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Summary 27 

Quantifying biodiversity across the globe is critical for transparent reporting and assessment under 28 

the Kunming-Montreal Global Biodiversity Framework. Understanding the complexity of 29 

biodiversity requires consideration of the variation of life across genes, species, and ecosystems. 30 

Achieving this in a standardized way remains a key challenge for creating an equitable nature 31 

positive future. Here, we present the Sustainable Ecology and Economic Development (SEED) 32 

framework, which assesses the dimensions that structure biodiversity patterns worldwide (genetics, 33 

species, and ecosystems) across plants, animals, and microbial taxa, and consolidates this into a 34 

single measure of biocomplexity at every location, relative to a ‘reference’ ecosystem with minimal 35 

human disturbance. We describe the SEED methodology and highlight its features, which include 36 

numerous datasets collapsed into nine novel dimensions of biodiversity intactness that are 37 

integrated into the SEED biocomplexity index. SEED will continuously integrate new datasets and 38 

maps to provide up-to-date estimates of local biocomplexity across the planet, providing a tool for 39 

decision makers to assess and improve the global state of nature.   40 
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1. Introduction 45 

Every species depends on other species to survive. This vast interdependence means biological 46 

diversity is critical for the maintenance of life as we know it. However, humans have historically 47 

valued the components of nature we can use for food, timber, and medicine over others1,2. The 48 

development of markets for these products has incentivized their mass propagation at the expense 49 

of other components of biodiversity, driving the oversimplification of biological systems and the 50 

loss of the ecosystem services on which we depend3.  51 

As nature positive policy frameworks and nature markets emerge, it is critical that we learn from 52 

past challenges. Mechanisms that value a single aspect of nature – such as carbon sequestration – 53 

risk driving the oversimplification of the system4–7. This can lead to potentially counterproductive 54 

outcomes, like the creation of monocultures of exotic tree species at the expense of local 55 

biodiversity7 and human wellbeing8. If political and financial structures are to promote the 56 

conservation of natural biodiversity, they must be underpinned by robust, globally standardized 57 

monitoring that reflects the full dimensionality of life, across genetic, species and ecosystem levels. 58 

The most prominent guidelines for biodiversity monitoring are described within the Kunming-59 

Montreal Global Biodiversity Framework (GBF)9, which sets a series of global targets to halt and 60 

reverse nature loss by 2030. Key targets in the GBF include protecting areas of high biodiversity 61 

importance (Target 1), restoring 30% of degraded areas by 2030 (Target 2), and the headline 62 

‘30x30’ target that aims to conserve 30% of the Earth’s surface by 2030 (Target 3). In the financial 63 

sector, the GBF requires businesses to disclose their impacts on biodiversity (Target 15), and the 64 

Taskforce on Nature-related Financial Disclosures was assembled to provide guidance and outline 65 

best practices for nature-related disclosures. At the heart of nature-related disclosures is a measure 66 

of the “state of nature” against which impacts, dependencies, risks, and opportunities may be 67 

measured10. However, it is not yet clear what constitutes a suitable measure of the state of nature.  68 

Over the past decade, a growing number of metrics have been developed to measure and monitor 69 

biodiversity across the globe. Biodiversity metrics generally fall into one of two categories based 70 

on their dataset and scope: local ground-sourced data (e.g. plot surveys, eDNA, bioacoustics 71 

monitors and camera traps), and global remotely-sensed data (e.g. radar and multispectral imagery 72 
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from satellites)11. Local ground-sourced data provide detailed insights into the diversity of 73 

organisms, but the scalability of these assessments are challenging 12,13. Conversely, remotely-74 

sensed data provide globally-standardized assessments of ecosystem-scale characteristics like 75 

forest structure14 and connectivity15, but not all aspects of nature can be measured directly from 76 

satellites. Many global biodiversity metrics incorporate both ground-sourced and remote-sensed 77 

data to offer a balance between local relevance and global scope. To align monitoring efforts, the 78 

Group on Earth Observations Biodiversity Observation Network (GEO BON) recently proposed a 79 

worldwide system of observation networks16 and established guidelines for 16 Essential 80 

Biodiversity Variables (EBVs)17,18. However, we lack a coherent method to consolidate these EBVs 81 

and all other biodiversity metrics to derive a unified perspective of the state of nature. 82 

To address the need for a unified, globally standardized measure of biodiversity across all its 83 

dimensions, we first review existing global biodiversity metrics that are used to measure the current 84 

state of nature and highlight their strengths and weaknesses (Section 2). We then present a new 85 

integrative framework (the Sustainable Ecology and Economic Development (SEED) framework) 86 

which is designed to consolidate the three primary hierarchical levels that underpin biodiversity – 87 

genetic, species, and ecosystem – into a single globally standardized measure of biodiversity 88 

intactness, which we call biocomplexity (Section 3). Nature is inherently complex, and 89 

biocomplexity is defined as the emergent properties from multiple, often hierarchical levels of 90 

interacting factors that “affect, sustain, or are modified by living organisms, including humans”19. 91 

Recognizing this complexity, we designed the SEED framework so that it can integrate numerous 92 

global biodiversity maps and include new maps as they become available. This ensures that policy 93 

and market tools will have the most up-to-date information on the state of nature. 94 

2. Current state of global biodiversity measurement  95 

Spatially-explicit biodiversity data products consist of a heterogeneous mix of calculations, model 96 

predictions, metrics (standard of measure), and indices (aggregation of multiple indicators). Given 97 

our exclusive focus on data products mapped over the globe, we hereafter refer to these products in 98 

general as ‘maps’. We grouped existing maps into three main organizational levels of ecological 99 

systems: within-species genetic diversity, among-species diversity, and ecosystem diversity. Global 100 

maps at each level reflect different dimensions of diversity that are essential for a holistic 101 
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understanding of biocomplexity across the globe. Although some global maps correspond to a given 102 

EBV20, the EBVs do not consist of a set of spatially-explicit global maps21. Their main purpose is 103 

to identify the key variables and provide standards on how to measure them17. Rather than 104 

discussing this detail in depth, we identify the strengths and weaknesses of existing maps and the 105 

considerations for including them in a unified measure of biodiversity. We conclude this section 106 

with a brief description of a fourth group of maps that represent standardized measures of 107 

biodiversity. 108 

2.1 Genetic (within-species) diversity 109 

Genetic diversity (heritable variation) represents variation in the genetic composition of individuals 110 

within a species and among populations and is the source for adaptive responses to environmental 111 

change22,23. There are few global measures of genetic diversity and these are estimated from 112 

mitochondrial DNA sequences stored in the National Centre for Biotechnology Information 113 

GenBank and the Barcode of Life Database24–26. While there are good insights about genetic 114 

variation for certain plant27 and animal species24–26, we currently lack global predictions of genetic 115 

variation for most species on the planet. Among the few taxonomic groups that have been studied, 116 

loss of genetic diversity is often correlated with the loss of suitable habitat28 and reduced 117 

abundance29. This may suggest that we could use measures of population declines to generate proxy 118 

measures of decline in genetic diversity, but this population timeseries data is lacking for the vast 119 

majority of organismal groups, except for the 5,200+ species in the Living Planet  Database30. 120 

However, with modern advancements in genetic sequencing technology and widespread usage of 121 

barcoding and metabarcoding31, new data are continually becoming available that will enable the 122 

global measurement of genetic diversity across taxonomic groups23. 123 

2.2 Species, phylogenetic, and functional diversity 124 

Global biodiversity research has traditionally focused on emergent patterns of species richness (the 125 

number of unique taxa). However, species diversity also includes phylogenetic (i.e., a measure of 126 

evolutionary history32) and functional diversity, which can provide a more in-depth understanding 127 

of diversity patterns across the globe. Species richness maps are generally created by overlaying 128 

several species range maps then summing the number of species per pixel33–35, which in some cases 129 
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are then modeled against a set of predictor variables before predicting richness36–38. Phylogenetic 130 

and functional diversity are calculated using a phylogeny39 or a functional-trait matrix40 to quantify 131 

the unique contributions from each of the species present at each locality and thus provide 132 

information about phylogenetic and functional components of diversity. Whereas a species-rich 133 

community may be composed of evolutionarily and functionally redundant species, other species-134 

poor communities may (or may not) have more evolutionarily and functionally divergent species 135 

that may contribute unique functions to the community. Therefore, highlighting those communities 136 

with particularly rich evolutionary roots and functional traits is key for a holistic measure of 137 

biodiversity. 138 

Species diversity maps inherit biases from their underlying data sources, which affect their 139 

applicability. All global biodiversity databases over-represent some regions and under-represent 140 

others, typically with a bias toward developed nations41. There are also considerable disparities in 141 

taxonomic coverage, with a bias toward larger and more charismatic organisms. For example, the 142 

IUCN database, which is the source of many biodiversity maps24,25,42–45, contains distribution data 143 

for over 80% of described vertebrate species and 14% of vascular plants, but only 2% of 144 

invertebrate species, which represent the vast majority of animal species diversity. In addition, 145 

microbes represent 88% to 99% of all species on Earth46,47 but are vastly underrepresented, with 146 

only 0.4% of known fungi and protists included in the IUCN database. This pattern is now changing 147 

due to recent advances in high-throughput sequencing technologies that enable us to observe and 148 

quantify microscopic and otherwise cryptic species48, and the availability of microbial biodiversity 149 

maps is expanding exponentially49–52. 150 

Species diversity maps are also limited by their original scope and the underlying models. Until 151 

now, most global maps of species diversity were not designed to capture fine-scale patterns in 152 

species composition, or the effects of local human disturbance. With a focus on broad-scale 153 

biogeographic trends, species diversity models use climatic, edaphic, and topographic variables to 154 

predict diversity patterns across environmental gradients. The general lack of human influence in 155 

early models may be due in part to the recent emergence of global human modification maps53–56 156 

and also due to a paucity of biodiversity data in both heavily degraded and intact landscapes. As a 157 

result, species diversity maps have low predictive accuracy for quantifying the impacts of human 158 



7 

 

disturbance (Figure 1).  Furthermore, species diversity maps tend to be temporally static, calculated 159 

as an average of observations that can span decades. Additionally, sampling methodologies are 160 

taxon and/or habitat specific and may also differ by region and discipline or agency. These 161 

complexities make it difficult to harmonize available data and generate well-rounded estimates that 162 

scale in space and change over time in response to shifting conditions on the ground.  163 

2.3 Ecosystem diversity 164 

In contrast to genetic and species diversity, which rely heavily on ground-sourced data, ecosystem-165 

level maps provide a more up-to-date view of current conditions because they can be measured 166 

directly from satellite imagery, or modeled based on spectral imagery (e.g., radar and multispectral 167 

imaging). A wealth of global-scale remote sensing products have been designed to capture 168 

information about human modifications55, land use change57, canopy cover58, canopy height59, 169 

above and belowground biomass60,61, soil respiration62, habitat heterogeneity63, leaf area index64, 170 

ecosystem connectivity65,66, net primary productivity67 and ecological resilience68,69. These  171 

ecosystem-level maps can be grouped into three broad categories of biodiversity: ecosystem 172 

structure, function17, or connectivity.  173 

Ecosystem structure, function, and connectivity are emergent properties that arise from the 174 

combination of species, landscape physiognomy, climate, and human modifications. For example, 175 

the occurrence and extent of mangroves70 and peatlands71,72 result from a specific set of conditions, 176 

and their structural features are critical to their functional roles. The interplay between living 177 

organisms and their environment are also key ecosystem properties, perhaps best exemplified by 178 

plant-disperser and plant-fungal associations. Global maps of plant-disperser associations or 179 

species interaction networks are not currently available, but progress in this field indicates potential 180 

for such maps in the future73. The field of plant-fungal associations has produced numerous global 181 

maps, which predict such functional features as the relative proportions of nitrogen fixing and 182 

arbuscular mycorrhizal or ectomycorrhizal associated plants74 and the densities of plant fine roots75 183 

across landscapes, which may affect the intensity of mycorrhizal colonization75, soil moisture76 and 184 

decomposition rates77. These ecosystem properties provide a direct link to measures of ecosystem 185 

services78,79. Just as the three-dimensional structure of an ecosystem characterizes the 186 

environmental context in which species coexist, the spatial arrangement of habitat fragments and 187 
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species-specific dispersal abilities and limitations determine ecosystem connectivity. Ecosystem 188 

connectivity tends to decrease with habitat loss and fragmentation, and both connectivity80 and 189 

fragmentation81 indices can provide unique insights into the ecological functionality at the 190 

landscape-scale82.  191 

2.4 Standardized measures of biodiversity 192 

Given the challenges of capturing dynamic changes in ecological diversity at a global scale, few 193 

analyses estimate how far the ecological community has diverged from its natural state. Using a 194 

database from targeted experiments and local studies spanning disturbance gradients, it is possible 195 

to identify how land use changes affect ecological diversity and use these relationships to predict 196 

ecological intactness across the globe. Three commonly used global indices are the Ecosystem 197 

Integrity Index (EII)83 by the United Nations Environment Programme World Conservation 198 

Monitoring Centre, the Biodiversity Intactness Index (BII)84,85 by the Natural History Museum in 199 

London, and the Mean Species Abundance (MSA)86 index by the Netherlands Environmental 200 

Assessment Agency.  201 

The EII includes three components: structure, function, and composition. Ecosystem structure is 202 

based on the human modification index (HMI)55; ecosystem function is measured by the ratio of 203 

actual to potential net primary productivity67; and ecosystem composition is measured by the 204 

BII84,87. For a given location, the EII uses the lowest score of the three components to predict the 205 

extent to which any ecosystem has been impacted or altered from its original state. The BII uses a 206 

linear model of the impacts of land use and related pressures on two aspects of biodiversity, species 207 

abundances and compositional similarity, to estimate the intactness of a community of plants, 208 

vertebrates, and invertebrates. The MSA index is conceptually similar to the BII but focuses mainly 209 

on species abundance, includes additional human-related pressures, and estimates an average 210 

intactness value that is weighted by the land use type and its associated human pressures.  211 

The MSA, BII, and EII represent the current state-of-the-art in global biodiversity modeling. Yet, 212 

there are two key aspects of diversity that these indices do not capture. First, these indices are fairly 213 

limited in taxonomic scope. The BII and EII (and to some degree MSA) are primarily based on the 214 

PREDICTS database (Projecting Responses of Ecological Diversity In Changing Terrestrial 215 
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Systems)88, which is valuable for quantifying the impact of land use on biodiversity in different 216 

regions of the globe. However, at present, the data coverage of PREDICTS represents a relatively 217 

limited taxonomic range, including less than 10% of the described species for most large taxonomic 218 

groups like vascular plants and invertebrate animals, and a far smaller proportion for microbes88,89. 219 

Given that these taxa respond differently to human disturbance and show unique global distribution 220 

patterns90,91, the underrepresentation of important taxa may therefore bias global biodiversity 221 

assessments. Second, these indices focus exclusively on species level diversity and do not include 222 

genetic diversity or, except for the EII, ecosystem level properties that emerge from the web of 223 

interactions among species and their environment.  224 

3. A framework for observing biological complexity on Earth 225 

With the increasing combination of ground-sourced and remotely-sensed data, we are at the 226 

beginning of a data revolution in global ecology92,93. The exponential growth of global ecological 227 

datasets and maps across genetic, species, and ecosystem levels represents exciting new 228 

opportunities for our understanding of biodiversity across the planet. Conceptual frameworks that 229 

integrate and interpret this growing body of information are essential to generate a holistic 230 

understanding of global biocomplexity. Our global understanding of biocomplexity will never be 231 

fully complete, as emerging scientific assessments continue to capture novel information. 232 

Therefore, it is important to establish flexible and dynamic frameworks that can incorporate new 233 

and emerging information as it becomes available. 234 

A key element in new nature-related disclosure frameworks is a vaguely defined measure of the 235 

state of nature10, which would presumably represent the full multidimensional complexity of nature, 236 

but for which there is currently no agreed upon metric. To address the need for a unified state of 237 

nature metric, we present a more holistic ecological framework (hereafter referred to as SEED) that 238 

is designed to represent the multidimensionality of nature by defining nine axes of variation, nested 239 

within the three hierarchical levels of diversity: genetics, species (including phylogenetic and 240 

functional diversity), and ecosystems (Figure 2). Within the genetic and species levels of variation, 241 

we include plants, animals, and microbes. The grouping of microbes to include archaea, bacteria, 242 

protists, and fungi could be disaggregated in the future as more information becomes available. 243 

Within ecosystems, we distinguish three axes: structure, function, and connectivity.  244 
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The SEED framework was designed to be a flexible ‘living’ index, which is poised to incorporate 245 

any new map layers relating to any component of biodiversity as they become available. Thus, the 246 

SEED index will continually improve as missing data gaps are filled in and technological 247 

advancements improve. Currently, the SEED framework leverages 85 global genetics, species, and 248 

ecosystem maps (Figure 2a; Table S1) from the global scientific community Analogous to an 249 

ensemble model, this approach minimizes the risk of relying on a single dataset and associated 250 

model output to provide a more robust accounting of global biodiversity patterns. The framework 251 

generates summary indices for nine axes of biodiversity, and also provides a unified biocomplexity 252 

index score that represents the intactness of biocomplexity. We apply the term biocomplexity19 to 253 

set it apart from measures of single biodiversity components, and to highlight the inclusion of 254 

multiple hierarchical levels of diversity, which emerge not just from the complex interplay between 255 

biological life and the environment, but also from the billions of years of physical and biological 256 

evolution on Earth. 257 

To generate truly standardized estimates of biocomplexity across the globe, we estimate the 258 

similarity (ranging from zero to one) between the current state of an ecosystem and its potential 259 

natural state. We defined the natural state empirically using the HMI to mask our set of biodiversity 260 

maps. We then summarize the sets of values in these areas by ecoregion and vegetation type and 261 

link these summaries to all pixels of the same ecoregion and vegetation type (Figure 2a-c; Section 262 

3.2). Against this empirical counterfactual landscape, the SEED framework summarizes the 263 

intactness (i.e., similarity to natural state) of the multiple underlying biodiversity features in each 264 

axis and calculates the mean intactness for all nine axes combined to create a unified score: the 265 

SEED biocomplexity index (Figure 2e; Section 3.1). All intactness values range between zero and 266 

one, where values near zero represent the near absence of biocomplexity (e.g., an open pit mine or 267 

paved area), and one represents an area that is equal to a counterfactual reference state (i.e., a 268 

minimally-disturbed ecosystem). The SEED framework therefore offers both a single standardized 269 

biocomplexity value for any area of interest and nine intactness indices for each axis of biodiversity, 270 

thus allowing the user to unpack this information. 271 
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3.1 Integrating dimensions of biodiversity 272 

Consolidating the multiple hierarchical levels of biodiversity into a single value is a critical feature 273 

that makes our biocomplexity index generalizable and comprehensible. All available global maps 274 

are combined within each of the relevant biodiversity axes (Figure S1), using a multivariate kernel 275 

estimator94 (Eq. 1), and then the mean of these nine axes consolidates this information into a single 276 

biocomplexity index.  277 

𝐾(𝒛, 𝒛𝑟) = 𝑒𝑥𝑝[−𝛿‖𝒘 ∘ (𝒛 − 𝒛𝑟)‖1]     (Eq. 1) 278 

Here, 𝒛 is a 𝑛-dimensional data vector for a given location, where 𝑛 represents the number of input 279 

maps involved in the calculation. The term ‖𝒘(𝒛 − 𝒛𝑟)‖1 represents the Manhattan distance, (or 280 

ℓ1 distance), between the data vector 𝒛 and the mean values for the corresponding reference areas 281 

𝒛𝒓 after elementwise multiplication (∘) by the 𝑛-dimensional vector, 𝒘, which contains the 282 

normalized weight for each input map. The resulting distance value is then converted into a 283 

similarity value, which is bounded by zero and one, by applying the kernel function, 𝐾, where 𝛿 284 

represents a scaling parameter.  285 

Sensitivity of similarity is set by the scaling parameter, 𝛿, which we set for each biodiversity axis 286 

according to two criteria. First, 𝛿 must be strictly positive to ensure that the kernel values are bound 287 

between zero and one. Second, the similarity values measured by 𝐾 capture the intactness of nature 288 

and should span the full range between zero and one. We set 𝛿 to the lowest value that met these 289 

criteria, given that increasing values simply shifted the distribution further to the left toward zero 290 

intactness (see Supplement S1).  291 

The weight of information is the final key consideration in our kernel estimator. We designed this 292 

framework to integrate numerous biodiversity maps, and we test it here with 85 maps (Figure S1; 293 

Table S2) – ecosystem structure (29), function (13), and connectivity (1); species diversity of plants 294 

(11), microbes (13), and animals (13); and genetic diversity of microbes (2), and animals (2). We 295 

reprojected all maps to a common projection (epsg:4326) and spatial resolution (30 arc-seconds, 296 

~926 meters at the equator) using a nearest-neighbor algorithm. The maps we reviewed vary in 297 

several aspects: coverage extent, spatial resolution, non-independence from other maps, 298 

extrapolation across regional data gaps, and in the degree to which satellite imagery or other 299 
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measures of local conditions were integrated. To help control for these differences, we developed 300 

a dynamic weighting system to define the normalized weight of each map in a set, represented by 301 

𝒘 (defined above). We grouped non independent layers to share equal weight, resulting in a short 302 

hierarchical structure. We also applied a confidence score and associated decreasing confidence 303 

with decreasing weight (see Supplement Table S1 for details). Although we found no global maps 304 

of the genetic diversity of plants, we filled in a blank map to test the full framework and set the 305 

weight of this map to a very small nonzero number. 306 

We structured the integration of the nine biodiversity axes to be an even-weighted average of the 307 

intactness in each dimension. This places genetic, species, and ecosystem level diversity on equal 308 

grounds in the integrated index. SEED also offers an index for each biodiversity axis for 309 

independent use alongside the integrated index. Even weighting of all dimensions ensures 310 

equitability within genetic and species diversity among plants, animals, and microbes, which 311 

deviates strongly from the more common case wherein smaller, more cryptic taxa are overlooked 312 

in favor of more visible or personable taxa. However, if evidence emerges to suggest a different 313 

weighting scheme is more ecologically relevant, our method can be adapted in accordance with the 314 

evolving scientific landscape.  315 

In practice, a key challenge is that the availability and quality of available maps is not balanced 316 

among axes, which resulted in some axes having higher relative weight and therefore more 317 

influence on the overall biocomplexity index (See Supplement S1 for details on how confidence 318 

scores affect the relative weights among axes). Identifying the optimal weighting for various levels 319 

of biodiversity information remains a key challenge for future biodiversity research as our 320 

theoretical understanding of ecological systems evolves. 321 

3.2. Reference area as an empirical counterfactual landscape 322 

To measure the intactness of biocomplexity requires establishing a baseline potential state that can 323 

be used for comparison. Here, we used an empirical approach to identify the counterfactual baseline 324 

potential state for all biodiversity axes and underlying layers. Specifically, we developed an 325 

algorithm that uses the HMI55 and potential natural vegetation (PNV)57 to select reference areas for 326 

each land cover class within each of the 846 ecoregions95 on Earth (Figure 2b; Supplement 327 
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S1.1).This was done separately for each ecoregion to ensure ecologically relevant comparisons. For 328 

each ecoregion, we identify the least impacted areas for each land cover class (from the PNV), using 329 

a dynamically-defined upper-limit HMI threshold to ensure a sufficiently large area, enabling 330 

representative and robust estimates (see Figure 2 and Supplement S1.1). The mean value ± one 331 

standard deviation for each biodiversity feature layer within this least-impacted area is used as the 332 

estimate of 𝒛𝒓 in equation 1, forming the basis for comparing all feature values in all pixels of the 333 

same vegetation class within each ecoregion. The maximum allowable upper-limit HMI threshold 334 

that was used to identify the counterfactual reference community was defined as areas with a HMI 335 

< 0.05. 336 

Although a natural landscape with minimal anthropogenic disturbance is not a universal goal in all 337 

scenarios, this minimal-disturbance baseline provides an objective, and replicable benchmark for 338 

measuring the state of nature. For example, food security and financial wellbeing are the primary 339 

considerations in agricultural settings, while restoration targets in conservation settings may deviate 340 

from a fully natural state due to a myriad of ecological and socioeconomic factors and needs, as 341 

well as previous alterations to the landscape96. Management practices and targets will vary 342 

depending on the local situation, and progress toward these targets can be evaluated against local 343 

minimal-disturbance benchmarks and other landscapes in similar settings. In these contexts, the 344 

SEED index provides a useful tool to benchmark local achievement against a globally-standardized 345 

biodiversity metric and enables a standardized assessment of biodiversity improvement in response 346 

to management practices17. 347 

We chose to use minimally modified areas as our counterfactual ‘intact’ reference community 348 

because it involves few a priori assumptions and best reflects our current understanding of diversity 349 

patterns across the nine defined dimensions of biocomplexity. As such, this approach provides a 350 

contemporary benchmark of the current state of nature. Although a ‘historic baseline’ approach 351 

could also be theoretically used, it raises several philosophical challenges, including the recognition 352 

that systems are inherently dynamic and non-static 97. It also poses significant data limitations, with 353 

few existing historic baseline maps for most of the nine dimensions of diversity. While historic 354 

reference conditions are the most appropriate for certain scientific inquiries, such as assessing 355 

nitrogen deposition or climate change, they become less applicable for evaluating more direct 356 
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human impacts like mining or agriculture, or for informing conservation and restoration efforts. In 357 

such cases, the concept of a historic 'natural' state is more ambiguous. Given these challenges, the 358 

counterfactual reference community approach provides a robust and practical framework for 359 

characterizing biocomplexity. It avoids overreliance on incomplete historical data and allows for a 360 

more comprehensive representation of current diversity across multiple dimensions. 361 

3.3. Illustration of the SEED biocomplexity framework 362 

The biocomplexity framework was developed using a comprehensive list of the most up-to-date 363 

global-scale maps of genetic, species, and ecosystem diversity (see Supplement Figure S1 and Table 364 

S2). Although, our framework is designed to integrate nine biodiversity axes, the current lack of 365 

global maps to represent the genetic diversity of plants limits the current index to eight functioning 366 

axes. To illustrate the capabilities of the framework, we first show the viability of our 367 

dimensionality reduction calculation (equation 1) and reference area (Figure 2) approach to 368 

calculate the intactness of nine biodiversity axes (Figure 3a-h). Combined, these intactness layers 369 

generate a unified measure of the intactness of nature, the SEED biocomplexity index (Figure 4a). 370 

We show how SEED can be aggregated across ecological boundaries and at various spatial scales 371 

to summarize biocomplexity in total and along each biodiversity axis (Figure 4b-c). Finally, we 372 

conduct a cursory comparison of SEED against the leading biodiversity intactness indices (Figure 373 

S2).  374 

Among the eight (out of nine) biodiversity intactness indices that we calculated, we identified broad 375 

global patterns where the indices unanimously show similar levels of intactness (Figure 3). High 376 

intactness is nearly universally indicated across tundra, northern boreal forests, deserts, and the 377 

Amazon basin – areas that have not experienced extensive human development. Low intactness is 378 

indicated in Central and Eastern North America, Brazil’s Atlantic Forest, narrow bands along the 379 

West African coast and Sub-Saharan Africa, temperate forests across Europe and east across Asia 380 

toward Siberia, Northern India, the western edge of Southeast Asia, Northeastern China, and the 381 

eastern and southwestern coasts of Australia.  382 

There is also notable divergence among these indices. While the intactness of ecosystem structure 383 

(Figure 3b) and ecosystem function (Figure 3d) are larger similar in some regions, these indices 384 
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strongly diverge from plant diversity, e.g., parts of North America (northeast and Appalachia) and 385 

the Brazilian Cerrado. Within these regions, high intactness of ecosystem function and structure 386 

were associated with low intactness of plant diversity. While the factors underpinning these 387 

differences remain unclear – it does highlight that examining single components of biodiversity can 388 

lead to a skewed perspective when evaluating a system’s intactness. This highlights the benefit in 389 

using an integrative approach, such as SEED, that combines these axes of diversity into a single 390 

measure of biocomplexity; minimizing the risk of valuing some aspects of diversity over others 391 

(e.g., ecosystem function versus plant diversity).  392 

The intactness of plant, animal, and microbial species diversity (Figure 3h) also diverge in many 393 

regions of the world, with the most prominent differences between the intactness of microbial 394 

diversity relative to both plant and animal diversity. While the mechanisms underpinning this 395 

emergent pattern remain unclear, it does suggest a decoupling in the intactness of these components 396 

of diversity and highlight an exciting avenue for future research. 397 

Ecosystem connectivity (Figure 3c) also appears to form a unique pattern relative to the other 398 

indices. However, the SEED connectivity index is highly sensitive to fragmentation81, and therefore 399 

scores land area as either highly intact or highly degraded, highlighting the need for improvements 400 

in fragmentation maps. The genetic diversity of animals (Figure 3e) also shows a unique pattern, 401 

but this is likely because we have only two genetic diversity maps with very coarse resolution 402 

(~380-km)25. This, along with the absence of global models for plant genetic diversity, emphasizes 403 

the need for future research to prioritize global genetic diversity assessments before they can be 404 

equally represented within biocomplexity assessments.  405 

The value in our biocomplexity framework is twofold; it integrates information regarding multiple 406 

hierarchical levels of diversity and numerous maps within each level, and it can be aggregated to 407 

provide summary statistics at the desired scale. The integrated SEED biocomplexity index 408 

represents a single measure of the state of nature for terrestrial land areas across the globe (Figure 409 

4a). This suggests that, on average, the Earth is currently at approximately 60% of its natural 410 

ecological state across the three major dimensions of biodiversity (Figure 4b). By aggregating 411 
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within administrative boundaries98, we can evaluate the state of nature at a level where local policies 412 

may directly affect the mechanisms governing the direct human impacts on nature (Figure 4c).  413 

In comparison to existing global biodiversity indices, SEED (Figure 4) offers a more 414 

comprehensive view of nature's state due to its inclusion of 85 global biodiversity maps, while also 415 

offering disaggregated information in the form of nine intactness sub-indices (Figure 3a-h). 416 

Existing global intactness indices (BII, and MSA) exclusively represent species level diversity for 417 

a subset of taxa. SEED expands the taxa represented with a wealth of microbial datasets (including 418 

fungi, bacteria, and archaea), while also expanding in scope to include multiple ecosystem attributes 419 

that capture landscape dynamics and ecological feedback. Their inclusion in SEED may account 420 

for differences between SEED and the other intactness indices (Figure S2). For example, SEED 421 

may indicate low ecosystem intactness where satellite imagery detects ecosystem fragmentation, 422 

while models predicting species composition may not register a change in species intactness. Given 423 

the global coverage and high temporal resolution of satellite imagery, the inclusion of remote-424 

sensed ecosystem characteristics not only adds dimensionality to biodiversity estimates, but it also 425 

improves the spatial and temporal resolution of biodiversity intactness predictions. 426 

While the SEED framework offers the most holistic estimate of biocomplexity to date—drawing 427 

on the most comprehensive set of genetic, species, and ecosystem-level data layers—several 428 

important caveats remain. These include limited data on the genetic diversity of plants, animals, 429 

and microbes, as well as propagated uncertainty of species diversity maps due to unbalanced 430 

sampling efforts in under-studied regions of the world. We emphasize that these limitations 431 

represent both major conceptual challenges and key opportunities for future research. Addressing 432 

these knowledge gaps will improve our understanding of nature’s biocomplexity, which is essential 433 

for guiding global biodiversity policy and ensuring financial accountability of market-based nature 434 

impacts. 435 

3.4. Spatial and temporal scalability and next steps 436 

There is a growing demand for spatial and temporal scalability in global biodiversity monitoring 437 

but achieving this remains a central challenge for ecology. Determining how biodiversity scales in 438 

space and time has been the focus of countless investigations, and one general result is that 439 
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outcomes are highly context dependent. Meeting the demand for scalability will require 440 

reimagining our approach to biodiversity modeling. Work by Map of Life99 in association with 441 

GEO BON exemplifies the scalable biodiversity models of the future. Map of Life provides a 442 

catalog of species distributions predicted over space and time, generated using the most up-to-date 443 

remote sensing technologies and species distribution models20. Bringing these maps together, we 444 

can reevaluate species richness, phylogenetic and functional diversity, and genetic diversity via 445 

declines in species ranges; and we can generate time series for these biodiversity metrics in high 446 

spatial resolution. As these new products emerge, they will be fed directly into the SEED framework 447 

to update the biocomplexity index and improve the spatial and temporal resolution of the index to 448 

allow for more fine-scale assessments of biodiversity and dynamic changes over time. 449 

The integration of remote sensing in biodiversity modeling will be the key distinguishing factor 450 

that transforms novel approaches from simply predicting general patterns to the prediction of local 451 

conditions and the actual state of nature. Overall, we gain more complete spatial coverage from 452 

remote sensing than would be possible from field observation, with more reliable information than 453 

extrapolation of models100. Remote sensing can provide the means for both direct – many trees and 454 

large animals are visible from space – and indirect biodiversity monitoring via the coupling of 455 

remote sensing products with ecological models101. Future advances in remote sensing such as 456 

hyper-spectral imaging102,103 are expected to provide valuable additional information, which may 457 

help assess how plant species and functional biodiversity respond to different practices104.  458 

Global biodiversity monitoring undoubtedly requires a combination of ground-sourced and remote-459 

sensed approaches. Future on-the-ground sampling in under-sampled regions of the planet and for 460 

under-sampled taxa like invertebrates is urgently needed to fill in key gaps and narrow the 461 

uncertainty in global genetic and species diversity models. The emergence of new technologies – 462 

such as eDNA48,105, bioacoustics106, and camera traps – will likely be essential for filling in  these 463 

core data gaps in a cost-effective manner107.   464 

4. Conclusion and outlook 465 

There is growing recognition that we need both the political and financial mechanisms to distribute 466 

wealth towards local efforts that promote biodiversity108. To support this transition to equitable 467 
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biodiversity protection, we require globally standardized assessments of ecological intactness that 468 

can detect change over time and are available to everyone, everywhere. Given the expansion of 469 

global datasets, across various dimensions of biodiversity including plants, animals, and microbes, 470 

frameworks for integrating this information are now within our grasp. The resulting global 471 

assessments of biocomplexity are necessary to evaluate progress toward climate change and land 472 

protection pledges (e.g. the GBF, Bonn Challenge109, and UN Sustainable Development Goals110) 473 

to bring transparency to policy frameworks, and to encourage corporate accountability (e.g., under 474 

the Taskforce for Nature-related Financial Disclosures (TNFD)10 and Science-Based Targets for 475 

Nature (SBTN)111). 476 

The SEED framework consolidates the three broadest dimensions of biodiversity to produce a 477 

single, standardized and comprehensible measure of biocomplexity across the globe. This 478 

framework is fundamentally collaborative, incorporating biodiversity assessments and models from 479 

a diverse range of biodiversity experts. In addition, it is flexible, allowing for a dynamic index that 480 

evolves alongside the development of new map products and scientific advancements. We 481 

demonstrate that the SEED framework captures multidimensional changes in biodiversity along 482 

nine distinct axes (Figures 3) and provides a unified understanding of the state of nature at multiple 483 

scales (Figure 4). Yet, there are several key challenges that need to be addressed to improve the 484 

resolution of our index at finer spatial and temporal scales. Most notably, the development of 485 

models that integrate remote sensing data products into maps of species richness and genetic 486 

diversity will greatly improve the spatial and temporal resolution of our index.  487 

To ensure that the most high-integrity and up-to-date ecological information is available to policy- 488 

and decision-makers, we invite the wider scientific community to collaborate on the continual 489 

advancement of this biocomplexity index (www.seed-index.com). We believe that for this 490 

biodiversity index to lead to positive outcomes, its satellite-based predictions must accurately 491 

represent the actual biodiversity at a site. Achieving this level of accuracy presents a scientific 492 

challenge that requires the collaboration of a diverse team of experts, including ecologists, remote-493 

sensing specialists, and others from around the globe. Leveraging the latest scientific and 494 

technological breakthroughs, we aim to enhance and refine the biocomplexity index, thus fostering 495 

better outcomes for ecosystem protection and restoration.  496 
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Figures 497 

 498 

Figure 1. Poor performance of species richness maps in human modified landscapes. The 499 

impacts of human activities – as is shown here for Paris (outline) and the surrounding landscape (a) 500 

in satellite imagery112 and (b) in the human modification index55 – were not included in the 501 

development of most maps of species richness, e.g., (c) plant113 and (d) mammals34.  502 

  503 
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 504 

Figure 2. SEED framework methodology. (a) We defined a hierarchy to guide the flow of data 505 

from 85 biodiversity input layers to each of the nine dimensions of biocomplexity (Figure S1). (b) 506 

Using minimally human modified areas to serve as reference points, we linked all pixels to a 507 

reference area with matching ecoregion and vegetation class. (c) In a multivariate context, we 508 

calculate the bounds for each input as the mean +- one standard deviation. (d) Within each 509 

dimension we calculate the Manhattan distance between each pixel and the bounds of the reference 510 

area values. (e) The kernel function converts distance to similarity for each of nine dimensions (a 511 

E (GP, GM, GA, SP, SM, SA, ES, EC, EF). Similarity to natural reference state indicates intactness, 512 

which can be visualized together in the radar plot in yellow. The weighted sum of the nine kernels 513 

yields a single biocomplexity intactness index.  514 
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 516 

Figure 3. Intactness along each axis of biodiversity. Series of maps showing the intactness – 517 

relative to minimally impacted reference areas – of diversity along each biodiversity axis: genetic 518 

diversity of (a) microbes and (e) animals; ecosystem (b) structure, (c) connectivity, and (d) function; 519 

and species diversity of (f) plants, (g) microbes, and (h) animals.  520 

  521 
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 522 

Figure 4. Global analysis of biocomplexity. Map of the (a) SEED biocomplexity index, which 523 

measures the intactness of biodiversity for every 1-km of pixel of land. SEED can be aggregated 524 

across ecological boundaries, as is demonstrated with (b) a global analysis and (c) the summaries 525 

by administrative boundaries.  526 

  527 
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Supplement S1. Materials and methods 927 

1. Reference Area Methodology  928 

We developed an approach that offers a contemporary baseline in which all global biodiversity 929 

maps may be evaluated. Our algorithm uses the human modification index (HMI)55 and potential 930 

natural vegetation (PNV)57 to create a reference area mask that delineates the relatively pristine 931 

areas on the globe. The combination of PNV classes and 846 delineated ecoregions95 then guides 932 

the assignment of reference areas to all non-reference pixels having the same ecoregion-PNV class. 933 

Due to the large variations in the extent of human modification among different ecoregion 934 

landcover combinations, we designed a dynamic decision tree for selecting a threshold HMI to 935 

define reference pixels and then to link reference to non-reference pixels to obtain the reference 936 

mask. 937 

We targeted reference pixels with minimal human modification which we defined as follows. For 938 

each PNV class, 𝑣, within each ecoregion, 𝑒, we calculated the 5th and 3rd percentile of the HMI, 939 

𝑃0.05(𝐻𝑀𝐼𝑒,𝑣) and 𝑃0.03(𝐻𝑀𝐼𝑒,𝑣). The reference threshold value, 𝑟𝑒,𝑣 was then set to the maximum 940 

of either 𝑃0.05(𝐻𝑀𝐼𝑒,𝑣) or 𝑃0.03(𝐻𝑀𝐼𝑒,𝑣) if they were less than 0.05, or 0.05 (See equation S1 941 

below).  942 

𝑟𝑒,𝑣 = {

𝑃0.05(𝐻𝑀𝐼𝑒,𝑣) 𝑖𝑓 𝑃0.05(𝐻𝑀𝐼𝑒,𝑣) ≤ 0.05

𝑃0.03(𝐻𝑀𝐼𝑒,𝑣) 𝑖𝑓 𝑃0.05(𝐻𝑀𝐼𝑒,𝑣) > 0.05 𝑎𝑛𝑑 𝑃0.03(𝐻𝑀𝐼𝑒,𝑣) ≤ 0.05

0.05 𝑖𝑓 𝑃0.05(𝐻𝑀𝐼𝑒,𝑣) > 0.05 𝑎𝑛𝑑 𝑃0.03(𝐻𝑀𝐼𝑒,𝑣) > 0.05

     Equation S1 943 

Within relatively unmodified ecoregions, we set more restrictive criteria to refine and focus the 944 

selected reference areas to include only pixels with very low HMI. In more thoroughly modified 945 

ecoregions, we loosened the criteria for more inclusion in selected reference areas, but only to the 946 

point of an HMI equal to 0.05. With the threshold defined for each ecoregion-PNV class, we 947 

selected reference areas as all pixels less than 𝑟𝑒,𝑣. If an ecoregion-PNV class had fewer than five 948 

pixels, we stepped down the reference threshold – from the 𝑃0.05(𝐻𝑀𝐼𝑒,𝑣) to 𝑃0.03(𝐻𝑀𝐼𝑒,𝑣), or from 949 

𝑃0.03(𝐻𝑀𝐼𝑒,𝑣) to 0.05(𝑥𝑒,𝑣, 𝑦𝑒,𝑣). If 𝑟𝑒,𝑣 was 0.05, and the ecoregion-PNV class still possessed fewer 950 

than five reference pixels, then we looked beyond the ecoregion boundary and included all reference 951 

pixels of the same PNV class within the same biome.  952 



36 

 

2. Delta calculation 953 

To calculate the delta value for each axis (subindex) of the seed index, we use the following 954 

formula: 955 

𝐾 =  𝑒−𝛿𝐷 956 

where K is the kernel, 𝛿 is the delta parameter and D is the maximum Manhattan distance of the 957 

axis for all the pixel points. 𝛿mediates the translation of distance to similarity, effectively maping 958 

the highest possible distance to the lowest kernel value (K > 0). Tuning 𝛿 shifts the balance between 959 

similarity and dissimilarity. Balance in our case was achieved by equating the highest distance to 960 

the lowest similarity, a kernel value of 0.001, and solving for the 𝛿  value for each of the axis. We 961 

then substitute this delta value in the equation to calculate the kernel for the world of each axis. The 962 

SEED index is then calculated based on the weighted average of the individual axes.  963 

3. Weighting system 964 

We considered two points of information in calculating the normalized weight for each map layer: 965 

the hierarchical structuring of data layers into groups and our confidence in each individual layer. 966 

Similar types of data were paired evenly at each level of the hierarchy (Figure S1) to ensure both 967 

averaging of duplicate information and equal weighting among components at the same level.  968 

We ranked our confidence in each map layer based on several features: underlying predictive layers, 969 

quality of validation data (including spatial coverage), spatial resolution, and perceived error at 970 

SEED’s 1-km resolution. We defined five rank classes associated with percent scores (Table S1). 971 

The scores associated with each ranking are tunable parameters. We opted for skewed mid-level 972 

scores, with medium high scoring 90% and medium low scoring 10%.  973 

  974 
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 975 

Figure S1. Hierarchy of information. Hierarchy of global biodiversity map layers (branch tips) 976 

that feed into the nine sub-indices (Figure 2) and then into the headline biocomplexity index. Details 977 

for each map are listed in supplemental Table S2.  978 
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Table S1. Table of scores, weights, and a description of the criteria guiding our judgment in rating 979 

the quality of information contained with each map that we incorporated in SEED. 980 

Confidence 
Score Weight Description 

5 100 Fully validated model representing on the ground conditions with at least 1-km 
resolution 

4 90 Partially validated model representing on the ground conditions with at least 1-
km resolution 

3 50 Model predicting on the ground conditions with at least 5-km resolution, 
requires validation 

2 10 Model predicting general diversity patterns with some human impacts 
considered  

1 1 Model of general diversity patterns. Does not represent human impacts on 
nature. 

  981 
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Table S2. List of global biodiversity maps alongside their unique details (resolution, units, and 982 

citations) our confidence scores and the normalized weights. For interactive links see online table 983 

 984 

  985 

Index Weight Axis Branch 1 Branch 2 Layer Name

Conf. 

Score Weight Data Name / Description

Original Spatial 

Resolution Units Source Citation

Biocomplexity 0.09242 -- ecosystem_connectivity -- ---  ec_fragmentation  --- ------------------------------------------------------------  habitat_intactness  -------- 50 0.0924

Habitat integrity, measured by Human Footprint ≈11 km proportion (0-1) Methodolgy from (Beyer et al. 2019) https://doi.org/10.1111/conl.12692

└--------------- 0.18484 -- ecosystem_function -- -----  ef_productivity  ----- ----------------------------------------------------------------  modis_fpar  ----------- 100 0.0227

Fraction of incident photosynthetically active radiation (400-

700nm) absorbed by the green elements of a vegetation canopy 

≈500 m Fpar fraction https://explorer.earthengine.google.com/#detail/M

ODIS%2F006%2FMCD15A3H

https://doi.org/10.5067/MODIS/MC

D15A3H.006

└--------------- -----------------------------------------------------------------  oem_fpar ------------ 100 0.0227

Fraction of incident photosynthetically active radiation (400-

700nm) absorbed by the green elements of a vegetation canopy 

≈10 m Fpar fraction In Review In Review

└----------- ----------------------------------------------------------------  modis_gpp ----------- 100 0.0227

MOD17A3.055: Terra Gross Primary Production Yearly Global 

1km

≈1 km 0.0001 * kg*C/m^2 https://explorer.earthengine.google.com/#detail/M

ODIS%2F055%2FMOD17A3

https://lpdaac.usgs.gov/products/m

od17a3v055/

└------- ----------------------------------------------------------------  modis_npp  ------------ 100 0.0227

MOD17A3.055: Terra Net Primary Production Yearly Global 1km ≈1 km 0.0001 * kg*C/m^2 https://explorer.earthengine.google.com/#detail/M

ODIS%2F055%2FMOD17A3

https://lpdaac.usgs.gov/products/m

od17a3v055/

└-------------------- -----  ef_seasonality  ----- ----------------------------------------------------------------  modis_evi  ------------ 100 0.0453

MYD13Q1.006 Vegetation Indices 16-Day Global 250m: NDVI 

and EVI

≈250 m EVI Value https://explorer.earthengine.google.com/#detail/M

ODIS%2F006%2FMYD13Q1

https://doi.org/10.5067/MODIS/MY

D13Q1.006

└--------------- ----------------------------------------------------------------  modis_ndvi  ------------ 100 0.0453

MYD13Q1.006 Vegetation Indices 16-Day Global 250m: NDVI 

and EVI

≈250 m NDVI Value https://explorer.earthengine.google.com/#detail/M

ODIS%2F006%2FMYD13Q1

https://doi.org/10.5067/MODIS/MY

D13Q1.006

└--------------- -----  ef_respiration  ----- -------------------------------------------------------------  soil_respiration  -------- 1 0.0009

Mean annual rate of soil respiration ≈900 m g C / m^2 * y https://daac.ornl.gov/CMS/guides/CMS_Global_Soil_

Respiration.html

https://doi.org/10.3334/ORNLDAAC

/1736

└---------- ------  ef_soil_water  ----- --------------------------------------------------------------  soil_moisture  ---------- 1 0.0009

Mean annual soil moisture ≈11 km kg/m2 https://code.earthengine.google.com/d704d1a6f45a

6b717eb83640ef200227

https://doi.org/10.1175/BAMS-85-3-

381; 

└----- -------  ef_decomp  -------- -------------------------------------------------------------  decomp_humus  -------- 1 0.0003

Decomposition coefficients for humus based on the Yasso15 

model.

≈900 m Unitless https://en.ilmatieteenlaitos.fi/yasso-description https://doi.org/10.1016/j.ecolmodel

.2010.10.025

└--------------- --------------------------------------------------------------  decomp_lignin  --------- 1 0.0003

Decomposition coefficients for lignin based on the Yasso15 

model.

≈900 m Unitless https://en.ilmatieteenlaitos.fi/yasso-description https://doi.org/10.1016/j.ecolmodel

.2010.10.025

└---------- ------------------------------------------------------------  decomp_cellulose  ------ 1 0.0003

Decomposition coefficients for sugars, cellulose and wax-like 

compounds based on the Yasso15 model.

≈900 m Unitless https://en.ilmatieteenlaitos.fi/yasso-description https://doi.org/10.1016/j.ecolmodel

.2010.10.025

└ --  ef_myco_colonization  -- ------------------------------------------------------  AM_intensity_colonization  - 1 0.0005

The intensity of AM root colonization ≈18 km % https://www.nature.com/articles/s41597-022-

01913-2

https://www.nature.com/articles/s4

1597-022-01913-2

└--------------- ------------------------------------------------------  EcM_intensity_colonization  - 1 0.0005

The intensity of EcM root colonization ≈18 km % https://www.nature.com/articles/s41597-022-

01913-2

https://www.nature.com/articles/s4

1597-022-01913-2

└----------- 0.18484 --  ecosystem_structure  -- ---  es_leaf_area_index  --- ----------------------------------------------------------------------  lai  ----------------- 100 0.0130

Leaf Area Index (LAI) = MCD15A3H.006 Terra+Aqua Leaf Area 

Index

≈500 m LAI value https://explorer.earthengine.google.com/#detail/M

ODIS%2F006%2FMCD15A3H

https://doi.org/10.5067/MODIS/MC

D15A3H.006

└--------------- -------------------------------------------------------------------  oem_lai  -------------- 100 0.0130

Leaf Area Index (LAI) ≈10 m LAI value In Review In Review

└------------------------- ---  es_foliage_homogen  --- -------------------------------------------------------------  evi_homogeneity -------- 100 0.0065

Homogeneity (EVI Heterogeneity); Similarity of EVI between 

adjacent pixels

≈1 km >=0; <=1 http://www.earthenv.org/texture https://doi.org/10.1111/geb.12365 

└--------------- -------------------------------------------------------------  evi_dissimilarity  -------- 100 0.0065

Dissimilarity (EVI Heterogeneity); Difference in EVI between 

adjacent pixels

≈1 km >=0 http://www.earthenv.org/texture https://doi.org/10.1111/geb.12365 

└---------- ----------------------------------------------------------------  evi_evenness  ----------- 100 0.0065

Evenness (EVI Heterogeneity); Evenness of EVI ≈1 km >=0; <=1 http://www.earthenv.org/texture https://doi.org/10.1111/geb.12365 

└----- -----------------------------------------------------------------  evi_contrast  ----------- 100 0.0065

Contrast (EVI Heterogeneity); Exponentially weighted difference 

in EVI between adjacent pixels

≈1 km >=0 http://www.earthenv.org/texture https://doi.org/10.1111/geb.12365 

└-------------------- ------  es_veg_height  ------- ------------------------------------------------------------------  treeheight  ------------- 100 0.0087

Global Canopy Height 2020 ≈30 m height in meters https://glad.geog.umd.edu/dataset/GLCLUC2020 https://doi.org/10.3389/frsen.2022.

856903

└--------------- ------------------------------------------------------------------  canheight  ------------- 100 0.0087

ETH Global Canopy Height 2020 ≈10 m height in meters https://doi.org/10.3929/ethz-b-000609802 https://doi.org/10.1038/s41559-023-

02206-6

└---------- ---------------------------------------------------------------  shveg_height  ----------- 100 0.0087

Short vegetation height ≈30 m height in meters https://doi.org/10.5281/zenodo.15198675 https://doi.org/10.1038/s41597-024-

04139-6

└--------------- ------  es_tree_density  ------ ----------------------------------------------------------------  tree_density  ----------- 90 0.0081

Tree (Stem) Density ≈1 km no of stems per pixel http://elischolar.library.yale.edu/yale_fes_data/1/ https://doi.org/10.1038/nature1496

7

└--------------- --------------------------------------------------------------------  treecov  --------------- 100 0.0090

Tree canopy cover for year 2020, defined as canopy closure for 

all vegetation taller than 5m in height. (Hansen et al.)

≈30 m Canopy closure (0-

100%)

https://glad.umd.edu/dataset/global-2010-tree-

cover-30-m

https://doi.org/10.1126/science.124

4693

└---------- -----------------------------------------------------------------  oem_fcover  ------------ 100 0.0090

Forest cover for 2024 created by Felix Specker for Open Earth 

Monitor

≈100 m >=0; <=1 In Review In Review

└---------- ---  es_plant_biomass  --- -  es_aboveground_biom  - ------------  esa_cci_agb  ------------ 100 0.0137

ESA CCI Above ground biomass for the year 2022 ≈100 m Mg C / ha https://data.ceda.ac.uk/neodc/esacci/biomass/data/

agb/maps/v2.0/geotiff

http://dx.doi.org/10.5285/84403d0

9cef3485883158f4df2989b0c

└--------------- --  es_belowground_biom  -- ------------  bgb_spawn ------------ 90 0.0062

Global belowground biomass carbon density for the year 2010 

(Spawn et al) 

≈300 m Mg C / ha https://doi.org/10.3334/ORNLDAAC/1763 https://doi.org/10.1038/s41597-020-

0444-4

└------------------------ ------  root_mass_fraction  ------ 90 0.0062

Root mass fraction describes the plant biomass distributions 

below- versus aboveground (Ma et al)

≈30 m % https://doi.org/10.1038/s41559-021-01485-1 https://doi.org/10.1038/s41559-021-

01485-1

└----- ---  es_mangrove_extent  --- -----------------------------------------------------------  mangroves_girietal  ------ 100 0.0260

Mangroves extent for the year 2000 (Giri et al) ≈30 m Unitless https://developers.google.com/earth-

engine/datasets/catalog/LANDSAT_MANGROVE_FO

https://doi.org/10.7927/H4J67DW8; 

https://doi.org/10.1111/j.1466-

└--- -----  es_peatlands  ----- -----  es_peat_extent  ----- ---  global_peatland_extent  --- 100 0.0065

Global Peatland distribution. This layer was created from the 

PEATMAP polygons.

≈230 m % http://archive.researchdata.leeds.ac.uk/251/ https://doi.org/10.1016/j.catena.20

17.09.010

└------------------------ --  tropical_peatland_extent  -- 100 0.0065

Tropical and subtropical peatland extent (CIFOR) ≈230 m Unitless https://onlinelibrary.wiley.com/doi/full/10.1111/gcb

.13689

https://doi.org/10.17528/CIFOR/DA

TA.00058

└--------------- -----  es_peat_depth  ----- --  tropical_peatland_depth  -- 100 0.0130

Tropical and subtropical peatland depth (CIFOR) ≈230 m depth in meters https://onlinelibrary.wiley.com/doi/full/10.1111/gcb

.13689

https://doi.org/10.17528/CIFOR/DA

TA.00058

└ ---  es_fungal_assoc  --- ---  es_avail_fine_roots  --- ------------  AM_roots  ------------ 10 0.0004

Fine root biomass C stocks that are capable to form associations 

with AM fungi

≈18 km Mg C / ha https://doi.org/10.5061/dryad.866t1g1tt https://www.nature.com/articles/s4

1597-022-01913-2

└------------------------ ------------  EcM_roots  ------------ 10 0.0004

Fine root biomass C stocks that are capable to form associations 

with EcM fungi

≈18 km Mg C / ha https://doi.org/10.5061/dryad.866t1g1tt https://www.nature.com/articles/s4

1597-022-01913-2

└--------------- ----  es_avail_stems  ---- ------------  AM_stems  ------------ 10 0.0003

Estimated proportion of arbuscular mycorrhizal related woody 

stems (above 10cm). (downsampled100km)

≈111 km proportion (0-1) https://www.nature.com/articles/s41586-019-1128-

0

https://www.nature.com/articles/s4

1586-019-1128-0

└------------------------ ------------  EM_stems  ------------ 10 0.0003

Estimated proportion of ecto-mycorrhizal related woody stems 

(above 10cm). (downsampled100km)

≈111 km proportion (0-1) https://www.nature.com/articles/s41586-019-1128-

0

https://www.nature.com/articles/s4

1586-019-1128-0

└------------------- ------------  Nfix_stems  ------------ 10 0.0003

Estimated proportion of nitrogen-fixing mycorrhizal related 

woody stems (above 10cm). (downsampled100km)

≈111 km proportion (0-1) https://www.nature.com/articles/s41586-019-1128-

0

https://www.nature.com/articles/s4

1586-019-1128-0

└---------- -  es_colonized_fine_roots  - AM_herbs_roots_colonized 10 0.0002

Herbaceous fine root biomass carbon stocks associated with AM 

fungi

≈18 km Mg C / ha https://doi.org/10.5061/dryad.866t1g1tt https://www.nature.com/articles/s4

1597-022-01913-2

└------------------------ AM_woody_roots_colonized 10 0.0002

Woody fine root biomass carbon stocks associated with AM 

fungi

≈18 km Mg C / ha https://doi.org/10.5061/dryad.866t1g1tt https://www.nature.com/articles/s4

1597-022-01913-2

└------------------- AM_tundra_roots_colonized 10 0.0002

Tundra fine root biomass carbon stocks associated with AM 

fungi

≈18 km Mg C / ha https://doi.org/10.5061/dryad.866t1g1tt https://www.nature.com/articles/s4

1597-022-01913-2

└-------------- EcM_woody_roots_colonized 10 0.0002

Woody fine root biomass carbon stocks associated with EcM 

fungi

≈18 km Mg C / ha https://doi.org/10.5061/dryad.866t1g1tt https://www.nature.com/articles/s4

1597-022-01913-2

└--------- EcM_tundra_roots_colonized 10 0.0002

Tundra fine root biomass carbon stocks associated with EcM 

fungi

≈18 km Mg C / ha https://doi.org/10.5061/dryad.866t1g1tt https://www.nature.com/articles/s4

1597-022-01913-2

└--------- 0.01848 -----  genetic_animals  ----- --  ga_mitoch_diversity  -- -----------------------------------------------------------  ga_mammals_c01  ------ 10 0.0092

Genetic diversity of Cytochrome b ≈386 km proportion (0-1) https://github.com/spyrostheodoridis/Genetic-

geography-of-terrestrial-mammals

https://www.nature.com/articles/s4

1467-020-16449-5

└--------------- -----------------------------------------------------------  ga_mammals_cytb  ------ 10 0.0092

Genetic diversity of Cytochrome oxidase I ≈386 km proportion (0-1) https://github.com/spyrostheodoridis/Genetic-

geography-of-terrestrial-mammals

https://www.nature.com/articles/s4

1467-020-16449-5

└------- 0.09242 ----  genetic_microbes  ---- -------  gm_bacteria  ------- ---------------------------------------------------------  gm_pseudomonadota  ---- 50 0.0462

Nucleotide diversity (the average proportion of nucleotide 

differences between any two randomly selected DNA sequences) 

≈1 km proportion (0-1) https://zenodo.org/records/16534882 https://doi.org/10.5281/zenodo.165

34881

└-------------------------------  gm_fungi  ------------ -------------------------------------------------------------  gm_ascomycota  --------- 50 0.0462

Nucleotide diversity (the average proportion of nucleotide 

differences between any two randomly selected DNA sequences) 

≈1 km proportion (0-1) https://zenodo.org/records/16534882 https://doi.org/10.5281/zenodo.165

34881

└----- 0.00185 ------  genetic_plants  ----- -------  gp_dummy  ------- -----------------------------------------------------------------  dummy_gp  ------------ 1 0.0018

Placeholder blank layer ≈1 km proportion (0-1) Blank map with 1.0 values everywhere NA

└--- 0.16636 ----  species_animals  ---- --  sa_avian_diveristy  -- --------------------------------------------------------------  birds_morpho  ---------- 1 0.0006

Hughes et al. Global biogeographic patterns of avian 

morphological diversity. Ecology Letters.

≈100 km Morphological 

variance (sum of 

https://doi.org/10.15131/shef.data.16733224.v2 https://doi.org/10.1111/ele.13905

└--------------- ---------------------------------------------------------------  birds_richness  -------- 10 0.0059

Jenkins2013_BirdsRichness ≈10 km No. spp (gamma 

diversity)

BirdLife Int https://www.pnas.org/doi/abs/10.1

073/pnas.1302251110

└---------- -------------------------------------------------------------  bird_aoh_richness  ----- 90 0.0532

Area of Habitat maps for the world's terrestrial birds ≈100 m No. spp https://doi.org/10.5061/dryad.02v6wwq48 https://doi.org/10.5194/gmd-15-

5093-2022

└------------------------ --  sa_mammal_diversity  -- -----------------------------------------------------------  mammals_richness  ------ 10 0.0060

Jenkins2013_MammalsRichness ≈10 km No. spp (gamma 

diversity)

IUCN https://www.pnas.org/doi/abs/10.1

073/pnas.1302251110

└--------------- ---------------------------------------------------------- mammal_aoh_richness ---- 90 0.0537

Area of Habitat maps for the world's terrestrial mammals ≈100 m No. spp https://doi.org/10.5061/dryad.02v6wwq48 https://doi.org/10.5194/gmd-15-

5093-2022

└------------------- --  sa_amphib_diversity --- ----------------------------------------------------------  amphibians_richness  ----- 50 0.0331

Jenkins2013_AmphibiansRichness ≈10 km No. spp (gamma 

diversity)

IUCN https://www.pnas.org/doi/abs/10.1

073/pnas.1302251110

└-------------- ---  sa_reptile_diversity  --- --------------------------------------------------------------  reptile_richness --------- 10 0.0066

The global distribution of tetrapods reveals a need for targeted 

reptile conservation (Roll et al)

≈48 km No. spp https://doi.org/10.5061/dryad.83s7k https://www.nature.com/articles/s4

1559-017-0332-2

└--------- --  sa_soil_invertebrates  -- -------------------------------------------------------  nematodes_bacterivores  -- 10 0.0013

Number of Bacterivore Nematodes estimated per 100g of soil ≈900 m # of expected 

nematodes

https://doi.org/10.3929/ethz-b-000354394 https://www.nature.com/articles/s4

1586-019-1418-6

└--------------- ---------------------------------------------------------  nematodes_fungivores  ---- 10 0.0013

Number of Fungivore Nematodes estimated per 100g of soil ≈900 m # of expected 

nematodes

https://doi.org/10.3929/ethz-b-000354394 https://www.nature.com/articles/s4

1586-019-1418-6

└---------- ---------------------------------------------------------  nematodes_herbivores  ---- 10 0.0013

Number of Herbivores Nematodes estimated per 100g of soil ≈900 m # of expected 

nematodes

https://doi.org/10.3929/ethz-b-000354394 https://www.nature.com/articles/s4

1586-019-1418-6

└----- ----------------------------------------------------------  nematodes_omnivore  ---- 10 0.0013

Number of Omnivore Nematodes estimated per 100g of soil ≈900 m # of expected 

nematodes

https://doi.org/10.3929/ethz-b-000354394 https://www.nature.com/articles/s4

1586-019-1418-6

└ ---------------------------------------------------------  nematodes_predators  ---- 10 0.0013

Number of Predator Nematodes estimated per 100g of soil ≈900 m # of expected 

nematodes

https://doi.org/10.3929/ethz-b-000354394 https://www.nature.com/articles/s4

1586-019-1418-6

└---- -----  sa_ant_diversity  ----- ---------------------------------------------------------------  ant_richness  ---------- 1 0.0007

The global distribution of known and undiscovered ant 

biodiversity

≈20 km No. spp https://doi.org/10.5061/dryad.wstqjq2pp https://www.science.org/doi/10.112

6/sciadv.abp9908

└- 0.09242 ----  species_microbes  --- ----  sm_phylo_diverge  ---- -----------------------------------------------------------------  alpha_sespd  ----------- 50 0.0092

Phylogenetic dispersion of fungal communities ≈1 km Phylogenetic 

dispersion (unitless)

https://doi.org/10.5281/zenodo.8013448 https://www.science.org/doi/10.112

6/sciadv.adj8016

└--------------- -----------------------------------------------------------------  alpha_spd  ------------ 50 0.0092

Phylogenetic diversity of fungal communities ≈1 km Total phylogenetic 

branch lengths

https://doi.org/10.5281/zenodo.8013448 https://www.science.org/doi/10.112

6/sciadv.adj8016

└---------- -------------------------------------------------------------------  beta_b1  -------------- 50 0.0092

PC1 - Phylogenetic dissimilarity of fungal communities ≈1 km Phylogenetic 

dissimilarity (beta 

https://doi.org/10.5281/zenodo.8013448 https://www.science.org/doi/10.112

6/sciadv.adj8016

└----- -------------------------------------------------------------------  beta_b2  -------------- 50 0.0092

PC2 - Phylogenetic dissimilarity of fungal communities ≈1 km Phylogenetic 

dissimilarity (beta 

https://doi.org/10.5281/zenodo.8013448 https://www.science.org/doi/10.112

6/sciadv.adj8016

└ -------------------------------------------------------------------  beta_b3  -------------- 50 0.0092

PC3 - Phylogenetic dissimilarity of fungal communities ≈1 km Phylogenetic 

dissimilarity (beta 

https://doi.org/10.5281/zenodo.8013448 https://www.science.org/doi/10.112

6/sciadv.adj8016

└--------------- -------  sm_richness  ------- --  sm_alpha_diversity  -- ------------  alpha_ecm  ------------ 50 0.0058

Richness of ectomycorrhizal fungi ≈1 km No. of OTUs (alpha 

diversity)

https://doi.org/10.5281/zenodo.8013448 https://www.science.org/doi/10.112

6/sciadv.adj8016

└----------------------------- ------------  alpha_am  ------------ 50 0.0058

Richness of arbuscular mycorrhizal fungi ≈1 km No. of OTUs (alpha 

diversity)

https://doi.org/10.5281/zenodo.8013448 https://www.science.org/doi/10.112

6/sciadv.adj8016

└------------------------ ------------  alpha_nma  ------------ 50 0.0058

Richness of non-EcM Agaricomycetes ≈1 km No. of OTUs (alpha 

diversity)

https://doi.org/10.5281/zenodo.8013448 https://www.science.org/doi/10.112

6/sciadv.adj8016

└------------------- -----------  alpha_mold  ------------ 50 0.0058

Richness of molds ≈1 km No. of OTUs (alpha 

diversity)

https://doi.org/10.5281/zenodo.8013448 https://www.science.org/doi/10.112

6/sciadv.adj8016

└-------------- ------------  alpha_ohp ------------ 50 0.0058

Richness of opportunistic human parasitic fungi ≈1 km No. of OTUs (alpha 

diversity)

https://doi.org/10.5281/zenodo.8013448 https://www.science.org/doi/10.112

6/sciadv.adj8016

└--------- -----------  alpha_path  ------------ 50 0.0058

Richness of putative pathogenic fungi ≈1 km No. of OTUs (alpha 

diversity)

https://doi.org/10.5281/zenodo.8013448 https://www.science.org/doi/10.112

6/sciadv.adj8016

└---- -----------  alpha_ucel  ------------- 50 0.0058

Richness of  unicellular, non-yeast fungi ≈1 km No. of OTUs (alpha 

diversity)

https://doi.org/10.5281/zenodo.8013448 https://www.science.org/doi/10.112

6/sciadv.adj8016

└ -----------  alpha_yeast  ----------- 50 0.0058

Richness of yeasts ≈1 km No. of OTUs (alpha 

diversity)

https://doi.org/10.5281/zenodo.8013448 https://www.science.org/doi/10.112

6/sciadv.adj8016

└----- 0.16636 -----  species_plants  ------- ------  sp_phylo_fun  ------ -----  sp_phylo_diverge  ----- ----------  pazfundiverge  ---------- 1 0.0005

Functional_Divergence_PazEtAl ≈100 km Functional divergence 

index, RaoQ

https://doi.org/10.5061/dryad.h9w0vt4rx https://doi.org/10.1111/geb.13877

└------------------------ ---------  pazphydiverge  ---------- 1 0.0005

Phylogenetic_Divergence_PazEtAl ≈100 km Mean pairwise 

distance

https://doi.org/10.5061/dryad.h9w0vt4rx https://doi.org/10.1111/geb.13877

└--------------- ----  sp_phylo_diversity  ---- ---------  pazfundiverse  --------- 1 0.0005

Functional_Diversity_PazEtAl ≈100 km Functional richness 

index, FRic

https://doi.org/10.5061/dryad.h9w0vt4rx https://doi.org/10.1111/geb.13877

└------------------------ ---------  pazphydiverse  --------- 1 0.0005

Phylogenetic_Diversity_PazEtAl ≈100 km Faith's phylogenetic 

diversity 

https://doi.org/10.5061/dryad.h9w0vt4rx https://doi.org/10.1111/geb.13877

└--------------- ------  sp_richness  ------ ----  sp_alpha_diversity  ---- -----------  sabatini  -------------- 90 0.0644

Vascular plant alpha diversity for plots of 1000m2 size (Sabatini 

et al. 2022)

≈1 km No. spp https://idata.idiv.de/ddm/Data/ShowData/3506?ver

sion=70

https://doi.org/10.1038/s41467-022-

32063-z

└--------------- ----  sp_gamma_diversity  ---- -------------  giftrich   -------------- 90 0.0252

Gamma diversity using the GIFT database ≈88 km No. spp (gamma 

diversity, i.e., total 

https://gift.uni-goettingen.de/shiny/predictions/ https://nph.onlinelibrary.wiley.com/

doi/10.1111/nph.18533

└------------------------ --------------- kraftsr  -------------- 90 0.0252

Kraft_Jetz Combined Species Richness ≈110 km No. spp (gamma 

diversity)

https://doi.org/10.1073/pnas.0608361104 https://doi.org/10.1073/pnas.06083

61104

└---------- ----  sp_anthro_impacts ----- ------------- asi_n_ellis ------------ 50 0.0119

[ASI = Anthropogenic Species Increase = IS + CS + OS] / [N = 

Native Species Richness (based on Kreft & Jetz 2007)]

≈88 km No. spp https://anthroecology.org/anthromes/plantbiodivers

ity/maps

https://doi.org/10.1371/journal.pon

e.0030535

└------------------------ ------------ asl_n_ellis ------------ 50 0.0119

[ASL = Anthropogenic Species Loss] / [N = Native Species 

Richness (based on Kreft & Jetz 2007)]

≈88 km No. spp https://anthroecology.org/anthromes/plantbiodivers

ity/maps

https://doi.org/10.1371/journal.pon

e.0030535

└------------------- ------------ is_n_ellis ------------ 50 0.0119

[IS = Species Invasions (based on Lonsdale 1999)] / [N = Native 

Species Richness (based on Kreft & Jetz 2007)]

≈88 km No. spp https://anthroecology.org/anthromes/plantbiodivers

ity/maps

https://doi.org/10.1371/journal.pon

e.0030535

└-------------- ------------asr_n_ellis ------------- 50 0.0140

[ASR = Anthropogenic Species Richness = N - ASL + ASI] / [N = 

Native Species Richness (based on Kreft & Jetz 2007)]

≈88 km No. spp https://anthroecology.org/anthromes/plantbiodivers

ity/maps

https://doi.org/10.1371/journal.pon

e.0030535

https://docs.google.com/spreadsheets/d/1gTbndNk6_9w2pKNVyrUBRHiC8zZnVfQYy79ufrw3fTA/edit?usp=sharing
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4. Comparison with similar global indices 986 

To compare SEED with three of the most widely used global indices, we computed the difference 987 

between SEED and the MSA from GLOBIO86, the BII from the Natural History Museum114, and a 988 

second BII (which we will call BDI) produced with a less recent version of the same core 989 

methodology84,115. The broad scale differences in our index indicate that SEED may be more 990 

conservative than MSA and BII (Figure S2a-b) in boreal and desert regions, while SEED estimates 991 

higher intactness across temperate regions, sub-Saharan Africa, South Africa, and parts of Australia 992 

(Figure S2a-b). SEED was consistently lower than the BDI globally (Figure S2c). Underlying these 993 

differences, the distribution of MSA and BII values are bimodal compared with the BDI and SEED, 994 

which are unimodal. This means that MSA and BII may more commonly characterize an ecosystem 995 

as either highly intact or not very intact, while SEED would more commonly characterize the same 996 

ecosystem as moderately intact.  997 
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 998 

Figure S2. Comparison between the leading global biodiversity models. These global maps 999 

illustrate differences between SEED and (a) MSA86, (b) BII from NHM114, and (c) BDI, which was 1000 

created independently from the BII while using the same model115.   1001 


