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Highlights 

1. The value of nature lies in its complexity. 

2. Human activity consistently reduces and homogenizes biodiversity. 

3. We define a global framework for a holistic measure of the state of nature. 

4. Inclusion of microbes and invertebrates is crucial to evaluate biodiversity.  
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Summary 

Quantifying biodiversity across the globe is critical for transparent reporting and assessment under 

the Kunming-Montreal Global Biodiversity Framework. Understanding the complexity of 

biodiversity requires consideration of the variation of life across genetic, species and ecosystem 

levels. Achieving this in a globally standardized way remains a key challenge for achieving an 

equitable nature positive future. Here, we present the Sustainable Ecology and Economic 

Development (SEED) framework, which assesses multiple dimensions of biodiversity (genetic, 

species, and ecosystems) across plants, animals, and microbial taxa, and consolidates this into a 

single measure of biocomplexity at every location, relative to a ‘reference’ ecosystem with minimal 

disturbance. We demonstrate the utility of the SEED framework and highlight its features which 

include seven novel measures of biodiversity intactness that are integrated into the SEED 

biocomplexity index. As new information emerges, the SEED framework continuously integrates 

state-of-the-art datasets and maps to provide up-to-date estimates of local biocomplexity across the 

planet for decision makers who strive to improve the global state of nature.  

Keywords 

Biocomplexity; biodiversity monitoring; biodiversity intactness; genetic diversity; species 

diversity; ecosystem diversity 

Abbreviations 

SEED Sustainable Ecology and Economic Development 

GBF Kunming-Montreal Global Biodiversity Framework 

GEO BON Group on Earth Observations Biodiversity Observation Network 

EBV Essential Biodiversity Variable 

IUCN International Union for Conservation of Nature 

EII Ecosystem Integrity Index 

BII Biodiversity Intactness Index 

MSA Mean Species Abundance 

HMI Human Modification Index 

PNV Potential Natural Vegetation 



3 

 

1. Introduction 

Every species depends on other species to survive. This vast interdependence means biological 

diversity is critical for the maintenance of life as we know it. However, humans have historically 

valued certain components of nature (i.e., the parts we can use for food, timber, medicines etc.) 

over others. The development of markets for these products has incentivized their mass propagation 

at the expense of all other components of biodiversity, driving the oversimplification of biological 

systems and the loss of the ecosystem services on which we depend. 

In recent years, there has been a growing appreciation for the role that biodiversity plays in the 

global economy1, most saliently distilled in the Kunming-Montreal Global Biodiversity Framework 

(GBF)2. The most prominent targets in the GBF include protecting areas of high biodiversity 

importance (Target 1), restoring 30% of degraded areas by 2030 (Target 2), and the headline 

‘30x30’ target that aims to conserve 30% of the Earth’s surface by 2030 (Target 3). To coordinate 

monitoring, a worldwide system of observation networks has recently been proposed by the Group 

on Earth Observations Biodiversity Observation Network (GEO BON)3. In the financial sector, the 

GBF also sets a requirement for businesses to disclose their impacts on biodiversity (Target 15) and 

promotes a substantial increase in funding for nature conservation and restoration from all sectors, 

including through payments for ecosystem services and biodiversity credits (Target 19). 

As policy frameworks and nature markets emerge with the potential to promote biodiversity, it is 

critical that we learn from challenges of the past. Mechanisms that value a single aspect of nature 

– such as carbon sequestration – risk driving the oversimplification of the system4–7. This can lead 

to potentially counterproductive outcomes, like the creation of monocultures of exotic tree species 

at the expense of local biodiversity7 and wellbeing8. If political and financial structures are to 

promote the maintenance of natural biodiversity, they must be underpinned by robust scientific 

monitoring that reflects the full dimensionality of life, across genetic-, species- and ecosystem-

levels. At present, countless biodiversity metrics have been developed to support biodiversity 

monitoring, and these are based on datasets that generally fall into two categories: (i) ground-

sourced data (e.g. plot surveys, eDNA, bioacoustics monitors and camera traps), and (ii) remotely-

sensed data (e.g. radar and multispectral imagery from satellites)9. While ground-sourced data are 

critical for providing detailed insights into the diversity of organisms in any specific study area, 
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their insights are limited outside of the local study sites10,11. By contrast, remotely-sensed data can 

provide globally-standardized assessments that are widely available, but these are generally more 

coarse, and limited to spectral information relating to ecosystem-scale characteristics like forest 

structure12 and connectivity13. To align monitoring efforts, GEO BON has identified the Essential 

Biodiversity Variables (EBVs)14 and established guidelines for EBV estimation using both ground-

sourced and remote-sensed data15. Currently, there is still no single measure of biodiversity that 

incorporates available information across spatial scales to fully evaluate the state of nature. 

A standardized measure of biodiversity across all taxa and scales of variation is critically needed to 

help inform nature-related policy and market tools (e.g., GBF target monitoring; impacts, 

dependencies, and risks assessments; nature capital accounting; and measurement, reporting, and 

validation). To address this growing demand, we first review existing global biodiversity metrics 

and highlight their strengths and weaknesses in measuring the current state of nature (Section 2). 

We then present a new integrative framework, SEED, which is designed to consolidate three 

primary dimensions of biodiversity – genetics, species, and ecosystems – into a measure of 

biocomplexity, which we apply to every terrestrial location on Earth (Section 3). To ensure policy 

and market tools have the most up-to-date information on the state of nature, SEED is designed to 

be flexible. This allows us to incorporate novel scientific advancements and data as they become 

available.  

2. Current state of global biodiversity mapping  

Spatially explicit biodiversity data products generally cover four main dimensions of ecological 

systems: genetic (within-species) diversity, species (among-species) diversity, ecosystem diversity, 

and ecosystem intactness. Genetic and species diversity metrics measure the diversity within and 

among biological organisms, whereas ecosystem diversity metrics quantify ecosystem properties 

such as productivity, vegetation cover, biomass, or habitat heterogeneity. Ecosystem intactness – 

sometimes called ecosystem integrity – metrics estimate the similarity of an area to an estimate of 

how it would look if it were not affected by humans. Each of these levels of global data products 

reflect different dimensions of diversity that are essential for a holistic understanding of 

biocomplexity across the globe. Here we discuss these four levels of global ecological datasets, and 

the considerations for their inclusion into a holistic framework.  
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2.1 Genetic (within-species) diversity 

Genetic diversity (heritable variation) represents variation in the genetic composition of individuals 

within a species and among populations and is the source for adaptive responses to environmental 

change16,17. Global measures of genetic diversity are currently estimated from mitochondrial DNA 

sequences stored in the National Centre for Biotechnology Information GenBank and the Barcode 

of Life Database18. While there are good insights about genetic variation for certain plant19 and 

animal species18,20,21, we currently lack global predictions about genetic variation within most of 

the ~1 trillion species on the planet. Among the few taxonomic groups that have been studied, loss 

of genetic diversity is often correlated with loss of suitable habitat22 leaving threatened species with 

low genetic diversity23 and hence low adaptability. To generate a proxy measure of genetic 

diversity, it is possible to use the estimates of effective population size, but this information is 

lacking for the vast majority of organismal groups. Moreover, this narrow view of genetic diversity 

is problematic for microbes (including archaea, bacteria, and fungi), for which genetic variation is 

often the sole basis for division of operational taxonomic units (OTUs) in the absence of 

information that delineates taxonomic groups. A broader view of genetic diversity across species 

would also include among species phylogenetic variation, for which there is a growing number of 

global products, particularly focusing on plants and animals (discussed in section 2.2). 

2.2 Species, phylogenetic, and functional diversity 

A large part of the explosion in global biodiversity research has focused on modeling species 

richness (the number of unique taxa) across plant, animal, and microbial taxa. These global 

assessments are generally created from ground-sourced datasets that may contain plot-level 

measures of species composition, georeferenced point occurrences, or both. Some may also utilize 

regional checklists, range maps24, floras25, and taxonomic monographs as data sources26. Generally, 

these observed data are interpolated or extrapolated – using either machine learning27, species 

distribution modeling28, or process–based models29 – based on correlations with remotely-sensed 

and modeled environmental variables (e.g. temperature, precipitation, topography, geology, etc.) to 

generate spatially continuous models of diversity30. While these approaches provide differing levels 

of predictive accuracy and causal inference, most global models of species diversity focus on broad-
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scale biogeographic trends. As such, until now, most products have not aimed to capture fine-scale 

patterns in species composition, or the effects of local human disturbance.  

Phylogenetic (i.e., evolutionary) and functional novelty add variety to the form and function of a 

natural community. Phylogenetic diversity is a measure of the evolutionary history represented by 

a set of species31 and functional diversity refers to the range and distribution of organismal traits 

and life history strategies across species within a system32. Because trait expression is a byproduct 

of evolutionary history, functional diversity is often closely related to phylogenetic diversity33 but 

can deviate substantially due to processes such as convergent evolution. Phylogenetic and 

functional diversity metrics combine information about both species composition and either 

evolutionary history (phylogeny) or trait variation. In practice, the list of species present at each 

locality are coupled with a phylogeny34 or a functional-trait matrix35 to provide information about 

phylogenetic and functional components of diversity. 

Numerous functional and phylogenetic diversity metrics exist, each measuring a different aspect of 

evolutionary or trait space. Three groups can be categorized based on whether they capture: richness 

(or spread), evenness (or regularity/uniformity), and divergence (or uniqueness)36. Phylogenetic 

and functional richness are typically highly correlated with species richness and thus encode little 

additional information37. By reflecting the uniformity of species in functional or phylogenetic 

space, evenness metrics have been especially linked to ecosystem function and the biodiversity-

productivity relationship38. Divergence on the other hand is indicative of the evolutionary or 

functional differences among species. It is largely independent of species richness and quantifies 

the redundancy of species39. Whereas a species-rich community may be composed of evolutionarily 

and functionally redundant species, other less species-rich communities may (or may not) have 

more evolutionarily and functionally divergent species that may contribute unique functions to the 

community. Therefore, highlighting those communities with particularly rich evolutionary roots 

and functional traits is key for a holistic measure of biodiversity.  

While global maps of genetic, species, phylogenetic, and functional diversity provide important 

insights to improve our fundamental understanding of ecology, they are not typically aimed at 

isolating the effects of anthropogenic change on diversity patterns. The predominance of modeled 
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climate, edaphic and topographic variables in the construction of these maps results in high 

predictive accuracy of diversity patterns across environmental gradients, but the general lack of 

human influences in these models leads to low predictive accuracy for quantifying the impacts of 

human disturbance (Figure 1). This may be due to a paucity of biodiversity data in both heavily 

degraded and intact landscapes, and across a sufficient range of land use types and intensities. 

Furthermore, these maps are just now beginning to include high-resolution remote-sensed 

information that can help reveal local ecosystem structure and function38 to enable a resolution 

more indicative of on-the-ground conditions. It is increasingly important for us to move beyond 

simply understanding patterns of global biodiversity and build maps of species, phylogenetic, and 

functional diversity that provide an accurate estimation of biodiversity at fine spatial scales.  

Another inherent challenge facing global biodiversity products is incomplete data coverage. Most 

global biodiversity databases over-represent some regions and under-represent other regions, due 

to disparities in financing and accessibility, which often drive a bias toward developed nations. 

Similarly, the climate layers, which are fundamental to biodiversity mapping, also unevenly 

represent areas around the globe. On top of the geographic gaps in data coverage, there are also 

considerable disparities in taxonomic coverage. For example, larger, and more charismatic 

organisms tend to be over-represented in biodiversity assessments. The IUCN database contains 

distribution data for over 80% of described vertebrate species and 14% of vascular plants, but only 

2% of invertebrate species are represented despite invertebrates representing the majority of animal 

species. In addition, microbes represent 88% to 99% of all species on Earth40,41 but are vastly 

underrepresented, with only 0.4% of known fungi and protists included in the IUCN database, 

which is the source of many biodiversity maps18,20,42–44. This is changing due to recent advances in 

high-throughput sequencing technologies that enable us to observe and quantify microscopic and 

otherwise cryptic species45, and the availability of microbial biodiversity maps is expanding 

exponentially. 

Finally, global maps of genetic, species, phylogenetic, and functional diversity tend to be 

temporally static and coarsely resolved. Biodiversity databases include information over several 

years at least, but often also include decades-old observations. Maps generated from these databases 

therefore represent an average of the dates of observations. Additionally, the relevant databases for 



8 

 

a particular map may involve different sampling methods and encompass different spatial and 

temporal scales. Sampling methodologies are taxon and/or habitat specific and may also differ by 

region and discipline or agency. Altogether, this makes it difficult to harmonize available data and 

generate well rounded estimates that scale in space and change over time in response to shifting 

conditions on the ground.  

2.3 Ecosystem diversity 

In contrast to genetic and species diversity, which rely heavily on ground-sourced data, ecosystem-

level metrics provide a more up-to-date view of current conditions because they can be measured 

directly from satellite imagery, or modeled based on spectral imagery (e.g., radar and multispectral 

imaging). A wealth of global-scale remote sensing products have been designed to capture 

information about human modifications46, land use change47, canopy cover48, canopy height49, 

above and belowground biomass50, habitat heterogeneity51, leaf area index52, ecosystem 

connectivity53,54, net primary productivity55 and ecological resilience56,57. We group all ecosystem-

level products that measure some aspect of biodiversity into one of three broad categories: 

ecosystem structure, function14, or connectivity.  

Ecosystem structure, function, and connectivity are emergent properties that arise from the 

combination of species, landscape physiognomy, climate, and human modifications. It is the 

interplay between living organisms and their environment that generates these ecosystem properties 

and contributes to carbon, water, and nutrient cycling dynamics, which then feedback to affect the 

environment. These ecosystem properties provide a direct link to measures of ecosystem 

services58,59. The three-dimensional structure of an ecosystem characterizes the environmental 

context in which species coexist. Structural diversity has been shown to improve ecosystem 

function12 and stability60. Ecosystem function captures the ecological processes that occur within 

an ecosystem, including primary and secondary productivity, decomposition, nutrient cycling, and 

the natural disturbance regime. Similarly, ecosystem connectivity describes both the spatial 

arrangement of habitat fragments (structural component) and species-specific dispersal abilities and 

limitations (functional component). Connectivity is commonly measured using graph theory, which 

divides the landscape into edges and nodes, and it may also evaluate the resistance of flow of 

organisms and energy between nodes. Ecosystem connectivity tends to decrease with habitat loss 
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and fragmentation, but both connectivity and fragmentation indices can provide unique insights 

into the ecological functionality at the landscape-scale61.  

2.4 Ecosystem intactness 

Given the challenges of capturing dynamic changes in ecological diversity at a global scale, a few 

analyses estimate how far the ecological community has diverged from its natural state. Using 

experiments or local gradient studies, it is possible to identify how land use changes affect 

ecological diversity, and then use those relationships to predict ecological intactness across the 

globe. The three most prominent of these global indices are the Ecosystem Integrity Index (EII)62 

by the United Nations Environment Programme World Conservation Monitoring Centre, the 

Biodiversity Intactness Index (BII)63,64 by the Natural History Museum in London, and the Mean 

Species Abundance (MSA)65 index by the Netherlands Environmental Assessment Agency.  

The EII includes three components: structure, function, and composition. Ecosystem structure is 

based on the human modification index (HMI)46; ecosystem function is measured by the ratio of 

actual to potential net primary productivity55; and ecosystem composition is measured by the 

BII63,66. For a given location, the EII uses the lowest score of the three components to predict the 

scale to which any ecosystem has been impacted or altered from its original state. The BII uses a 

linear model of the impacts of land use and related pressures on two aspects of biodiversity, species 

abundances and compositional similarity, to estimate the intactness of a community of plants, 

vertebrates, and invertebrates. The MSA index is conceptually similar to the BII but focuses mainly 

on species abundance, includes additional human-related pressures, and estimates an average 

intactness value that is weighted by the land use type and its associated human pressures.  

The MSA, BII, and EII represent the current state-of-the-art in global biodiversity modeling. Yet, 

there are a few key aspects of diversity that these indices do not capture. First, these indices are 

fairly limited in taxonomic scope. The BII and EII (and to some degree MSA) are primarily based 

on the PREDICTS database67, which is valuable for quantifying the impact of land use on 

biodiversity in different regions of the globe. However, at present, the data coverage of PREDICTS 

represents a relatively limited taxonomic range, covering less than 10% of the described species for 

most large taxonomic groups of vascular plants, invertebrate animals, and a far smaller proportion 
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for microbes67,68. Given that each of these different organismal groups respond differently to human 

disturbance and show unique global distribution patterns69,70, the underrepresentation of important 

taxa may therefore bias global biodiversity assessments. Second, uneven data availability among 

regions can lead to considerable bias and uncertainty in under-represented regions. Third, these 

indices all focus exclusively on species level diversity and do not include genetic diversity or, 

except for the EII, ecosystem level properties that emerge from the web of interactions among 

species and their environment.  

3. A framework for observing the biological complexity on Earth 

With the increasing combination of ground-sourced and remotely-sensed data, we are at the 

beginning of a data revolution in global ecology. The exponential growth of global ecological 

datasets across genetic, species, and ecosystem levels represents exciting new opportunities for our 

understanding of biodiversity across the planet. The development of conceptual frameworks will 

be essential to integrate and interpret this growing body of information into evolving biodiversity 

frameworks to generate a holistic understanding of global biocomplexity. Our global understanding 

of biocomplexity will never be fully complete, as emerging scientific assessments will continue to 

capture more information. Therefore, it is important to establish dynamic frameworks that can 

incorporate new and emerging information as it becomes available.  

To address the need for a standardized measure of the state of nature, we present the beta version 

of a holistic ecological framework (hereafter referred to as SEED). By combining datasets 

representing each of three hierarchical levels of biodiversity (genetic, species and ecosystem 

levels), SEED generates a framework for evaluating multiple dimensions of biodiversity. To 

globally-standardize this index we estimate the similarity (ranging from zero and one) between the 

current state of biocomplexity of an ecosystem and its native state, i.e., in comparison to reference 

areas where nature has only been subjected to minimal human disturbance.  

Biocomplexity has been defined as the “properties emerging from the interplay of behavioral, 

biological, chemical, physical, and social interactions that affect, sustain, or are modified by living 

organisms, including humans.”71 The current state of genetic, species, and ecosystem diversity and 

each of their subcomponents are all properties that emerge not just from the complex interplay 
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between biological life and the environment, but also from the billions of years of physical and 

biological evolution on Earth. Our biocomplexity index is designed to represent the 

multidimensionality of nature by defining nine primary axes of variation, which are nested within 

the three hierarchical levels of variation that define biodiversity: genetics, species (including 

phylogenetic and functional diversity), and ecosystems (Figure 2). Within the genetic and species 

levels of variation, we distinguish three primary taxonomic groups (i.e., axes): plants, animals, and 

microbes (bacteria and fungi). Within ecosystems, we distinguish three axes: structure, function, 

and connectivity. These axes could represent or incorporate components already identified as EBVs 

by GEO BON14.  

For simplicity and interpretability, SEED offers a single standardized biocomplexity value for any 

area of interest, but the SEED framework also allows the user to unpack this information. Each axis 

summarizes the intactness (i.e., similarity to native state) of multiple underlying biodiversity 

features, and these axes may be viewed separately to aid comprehension and facilitate action-impact 

assessments. This information can be summarized in the style of a radar plot (Figure 2), whereby 

the intactness values for each axis at a site are plotted on scale from zero to one. The mean similarity 

between the current and potential natural state for all nine axes combined creates a score: the SEED 

biocomplexity index, which ranges between zero and one, where values near zero represents the 

near absence of biocomplexity (e.g., an open pit mine or paved area), and one represents an area 

that is equal to its potential natural state (i.e., a minimally-disturbed ecosystem). 

3.1 Integrating dimensions of biodiversity 

Consolidating the multiple dimensions of biodiversity into a single value is a critical feature that 

makes our biocomplexity index generalizable and comprehensible. All available global map layers 

are combined within each of the relevant biodiversity dimensions (Figure 2), using a multivariate 

kernel estimator72 (Eq. 1), and then the mean of these nine axes (currently seven) consolidates this 

information into a single biocomplexity index.  

𝐾(𝒙, �̅�𝑟) = 𝑒𝑥𝑝[−𝛿𝒘‖𝒙 − �̅�𝑟‖]     (Eq. 1) 

Here 𝒙 is a data matrix with a biodiversity metric in each column and each of 𝑛 rows representing 

the set of values for a unique pixel or location. This multivariate kernel, 𝐾, measures the similarity 

https://docs.google.com/document/d/1AySRB_lYhNgquHebVb3ga3PaJPro8I_IP1GROWRjWhE/edit?usp=sharing
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between each row of 𝒙 and the mean values for the reference area �̅�𝑟. We estimated a kernel, and 

hence similarity for each biodiversity dimension. At the heart of each kernel is the Manhattan 

distance, which is essentially the sum of the distance between two points along each dimension in 

multidimensional space. In order of equation complexity, the Manhattan distance is simpler than 

Euclidean and the Mahalanobis, but the latter two distances we found to be too discriminatory for 

our purposes (leading to strong bimodality in our tests), and the Manhattan distance provided a nice 

gradient from intact to not intact.  

Sensitivity of similarity is set by the scaling parameter, 𝛿, which we set for each dimension 

according to two criteria. First, 𝛿 must be strictly positive to ensure that the kernel values are bound 

between zero and one. Second, the similarity values measured by 𝐾 indicate the intactness of nature 

and should span the full range between zero and one. We set 𝛿 to the lowest that met these criteria, 

given that increasing values simply shifted the distribution further to the left toward zero intactness 

(see Supplement S1).  

The weight of information is the final key consideration in our kernel estimator. We designed this 

framework to integrate numerous, perhaps hundreds of biodiversity maps, and we test it here with 

75 maps – ecosystem structure (25), function (12), and connectivity (1); species diversity of plants 

(11), microbes (13), and animals (11); and genetic diversity of plants (0), microbes (0), and animals 

(2).  The maps we reviewed vary in several aspects: coverage extent, spatial resolution, 

nonindependence from other maps, extrapolation across regional data gaps, and in the degree to 

which satellite imagery or other measures of local conditions were integrated. We developed a 

dynamic weighting system to define the normalized weight of each map layer in a set, represented 

by 𝒘. We grouped non independent layers to share equal weight, which resulted in a short 

hierarchical structure. We applied a confidence score and associated decreasing confidence with 

decreasing weight (see Supplement Table S1 for details).  

We structured the integration of the nine biodiversity dimensions to be an even-weighted average 

of the intactness of each dimension. This places genetic, species, and ecosystem level diversity on 

equal grounds in the integrated index, but SEED also offers each dimensional index for independent 

use alongside the integrated index. Even weighting also ensures equitability within genetic and 
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species diversity, among plants, animals, and microbes, which deviates strongly from the more 

common case wherein smaller, more cryptic taxa are overlooked in favor of more visible or 

personable taxa. If, however, evidence emerges which suggests that a different weighting scheme 

is warranted, this method can be adapted to keep up with the evolving scientific landscape. In 

practice, however, the availability and quality of available maps is not even among dimensions, 

which resulted in some dimensions having higher relative weight and therefore more influence on 

the overall biocomplexity index. Identifying the optimal weighting for different levels of 

biodiversity information remains a key challenge for future biodiversity research as our theoretical 

understanding of ecological systems evolves. 

3.2. Reference area versus a counterfactual landscape 

Measuring the intactness of biocomplexity requires establishing a baseline potential state that can 

be used for comparison. Estimating this baseline state poses several philosophical questions 

regarding the non-static nature of natural systems. It also poses data limitations for regions of the 

world that have been heavily degraded and thus lack ‘pristine’ potential states, such as large regions 

of the Northern Hemisphere73. Thus, we opt for a more direct approach than estimating a potential 

natural state for all biodiversity dimensions and underlying layers. We identify minimally modified 

areas as points of reference with a procedure that involves few assumptions, considers the full suite 

of biodiversity together, and allows for a contemporary definition of natural as opposed to a 

historical estimate74.  

Specifically, we developed an algorithm that uses the HMI46 and potential natural vegetation 

(PNV)47 to select reference areas for each vegetation class within each of the 846 delineated 

ecoregions75 on Earth. This was done separately for each ecoregion to ensure ecologically relevant 

comparisons. In each ecoregion, we identify the least-impacted areas for each land cover class, 

using an upper limit HMI threshold is set just high enough to ensure a sufficiently large area, 

enabling representative and robust estimates (see Figure 3h and Supplement S1). The mean value 

for each biodiversity feature layer within this least-impacted area estimates �̅�𝑟 in equation 1 and is 

the basis for comparing all feature values in all pixels of the same vegetation class within that 

ecoregion.  
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Although a natural landscape with minimal anthropogenic disturbance is not a universal goal in all 

scenarios, this minimal-disturbance baseline provides an objective, and replicable benchmark for 

measuring the state of nature. Of course, different targets will be appropriate in different settings. 

For example, food security and financial wellbeing are the primary considerations in agricultural 

settings, while restoration targets in conservation settings may deviate from a fully natural state due 

to a myriad of ecological and socioeconomic factors as well as previous alterations to the 

landscape76. Management practices and targets will vary depending on the local situation, and 

progress toward these targets can be evaluated against local minimal-disturbance benchmarks and 

other landscapes in similar settings. In these contexts, the SEED index provides a useful tool to 

benchmark local achievement against a globally standardized biodiversity metric and enable a 

standardized assessment of biodiversity improvement in response to management practices14. 

3.3. Illustration of the SEED biocomplexity framework 

The beta release of this biocomplexity index was developed using a comprehensive list of the most 

up-to-date maps of genetic, species, and ecosystem diversity (see Supplement Table S2). To 

illustrate the capabilities of the framework, we first show the viability of our dimensionality 

reduction calculation (equation 1) and reference area (Figure 3a) approach in calculating the 

intactness of seven of the nine biodiversity dimensions (Figure 3b-h). Combined, these intactness 

layers generate a unified measure of the intactness of nature, the SEED biocomplexity index (Figure 

4a). We show how SEED can be aggregated across ecological boundaries and at any scale to 

summarize biocomplexity in total and in each dimension (Figure 4b-c). Finally, we conduct a 

cursory comparison of SEED against the leading biodiversity intactness metrics (Figure 5).  

Among the seven biodiversity intactness metrics that we calculated, we identified a few broad 

global patterns where the metrics unanimously show similar levels of intactness (Figure 3). High 

intactness is nearly universally indicated across tundra, northern boreal forests, deserts, and the 

Amazon basin – areas that have historically not seen extensive human development. Low intactness 

is indicated in the temperate grasslands and savannas of North America, Brazil’s Atlantic forests, 

narrow bands along the West African coast and Sub-Saharan Africa, temperate forests across 

Europe and east across Asia toward Siberia, Northern India, the western edge of Southeast Asia, 

Northeastern China, and the eastern and southwestern ends of Australia.  
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There is also notable diverge among these metrics. While the intactness of plant and microbial 

species show very similar patterns (Figure 3e-f), and to some degree also with ecosystem structure 

(Figure 3a), ecosystem function (Figure 3c) shows divergent patterns in some regions, e.g., central 

North America, Western Ghats and Central Deccan Plateau. Ecologically, we know very well that 

plants and microbes share special linkages and that ecosystem structure and function result from 

the local communities of plants, microbes, and animals. The intactness of animal species diversity 

(Figure 3g) is also divergent and highlights the Andes and Appalachian Mountain ranges as having 

particularly low intactness relative to the other metrics. In the Indo-Gangetic Plains, animal species 

intactness remains relatively high while other metrics predict low intactness. Ecosystem 

connectivity (Figure 3b) shows a largely unique pattern. It is highly sensitive to fragmentation, 

which is a feature of a large proportion of land globally, and therefore either highly intact or not at 

all. The genetic diversity of animals (Figure 3d) also shows a unique pattern, but this likely stems 

from its two lone data layers with very coarse resolution (10-km)20. This along with the absence of 

global models for plant and microbial genetic diversity emphasizes the need for more work in global 

modeling of genetic diversity.  

The value in our biocomplexity framework is twofold; it integrates information regarding multiple 

dimensions of diversity, and it can be aggregated to provide summary statistics at the desired scale. 

The beta SEED biocomplexity index currently integrates seven biodiversity dimensions to represent 

a single measure of the state of nature for all land area across the globe (Figure 4a). Overall, this 

shows that the terrestrial earth is currently at 68% of its natural state (Figure 4b). Aggregating by 

administrative boundaries77, we can evaluate the state of nature at a level where local policies may 

directly affect the mechanisms governing the direct human impacts on nature (Figure 4c).  

In comparison to existing global biodiversity metrics (Figure 5), the beta version of SEED (Figure 

4) offers a more comprehensive view of nature's state due to its inclusion of 75 global biodiversity 

maps, while also offering the seven intactness sub-metrics (Figure 3a-g). We computed the 

difference between SEED and the MSA from GLOBIO65, the BII from the Natural History 

Museum78, and a second BII (which we will call BDI) produced with the same core methodology79. 

The broad scale differences in our metrics indicate that SEED may be more conservative than MSA 

and BII (Figure 5a-b) in boreal and desert regions, while SEED estimates higher intactness across 
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temperate regions, sub-Saharan Africa, South Africa, and parts of Australia (Figure 5a-b).   SEED 

was consistently lower than the BDI (Figure 5c). Underlying these differences, the distribution of 

MSA and BII values are bimodal compared with the BDI and SEED, which are unimodal (Figure 

S1). This means that MSA and BII may more commonly characterize an ecosystem as ‘pristine’ or 

‘highly degraded’, while SEED would more commonly characterize the same ecosystem as 

‘moderately intact’.  

These differences between SEED and the other intactness indices may arise from the inclusion of 

multiple structural and functional ecosystem attributes, as well as a greater focus on the wealth of 

microbial datasets (including fungi, bacteria and archaea), which are rapidly emerging in the 

scientific literature. Existing global intactness indices (EII, BII, and MSA) represent the intactness 

of species level diversity for a subset of taxa. SEED includes the variation in many ecosystem 

characteristics (aggregated within ecosystem connectivity, structure, and function), which will 

capture landscape dynamics and ecological feedbacks that operate at broader spatial and temporal 

scales. For example, according to existing global intactness measures degradation is characterized 

as diminished species diversity. However, the SEED index would immediately identify a loss of 

ecological integrity if satellite imagery detected ecosystem fragmentation, even if the subsequent 

change of species composition was not detected yet. Given that satellite imagery provides full 

global coverage, the inclusion of ecosystem-level characteristics can provide an additional 

opportunity to improve the spatial and temporal resolution of intactness predictions. 

3.4. Spatial and temporal scalability and next steps 

There is a growing demand for spatial and temporal scalability in global biodiversity monitoring 

but achieving this remains a central challenge for ecology. Determining how biodiversity scales in 

space and time has been the focus of countless investigations, and one general result is that 

outcomes are highly context dependent. Meeting the demand for scalability will require 

reimagining our approach to biodiversity modeling. Building on classic correlative models of 

species occurrence/richness in response to climatic and physiographic properties, new models are 

starting to include conceptual routines that mimic species assemblage rules80 and correlations in 

species occurrences81. In support of such models, satellite imagery offers high resolution data with 

global coverage and sometimes spanning multiple decades. Hybrid biodiversity models will emerge 
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soon that link biodiversity data with remote sensing products such as spectral diversity82, leaf traits, 

vegetation height, density, and other structure components. The integration of remote sensing in 

biodiversity modeling will be the key distinguishing factor that transforms novel approaches from 

simply predicting general patterns to the prediction of local conditions and the actual state of nature.  

Advances in remote sensing such as hyper-spectral imaging83,84 are also expected to provide 

valuable data to assess how plant species and functional biodiversity respond to different 

practices85. Overall, we gain a more complete spatial coverage from remote sensing than would be 

possible form field with more reliable information than extrapolating models86. Remote sensing can 

provide the means for both direct and indirect biodiversity monitoring87. Many trees and large 

animals are visible from space and may therefore be directly monitored from space, while less 

visible components may be indirectly monitored via the coupling of remote sensing products with 

biodiversity models, e.g., species distribution models.  

Future on-the-ground sampling is urgently needed in under-sampled regions of the planet, in order 

to fill in key gaps and narrow the uncertainty in global genetic and species diversity models. The 

emergence of next-generation technologies – such as eDNA45,88, bioacoustics89, and camera traps 

– may prove to be essential for scaling data collection in a cost-effective manner90. Ultimately, 

large-scale monitoring of ecological integrity will undoubtedly require a combination of such 

ground-sourced and global-scale approaches. Incorporation of these emerging technologies into the 

SEED framework will continually improve the resolution of the index (currently at 1 km), allowing 

for more fine-scale assessments (aiming for 30 meters resolution) of biodiversity and dynamic 

changes over time. A core aim in the continual development and fine-tuning of the SEED index is 

to incorporate emerging methods and technologies, to ensure the best possible estimation of 

biodiversity. 

4. Conclusion and outlook 

With growing recognition for the need for political and financial mechanisms to distribute the 

wealth of our planet towards the local efforts that promote biodiversity, there is an urgent need for 

globally standardized assessments of ecological intactness. To facilitate equitable biodiversity 

protection, such ecological assessments must be available to everyone, everywhere. Given the 



18 

 

expansion of global datasets reflecting various dimensions of biodiversity across plants, microbes 

and animals, frameworks for integrating this information are now within our grasp.  The resulting 

global assessments of biocomplexity are necessary to evaluate progress toward climate change and 

land protection pledges (e.g. the GBF, Bonn Challenge91, and UN Sustainable Development 

Goals92), bring transparency to policy frameworks, and to encourage corporate accountability 

(under the Taskforce for Nature-related Financial Disclosures (TNFD)93 and Science-Based Targets 

for Nature (SBTN)94). 

The SEED framework consolidates the three primary dimensions of biodiversity (genetic, species 

and ecosystem diversity) to produce a standardized and comprehensible measure of biocomplexity 

across the globe. This framework is fundamentally collaborative, incorporating biodiversity 

assessments and models from a diverse range of biodiversity experts. In addition, it is flexible, 

allowing for a dynamic index that evolves alongside the development of new data products and 

scientific advancements. Here, we demonstrate that the beta release of the SEED index captures 

coarse scale changes in biodiversity (Figures 3,4), providing a multidimensional understanding of 

the state of nature at the national scale. Yet, there are several key challenges that need to be 

addressed to improve the resolution of our index at finer spatial and temporal scales. Most notably, 

the development of models that integrate remote sensing data products into maps of species richness 

and phylogenetic divergence will greatly improve the spatial and temporal resolution of our index.  

To ensure that the most high-integrity and up-to-date ecological information is available to policy- 

and decision-makers, we invite the wider scientific community to collaborate on the continual 

advancement of this biocomplexity index. We believe that, for this biodiversity index to lead to 

positive outcomes, it must accurately represent "on-the-ground" biodiversity. Achieving this level 

of accuracy presents a scientific challenge that requires the collaboration of a diverse team of 

experts, including ecologists, remote-sensing specialists, and others from around the globe. 

Leveraging the latest scientific and technological breakthroughs, we aim to enhance and refine the 

biocomplexity index, thus fostering better outcomes for ecosystem protection and restoration. 
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Figures 

 

Figure 1. Performance of species richness maps in human modified landscapes. The impacts 

of human activities – as is shown here for Paris (outline) and the surrounding landscape (a) in 

satellite imagery95 and (b) in the human modification index46 – were not included in the 

development of most maps of species richness, e.g., (a) plant96 and (b) mammals97.  
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Figure 2. SEED biocomplexity index. Example visualization of the SEED framework for an area 

of interest, showing the dimensionality-reduced intactness scores across the nine dimensions of 

biodiversity. Along each axis the yellow line measures the intactness, the similarity of the current 

state and the potential natural state based on a comparable, minimally-disturbed ecosystem. For this 

area of interest, the average of these values, weighted by the quality of the data, yields the SEED 

biocomplexity index and indicates the total intactness of nature. Arrows trace the relationships 

between SEED’s biodiversity dimensions and the Essential Biodiversity Variables (EBVs)14. 
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Figure 3. A reference area approach to measuring intactness of seven dimensions of 

biodiversity. Series of maps showing the intactness of diversity along seven of the nine biodiversity 

dimensions: ecosystem (a) structure, (b) connectivity, and (c) function, genetic diversity of (d) 

animals, and species diversity of (e) plants, (f) microbes, and (g) animals. Intactness was measured 

against (h) minimally impacted reference areas (colored by ecoregion75). 
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Figure 4. Global analysis of biocomplexity. Map of the (a) SEED biocomplexity index, which 

measures the intactness of biodiversity for every 1-km of pixel of land. SEED can be aggregated 

across ecological boundaries, as is demonstrated with (b) a global analysis and (c) the summaries 

by administrative boundaries.  
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Figure 5. Comparison with leading global biodiversity models. Global showing the difference 

between SEED and (a) MSA65, (b) BII from NHM78, and (c) BDI, which was created independently 

from the BII while using the same model79.    
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Supplemental information: 

Document S1: Additional methods and Tables S1-2 

Web-based map viewer: https://robertmcelderry.users.earthengine.app/view/seed-biocomplexity-
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Supplement S1 

Reference Area Methodology  

We developed an approach that offers a contemporary baseline which all global biodiversity maps 

may be evaluated. Our algorithm uses the human modification index (HMI)46 and potential natural 

vegetation (PNV)47 to create a reference area mask that delineates the relatively pristine areas on 

the globe. The combination of PNV classes and 846 delineated ecoregions75 then guides the 

assignment of reference areas to all non-reference pixels having the same ecoregion-PNV class. 

Due to the large variations in the extent of human modification among different ecoregion 

landcover combinations, we designed a dynamic decision tree for selecting a threshold HMI to 

define reference pixels and then to link reference to non-reference pixels to obtain the reference 

mask. 

We targeted reference pixels with minimal human modification which we defined as follows. For 

each PNV class, 𝑣, within each ecoregion, 𝑒, we calculated the 5th and 3rd percentile of the HMI, 

𝑃0.05(𝐻𝑀𝐼𝑒,𝑣) and 𝑃0.03(𝐻𝑀𝐼𝑒,𝑣). The reference threshold value, 𝑟𝑒,𝑣 was then the minimum of 

either 𝑃0.05(𝐻𝑀𝐼𝑒,𝑣), 𝑃0.03(𝐻𝑀𝐼𝑒,𝑣), or 0.05. We set these criteria to focus the reference areas in 

relative unmodified ecoregions, while allowing a more inclusion in reference where needed, but 

only to the point an HMI equal to 0.05. With the threshold defined for each ecoregion-PNV class, 

we selected reference areas as all pixels less than 𝑟𝑒,𝑣. If an ecoregion-PNV class had fewer than 

five pixels, we stepped down the reference threshold – from the 𝑃0.05(𝐻𝑀𝐼𝑒,𝑣) to 𝑃0.03(𝐻𝑀𝐼𝑒,𝑣), or 

from 𝑃0.03(𝐻𝑀𝐼𝑒,𝑣) to 0.05(𝑥𝑒,𝑣, 𝑦𝑒,𝑣). If 𝑟𝑒,𝑣 was 0.05, and the ecoregion-PNV class still possessed 

fewer than five reference pixels, then we looked beyond the ecoregion boundary and included all 

reference pixels of the same PNV class within the same biome. 

Delta calculation 

For calculating the delta value of each axis of the seed index, we use the following formula: 

K = 𝑒−𝛿|𝐷| 

where K is the kernel, 𝛿 is the delta parameter and D is the maximum Manhattan distance of the 

axis for all the pixel points. This effectively maps the highest possible distance of the layers of the 
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axis to the lowest kernel value of the axis possible. In this case we define this lowest kernel value 

as 0.001. By solving for 𝛿 parameter as other values in the equation are known we can get the delta 

value for each of the axis. We then substitute this delta value in the equation to calculate the kernel 

for the world of each axis. The SEED index is then calculated based on the weighted average of the 

individual axes.  

Table S1. Table of scores, weights, and a description of the criteria guiding our judgment in rating 

the quality of information contained with each map layer that we incorporated in SEED. 

Confidence 
Score Weight Description 

5 100 Fully validated model representing on the ground conditions with at least 1-km 
resolution 

4 90 Partially validated model representing on the ground conditions with at least 1-
km resolution 

3 50 Model predicting on the ground conditions with at least 5-km resolution, 
requires validation 

2 10 Model predicting general diversity patterns with some human impacts 
considered  

1 1 Model of general diversity patterns. Does not represent human impacts on 
nature. 

Table S2. List of layers incorporated in SEED. See Excel file. 

 

 

https://docs.google.com/spreadsheets/d/1gTbndNk6_9w2pKNVyrUBRHiC8zZnVfQYy79ufrw3fTA/edit?usp=sharing

