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Abstract

A rapidly warming climate has become one of the primary forces driving changes in
biodiversity worldwide. The impact of warming temperatures on insect communities is of
particular interest given their importance for ecosystem function and service provision and
the uncertainty around whether insect communities can keep pace with the rate of
increasing temperatures. We use a long-term dataset on bumble bee species occurrence
and data on summer maximum temperature trends across North America to characterize
community-level responses to recent climate warming. Bumble bees are relatively well
recorded historically and are sensitive to warming temperatures. We examined responses
using the community temperature index (CTI) - a measure of the balance of cool- and
warm-adapted species within local communities. Starting in 2010, bumble bee average CTI
across North America has rapidly increased after a period of slight increase from 1989 to
the late 2000s. This increase is strongly associated with recent increases in maximum
summer temperatures. The increase in CTI is spatially extensive, occurring throughout
North America, but the areas of greatest concern include mid to high latitudes as well as
low and high elevations - areas relatively shielded from other intensive global changes (e.g.,
land-use). On average, bumble bee CTI has increased 0.99°C from 1989 to 2018, a change of
similar magnitude to the increase in maximum summer temperatures. The rapid shift in
bumble bee communities appears to be at pace with shifting summer temperatures, with
an approximate, equivalent northward shift of ~104 km from 1989-2018 for both. This
indicates an adaptive capacity among some bumble bee species. However, warming
temperatures are also likely reducing the occurrence and local abundance of cool-adapted
species that may serve important ecological roles within their range. Our results provide
strong evidence of the pervasive impacts posed to insect communities by temperature
increases in the past few decades.



Introduction

Climate change is driving profound changes in animal occurrence and community
composition worldwide. Long-term increases in average temperature as well as increases
in acute, extreme weather events (e.g., heat waves) have been linked to both positive
[CITE] and negative outcomes for biodiversity [CITE]. Regardless of the direction of such
outcomes, a rapidly changing climate has the potential to fundamentally alter biological
processes, including ecosystem services that maintain biodiversity and support global
agricultural production [CITE].

Insect responses to climate change are of specific interest given the growing
documentation of declines in a variety of taxa and regions [CITE]. Although several
anthropogenic drivers of global change are at play [@Hemberger.2021, MORE], a changing
climate is particularly menacing given the number of potential direct and indirect impacts
it has on insects and its capacity to be a force-multiplier, interacting with other factors to
exacerbate changes in insect populations [CITE]. Like many global change drivers, rapidly
increasing temperatures may favor some species while leading to local extirpations of
others. Though critical limits of species [e.g., CTmax. Oyen.2018] are unlikely to be breached,
the extent to which climate warming has contributed to local shifts in insect abundance and
species’ range remains unknown - placing a host of ecological processes and services in
limbo.

Even among the most studied insect taxa there is debate about the extent, severity, and
direction of effects associated with climate change. Bumble bees are a prime example with
some studies revealing extensive declines [@Soroye.2020; but see @Guzman.2021] and
others suggesting resilience and relative stability [@Maebe.2021; @Guzman.2021] or
mixed patterns of decline and increases over time[@]Jackson.2022]. Most current
approaches examining the long-term influence of climate on bumble bees use occupancy
models to relate changes in species occurrence to trends in climate, such as increases in
temperature and changes in precipitation [@]Januosek.2023]. Although this method can
yield valuable insights, it can be challenging to align the framework with the incidental and
imperfect occurrence data that abounds in large-scale insect databases, making model
outcomes sensitive to occupancy assumptions [@Guzman.2021]. Moreover, the occupancy
approach framework does not capture the physiological mechanisms driving species
responses to warming temperatures. As such, a more thorough understanding of
where/when insects are most impacted by climate change requires exploring alternative
analytical methods that better tie climatic changes to estimates of insect physiological
preferences and limits.

We characterize bumble bee community responses to recent climate warming at the
continental scale by examining changes in the community temperature index (CTI), a
physiological metric of community responses to climate based on the composition of cool-
and warm-adapted species. This metric can be used to assess the rate of change in
community composition based on historical species temperature preferences (species
temperature index, STI), as well as the spatial velocity of community changes
[@Devictor.2008; @Devictor.2012]. When examined over time along with temperature, CTI
can help determine whether species are keeping pace with the velocity of temperature



trends [i.e.,, an increase in warm-adapted species and a loss of cool-adapted species in
rapidly warming areas; @Fourcade.2019], or whether communities are accruing “climate
debts”, as rising temperatures outpace species turnover [@Devictor.2012]. Thismethod

alse-simultaneously-assesses-changes-atthe edge of species ranges{i-e;

Using 50 years of records from the Bumble bees of North America database (Richardson
202X), we test for changes in bumble bee communities using CTI across North America and
quantify CTI shifts’ association with trends in maximum summer temperatures.
Specifically, we wanted to address the following questions: (1) is there evidence of an
increase in bumble bee CTI over time? (2) are changes in CTI associated with increases in
summer temperatures? (3) are CTI changes greater in areas particularly vulnerable to a
changing climate (e.g., higher latitudes and elevations)? (4) are the observed shifts in CTI
keeping pace with the rate of temperature increases (i.e., are communities accruing
“climate debt”) and (5) which species are driving any observed changes in CTI? We
predicted a steady increase in bumble bee CTI in accordance with documented increases in
average maximum summer temperatures over the past century and that changes would be
more dramatic at higher latitudes and elevations. We also expected that a host of common
species that have increased in occurrence over the past several decades would be the
strongest drivers of change in CTI across the continent.



Methods

North American bumble bee occurrence and community data

We used occurrence records for 59 species of North American bumble bees from the
bumble bees of North America database [BBNA; @Richardson.2022]. This database
composes 781,280 records from 1805-2020 from a variety of sources (e.g., natural history
collections, research studies, citizen science programs). Because the database consists of an
amalgam of sources, we took several steps to account for known biases

[@Bartomeus.2019; @Gotelli.2021]. The species and community temperature indices at
large scales of our analysis are robust to imprecision in the underlying distributional data
[@Devictor.2008]; nonetheless we filtered the original dataset to include only complete
records (i.e., identified to species, containing complete coordinates) and unique collection
events (distinct combinations of species, date, coordinates, and observer; Figure S1A). This
step helps to minimize the bias associated with unequal sampling efforts and differential
data collection methods across all observers. Moreover, we conducted a range of sensitivity
analyses (see below) to determine whether our results were robust given our assumptions
and methodological decisions.

Is there evidence of an increase in bumble bee CTI over time?

Calculating the CTI first requires the species temperature index (STI; i.e., the historical
average summertime temperature experienced over a species’ approximate range; Figure
S1B) to be calculated. We used a subset of occurrence records from 1970-2000 to extract
historical summertime temperature associations and calculate the STI for each species. In
this, we assumed that the records contained within this period are representative of the
entire range of each species. Using the ‘raster’ package [@raster], we extracted
temperatures at the specific location (i.e., raster pixel) of each occurrence record from the
raster of average historical maximum summer temperatures using WorldClim version 2.1
historical climate data for maximum monthly temperatures at 30 arc-second (~1 km?)
resolution [@Fick.2017]. To create a raster of historical maximum summer temperatures,
we calculated the average maximum monthly temperature for summer months (defined
here as June-September) for a historical period of 1970 to 2000. We then used this raster to
extract STI values using our bumble bee occurrence records.

Our analysis framework required us to assign records to communities to calculate CTI for
given locations/times (Figure S1C. Although the species assemblages we define below are
considerably larger than the scale of an ecological community, the analysis is ultimately
agnostic to this point, and it does not affect our specific questions. We refer to them as
communities/CTI to maintain consistency with the existing literature. Also, because we
used occurrence records from a variety of sources whose spatial locations varied over time,
using fixed sampling locations was not possible. Instead, we created a hexagonal grid
across North America at a broad spatial scale (50 km hexagonal grid resolution, center to
side: ~ 6600 km?) to act as stand-in “community” boundaries. We chose a 50 km resolution
to ensure we would capture sufficient records within each grid cell to robustly estimate the
broad spatiotemporal trend of CTI [Jackson.2021]. To determine if the resolution of our
grid cells impacted our results, we also conducted our analyses using 10 and 100 km



center-to-side hexagonal grid cells. We assigned bumble bee occurrence records to each
grid cell to create quasi-communities, requiring each cell to contain at least 2 species for a
given year to calculate CTI. We used hexagonal grid cells to minimize possible edge effects
and provide a better fit across the curvature of the earth at large spatial scales [e.g,,
continental; @Birch.2007].

Using STI values, we then calculated CTI within each grid cell where at least 2 species
records were present in the grid using the full set of bumble bee occurrence records from
1961-2018 (Figure S1D. We calculated CTI using two different methods, first using
occurrence records for species i occurring within a given community (grid cell) j

. ~ STl ;
Equation 1: Occurrence CTl; = ———

and then using abundance weighted estimates of species within each community:

n

i=1aij X STl
n
i=1

Equation 2: Abundance weighted CTI; =

a;j

where q; ; is the abundance of species i at site j, and n is the total number of species within
a grid cell [@Prince.2014]. These two approaches, though similar, estimate the two
mechanisms of change in CTI. Using occurrence records (Equation 1) allowed us to test
shifts in CTI due to changes in occurrence (i.e., immigration/extirpation), while calculating
CTI using abundance weighting (Equation 2) allowed us to understand shifts in CTI as a
function of changes in local relative abundance (i.e., species becoming more common/rare
within a given community).

Are changes in CTI associated with increases in summer temperatures?

To determine long-term warming trends across North America, we used WorldClim
gridded historical monthly weather data from 1961-2018 for our defined summer months
[@Fick.2017]. First, we averaged the maximum monthly temperature for each year.
Second, we extracted the mean maximum temperature within each of the bumble bee
community grid cells (Figure S1E). This procedure created a time series of the average
maximum summer temperature for each year/grid cell from 1961-2018. Third, we
calculated the average maximum summer temperature for a historical period from 1961-
2000 for each grid cell; this is our baseline and we refer to it as the temperature “normal”.
Last, we calculated the summer maximum temperature anomaly (defined here as the
deviation from long-term normal) and averaged these using 3 moving-window scales of 3,
10, and 30 years to capture metrics of relatively short-, medium-, and long-term changes in
maximum summer temperatures, respectively. To illustrate the estimated trends in
maximum summertime temperatures, we calculated the change in our 3 scales of
anomalies by subtracting the 1990 anomaly (first year possible to calculate 30-year
average) from the 2018 anomaly for each grid cell.

We used generalized additive models (GAM) to quantify trends in CTI over space and time
and determine whether changes in CTI were related to short-, medium-, and long-term
trends in temperature anomalies (Figure S1F). Generalized additive models provide a
highly flexible computational framework to account for variable trends in spatiotemporal



processes [@Pedersen.2019] and are especially well-suited for the analysis of potentially
complex time series and can readily identify periods of significant change
[@Simpson.2018].

For each measure of CTI (occurrence and abundance-weighted), we fitted a GAM to model
the effects of spatial location (latitude, longitude, and elevation), long-term trend (year),
short-, medium-, and long-term estimates of rising temperatures (3, 10, and 30-year
summertime maximum temperature anomalies). For the remainder of this manuscript, we
refer to this GAM as the global model.

Equation 3: CTI; ~ s(lat,long) + s(year) + s(elevation) + ti(lat, long, year, elevation)
+ s(eco region, bs = "re") + s(Tmax3) + S(Tmax10) + S(Tmax30)

We fit the model using the ‘'mgcv’ package in R [@mgcv]. The goal of each model was to
identify any temporal trends in CTI and determine where and when significant changes
have occurred. Because of the differences in geography, land-use, and climate across North
America, we included a 2-dimensional smooth of latitude and longitude, and we allowed
the estimated temporal trend in CTI to vary according to spatial location by including a
tensor product interaction of latitude, longitude, elevation, and year (Equation 3). We also
included a random effect smooth of ecological region (level 1) to further account for
variation in the response of CTI in accordance with common biophysical characteristics
within ecological regions, such as commonalities in vegetation and other climate variables
(e.g., precipitation). We included smooths of 3-, 10-, and 30-year summertime maximum
temperature anomalies to determine whether changes in CTI were correlated with trends
in warming maximum summer temperatures. Including three different anomaly scales
allowed us to assess the temporal scale of temperature change bumble bee communities
respond most strongly to. This model was fit to CTI estimates from 1989-2018 because
1989 was the first year for which 30-year temperature anomalies could be calculated. We
tested the model for spatial and temporal autocorrelation in the residuals. For spatial
autocorrelation, we tested simulated residuals with a Moran'’s I test using the 'dHARMA®
package [@dharma]. For temporal autocorrelation, we visually examined the
autocorrelation function using scaled, simulated residuals.

To visualize the change in CTI over time, we generated CTI predictions across the spatial
and temporal extents of our dataset using the global model for each grid cell. We then
determined the change in CTI from 1989-2018 by subtracting the CTI estimate for 1990
from that of 2018 for each grid cell. To visualize model uncertainty, we calculated the
average standard error of global model predictions for each grid cell from 1990-2018. We
visualized the effect of the three moving-average temperature anomalies on CTI by plotting
the partial effects (prediction of CTI as a function of temperature holding other variables
are at their mean value) of each anomaly from the global model using the "gratia’ [@gratia]
package.

Are CTI changes greater in areas particularly vulnerable to a changing climate (e.g.,
higher latitudes and elevations)?

To determine whether CTI changes were most drastic (i.e., greater slope in fitted GAM) in
areas known to be experiencing accelerated climatic changes, we examined the rate of



change in the slope (i.e,, first derivative) of our fitted model smooth (Fig. S2). To do this, we
first fitted a GAM to CTI predictions with a single smooth of year to create a spatially
explicit, estimated trend of CTI for each grid cell. Then, for each grid cell’s fitted GAM year
smooth, we extracted the first derivative with respect to time (1990-2018) using the
“derivatives()" function from the "gratia’ package [@gratia]. For elevation and latitude, we
calculated the mean derivative value for each grid cell (i.e., the average rate of change of the
CTI of a grid cell from 1989-2018) and then plotted this against the mean elevation and
latitude of the grid cell. We visualized the relationship with a GAM fit using the
‘geom_smooth()" function in the ggplot [@tidy] package. To determine whether CTI
changes were consistent or have accelerated over time, we calculated the derivative values
for the year smooth for each grid cell and plotted these values against the year. Like
elevation, this relationship was visualized with a simple GAM fit.

Are the observed shifts in CTI keeping pace with the rate of temperature increases
(i.e., are communities accruing “climate debt”)

By calculating the ratio of the temporal rate of change in CTI (i.e., how much is CTI changing
per year) with that of the spatial rate of change (i.e., how much is CTI changing per degree
of latitude), we can approximate the velocity of the northward shift for bumble bee
communities (°C yr'1/°C km-! = km yr-1). This metric provides an approximation of how
much communities have effectively shifted northward in terms of their composition
(Devictor et al., 2008, 2012) A similar procedure can be performed to calculate the spatial
velocity in temperature. We estimated the rates of change for CTI over time by calculating
the average derivative value of the “year” smooth in the model. For the spatial trend, we fit
a GAM to the model predictions of CTI and related these to a single smooth of latitude and
then calculated the average derivative value of the “latitude” smooth. We compared the
approximate spatial velocities of CTI and temperature to determine whether there is a lag
between the shifts in temperature and the communities’ response. A lag would indicate
that temperatures are increasing faster than communities are able to respond, thus
accruing “climate debt”.

Which species are driving any observed changes in CTI?

Although quantifying the trend in CTI provides evidence for whether communities are
being restructured in response to a changing climate, the procedure does not implicitly
identify which species are responsible for driving any observed increases. To address this,
we used a jackknife analysis [@Prince.2014], iteratively eliminating one species from our
model dataset and refitting the global model. For this analysis, we filtered to the grid cells
that were within the range of the given species. The range was determined by creating a
convex hull around all species occurrence records used in STI calculations and extracting
the grid cells within this estimated range. To determine whether a species contributed to
the trend in CTI, we fit a GAM with a single smooth of year to the predicted CTI values of
grid cells within a species’ range and then calculated the percent difference between the
mean first derivative of the fitted year smooth in the reduced model predictions to that of
the global model predictions. In this context, a positive percentage change indicated that a
species had a positive contribution toward the CTI trend (i.e., the average slope of the year
smooth increases when the species is included). That is, either more occurrences, or an



increase in the local abundance of this species leads to an increase in CTIL. Conversely,
species with a negative percent change had a negative contribution toward the CTI trend;
as those species occur less frequently or decrease in local abundance, the CTI trend should
increase.

Model validation

We performed cross validation on our global model using testing data that was filtered out
of the full BBNA database. These collection events, while not “unique” (i.e., not necessarily
fully independent given our strict definition), were still valid records that could be used to
calculate the CTI for any given location. Upon calculating the CTI for grid cells using these
records, we compared the values against predictions from the global model by using the
coefficient of determination (R?), root mean square error (RMSE) and mean absolute error
(MAE).

Despite the vast number of individual occurrence records within our dataset, there were
many grid cells that did not contain species occurrence data for fitting the model. Given
that we explicitly model CTI over space, we presented our results above using predictions
within all grid cells given the strength of our global model fits. However, we also assessed
the results when using model predicted values of CTI only for grid cells containing
occurrence data. This approach was primarily meant to provide conservative estimates of
CTI changes, particularly where in space (i.e., latitude, elevation) and time changes were
greatest.

We conducted all data wrangling, GIS operations, modeling, and visualization using R
[@rcite] using the aforementioned and following packages: “tidyverse' [@tidy], ‘raster’
[@raster], ‘sf’ [@sf], ‘performance’ [@performance], ‘janitor’ [@janitor], "paletteer’
[@paletteer], exactextractr [@exactextract], foreach™ [@foreach], and "data.table’
[@datatable] packages.
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Results

Bumble bee community temperature index has increased across a majority of North
America

From 1989-2018 bumble bee CTI increased substantially across most of North America,
but the magnitude of change was spatially variable - with an overall average increase of
0.99 £ 1.98 °C (mean * SD) and a range of a decrease of 6.30 °C to an increase of 7.99 °C
(Fig. 1A). The predictions were most certain across the coterminous United States where
there is a high density of bumble bee records and less certain in the most northern grid
cells of our study region in the high Tundra and Queen Elizabeth Islands as well as in the
tropical wet forests of Mexico (Fig. 1B). The spatial trends of the increase in CTI were
nearly identical between occurrence and abundance-weighted CTI; however, changes in
occurrence CTI were marginally smaller (0.78 + 1.75 °C). The global model, which
quantified the change in CTI as a function of space, time, and changes in short-, medium-,
and long-term temperature increases, explained a substantial portion of the deviance in
both the abundance-weighted (Table S1; 86.0%, adj-R? = 0.849) and occurrence models
(Table S1; 86.3%, adj-R? = 0.851).

The results of our analysis were consistent irrespective of the grid scale used in
aggregating communities (Fig. S3; Table S2). The exception was in areas of British
Columbia and Alaska where a highly concentrated spatial pattern of bumble bee records
likely led to a predicted decrease in CTI in grid cells when aggregated at the 50 and 25 km
grid scale. Aggregating at the largest scale (100 km center-to-side hexagonal grid) revealed
the most wide-spread increases in CTI, with nearly all grid cells exhibiting an increase in
CTI from 1989 to 2018.

Our models performed well when cross-validated using withheld data from the BBNA
database (Fig. S4). Coefficient of determination (R?) values ranged from 0.79-0.81, root
mean squared error (RMSE) ranged from 1.22-1.31, and mean absolute error (MAE)
ranged from 0.91-0.96. In addition, our model performance was consistent across the three
tested grid scales. Predictions were most accurate for CTI values ranging from 23-28°C
which corresponded to the regions where the bulk of the occurrence records were
collected. Prediction accuracy was most variable among cool regions in the north and sub-
arctic (CTI < 23°C).

Shifts in CTI are strongly related to long-term increases in summer temperature

Summertime maximum temperatures have increased by 1989-2018 (Fig. 1C-E), with
increases most apparent at 10- (0.630 + 0.405 °C) and 30-year average anomalies (0.969 +
0.342°C; Fig. 1D, E; Fig. S5). Increases in the 30-year summertime maximum temperature
anomaly showed a strong statistical association with increases in bumble bee CTI (Fig. 2C;
F=4.561, p =0.002). Increases in the 30-year temperature anomaly between 0-0.5°C had
no impact on CTIL. However, increases beyond 0.5°C were associated with a rapid increase
of up to 1°C in bumble bee CTI (partial effect due solely to 30-year temperature anomaly).
Of the 2,425 grid cells, 1,753 exhibited parallel increases in change in CTI and the change in
the 30-year temperature anomaly between 1989-2018 (Fig. 3A). Beyond a 1°C change in
the 30-year temperature anomaly the changes in CTI rapidly increase, with gains of 1 to
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6.8°C. The relationship of CTI with short term, 3-year moving average shifts in summer
temperature anomalies, while statistically supported, was weak and variable over the
range of the anomalies (Fig. 2A; F = 2.584, p = 0.032). There was no statistically supported
relationship between the 10-year average anomaly and bumble bee CTI (Fig. 2B; F = 0.064,
p =0.802).

CTl is increasing fastest at low and high elevations, latitudes, and more recent years

We examined patterns in the rate of change in CTI across the continent to determine where
and when the most extreme changes in CTI were occurring and whether these areas
overlapped with areas known to be heavily impacted by a warming climate
[@]anuosek.2023]. The rate of change in CTI was greatest at low (< 800 m) and high
elevations (> 2000 m; Fig. 4A) and increased with increasing latitude (Fig. 4B). Moreover,
the rate of change in CTI has increased from 1989-2018, with CTI increasing most rapidly
after 2010 (Fig. 4C). These results varied slightly when analyzed with predictions from only
grid cells containing occurrence records, with changes in CTI being greatest at high
elevations (Fig. S6A; > 2000 m) and mid-high latitudes (Fig. S6B; 35 - 60°). The temporal
patterns of the rate of change were largely similar but were positive only from 2003 and
beyond (Fig. S6C), confirming the accelerating rate of CTI change from 2010 onward that is
exhibited when using predictions from all grid cells (Fig. 4C).

Bumble bee community changes are keeping pace with climate warming

The spatial velocity of bumble bee CTI increases (3.58 km yr-1) was nearly identical to that
of summer temperature increases (3.59 km yr-1). Over the course of the study (29 years),
bumble bee communities and summer temperatures have exhibited an equivalent
northward shift of approximately 104 km. This comparison, while highly dependent on the
complexity of the GAM smooths used to estimate the spatial and temporal trends, indicates
that shifts within bumble bee community composition are effectively keeping pace with the
rate of climate warming.

Species contributions to changes in CTI

All but 3 species had positive contributions toward the mean derivative of the temporal
trend in bumble bee CTI from 1989-2018 (Table S3). Of the most represented species in the
dataset, B. occidentalis (% A = 70.42%), B. nevadensis (% A = 69.65%), B. ephippiatus (% A =
66.87%), B. bifarius (% A = 66.71%), and B. vosnesenskii (% A = 64.32%) had the greatest
contribution for both abundance-weighted and occurrence CTI trends. Of the top 25
contributors to the increase in CTI, 14 (56%) are in the subgenus Pyrobombus (and 3 of the
top 5). In general, species with wider ranges and more variable STI tended to be those that
had the biggest contributions toward the long-term increase in CTI.
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Discussion

We documented significant, spatially-extensive shifts in the thermal tolerance of species
within North American bumble bee communities in response to long-term increases in
summer temperatures. Over the last 29 years across the continent, bumble bee community
assemblages increasingly consist of either more warm-adapted or fewer cold-adapted
species, with increases in community temperature index, the measure of the balance of
warm- and cool-adapted species, most pronounced at mid- to high latitudes, and high
elevations in the American Rockies, Intermountain West, and central Mexico. The
community temperature index increased according to both occurrence and abundance-
weighted indices, suggesting that shifts in both local abundance and broader changes in
species occurrence (i.e., range shifts) underlie the changes in community composition. The
rapid shift in bumble bee communities appears to be on pace with shifting summer
temperatures, with an approximate, equivalent northward shift of ~104 km from 1989-
2018 for both CTI and temperature. Our work provides additional evidence of the
pervasive impacts a warming planet has for insect biodiversity (CITE OTHER) and
identifies regions of concern where anthropogenic climate warming is rapidly
restructuring the communities of an ecologically important group of insects.

An increase of warm-adapted species within biological communities is a logical
consequence of a rapidly warming climate [@Beissinger.2013]. Similar shifts have been
observed in bird communities in response to both warming summer [@Devictor.2009;
@Devictor.2012] and winter [@Prince.2014] temperatures. Because insects are
ectotherms, temperature-induced shifts in range and abundance may be even more
pronounced. Indeed, large changes in insect CTI have been observed for both bumble bees
[@Fourcade.2018] and butterflies [@Devictor.2012]; however, trends in CTI are often not
explicitly tied to spatial and temporal patterns of warming temperatures. Our results
provide this link and show a clear statistical relationship between increases in CTI and
long-term increases in maximum summer temperatures across North America, with areas
experiencing a 30-year temperature anomaly of greater than or equal to 0.5°C strongly
associated with a rapid increase in bumble bee CTI. These results identify areas of ample
concern where rates of bumble bee community change and summer temperature increases
are the greatest (Fig. 1; dark orange and red areas).

The frontline of species’ responses to climate have tended to be at high latitudes and
elevations. Northern regions have experienced rapid increases in temperature leading to
pronounced phenological shifts across taxa [@Parmesan.2007]. Our results support this
trend, finding greatest rates of bumble bee CTI change at higher latitudes and high
elevation. The bumble bee species in these locations tend to have narrower ranges and be
cold-adapted, traits identical to other insect taxa that have exhibited declines due to
climate [@Neff.2022; @Engelhardt.2022; @Halsch.2021]. The rapidly increasing CTI,
particularly at high elevations, suggests that cold-adapted species are being displaced by
warm-adapted, low-elevation species. This phenomenon has been observed in the US
Rocky Mountains where bumble bee communities are increasingly dominated by low-
elevation species using high-elevation habitats as a thermal refugia [@Miller-
Struttmann.2022]. An upslope range expansion appears to be a common response of
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bumble bee communities to warming temperatures rather than expansions of northern
ranges [@Kerr.2015; @Sirois-Delisle.2018]. Despite the rapid changes observed at higher
latitudes, biological communities in southern latitudes and lower elevations are not
protected from a changing climate [@Dillon.2010], and we documented some shifts in CTI
in central Mexico and at low elevations. That said, if species lost from communities have
STI values comparable to those species remaining, large shifts in CTI may be effectively
masked, highlighting a limitation of our approach.

An increase in CTI could be the result of two mechanisms. First, shifts in the occurrence of
bees within a community (i.e., immigration/extirpation of warm-/cool-adapted species via
range expansion/contraction) and second, changes in the local abundance of warm-/cool-
adapted species. We found evidence supporting both mechanisms by modeling occurrence
and abundance-weighted measures of CTL. Shifts in local relative abundance align with
existing research [@Hemberger.2021; @Cameron.2011]; however, substantial range
expansion of warm-adapted bumble bees has not been described [@Kerr.2015] and may be
unlikely given bumble bee dispersal capacities [@SiroisDelise.2018 but see @Fijen.2021].
That said, select species of bumble bees may be capable of long-distance dispersal
[@Fijen.2021], and significant range shifts observed in other insect taxa have been
observed [@Warren.2001; @Hinckling.2005]. Regardless, our jackknife analysis revealed
that the largest contributors to increasing abundance and occurrence-based CTI within
their range are common species that have exhibited both range increases [e.g., B. impatiens
@Palmier.2019; @Looney.2019] and increases in local abundance. This result indicates
that certain species are sensitive to and more capable of effectively tracking/adapting to
ideal climatic conditions [@Maebe.2021]. The equivalent, northward spatial shift in bumble
bee community composition that we observed was nearly identical to that of the spatial
shift in maximum summer temperatures. This result provides further evidence that, at least
some species, are successfully tracking warming climates and not accruing climate debts
[@Devictor.2012]. However, other species (e.g., B. occidentalis) are not able to successfully
track warming and are likely to suffer substantial reductions in range as a result
[@]anuosek.2023]. Such contrasts highlight the species-specific nature of bumble bee
responses to a rapidly changing climate [@]ackson.2021; @Whitehorn.2021]. Additional
research is needed detailing species-specific responses to warming conditions - focusing
on identifying the physiological and evolutionary mechanisms that drive species’ plasticity
to changing environmental conditions.

An increase in the occurrence and abundance of warm adapted species does suggest a
physiological /climate preference mechanism is at play (i.e., direct effect). Several studies
document significant, direct effects of warming on insect pollinators [@Carradonna.2018;
@Kenna.2021; @Hemberger.2022], however indirect effects mediated through biotic
interactions may be just as if not more important [@Ockendon.2014]. In the context of our
study, such indirect effects imply that shifts in bumble bee community composition are
occurring in part in response to climate-induced changes in the resource landscape (i.e.,
indirect effects). For example, warming climates can widen the temporal availability of
resources due to earlier snowmelts, which in turn lead to an increase in bumble bee
abundance [@0gilvie.2017]. Warming may also create phenological mismatches that
reduce available forage for bees [@Pyke.2016, but see @Bartomeus.2011. Similarly, an



14

increase in hot, dry summer conditions can significantly reduce floral resources and the
bumble bees that depend on them [@Iserbyt.2013], and similar patterns have been
observed for butterflies [@Crossley.2021]. Unfavorable conditions, often a result of
extreme weather events such as heat waves and droughts, can create resource bottlenecks
that have the potential to lead to population declines and local extirpation [@Maron.2015].
Heat waves, for example, are expected to increase significantly in the coming century
[@Meehl.2006; @Lopez.2018; @Thompson.2022]. As our study could not differentiate
between direct and indirect pathways, parsing their relative impacts on bumble bees and
other taxa is a critical research need. In the meantime, supporting bumble bees in the face
of both direct and indirect effects may be accomplished by maintaining climate refugia,
such as heterogeneity in vegetation structure, that can provide microclimatic respite from
temperature extremes to bees [@Pincebourde.2020] and other taxa [e.g., birds,
@Kim.2022] in addition to increasing spatial /temporal resource continuity to minimize
negative indirect effects [@Maron.2015].

Given the spatiotemporal extent of our study, it is likely that warming summer
temperatures and the temperature profile of a given bumble bee assemblage may co-vary
with other, known factors of bumble bee community composition and occurrence. For
example, losses in certain species across their range may be linked to disease
[@Cameron.2011; @Colla.2006, @Szabo.2013]. Additionally, at large-scales, a loss of
suitable habitat via land-use intensification and change is also of concern. However, when
examined together with shifts in land-use, climatic variables (and their associated indirect
effects) tend to have as much or more power to explain long-term species trends than land-
use or resource availability in bumble [@]ackson.2021; @Kammerer.2020;
@Whitehorn.2021, @Kerr.2015] and other wild bee species [@Duchenne.2020]. Moreover,
the areas of greatest increase in CTI are in areas removed from the most significant effects
of land-use change [e.g., high latitudes and elevations; @Halsch.2021]. Regardless,
managing habitat offers a critical tool that can be used to mitigate the impacts of a changing
climate [@Outhwaite.2022; @Oliver.2017; @Oliver.2015; @Kim.2022].

Conclusions

Climate change is poised to have significant, cross-scale impacts on insect behavior,
populations, and communities [@Lehmann.2020; @Raven.2021; @Halsch.2021;
@Hgye.2021b]. In this paper, we document a substantial shift in the functional composition
of bumble bee communities with respect to climate that is tied to a long-term increase of
summer temperatures in North America. Due to changes in both occurrence and
abundance, several species within bumble bee communities appear to be tracking climate
warming, however this is likely at the expense of other species that lack the adaptive
capacity to cope with rapidly climbing temperatures. Although the exact mechanisms of
these community-level shifts remain unknown (i.e., direct vs. indirect effect of warming),
our work adds to a growing body of evidence that suggests climate change will result in
many climate losers with unknown consequences for ecosystems. It is critical that we focus
on designing adaptation measures, such as climate refugia and climate-focused habitat
conservation, to help combat the ongoing direct and indirect impacts a rapidly warming
planet threatens. However, such efforts will only be successful in conjunction with
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substantial decreases in emissions [@Oliver.2015] - an essential solution to safeguard the
planet’s biodiversity for generations to come.
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Figures and tables
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Figure 1: (A) Extrapolated spatial projection of the estimated change in community
temperature index from 1990-2018 across North America. Differences in CTI were
calculated for each grid cell by subtracting the model predicted CTI; - 1989 from predicted
CTI;=2018. (B) Spatial projection of the mean uncertainty estimates across years from 1989-
2018. (C) Spatial projection of the change in the 3-year, 10-year (D) and 30-year (E)
average temperature anomaly. Differences were calculated by subtracting the 1989
anomaly from the 2018 anomaly for each grid cell. Hexagonal grid cells are 100 km from
side to side (~8600 km?).
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Figure 2: Generalized additive model partial plots (i.e., marginal effects) show the model
predicted effect of (A) 3, (B) 10, and (C) 30-year moving average temperature anomalies on
the community temperature index. Positive values on the x-axes indicate an increase in the
average temperature relative to the long-term average. Solid line indicates significant
trend.
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Figure 3: A significant increase in bumble bee CTI is strongly associated with long-term
warming and has accelerated in the last 15 years. (A) Biplot of change in 30-year
temperature anomaly and change in bumble bee CTI for each grid cell across North
America. Trendline is a GAM fitted with ggplot and includes 95% confidence interval.
Dashed lines indicate no change in anomaly or CTI for the X and Y axes, respectively. (B)
Model estimated temporal trend in CTI across North America. Yearly predictions are
calculated from the global model for each grid cell, and the trend within each region is
illustrated with a GAM fit with 50% and 95% confidence intervals.



20

0.075

“— o A B 0.0504 C

Q Pe) .

>

= £ i

® » 0.025- 0.054 0.025

ey

® O 00004---Se-colo

D > - 000'l -------------- 0000 o, amgdfle - - - - m-mm=m--
0 1000 2000 3000 20 40 60 80 1990 2000 2010 2020
Elevation (meters) Latitude (degrees) Year

Figure 4: Estimates of the rate of change in CTI over time across (A) elevation, (B) latitude,
and (C) year. Yearly predictions are calculated from the global model for each grid cell
using simple generalized additive models with a single smooth of year to determine CTI
trend within the grid cell. For each fitted smooth (except for the year, C), we then calculated
the mean derivative across its range (1989-2018) for each grid cell. We then plotted these
derivative estimates to explore, across the extent of North America, whether increases in
CTI were varied with elevation or over time. We calculated predictions (red lines) from a
generalized additive model using a thin-plate basis function and 3 knots for visual purposes
only. Estimates include the 95% confidence interval.
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Supplementary material

Filter bumble bee records Calculate the species
to unique collections temperature index (STI)

Average max summer
temperatures (1960-2000)

Raster value for

maxi,j species i atlocation j

Bumble bees of North America
(BBNA) database

o

Tmax ij
n

STl; =

We use the BBNA database containing ~800,000
bumble bee occurrence records. These are filtered
to unique collection events (observer, location, time,
species) to account for differential sampling techniques
and efforts across the database.

Average maximum summer temperature is
extracted at each species occurrence location
and then averaged for all occurrence records
(i.e., the “range”) of the species. The resulting
value is the species temperature index

Assign occurrence records

Calculate the community
to “community” grid cells temperature index (CTI)

50 km “community”

grid cell with species

occurrences
Species 1

© Species 2

® Species 3

In order to calculate the community temperature
index, all species occurrence records are assigned
to “communities” using a 50 km hexagonal grid.
CTl trends are then modeled with the grid cell in a
given year as the observational unit.

Within each grid cell j, and time t, the collective STis

are summed and divided by the total number of
observations to calculate the community temperature
index: measuring the balance of cool- and warm-adapted
species within a community at a given place and time

Calculate temperature Model trends in CTl as a function of time,
anomalies in each grid cell  82M(CT I pundance / occurrence ™ space (x, y, elev), and temperature trends

s(lat, long) +
s ( e ar‘) + Space-time model component. Includes smooth interactions
y of latitude and longitude, smooths of year and elevation, and
s(elevation) + > a tensor product interaction of all 4 components to allow the
N modeled trend in CTl to vary across space and time.
Summer .. ti(lat, long, year, elev) + v P
for given yéar
1950-20(?,0
average T, 3 = “pa” ) Random effect of ecological region to account for variation due
Anomaly for _ Moving aver s(eco_region, bs re”) + to shared istics and i
[ given year / of T,,, anomaly
tnax yeor rorm Gev (IEGSNISINOGINNIGEN eco-region S (Mean summer Tmax: 18g3) + Smooths of the mean summer maximum temperature anomaly
T4 11,73 1089 26009 WA KT COAST FOREST

O34 017 -0.15 maDE meY st roseer g (Mean summer me: lag],o) + w=Jpatthree moving averages of 3, 10, and 30 years. These allow us
lag30 to explore whether CTI trends are driven by short-, medium-, or
ag ) long-term summer max temperature increases.

114 1120 199 1089 035

We calculate the temperature deviation from a s(Mean summer T,,.:
long-term average monthly maximum temperature

(calculated between1960-2000). These values are

called temperature anomalies.

Figure S1: Conceptual figure of data cleaning (A), STI calculation (B), community
assignment (C), CTI calculation (D), temperature anomaly calculations (E) and modeling
procedures used in our analyses (F).
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Figure S2: Conceptual diagram of the derivative calculations conducted to determine
whether the rate of increase (i.e., derivative) of bumble bee CTI has remained steady or
accelerated over space and time. (1) We use the global model to predict the CTI in each grid
cell for each year of the study, from 1989-2018. (2) For each grid cell, we fit a GAM through
the predicted points to visualize and quantify the trend in CTI from 1989-2018. From these
data, we also calculated the change in CTI from 1989-2018 (A CTI) which is plotted in Fig.
1A. The overall change, however, tells us nothing of the functional form of the relationship
between CTI and time, elevation, etc. To address this, we calculated the first derivative
across the fitted smooth to determine how the rate of change in CTI varied across time,
elevation, and latitude (Fig. 2). (3) For each grid cell’s fitted GAM, we calculated the
derivative of the year smooth at a range of values between 1989-2018. In this example,
because CTI is increasing throughout the entire study period, the derivative is > 0 at all
years. (4) We then took the derivative estimates for all grid cells and fit a GAM to visualize
the trend between the derivative and time. For elevation (5) and latitude (6), we first
averaged the derivative value from 1989-2018 to determine the mean slope for each grid
cell before plotting that against the mean elevation and latitude of each grid cell and
visualizing the relationship with a GAM. Transparent points are illustrative (not actual
values) of individual hex grid derivative values across the range of elevation and latitude.



The black star represents a hypothetical mean derivative value from the example plot in
(3) to illustrate how mean derivative values are used to assess the trend.
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Figure S3: Predicted change in bumble bee CTI across North America between 1989-2018
at three different spatial resolutions of hexagonal grid (distance indicates side-to-side): (A)

50 km; (B) 100 km; (C) 200 km; along with the mean prediction uncertainty at the same
resolutions.
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Figure S4: Abundance-weighted global model cross validation results at three different
scales of (A) 25 km, (B) 50 km, and (C) 100 km center-to-edge hexagonal grids. Cross
validation metrics are given in the top left of each panel including coefficient of
determination (R?), root mean squared error (RMSE), and mean absolute error (MAE).
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Figure S5: Trend in summer (June - September) maximum temperature anomalies at (A)
3-year, (B) 10-year, and (C) 30-year moving averages. Transparent points are raw values

and red lines are GAM trendlines.
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Figure S6: Estimates of the rate of change in CTI over time across (A) elevation, (B)
latitude, and (C) year using predictions only from grid cells containing occurrence records
(conservative approach). Yearly predictions are calculated from the global model for each
grid cell using simple generalized additive models with a single smooth of year to
determine CTI trend within the grid cell. For each fitted smooth (except for the year, C), we
then calculated the mean derivative across its range (1989-2018) for each grid cell. We
then plotted these derivative estimates to explore, across the extent of North America,
whether increases in CTI were varied with elevation or over time. We calculated
predictions (red lines) from a generalized additive model using a thin-plate basis function
and 3 knots for visual purposes only. Estimates include the 95% confidence interval.
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Table S1: Results from a generalized additive model for CTI using occurrence-only and

abundance-weighted records from 1989-2018.

Occurrence model

Abundance model

Model smooth EDF F p value EDF F p value
Latitude, longitude 282.065 16.778 < 0.001 270.546 18.099 <0.001
Year 2945 4015 0.004 2.353 3,592 0.022
Elevation 7.995 23926 <0.001 7.615 25.782 <0.001
Latitude, longitude, elevation, year 100.149 3.782 < 0.001 97853 2996 <0.001
Ecological region 10.526 2.388 <0.001 9.855 1644 <0.001
Mean Tmax 3-year MA 2968 2.584 0.032 2.827 2.500 0.039
Mean Tmax 10-year MA 1.002 0.064 0.803 1.001 0475 0491
Mean Tmax 30-year MA 2.967 4561 0.002 3.377 6.712 <0.001
Model n 5273 5273

Deviance explained 0.860 0.863

R-squared (adjusted) 0.849 0.851

*EDF :estimated degrees of freedom (i.e., smooth wiggliness)
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Table S2: Results from a generalized additive model for CTI using occurrence-only records
at three different spatial resolutions (community grid scale) at 25, 50, and 100 km from
1989-2018.

25 km grid scale 50 km grid scale 100 km grid scale

Model smooth EDF F p value EDF F p value EDF F p value
Latitude, longitude 294.224 18839 <0.001 270.546 18.099 <0.001 181.650 17.769 < 0.001
Year 3653 5293 <0.001 2353  3.592 0.022 2538 1609 0.164
Elevation 9360 34.646 <0.001 7615  25.782 <0.001 1.000 52.860 <0.001
Latitude, longitude, elevation, year 106.844 4.744 < 0.001 97853 2996 <0.001 51.223 2558 <0.001
Ecological region 10889 4.824 <0.001 9855 1.644 <0.001 11.650 4.843 <0.001
Mean Tmax 3-year MA 2881 3999 0.008 2827 2500 0.039 1.000 0.041 0.840
Mean Tmax 10-year MA 1.000 0.061 0.805 1.001 0475 0491 3511 5344 0.004
Mean Tmax 30-year MA 2919 5.177 0.001 3377 6712 <0.001 3.029 4430 0.003
Model n 7582 5273 3078

Deviance explained 0.840 0.860 0.862

R-squared (adjusted) 0.831 0.849 0.850

*EDF :estimated degrees of freedom (i.e., smooth wiggliness)
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Table S3: Jackknife analysis for both abundance-weighted and occurrence CTI estimates
for all species in the dataset. Species temperature index (STI), STI standard deviation, and
number of records in the CTI dataset are also given. Percent difference is the difference
between the global (including all species) and jackknife model (excluding single species)
X
t

mean derivative (Z—) across the temporal range (1989-2018) of the respective global

model. Positive percentages indicate that the species contributes to the CTI trend (i.e., that
an increase in abundance/occurrence leads to an increase in CTI).

MOST REPRESENTED SPECIES (n records > 1000)

Number of Global dx/dt Global dx/dt

Jackknife dx/dt Jackknife dx/dt % difference % difference

P bg IUCN redlist category STI STIS.D. records (abund ) (occurrence) (abund: ) (occurrence)  (abund (occurrence)
B. occidentalis Bombus Vulnerable 21.688 4862 2357 0.018 0.018 0.005 0.002 70424 89.202
B. nevadensis Bombias Least Concern 24539 4102 2236 0.018 0.015 0.005 0.003 69.653 81.752
B. ephippiatus Pyrobombus Least Concern 23715 3426 3153 0.023 0.021 0.008 0.005 66.868 75315
B. bifarius Pyrobombus Least Concern 22.023 4132 3237 0.024 0.023 0.008 0.007 66.716 69.324
B. vosnesenskii ~ Pyrobombus Least Concern 25585 4016 7514 0.025 0.021 0.009 0.008 64318 63.772
B. huntii Pyrobombus Least Concern 25.764 3066 4556 0.019 0.016 0.007 0.004 64.161 7212
B. impatiens Pyrobombus Least Concern 27.019 2507 52373 0021 0.015 0.008 0.005 62382 63.191
B. apposil Subterr bomb Least Concern 22.644 3263 1204 003 0.024 0.013 0.009 55.057 60.367
B. centralis Pyrobombus Least Concern 23806 3.602 1991 0.016 0.014 0.008 0.006 50.166 58.733
B. pensylvanicus  Thoracobomb Vulnerable 29817 3057 16763 0.019 0.012 001 0.006 44172 51.223
B. flavifrons Pyrobombus Least Concern 20427 4126 3274 0.03 0.028 0.018 0.015 40272 44577
B. griseocollis Cullumanobombus  Least Concern 27.017 2306 21310 0.033 0.027 0.02 0.014 38.469 47951
B. sylvicola Pyrobombus Least Concern 17.018 4312 1093 0.049 0.044 0.031 0.028 35.224 37.181
B. auricomus Bombias Least Concern 27586 1834 3172 0018 0.012 0.012 0.007 35221 40.898
B. insularis Psithyrus Least Concern 22194 3755 1415 0.026 0.022 0.017 0.013 34774 4071
B. melanopygus ~ Pyrobombus Least Concern 22486 5575 5054 0.036 0.031 0.023 0.019 34355 36.794
B. bimaculatus Pyrobombus Least Concern 26563 2.086 13788 0.016 0.009 0.01 0.005 33454 40.704
B. fervidus Thoracobombus Vulnerable 25.637 2887 7192 0.027 0.022 0.018 0.013 32.296 39.02
B. frigidus Pyrobombus Least Concern 16409 5531 1043 0.042 0.038 0.028 0.024 32.164 36.044
B. terricola Bombus Vulnerable 22.795 1987 3905 0.038 0.032 0.026 0.021 31586 34711
B. flavidus Psithyrus Data Deficient 20.051 2875 1242 0.039 0.034 0.029 0.025 25.842 27554
B. perplexus Pyrobombus Least Concern 23724 2571 4428 0.043 0.037 0.032 0.026 25713 2998
B. rufocinctus Cullumanobombus  Least Concern 23.628 2739 5306 0.028 0.023 0.022 0.017 24284 27.606
B. vagans Pyrobombus Least Concern 24615 2401 7713 0.027 0.021 0.022 0.017 18.602 20.168
B. mixtus Pyrobombus Least Concern 20.269 5.038 3628 0.044 0.04 0.037 0.031 16.611 22522
B. borealis Subterraneobombus Least Concern 22960 1999 3355 0.033 0.028 0.031 0.026 7942 8.631
B. citrinus Psithyrus Least Concern 25.139 2138 2229 0.032 0.024 0.031 0.023 2711 1935
B. affinis Bombus Critically Endangered 25511 1710 2188 0.016 0.007 0.016 0.009 -4.755 -24.531
B. ternarius Pyrobombus Least Concern 22954 1731 10215 0.036 0.03 0.039 0.03 -7.966 -1.741
LESS REPRESENTED SPECIES (n records < 1000)

Number of Global dx/dt Global dx/dt Jackknife dx/dt Jackknife dx/dt % difference % difference

p 1 IUCN redlist category STI STIS.D. records (abund ) (occurrence) (abund; ) (occurrence)  (abund ) (occurrence)
B. macgregori Cullumanobombus  Least Concern 22475 0000 71 0 0.003 0.001 -0.007 1781.842 331519
B. tril i Thoracobomb Least Concern 16550 0328 223 0.005 0.005 -0.004 -0.005 180.522 196414
B. steindachneri  Thoracobomb End ed 28613 3.072 321 0.016 0.017 -0.003 -0.002 118408 110.735
B. haueri ullu bomb End ed 22,698 3456 45 0.024 0.024 -0.001 -0.001 104.39 104.082
B. brachycephal: ullu bomb Endangered 25308 1878 96 0.015 0.013 0 -0.001 102.073 110963
B. weisi Thoracobombus Least Concern 22650 2.167 994 0.016 0.015 0.001 0 95591 97.538
B. i Thoracobomb Vulnerable 29.125 3111 94 0.016 0.013 0.001 -0.001 91.596 107.946
B. diligens Thoracobombus Near Threatened 26415 2185 334 0.023 0.02 0.002 0.002 91.55 91.555
B. jonellus Pyrobombus Data Deficient 16.233 2632 359 0.028 0.033 0.006 0.009 78321 74.001
B. caliginosus Pyrobombus Vulnerable 23542 3050 282 0.014 0.008 0.003 0 78.248 102.669
B. fraternus Cullumanobombus  Endangered 30611 2308 927 0.007 0.002 0.002 -0.001 78176 172,649
B. medius Thoracobombus Vulnerable 28500 2486 609 0.029 0.021 0.009 0.004 70.17 82.763
B. vandykei Pyrobombus Least Concern 27423 4228 464 0.018 0.012 0.006 0.002 69.842 87.082
B. cryptarum Bombus Data Deficient 7373 6161 779 0.028 0.032 0.008 0.008 69.7 75.074
B. neoboreus Alpinobombus Data Deficient 7884 6.184 43 0.056 0.056 0.022 0.022 61.607 61.048
B. variabilis Psithyrus Critically Endangered 29.661 2587 92 0.017 0.01 0.007 0.003 59.301 73525
B. franklini Bombus Critically Endangered 25.076 4.501 64 0.012 0.005 0.006 0.002 53.69 55.804
B. kirbiellus Alpinobombus Data Deficient 14843 5930 280 0.039 0.038 0.023 0.02 42119 45946
B. polaris Alpinobombus Data Deficient 9.753 5012 96 0.06 0.057 0.038 0.032 36.908 43.165
B. natvigi Alpinobombus Data Deficient 7473 5901 16 0.075 0.071 0.048 0.038 35874 46.663
B. morrisoni Cullumanobombus  Vulnerable 27991 3534 489 0.035 0.028 0.024 0.019 30837 31.588
B. pullatus Thoracobombus Data Deficient 30905 0.253 41 0.039 0.023 0.028 0.021 27867 8.659
B. suckleyi Psithyrus Critically Endangered 22.644 3220 86 0.048 0.042 0.036 0.03 24935 28.31
B. bohemicus Psithyrus Data Deficient 22839 2339 320 0.043 0.038 0.033 0.028 23413 27549
B. sandersoni Pyrobombus Least Concern 22221 2361 765 0.044 0.037 0.038 0.031 13.727 1444
B. sitkensis Pyrobombus Least Concern 21.060 3909 534 -0.005 -0.003 -0.007 -0.006 -27.155 -124.088




