterns	have	been	
observed	for	butterflies	[@Crossley.2021].	Unfavorable	conditions,	often	a	result	of	
extreme	weather	events	such	as	heat	waves	and	droughts,	can	create	resource	bottlenecks	
that	have	the	potential	to	lead	to	population	declines	and	local	extirpation	[@Maron.2015].	
Heat	waves,	for	example,	are	expected	to	increase	significantly	in	the	coming	century	
[@Meehl.2006;	@Lopez.2018;	@Thompson.2022].		As	our	study	could	not	differentiate	
between	direct	and	indirect	pathways,	parsing	their	relative	impacts	on	bumble	bees	and	
other	taxa	is	a	critical	research	need.	In	the	meantime,	supporting	bumble	bees	in	the	face	
of	both	direct	and	indirect	effects	may	be	accomplished	by	maintaining	climate	refugia,	
such	as	heterogeneity	in	vegetation	structure,	that	can	provide	microclimatic	respite	from	
temperature	extremes	to	bees	[@Pincebourde.2020]	and	other	taxa	[e.g.,	birds,	
@Kim.2022]	in	addition	to	increasing	spatial/temporal	resource	continuity	to	minimize	
negative	indirect	effects	[@Maron.2015].		

Given	the	spatiotemporal	extent	of	our	study,	it	is	likely	that	warming	summer	
temperatures	and	the	temperature	profile	of	a	given	bumble	bee	assemblage	may	co-vary	
with	other,	known	factors	of	bumble	bee	community	composition	and	occurrence.	For	
example,	losses	in	certain	species	across	their	range	may	be	linked	to	disease	
[@Cameron.2011;	@Colla.2006,	@Szabo.2013].	Additionally,	at	large-scales,	a	loss	of	
suitable	habitat	via	land-use	intensification	and	change	is	also	of	concern.	However,	when	
examined	together	with	shifts	in	land-use,	climatic	variables	(and	their	associated	indirect	
effects)	tend	to	have	as	much	or	more	power	to	explain	long-term	species	trends	than	land-
use	or	resource	availability	in	bumble	[@Jackson.2021;	@Kammerer.2020;	
@Whitehorn.2021,	@Kerr.2015]	and	other	wild	bee	species	[@Duchenne.2020].	Moreover,	
the	areas	of	greatest	increase	in	CTI	are	in	areas	removed	from	the	most	significant	effects	
of	land-use	change	[e.g.,	high	latitudes	and	elevations;	@Halsch.2021].	Regardless,	
managing	habitat	offers	a	critical	tool	that	can	be	used	to	mitigate	the	impacts	of	a	changing	
climate	[@Outhwaite.2022;	@Oliver.2017;	@Oliver.2015;	@Kim.2022].	

Conclusions	
Climate	change	is	poised	to	have	significant,	cross-scale	impacts	on	insect	behavior,	
populations,	and	communities	[@Lehmann.2020;	@Raven.2021;	@Halsch.2021;	
@Høye.2021b].	In	this	paper,	we	document	a	substantial	shift	in	the	functional	composition	
of	bumble	bee	communities	with	respect	to	climate	that	is	tied	to	a	long-term	increase	of	
summer	temperatures	in	North	America.	Due	to	changes	in	both	occurrence	and	
abundance,	several	species	within	bumble	bee	communities	appear	to	be	tracking	climate	
warming,	however	this	is	likely	at	the	expense	of	other	species	that	lack	the	adaptive	
capacity	to	cope	with	rapidly	climbing	temperatures.	Although	the	exact	mechanisms	of	
these	community-level	shifts	remain	unknown	(i.e.,	direct	vs.	indirect	effect	of	warming),	
our	work	adds	to	a	growing	body	of	evidence	that	suggests	climate	change	will	result	in	
many	climate	losers	with	unknown	consequences	for	ecosystems.	It	is	critical	that	we	focus	
on	designing	adaptation	measures,	such	as	climate	refugia	and	climate-focused	habitat	
conservation,	to	help	combat	the	ongoing	direct	and	indirect	impacts	a	rapidly	warming	
planet	threatens.	However,	such	efforts	will	only	be	successful	in	conjunction	with	
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substantial	decreases	in	emissions	[@Oliver.2015]	–	an	essential	solution	to	safeguard	the	
planet’s	biodiversity	for	generations	to	come.	 	
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Figures	and	tables	

	
Figure	1:	(A)	Extrapolated	spatial	projection	of	the	estimated	change	in	community	
temperature	index	from	1990-2018	across	North	America.	Differences	in	CTI	were	
calculated	for	each	grid	cell	by	subtracting	the	model	predicted	CTIt	=	1989	from	predicted	
CTIt	=	2018.	(B)	Spatial	projection	of	the	mean	uncertainty	estimates	across	years	from	1989-
2018.	(C)	Spatial	projection	of	the	change	in	the	3-year,	10-year	(D)	and	30-year	(E)	
average	temperature	anomaly.	Differences	were	calculated	by	subtracting	the	1989	
anomaly	from	the	2018	anomaly	for	each	grid	cell.	Hexagonal	grid	cells	are	100	km	from	
side	to	side	(~8600	km2).		 	
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Figure	2:	Generalized	additive	model	partial	plots	(i.e.,	marginal	effects)	show	the	model	
predicted	effect	of	(A)	3,	(B)	10,	and	(C)	30-year	moving	average	temperature	anomalies	on	
the	community	temperature	index.	Positive	values	on	the	x-axes	indicate	an	increase	in	the	
average	temperature	relative	to	the	long-term	average.	Solid	line	indicates	significant	
trend.	 	
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Figure	3:	A	significant	increase	in	bumble	bee	CTI	is	strongly	associated	with	long-term	
warming	and	has	accelerated	in	the	last	15	years.	(A)	Biplot	of	change	in	30-year	
temperature	anomaly	and	change	in	bumble	bee	CTI	for	each	grid	cell	across	North	
America.	Trendline	is	a	GAM	fitted	with	ggplot	and	includes	95%	confidence	interval.	
Dashed	lines	indicate	no	change	in	anomaly	or	CTI	for	the	X	and	Y	axes,	respectively.	(B)	
Model	estimated	temporal	trend	in	CTI	across	North	America.	Yearly	predictions	are	
calculated	from	the	global	model	for	each	grid	cell,	and	the	trend	within	each	region	is	
illustrated	with	a	GAM	fit	with	50%	and	95%	confidence	intervals.	 	
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Figure	4:	Estimates	of	the	rate	of	change	in	CTI	over	time	across	(A)	elevation,	(B)	latitude,	
and	(C)	year.	Yearly	predictions	are	calculated	from	the	global	model	for	each	grid	cell	
using	simple	generalized	additive	models	with	a	single	smooth	of	year	to	determine	CTI	
trend	within	the	grid	cell.	For	each	fitted	smooth	(except	for	the	year,	C),	we	then	calculated	
the	mean	derivative	across	its	range	(1989-2018)	for	each	grid	cell.	We	then	plotted	these	
derivative	estimates	to	explore,	across	the	extent	of	North	America,	whether	increases	in	
CTI	were	varied	with	elevation	or	over	time.	We	calculated	predictions	(red	lines)	from	a	
generalized	additive	model	using	a	thin-plate	basis	function	and	3	knots	for	visual	purposes	
only.	Estimates	include	the	95%	confidence	interval.	
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Supplementary	material	

	
Figure	S1:	Conceptual	figure	of	data	cleaning	(A),	STI	calculation	(B),	community	
assignment	(C),	CTI	calculation	(D),	temperature	anomaly	calculations	(E)	and	modeling	
procedures	used	in	our	analyses	(F).		

	 	



23	

	

	
Figure	S2:	Conceptual	diagram	of	the	derivative	calculations	conducted	to	determine	
whether	the	rate	of	increase	(i.e.,	derivative)	of	bumble	bee	CTI	has	remained	steady	or	
accelerated	over	space	and	time.	(1)	We	use	the	global	model	to	predict	the	CTI	in	each	grid	
cell	for	each	year	of	the	study,	from	1989-2018.	(2)	For	each	grid	cell,	we	fit	a	GAM	through	
the	predicted	points	to	visualize	and	quantify	the	trend	in	CTI	from	1989-2018.	From	these	
data,	we	also	calculated	the	change	in	CTI	from	1989-2018	(∆	CTI)	which	is	plotted	in	Fig.	
1A.	The	overall	change,	however,	tells	us	nothing	of	the	functional	form	of	the	relationship	
between	CTI	and	time,	elevation,	etc.	To	address	this,	we	calculated	the	first	derivative	
across	the	fitted	smooth	to	determine	how	the	rate	of	change	in	CTI	varied	across	time,	
elevation,	and	latitude	(Fig.	2).	(3)	For	each	grid	cell’s	fitted	GAM,	we	calculated	the	
derivative	of	the	year	smooth	at	a	range	of	values	between	1989-2018.	In	this	example,	
because	CTI	is	increasing	throughout	the	entire	study	period,	the	derivative	is	>	0	at	all	
years.	(4)	We	then	took	the	derivative	estimates	for	all	grid	cells	and	fit	a	GAM	to	visualize	
the	trend	between	the	derivative	and	time.	For	elevation	(5)	and	latitude	(6),	we	first	
averaged	the	derivative	value	from	1989-2018	to	determine	the	mean	slope	for	each	grid	
cell	before	plotting	that	against	the	mean	elevation	and	latitude	of	each	grid	cell	and	
visualizing	the	relationship	with	a	GAM.	Transparent	points	are	illustrative	(not	actual	
values)	of	individual	hex	grid	derivative	values	across	the	range	of	elevation	and	latitude.	
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The	black	star	represents	a	hypothetical	mean	derivative	value	from	the	example	plot	in	
(3)	to	illustrate	how	mean	derivative	values	are	used	to	assess	the	trend.	
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Figure	S3:	Predicted	change	in	bumble	bee	CTI	across	North	America	between	1989-2018	
at	three	different	spatial	resolutions	of	hexagonal	grid	(distance	indicates	side-to-side):	(A)	
50	km;	(B)	100	km;	(C)	200	km;	along	with	the	mean	prediction	uncertainty	at	the	same	
resolutions.	 	
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Figure	S4:	Abundance-weighted	global	model	cross	validation	results	at	three	different	
scales	of	(A)	25	km,	(B)	50	km,	and	(C)	100	km	center-to-edge	hexagonal	grids.	Cross	
validation	metrics	are	given	in	the	top	left	of	each	panel	including	coefficient	of	
determination	(R2),	root	mean	squared	error	(RMSE),	and	mean	absolute	error	(MAE).		 	
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Figure	S5:	Trend	in	summer	(June	–	September)	maximum	temperature	anomalies	at	(A)	
3-year,	(B)	10-year,	and	(C)	30-year	moving	averages.	Transparent	points	are	raw	values	
and	red	lines	are	GAM	trendlines.	 	
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Figure	S6:	Estimates	of	the	rate	of	change	in	CTI	over	time	across	(A)	elevation,	(B)	
latitude,	and	(C)	year	using	predictions	only	from	grid	cells	containing	occurrence	records	
(conservative	approach).	Yearly	predictions	are	calculated	from	the	global	model	for	each	
grid	cell	using	simple	generalized	additive	models	with	a	single	smooth	of	year	to	
determine	CTI	trend	within	the	grid	cell.	For	each	fitted	smooth	(except	for	the	year,	C),	we	
then	calculated	the	mean	derivative	across	its	range	(1989-2018)	for	each	grid	cell.	We	
then	plotted	these	derivative	estimates	to	explore,	across	the	extent	of	North	America,	
whether	increases	in	CTI	were	varied	with	elevation	or	over	time.	We	calculated	
predictions	(red	lines)	from	a	generalized	additive	model	using	a	thin-plate	basis	function	
and	3	knots	for	visual	purposes	only.	Estimates	include	the	95%	confidence	interval.	 	
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Table	S1:	Results	from	a	generalized	additive	model	for	CTI	using	occurrence-only		and	
abundance-weighted	records	from	1989-2018.	
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Table	S2:	Results	from	a	generalized	additive	model	for	CTI	using	occurrence-only	records	
at	three	different	spatial	resolutions	(community	grid	scale)	at	25,	50,	and	100	km	from	
1989-2018.	
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Table	S3:	Jackknife	analysis	for	both	abundance-weighted	and	occurrence	CTI	estimates	
for	all	species	in	the	dataset.	Species	temperature	index	(STI),	STI	standard	deviation,	and	
number	of	records	in	the	CTI	dataset	are	also	given.	Percent	difference	is	the	difference	
between	the	global	(including	all	species)	and	jackknife	model	(excluding	single	species)	
mean	derivative	M,-

,.
	N	across	the	temporal	range	(1989-2018)	of	the	respective	global	

model.	Positive	percentages	indicate	that	the	species	contributes	to	the	CTI	trend	(i.e.,	that	
an	increase	in	abundance/occurrence	leads	to	an	increase	in	CTI).		

	


