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Summary 27 

Quantifying biodiversity across the globe is critical for transparent reporting and assessment under 28 

the Kunming-Montreal Global Biodiversity Framework. Understanding the complexity of 29 

biodiversity requires consideration of the variation of life across genes, species, and ecosystems. 30 

Achieving this in a standardized way remains a key challenge for creating an equitable nature 31 

positive future. Here, we present the Sustainable Ecology and Economic Development (SEED) 32 

framework, which assesses the dimensions that structure biodiversity patterns worldwide (genetics, 33 

species, and ecosystems) across plants, animals, and microbial taxa, and consolidates this into a 34 

single measure of biocomplexity at every location, relative to a ‘reference’ ecosystem with minimal 35 

human disturbance. We describe the SEED methodology and highlight its features, which include 36 

seven novel measures of biodiversity intactness that are integrated into the SEED biocomplexity 37 

index. SEED will continuously integrate new datasets and maps to provide up-to-date estimates of 38 

local biocomplexity across the planet, providing a tool for decision makers to assess and improve 39 

the global state of nature.  40 
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1. Introduction 45 

Every species depends on other species to survive. This vast interdependence means biological 46 

diversity is critical for the maintenance of life as we know it. However, humans have historically 47 

valued the components of nature we can use for food, timber, and medicine over others1,2. The 48 

development of markets for these products has incentivized their mass propagation at the expense 49 

of other components of biodiversity, driving the oversimplification of biological systems and the 50 

loss of the ecosystem services on which we depend3.  51 

As nature positive policy frameworks and nature markets emerge, it is critical that we learn from 52 

past challenges. Mechanisms that value a single aspect of nature – such as carbon sequestration – 53 

risk driving the oversimplification of the system4–7. This can lead to potentially counterproductive 54 

outcomes, like the creation of monocultures of exotic tree species at the expense of local 55 

biodiversity7 and human wellbeing8. If political and financial structures are to promote the 56 

conservation of natural biodiversity, they must be underpinned by robust scientific monitoring that 57 

reflects the full dimensionality of life, across genetic, species and ecosystem levels. 58 

The most prominent guidelines for biodiversity monitoring are described within the Kunming-59 

Montreal Global Biodiversity Framework (GBF)9, which sets a series of global targets to halt and 60 

reverse nature loss by 2030. Key targets in the GBF include protecting areas of high biodiversity 61 

importance (Target 1), restoring 30% of degraded areas by 2030 (Target 2), and the headline 62 

‘30x30’ target that aims to conserve 30% of the Earth’s surface by 2030 (Target 3). In the financial 63 

sector, the GBF requires businesses to disclose their impacts on biodiversity (Target 15), and the 64 

Taskforce on Nature-related Financial Disclosures was assembled to provide guidance and outline 65 

best practices for nature-related disclosures. At the heart of nature-related disclosures is a measure 66 

of the “state of nature” against which impacts, dependencies, risks, and opportunities may be 67 

measured10. However, it is not well defined what constitutes a suitable measure of the state of 68 

nature.  69 

A growing number of metrics have been developed to measure and monitor biodiversity. 70 

Biodiversity metrics generally fall into two categories based on their dataset and scope: local 71 

ground-sourced data (e.g. plot surveys, eDNA, bioacoustics monitors and camera traps), and global 72 



4 

 

remotely-sensed data (e.g. radar and multispectral imagery from satellites)11. While ground-sourced 73 

data are critical for providing detailed insights into the diversity of organisms in a specific study 74 

area, their insights may be limited outside the local study sites12,13. By contrast, remotely-sensed 75 

data can provide globally-standardized assessments of ecosystem-scale characteristics like forest 76 

structure14 and connectivity15, but not all aspects of nature can be measured directly from satellites. 77 

Many global biodiversity metrics incorporate both ground-sourced and remote-sensed data to offer 78 

a balance between local relevance and global scope. To align monitoring efforts, the Group on Earth 79 

Observations Biodiversity Observation Network (GEO BON) recently proposed a worldwide 80 

system of observation networks16 and established guidelines for 16 Essential Biodiversity Variables 81 

(EBVs)17,18. However, we lack a coherent method to consolidate these EBVs and all other 82 

biodiversity metrics for a unified evaluation of nature. 83 

To address the need for a unified, globally standardized measure of biodiversity across all taxa and 84 

scales of variation, we first review existing global biodiversity metrics and highlight their strengths 85 

and weaknesses in measuring the current state of nature (Section 2). We then present a new 86 

integrative framework, the Sustainable Ecology and Economic Development (SEED), which is 87 

designed to consolidate three primary hierarchical levels that underpin biodiversity – genetic, 88 

species, and ecosystem – into a global measure of biocomplexity (Section 3). Nature is inherently 89 

complex, and biocomplexity is defined as the emergent properties from multiple, often hierarchical 90 

levels of interacting factors that “affect, sustain, or are modified by living organisms, including 91 

humans”19. Recognizing this complexity, we designed SEED so that it can integrate numerous 92 

global biodiversity maps and include new maps as they become available. This ensures that policy 93 

and market tools will have the most up-to-date information on the state of nature. 94 

2. Current state of global biodiversity measurement  95 

Spatially-explicit biodiversity data products consist of a heterogeneous mix of calculations, model 96 

predictions, metrics (standard of measure), and indices (aggregation of multiple indicators). Given 97 

our exclusive focus on data products mapped over the globe, we hereafter refer to these products in 98 

general as ‘maps’. We grouped existing maps into three main organizational levels of ecological 99 

systems: within-species genetic diversity, among-species diversity, and ecosystem diversity. Global 100 

maps at each level reflect different dimensions of diversity that are essential for a holistic 101 
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understanding of biocomplexity across the globe. Although some global maps correspond to a given 102 

EBV20, the EBVs do not consist of a set of spatially-explicit global maps21. Their main purpose is 103 

to identify the key variables and provide standards on how to measure them17. Rather than discuss 104 

this detail in depth, we identify the strengths and weaknesses of existing maps and the 105 

considerations for including them in a unified measure of biodiversity. We conclude this section 106 

with a brief description of a fourth group of maps that represent standardized measures of 107 

biodiversity. 108 

2.1 Genetic (within-species) diversity 109 

Genetic diversity (heritable variation) represents variation in the genetic composition of individuals 110 

within a species and among populations and is the source for adaptive responses to environmental 111 

change22,23. There are few global measures of genetic diversity and these are estimated from 112 

mitochondrial DNA sequences stored in the National Centre for Biotechnology Information 113 

GenBank and the Barcode of Life Database24–26. While there are good insights about genetic 114 

variation for certain plant27 and animal species24–26, we currently lack global predictions of genetic 115 

variation for most species on the planet. Among the few taxonomic groups that have been studied, 116 

loss of genetic diversity is often correlated with the loss of suitable habitat28 and reduced 117 

abundance29. This may suggest that we could use measures of population declines to generate proxy 118 

measures of decline in genetic diversity, but this population timeseries data is lacking for the vast 119 

majority of organismal groups, except for the 5,200+ species in the Living Planet  Database30. 120 

However, with modern advancements in genetic sequencing technology and widespread usage of 121 

barcoding and metabarcoding31, new data are continually becoming available that will enable the 122 

global measurement of genetic diversity across taxonomic groups23. 123 

2.2 Species, phylogenetic, and functional diversity 124 

Traditionally, global biodiversity research has primarily focused on species richness (the number 125 

of unique taxa). However, species diversity also includes phylogenetic (i.e., a measure of 126 

evolutionary history32) and functional diversity, and adding these dimensions adds depth to our 127 

description of natural communities. Species richness maps are generally created by overlaying 128 

several species range maps then summing the number of species per pixel33–35, which in some 129 
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models is then modeled against a set of predictor variables before predicting richness36–38. 130 

Phylogenetic and functional diversity are calculated using a phylogeny39 or a functional-trait 131 

matrix40 to quantify the unique contributions from each of the species present at each locality and 132 

thus provide information about phylogenetic and functional components of diversity. Whereas a 133 

species-rich community may be composed of evolutionarily and functionally redundant species, 134 

other less species-rich communities may (or may not) have more evolutionarily and functionally 135 

divergent species that may contribute unique functions to the community. Therefore, highlighting 136 

those communities with particularly rich evolutionary roots and functional traits is key for a holistic 137 

measure of biodiversity. 138 

Species diversity maps inherit biases from their underlying data sources that may affect their 139 

applicability. All global biodiversity databases over-represent some regions and under-represent 140 

other regions, typically with a bias toward developed nations41, and there are considerable 141 

disparities in taxonomic coverage, with a bias toward larger and more charismatic organisms. The 142 

IUCN database – the source of many biodiversity maps24,25,42–45 – contains distribution data for over 143 

80% of described vertebrate species and 14% of vascular plants, but only 2% of invertebrate 144 

species, which represent the vast majority of animal species diversity. In addition, microbes 145 

represent 88% to 99% of all species on Earth46,47 but are vastly underrepresented, with only 0.4% 146 

of known fungi and protists included in the IUCN database. This pattern is now changing due to 147 

recent advances in high-throughput sequencing technologies that enable us to observe and quantify 148 

microscopic and otherwise cryptic species48, and the availability of microbial biodiversity maps is 149 

expanding exponentially49–52. 150 

Species diversity maps are also limited by their original scope and the underlying models. Until 151 

now, most global maps of species diversity were not designed to capture fine-scale patterns in 152 

species composition, or the effects of local human disturbance. With a focus on broad-scale 153 

biogeographic trends, species diversity models focus climate, edaphic and topographic predictive 154 

variables to predict diversity patterns across environmental gradients. The general lack of human 155 

influences in these models leads to low predictive accuracy for quantifying the impacts of human 156 

disturbance (Figure 1). This may be due in part to the recent emergence of global human 157 

modification maps53–56 and also due to a paucity of biodiversity data in both heavily degraded and 158 
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intact landscapes. Furthermore, species diversity maps tend to be temporally static, calculated as an 159 

average of observations that can span decades. Additionally, sampling methodologies are taxon 160 

and/or habitat specific and may also differ by region and discipline or agency. These complexities 161 

make it difficult to harmonize available data and generate well-rounded estimates that scale in space 162 

and change over time in response to shifting conditions on the ground.  163 

2.3 Ecosystem diversity 164 

In contrast to genetic and species diversity, which rely heavily on ground-sourced data, ecosystem-165 

level maps provide a more up-to-date view of current conditions because they can be measured 166 

directly from satellite imagery, or modeled based on spectral imagery (e.g., radar and multispectral 167 

imaging). A wealth of global-scale remote sensing products have been designed to capture 168 

information about human modifications55, land use change57, canopy cover58, canopy height59, 169 

above and belowground biomass60,61, soil respiration62, habitat heterogeneity63, leaf area index64, 170 

ecosystem connectivity65,66, net primary productivity67 and ecological resilience68,69. We group all 171 

ecosystem-level maps that measure some aspect of biodiversity into one of three broad categories: 172 

ecosystem structure, function17, or connectivity.  173 

Ecosystem structure, function, and connectivity are emergent properties that arise from the 174 

combination of species, landscape physiognomy, climate, and human modifications. For example, 175 

the occurrence and extent of mangroves70 and peatlands71,72 are due to relatively specific sets of 176 

conditions, and their structural features are critical to their functional roles. The interplay between 177 

living organisms and their environment are also key ecosystem properties, perhaps best exemplified 178 

by plant-disperser and plant-fungal associations. Global maps of plant-disperser associations or 179 

species interaction networks are not currently available, but progress in this field indicates potential 180 

for such maps in the future73. The field of plant-fungal associations has produced numerous global 181 

maps, which predict such functional features as the relative proportions of nitrogen fixing and 182 

arbuscular mycorrhizal or ectomycorrhizal associated plants74 and the densities of their fine roots75 183 

over the landscape, which may affect the intensity of mycorrhizal colonization75, soil moisture76 184 

and decomposition rates77. These ecosystem properties provide a direct link to measures of 185 

ecosystem services78,79. Just as the three-dimensional structure of an ecosystem characterizes the 186 

environmental context in which species coexist, the spatial arrangement of habitat fragments and 187 
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species-specific dispersal abilities and limitations determine ecosystem connectivity. Ecosystem 188 

connectivity tends to decrease with habitat loss and fragmentation, and both connectivity80 and 189 

fragmentation81 indices can provide unique insights into the ecological functionality at the 190 

landscape-scale82.  191 

2.4 Standardized measures of biodiversity 192 

Given the challenges of capturing dynamic changes in ecological diversity at a global scale, a few 193 

analyses estimate how far the ecological community has diverged from its natural state. Using a 194 

database from targeted experiments and local studies spanning disturbance gradients, it is possible 195 

to identify how land use change affects ecological diversity and use these relationships to predict 196 

ecological intactness across the globe. Three commonly used global indices are the Ecosystem 197 

Integrity Index (EII)83 by the United Nations Environment Programme World Conservation 198 

Monitoring Centre, the Biodiversity Intactness Index (BII)84,85 by the Natural History Museum in 199 

London, and the Mean Species Abundance (MSA)86 index by the Netherlands Environmental 200 

Assessment Agency.  201 

The EII includes three components: structure, function, and composition. Ecosystem structure is 202 

based on the human modification index (HMI)55; ecosystem function is measured by the ratio of 203 

actual to potential net primary productivity67; and ecosystem composition is measured by the 204 

BII84,87. For a given location, the EII uses the lowest score of the three components to predict the 205 

extent to which any ecosystem has been impacted or altered from its original state. The BII uses a 206 

linear model of the impacts of land use and related pressures on two aspects of biodiversity, species 207 

abundances and compositional similarity, to estimate the intactness of a community of plants, 208 

vertebrates, and invertebrates. The MSA index is conceptually similar to the BII but focuses mainly 209 

on species abundance, includes additional human-related pressures, and estimates an average 210 

intactness value that is weighted by the land use type and its associated human pressures.  211 

The MSA, BII, and EII represent the current state-of-the-art in global biodiversity modeling. Yet, 212 

there are two key aspects of diversity that these indices do not capture. First, these indices are fairly 213 

limited in taxonomic scope. The BII and EII (and to some degree MSA) are primarily based on the 214 

PREDICTS database (Projecting Responses of Ecological Diversity In Changing Terrestrial 215 
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Systems)88, which is valuable for quantifying the impact of land use on biodiversity in different 216 

regions of the globe. However, at present, the data coverage of PREDICTS represents a relatively 217 

limited taxonomic range, including less than 10% of the described species for most large taxonomic 218 

groups like vascular plants and invertebrate animals, and a far smaller proportion for microbes88,89. 219 

Given that these taxa respond differently to human disturbance and show unique global distribution 220 

patterns90,91, the underrepresentation of important taxa may therefore bias global biodiversity 221 

assessments. Second, these indices focus exclusively on species level diversity and do not include 222 

genetic diversity or, except for the EII, ecosystem level properties that emerge from the web of 223 

interactions among species and their environment.  224 

3. A framework for observing biological complexity on Earth 225 

With the increasing combination of ground-sourced and remotely-sensed data, we are at the 226 

beginning of a data revolution in global ecology92,93. The exponential growth of global ecological 227 

datasets and maps across genetic, species, and ecosystem levels represents exciting new 228 

opportunities for our understanding of biodiversity across the planet. Conceptual frameworks that 229 

integrate and interpret this growing body of information are essential to generate a holistic 230 

understanding of global biocomplexity. Our global understanding of biocomplexity will never be 231 

fully complete, as emerging scientific assessments continue to capture novel information. 232 

Therefore, it is important to establish flexible and dynamic frameworks that can incorporate new 233 

and emerging information as it becomes available. 234 

A key element in new nature-related disclosure frameworks is a vaguely defined measure of the 235 

state of nature10, which would presumably represent the full multidimensional complexity of nature, 236 

but for which there is currently no agreed upon metric. To address the need for a unified state of 237 

nature metric, we present a holistic ecological framework (hereafter referred to as SEED) that is 238 

designed to represent the multidimensionality of nature by defining nine axes of variation, nested 239 

within the three hierarchical levels of diversity: genetics, species (including phylogenetic and 240 

functional diversity), and ecosystems (Figure 2). Within the genetic and species levels of variation, 241 

we include plants, animals, and microbes. The grouping of microbes to include archaea, bacteria, 242 

protists, and fungi could be disaggregated in the future as more information becomes available. 243 

Within ecosystems, we distinguish three axes: structure, function, and connectivity. The SEED 244 
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framework incorporates all existing biodiversity maps and will update frequently to include the best 245 

available information. The SEED framework incorporates components already identified as EBVs 246 

by GEO BON17 (Figure 2) and generates summary indices for the nine axes of biodiversity 247 

alongside a unified biocomplexity index. We apply the term biocomplexity19 to set it apart from 248 

measures of single biodiversity components, and to highlight the inclusion of multiple hierarchical 249 

levels of diversity, which emerge not just from the complex interplay between biological life and 250 

the environment, but also from the billions of years of physical and biological evolution on Earth. 251 

To globally-standardize the biocomplexity index, we estimate the similarity (ranging from zero and 252 

one) between the current state of an ecosystem and its natural state, which we measure over a suite 253 

of biodiversity maps in reference areas that we identify using the Human Modification Index to 254 

have only experienced minimal human disturbance (see Section 3.2). The SEED framework first 255 

summarizes the intactness (i.e., similarity to natural state) of multiple underlying biodiversity 256 

features in each axis, which allows each axis to be viewed separately to aid comprehension and 257 

facilitate action-impact assessments. We summarized this information a radar plot (Figure 2), 258 

whereby the intactness values for each axis at a site are plotted on scale from zero to one. The SEED 259 

framework also calculates the mean intactness for all nine axes combined to create a unified 260 

score: the SEED biocomplexity index, which also ranges between zero and one, where values near 261 

zero represents the near absence of biocomplexity (e.g., an open pit mine or paved area), and one 262 

represents an area that is equal to its potential natural state (i.e., a minimally-disturbed ecosystem). 263 

The SEED framework therefore offers both a single standardized biocomplexity value for any area 264 

of interest and nine intactness indices for each axis of biodiversity, thus allowing the user to unpack 265 

this information. 266 

3.1 Integrating dimensions of biodiversity 267 

Consolidating the multiple hierarchical levels of biodiversity into a single value is a critical feature 268 

that makes our biocomplexity index generalizable and comprehensible. All available global maps 269 

are combined within each of the relevant biodiversity axes (Figure 2), using a multivariate kernel 270 

estimator94 (Eq. 1), and then the mean of these nine axes consolidates this information into a single 271 

biocomplexity index.  272 

https://docs.google.com/document/d/1AySRB_lYhNgquHebVb3ga3PaJPro8I_IP1GROWRjWhE/edit?usp=sharing
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𝐾(𝒛, 𝒛𝑟) = 𝑒𝑥𝑝[−𝛿‖𝒘 ∘ (𝒛 − 𝒛𝑟)‖1]     (Eq. 1) 273 

Here, 𝒛 is a 𝑛-dimensional data vector for a given location, where 𝑛 represents the number of input 274 

maps involved in the calculation. The term ‖𝒘(𝒛 − 𝒛𝑟)‖1, represents the Manhattan distance, (or 275 

ℓ1 distance), between the data vector 𝒛 and the mean values for the corresponding reference areas 276 

𝒛𝒓 after elementwise multiplication (∘) by the 𝑛-dimensional vector, 𝒘, which contains the 277 

normalized weight for each input map. The resulting distance value is then converted into a 278 

similarity value, which is bounded by zero and one, by applying the kernel function, 𝐾, where 𝛿 279 

represents a scaling parameter.  280 

Sensitivity of similarity is set by the scaling parameter, 𝛿, which we set for each biodiversity axis 281 

according to two criteria. First, 𝛿 must be strictly positive to ensure that the kernel values are bound 282 

between zero and one. Second, the similarity values measured by 𝐾 capture the intactness of nature 283 

and should span the full range between zero and one. We set 𝛿 to the lowest value that met these 284 

criteria, given that increasing values simply shifted the distribution further to the left toward zero 285 

intactness (see Supplement S1).  286 

The weight of information is the final key consideration in our kernel estimator. We designed this 287 

framework to integrate numerous biodiversity maps, and we test it here with 75 maps (Table S2) – 288 

ecosystem structure (25), function (12), and connectivity (1); species diversity of plants (11), 289 

microbes (13), and animals (11); and genetic diversity of animals (2). We reprojected all maps to a 290 

common projection (epsg:4326) and spatial resolution (30 arc-seconds, ~926 meters at the equator) 291 

using a nearest-neighbor algorithm. The maps we reviewed vary in several aspects: coverage extent, 292 

spatial resolution, non-independence from other maps, extrapolation across regional data gaps, and 293 

in the degree to which satellite imagery or other measures of local conditions were integrated. We 294 

developed a dynamic weighting system to define the normalized weight of each map in a set, 295 

represented by 𝒘. We grouped non independent layers to share equal weight, which resulted in a 296 

short hierarchical structure. We also applied a confidence score and associated decreasing 297 

confidence with decreasing weight (see Supplement Table S1 for details). Although we found no 298 

global maps of the genetic diversity of plants or microbes, we filled in two blank maps to test the 299 

full framework and set the weight of these maps to a very small nonzero number. 300 
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We structured the integration of the nine biodiversity axes to be an even-weighted average of the 301 

intactness in each dimension. This places genetic, species, and ecosystem level diversity on equal 302 

grounds in the integrated index. SEED also offers an index for each biodiversity axis for 303 

independent use alongside the integrated index. Even weighting ensures equitability within genetic 304 

and species diversity among plants, animals, and microbes, which deviates strongly from the more 305 

common case wherein smaller, more cryptic taxa are overlooked in favor of more visible or 306 

personable taxa. If, however, evidence emerges that suggests a different weighting scheme is 307 

warranted, our method can be adapted in accordance with the evolving scientific landscape. In 308 

practice, however, the availability and quality of available maps is not even among axes, which 309 

resulted in some axes having higher relative weight and therefore more influence on the overall 310 

biocomplexity index (See Supplement S1 for details on how confidence scores affect the relative 311 

weights among axes). Identifying the optimal weighting for various levels of biodiversity 312 

information remains a key challenge for future biodiversity research as our theoretical 313 

understanding of ecological systems evolves. 314 

3.2. Reference area versus a counterfactual landscape 315 

To measure the intactness of biocomplexity requires establishing a baseline potential state that can 316 

be used for comparison. Estimating this baseline state poses several philosophical questions 317 

regarding the non-static nature of natural systems. It also poses data limitations for regions of the 318 

world that have been heavily degraded and thus lack ‘pristine’ potential states, such as large regions 319 

of the Northern Hemisphere95. Thus, we opt for a more direct approach than estimating a potential 320 

natural state for all biodiversity axes and underlying layers. We identify minimally-modified areas 321 

as points of reference with a procedure that involves few assumptions, considers the full suite of 322 

biodiversity together, and allows for a contemporary definition of natural as opposed to a historical 323 

estimate96.  324 

Specifically, we developed an algorithm that uses the HMI55 and potential natural vegetation 325 

(PNV)57 to select reference areas for each land cover class within each of the 846 ecoregions97 on 326 

Earth. This was done separately for each ecoregion to ensure ecologically relevant comparisons. In 327 

each ecoregion, we identify the least impacted areas for each land cover class (from the PNV), using 328 

a dynamically-defined, upper-limit HMI threshold to ensure a sufficiently large area, enabling 329 
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representative and robust estimates (see Figure 3a and Supplement S1). The mean value for each 330 

biodiversity feature layer within this least-impacted area estimates 𝒛𝒓 in equation 1 and is the basis 331 

for comparing all feature values in all pixels of the same vegetation class within that ecoregion.  332 

Although a natural landscape with minimal anthropogenic disturbance is not a universal goal in all 333 

scenarios, this minimal-disturbance baseline provides an objective, and replicable benchmark for 334 

measuring the state of nature. For example, food security and financial wellbeing are the primary 335 

considerations in agricultural settings, while restoration targets in conservation settings may deviate 336 

from a fully natural state due to a myriad of ecological and socioeconomic factors and needs, as 337 

well as previous alterations to the landscape98. Management practices and targets will vary 338 

depending on the local situation, and progress toward these targets can be evaluated against local 339 

minimal-disturbance benchmarks and other landscapes in similar settings. In these contexts, the 340 

SEED index provides a useful tool to benchmark local achievement against a globally-standardized 341 

biodiversity metric and enables a standardized assessment of biodiversity improvement in response 342 

to management practices17. 343 

3.3. Illustration of the SEED biocomplexity framework 344 

The biocomplexity index was developed using a comprehensive list of the most up-to-date maps of 345 

genetic, species, and ecosystem diversity (see Supplement Table S2). Although, our framework is 346 

designed to integrate nine biodiversity axes, the current lack of global maps to represent the genetic 347 

diversity of plants and microbes limits the current index to seven functioning axes. To illustrate the 348 

capabilities of the framework, we first show the viability of our dimensionality reduction 349 

calculation (equation 1) and reference area (Figure 3a) approach to calculate the intactness of seven 350 

biodiversity axes (Figure 3b-h). Combined, these intactness layers generate a unified measure of 351 

the intactness of nature, the SEED biocomplexity index (Figure 4a). We show how SEED can be 352 

aggregated across ecological boundaries and at various spatial scales to summarize biocomplexity 353 

in total and along each biodiversity axis (Figure 4b-c). Finally, we conduct a cursory comparison 354 

of SEED against the leading biodiversity intactness indices (Figure 5).  355 

Among the seven biodiversity intactness indices that we calculated, we identified broad global 356 

patterns where the indices unanimously show similar levels of intactness (Figure 3). High intactness 357 
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is nearly universally indicated across tundra, northern boreal forests, deserts, and the Amazon basin 358 

– areas that have not experienced extensive human development. Low intactness is indicated in the 359 

temperate grasslands and savannas of North America, Brazil’s Atlantic Forest, narrow bands along 360 

the West African coast and Sub-Saharan Africa, temperate forests across Europe and east across 361 

Asia toward Siberia, Northern India, the western edge of Southeast Asia, Northeastern China, and 362 

the eastern and southwestern coasts of Australia.  363 

There is also notable divergence among these indices. While the intactness of plant and microbial 364 

species were very similar (Figure 3f-g), and to some degree aligned with ecosystem structure 365 

(Figure 3b), ecosystem function (Figure 3d) shows divergent patterns in some regions, e.g., central 366 

North America, Western Ghats, and Central Deccan Plateau. Ecologically, we know very well that 367 

plants and microbes share special linkages and that ecosystem structure and function result from 368 

the local communities of plants, microbes, and animals. The intactness of animal species diversity 369 

(Figure 3h) is also divergent and highlights that the Andes and Appalachian Mountain ranges have 370 

particularly low intactness of animal species diversity relative to the other indices in these regions. 371 

In the Indo-Gangetic Plains, animal species intactness remains relatively high while other indices 372 

predict low intactness. Ecosystem connectivity (Figure 3c) shows a largely unique pattern. 373 

Currently the SEED connectivity index is highly sensitive to fragmentation81, and therefore scores 374 

land area as either highly intact or not at all. The genetic diversity of animals (Figure 3e) also shows 375 

a unique pattern, but this is likely because we have only two genetic diversity maps with very coarse 376 

resolution (~380-km)25. This along with the absence of global models for plant and microbial 377 

genetic diversity emphasizes the need for more work in global modeling of genetic diversity.  378 

The value in our biocomplexity framework is twofold; it integrates information regarding multiple 379 

hierarchical levels of diversity and numerous maps within each level, and it can be aggregated to 380 

provide summary statistics at the desired scale. The integrated SEED biocomplexity index 381 

represents a single measure of the state of nature for terrestrial land area across the globe (Figure 382 

4a). This shows that, on average, the Earth is currently at 68% of its natural state (Figure 4b). 383 

Aggregating by administrative boundaries99, we can evaluate the state of nature at a level where 384 

local policies may directly affect the mechanisms governing the direct human impacts on nature 385 

(Figure 4c).  386 
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In comparison to existing global biodiversity indices, SEED (Figure 4) offers a more 387 

comprehensive view of nature's state due to its inclusion of 75 global biodiversity maps, while also 388 

offering disaggregated information in the form of seven intactness sub-indices (Figure 3b-h). 389 

Existing global intactness indices (BII, and MSA) exclusively represent species level diversity for 390 

a subset of taxa. SEED expands the taxa represented with a wealth of microbial datasets (including 391 

fungi, bacteria, and archaea), while also expanding in scope to include multiple ecosystem attributes 392 

that capture landscape dynamics and ecological feedback. Their inclusion in SEED may account 393 

for differences between SEED and the other intactness indices (Figure S1). For example, SEED 394 

may indicate low ecosystem intactness where satellite imagery detects ecosystem fragmentation, 395 

while models predicting species composition may not register a change in species intactness. Given 396 

the global coverage and high temporal resolution of satellite imagery, the inclusion of remote-397 

sensed ecosystem characteristics not only adds dimensionality to biodiversity estimates, but it also 398 

improves the spatial and temporal resolution of biodiversity intactness predictions. 399 

3.4. Spatial and temporal scalability and next steps 400 

There is a growing demand for spatial and temporal scalability in global biodiversity monitoring, 401 

but achieving this remains a central challenge for ecology. Determining how biodiversity scales in 402 

space and time has been the focus of countless investigations, and one general result is that 403 

outcomes are highly context-dependent. Meeting the demand for scalability will require 404 

reimagining our approach to biodiversity modeling. Work by Map of Life100 in association with 405 

GEO BON exemplifies the scalable biodiversity models of the future. Map of Life provides a 406 

catalog of species distributions predicted over space and time, generated using the most up-to-date 407 

remote sensing technologies and species distribution models20. Bringing these maps together, we 408 

can reevaluate species richness, phylogenetic and functional diversity, and genetic diversity via 409 

declines in species ranges; and we can generate time series for these biodiversity metrics in high 410 

spatial resolution. As these new products emerge, they will be fed directly into the SEED framework 411 

to update the biocomplexity index and improve the spatial and temporal resolution of the index to 412 

allow for more fine-scale assessments of biodiversity and dynamic changes over time. 413 

The integration of remote sensing in biodiversity modeling will be the key distinguishing factor 414 

that transforms novel approaches from simply predicting general patterns to the prediction of local 415 
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conditions and the actual state of nature. Overall, we gain more complete spatial coverage from 416 

remote sensing than would be possible from field observation, with more reliable information than 417 

extrapolation of models101. Remote sensing can provide the means for both direct – many trees and 418 

large animals are visible from space – and indirect biodiversity monitoring via the coupling of 419 

remote sensing products with ecological models102. Future advances in remote sensing such as 420 

hyper-spectral imaging103,104 are expected to provide valuable additional information, which may 421 

help assess how plant species and functional biodiversity respond to different practices105.  422 

Global biodiversity monitoring undoubtedly requires a combination of ground-sourced and remote-423 

sensed approaches. Future on-the-ground sampling in under-sampled regions of the planet and for 424 

under-sampled taxa like invertebrates is urgently needed to fill in key gaps and narrow the 425 

uncertainty in global genetic and species diversity models. The emergence of next-generation 426 

technologies – such as eDNA48,106, bioacoustics107, and camera traps – may prove to be essential 427 

for scaling data collection in a cost-effective manner108.  Incorporation of these emerging 428 

technologies is a core aim in the continual development and fine-tuning of the SEED framework to 429 

ensure the best possible estimation of biodiversity. 430 

4. Conclusion and outlook 431 

There is growing recognition that we need both the political will and mechanisms to distribute 432 

finance towards local efforts that promote biodiversity109. To support this transition to equitable 433 

biodiversity protection, we require globally standardized assessments of ecological intactness that 434 

can detect change over time and are available to everyone, everywhere. Given the expansion of 435 

global datasets reflecting various dimensions of biodiversity across plants, animals, and microbes, 436 

frameworks for integrating this information are now within our grasp. The resulting global 437 

assessments of biocomplexity are necessary to evaluate progress toward climate change and land 438 

protection pledges (e.g. the GBF, Bonn Challenge110, and UN Sustainable Development Goals111), 439 

bring transparency to policy frameworks, and to encourage corporate accountability (under the 440 

Taskforce for Nature-related Financial Disclosures (TNFD)10 and Science-Based Targets for Nature 441 

(SBTN)112). 442 
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The SEED framework consolidates the three primary levels of biodiversity to produce a 443 

standardized and comprehensible measure of biocomplexity across the globe. This framework is 444 

fundamentally collaborative, incorporating biodiversity assessments and models from a diverse 445 

range of biodiversity experts. In addition, it is flexible, allowing for a dynamic index that evolves 446 

alongside the development of new map products and scientific advancements. We demonstrate that 447 

the SEED framework captures multidimensional changes in biodiversity along seven distinct axes 448 

(Figures 3) and provides a unified understanding of the state of nature at multiple scales (Figure 4). 449 

Yet, there are several key challenges that need to be addressed to improve the resolution of our 450 

index at finer spatial and temporal scales. Most notably, the development of models that integrate 451 

remote sensing data products into maps of species richness and genetic diversity will greatly 452 

improve the spatial and temporal resolution of our index.  453 

To ensure that the most high-integrity and up-to-date ecological information is available to policy- 454 

and decision-makers, we invite the wider scientific community to collaborate on the continual 455 

advancement of this biocomplexity index (www.seed-index.com). We believe that for this 456 

biodiversity index to lead to positive outcomes, its satellite-based predictions must accurately 457 

represent the actual biodiversity at a site. Achieving this level of accuracy presents a scientific 458 

challenge that requires the collaboration of a diverse team of experts, including ecologists, remote-459 

sensing specialists, and others from around the globe. Leveraging the latest scientific and 460 

technological breakthroughs, we aim to enhance and refine the biocomplexity index, thus fostering 461 

better outcomes for ecosystem protection and restoration.  462 
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Figures 463 

 464 

Figure 1. Poor performance of species richness maps in human modified landscapes. The 465 

impacts of human activities – as is shown here for Paris (outline) and the surrounding landscape (a) 466 

in satellite imagery113 and (b) in the human modification index55 – were not included in the 467 

development of most maps of species richness, e.g., (c) plant114 and (d) mammals34.  468 

  469 
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 470 

Figure 2. SEED biocomplexity index. Example visualization of the SEED framework for an area 471 

of interest, showing the dimensionality-reduced intactness scores across the nine dimensions of 472 

biodiversity. Along each axis the yellow line measures the intactness, the similarity of the current 473 

state and the potential natural state based on a comparable, minimally-disturbed ecosystem. For this 474 

area of interest, the average of these values, weighted by the quality of the data, yields the SEED 475 

biocomplexity index and indicates the total intactness of nature. Arrows trace the relationships 476 

between SEED’s biodiversity dimensions and the Essential Biodiversity Variables (EBVs)17. 477 

  478 
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 479 

Figure 3. A reference area approach to measuring intactness along seven axes of biodiversity. 480 

Series of maps showing the intactness – relative to (a) minimally impacted reference areas (colored 481 

by ecoregion97) – of diversity along seven biodiversity axes: ecosystem (b) structure, (c) 482 

connectivity, and (d) function, genetic diversity of (e) animals, and species diversity of (f) plants, 483 

(g) microbes, and (h) animals.  484 

  485 
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 486 

Figure 4. Global analysis of biocomplexity. Map of the (a) SEED biocomplexity index, which 487 

measures the intactness of biodiversity for every 1-km of pixel of land. SEED can be aggregated 488 

across ecological boundaries, as is demonstrated with (b) a global analysis and (c) the summaries 489 

by administrative boundaries.  490 

  491 
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Supplement S1 893 

Reference Area Methodology  894 

We developed an approach that offers a contemporary baseline which all global biodiversity maps 895 

may be evaluated. Our algorithm uses the human modification index (HMI)55 and potential natural 896 

vegetation (PNV)57 to create a reference area mask that delineates the relatively pristine areas on 897 

the globe. The combination of PNV classes and 846 delineated ecoregions97 then guides the 898 

assignment of reference areas to all non-reference pixels having the same ecoregion-PNV class. 899 

Due to the large variations in the extent of human modification among different ecoregion 900 

landcover combinations, we designed a dynamic decision tree for selecting a threshold HMI to 901 

define reference pixels and then to link reference to non-reference pixels to obtain the reference 902 

mask. 903 

We targeted reference pixels with minimal human modification which we defined as follows. For 904 

each PNV class, 𝑣, within each ecoregion, 𝑒, we calculated the 5th and 3rd percentile of the HMI, 905 

𝑃0.05(𝐻𝑀𝐼𝑒,𝑣) and 𝑃0.03(𝐻𝑀𝐼𝑒,𝑣). The reference threshold value, 𝑟𝑒,𝑣 was then set to the maximum 906 

of either 𝑃0.05(𝐻𝑀𝐼𝑒,𝑣) or 𝑃0.03(𝐻𝑀𝐼𝑒,𝑣) if they were less than 0.05, or 0.05 (See equation S1 907 

below).  908 

𝑟𝑒,𝑣 = {

𝑃0.05(𝐻𝑀𝐼𝑒,𝑣) 𝑖𝑓 𝑃0.05(𝐻𝑀𝐼𝑒,𝑣) ≤ 0.05

𝑃0.03(𝐻𝑀𝐼𝑒,𝑣) 𝑖𝑓 𝑃0.05(𝐻𝑀𝐼𝑒,𝑣) > 0.05 𝑎𝑛𝑑 𝑃0.03(𝐻𝑀𝐼𝑒,𝑣) ≤ 0.05

0.05 𝑖𝑓 𝑃0.05(𝐻𝑀𝐼𝑒,𝑣) > 0.05 𝑎𝑛𝑑 𝑃0.03(𝐻𝑀𝐼𝑒,𝑣) > 0.05

     Equation S1 909 

We set these criteria to focus the reference areas in relative unmodified ecoregions, while allowing 910 

a more inclusion in reference where needed, but only to the point of an HMI equal to 0.05. With 911 

the threshold defined for each ecoregion-PNV class, we selected reference areas as all pixels less 912 

than 𝑟𝑒,𝑣. If an ecoregion-PNV class had fewer than five pixels, we stepped down the reference 913 

threshold – from the 𝑃0.05(𝐻𝑀𝐼𝑒,𝑣) to 𝑃0.03(𝐻𝑀𝐼𝑒,𝑣), or from 𝑃0.03(𝐻𝑀𝐼𝑒,𝑣) to 0.05(𝑥𝑒,𝑣, 𝑦𝑒,𝑣). If 914 

𝑟𝑒,𝑣 was 0.05, and the ecoregion-PNV class still possessed fewer than five reference pixels, then we 915 

looked beyond the ecoregion boundary and included all reference pixels of the same PNV class 916 

within the same biome.  917 
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Delta calculation 918 

To calculate the delta value for each axis of the seed index, we use the following formula: 919 

𝐾 =  𝑒−𝛿𝐷 920 

where K is the kernel, 𝛿 is the delta parameter and D is the maximum Manhattan distance of the 921 

axis for all the pixel points. This effectively maps the highest possible distance of the layers of the 922 

axis to the lowest kernel value of the axis possible. In this case we define this lowest kernel value 923 

as 0.001. By solving for 𝛿 parameter as other values in the equation are known we can get the delta 924 

value for each of the axis. We then substitute this delta value in the equation to calculate the kernel 925 

for the world of each axis. The SEED index is then calculated based on the weighted average of the 926 

individual axes.  927 

Table S1. Table of scores, weights, and a description of the criteria guiding our judgment in rating 928 

the quality of information contained with each map that we incorporated in SEED. 929 

Confidence 
Score Weight Description 

5 100 Fully validated model representing on the ground conditions with at least 1-km 
resolution 

4 90 Partially validated model representing on the ground conditions with at least 1-
km resolution 

3 50 Model predicting on the ground conditions with at least 5-km resolution, 
requires validation 

2 10 Model predicting general diversity patterns with some human impacts 
considered  

1 1 Model of general diversity patterns. Does not represent human impacts on 
nature. 

 930 

To compare SEED with three of the most commonly used global indices, we computed the 931 

difference between SEED and the MSA from GLOBIO86, the BII from the Natural History 932 

Museum115, and a second BII (which we will call BDI) produced with a less recent version of the 933 

same core methodology84,116. The broad scale differences in our index indicate that SEED may be 934 

more conservative than MSA and BII (Figure S1a-b) in boreal and desert regions, while SEED 935 
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estimates higher intactness across temperate regions, sub-Saharan Africa, South Africa, and parts 936 

of Australia (Figure S1a-b). SEED was consistently lower than the BDI globally (Figure S1c). 937 

Underlying these differences, the distribution of MSA and BII values are bimodal compared with 938 

the BDI and SEED, which are unimodal. This means that MSA and BII may more commonly 939 

characterize an ecosystem as either highly intact or not very intact, while SEED would more 940 

commonly characterize the same ecosystem as moderately intact. 941 

 942 
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Figure S1. Comparison with leading global biodiversity models. Global showing the difference 943 

between SEED and (a) MSA86, (b) BII from NHM115, and (c) BDI, which was created 944 

independently from the BII while using the same model116.   945 


