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Highlights 

1. The value of nature lies in its complexity. 

2. Human activity consistently reduces and homogenizes biocomplexity. 

3. We define a globally standardized measure of the state and intactness of nature. 

4. Inclusion of microbes, fungi and invertebrates is crucial to evaluate biodiversity.  



2 

 

 

Summary 

Quantifying biodiversity across the globe is critical for transparent reporting and assessment under 

the Kunming-Montreal Global Biodiversity Framework. Understanding the full complexity of 

biodiversity requires consideration of the variation of life across genetic, species and ecosystem 

levels. Achieving this in a globally-standardized way remains a key international challenge for  

biodiversity monitoring efforts. Here, we present the Sustainable Ecology and Economic 

Development (SEED) framework, which consolidates multiple dimensions of biodiversity into a 

single measure of biocomplexity as a holistic estimate of the current state of nature at a given 

location. The SEED framework continuously integrates state-of-the-art datasets and maps of the 

biological variation in plants, microbes, animals, and ecosystems to estimate the local 

biocomplexity across the planet relative to a comparable, minimally-disturbed ‘reference’ 

ecosystem. The SEED framework allows an assessment of ecological health in response to positive 

and negative human impacts, and informs decision makers who strive to improve the global state 

of nature.   
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1. Introduction 

Every species depends on other species to survive. This vast interdependence means biological 

diversity is critical for the maintenance of life as we know it. However, humans have historically 

valued certain components of nature (i.e. the parts we can use for food, timber, medicines etc.) over 

others. The development of markets for these products has incentivized their mass propagation at 

the expense of all other components of biodiversity, driving the oversimplification of biological 

systems and the loss of the ecosystem services on which we depend. 

In recent years, there has been a growing appreciation for the role that biodiversity plays in the 

global economy1, most saliently distilled in the Kunming-Montreal Global Biodiversity Framework 

(GBF)2. A system that effectively monitors changes in biodiversity over time is required to meet 

numerous prominent targets in the GBF, including protecting areas of high biodiversity importance 

(Target 1), restoring 30% of degraded areas by 2030 (Target 2), and the headline ‘30x30’ target 

that aims to conserve 30% of the Earth’s surface by 2030 (Target 3). The role of business and 

financial sectors is also addressed in the GBF, which sets a requirement for businesses to disclose 

their impacts on biodiversity (Target 15), and promotes a substantial increase in funding for nature 

conservation and restoration from all sectors, including through payments for ecosystem services 

and biodiversity credits (Target 19). 

As policy frameworks and nature markets emerge that have the potential to promote biodiversity, 

it is critical that we learn from the challenges of the past. Mechanisms that value any single aspect 

of nature – such as carbon sequestration – risk driving the oversimplification of the system3–6. This 

can lead to potentially counterproductive outcomes, like the creation of monocultures of exotic tree 

species at the expense of local biodiversity6 and wellbeing7. If political and financial structures are 

to promote the maintenance of natural biodiversity, they must be underpinned by robust scientific 

monitoring that reflects the full complexity of life, across genetic-, species- and ecosystem-levels. 

At present, countless biodiversity metrics have been developed to support biodiversity monitoring, 

and these are based on datasets that generally fall into two categories: (i) ground-sourced data (e.g. 

plot surveys, eDNA, bioacoustics monitors and camera traps), and (ii) remotely-sensed data (e.g. 

radar and multispectral imagery from satellites)8. While ground-sourced data are critical for 

providing detailed insights into the diversity of organisms in any specific study area, their insights 
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are limited outside of the local study sites9,10. By contrast, remotely-sensed data can provide 

globally-standardized assessments that are widely available, but these are generally more coarse, 

and limited to spectral information relating to ecosystem-scale characteristics like forest structure11 

and connectivity12. Currently, there is still no single measure of biodiversity that incorporates 

available information across spatial scales to fully evaluate the state of nature. 

A standardized measure of biodiversity across all taxa and scales of variation is critically needed to 

help inform nature-related policy and market tools (e.g., GBF target monitoring; impact, 

dependencies and risk assessments; nature capital accounting; and measurement, reporting, and 

validation). To address this growing demand, we first review existing global biodiversity metrics 

and highlight their strengths and weaknesses in measuring the current state of nature (Section 2). 

We then present the first generation of an integrative framework, which is designed to consolidate 

the three primary dimensions of biodiversity – genetics, species, and ecosystems – into a measure 

of biocomplexity to evaluate the state of nature for every terrestrial location on Earth (Section 3).  

To ensure policy and market tools have the most up-to-date information on the state of nature, 

SEED is designed to be flexible. This allows us to incorporate novel scientific advancements and 

data as they become available.  

2. (Challenge framing) Current state of global biodiversity mapping  

Spatially-explicit biodiversity data products generally fall into four main categories: genetic 

(within-species) diversity, species (among-species) diversity, ecosystem diversity, and intactness. 

Genetic and species diversity metrics measure the diversity of within and among biological 

organisms, whereas ecosystem diversity metrics quantify ecosystem properties such as 

productivity, vegetation cover, biomass, or habitat heterogeneity. Intactness, sometimes called 

integrity, measures the similarity of an area to an estimate of how it would look if it were not 

affected by humans. We review the benefits and shortcomings of each of these biodiversity data 

products before proposing a framework to synthesize and build upon these to provide a holistic 

measure that includes multiple dimensions of biodiversity.  
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2.1 Genetic and functional diversity 

Genetic diversity (heritable variation) represents variation in the genetic composition of individuals 

within a species and is the source for adaptive responses to environmental change13,14. Functional 

diversity refers to the range and distribution of organismal traits and life history strategies across 

species within a system. Because trait expression is a byproduct of evolutionary history, functional 

diversity is often closely related to genetic diversity, but can deviate substantially due to processes 

such as convergent evolution. Functional diversity is therefore more directly linked to ecosystem 

function, elemental cycling rates, resilience, and stability than genetic variation per se.  

While there are currently good insights about genetic and functional variation for some plant and 

animal species15, we lack global predictions about genetic/functional variation within most of the 

~1 trillion species on the planet16–19. At best, one could use the estimates of effective population 

size to generate a proxy measure of genetic richness, but this information is lacking for the vast 

majority of organismal groups. Moreover, this narrow view of genetic diversity is problematic for 

microbes (including archaea, bacteria and fungi), for which genetic variation is often the sole basis 

for division of Operational Taxonomic Units (OTUs) in the absence of information that delineates 

taxonomic groups. Given these data limitations, we focus our discussion on existing measures of 

phylogenetic and functional divergence, represented by  among-species metrics, which are more 

widely available.   

Phylogenetic (i.e., evolutionary) and functional novelty give rise to variety in the form or function 

of a natural community. Whereas a species-rich community may be composed of evolutionarily 

and functionally redundant species, highlighting those communities with particularly rich 

evolutionary roots and functional traits is key for a holistic measure of biodiversity. Phylogenetic 

and functional diversity metrics therefore combine information about both species composition and 

genetic/trait expression. The list of species present at each locality are coupled with a phylogeny20 

or a functional-trait matrix21 to provide information about functional and phylogenetic components 

of diversity, or even ecosystem services22. There are numerous functional and phylogenetic 

diversity metrics, each measuring a different aspect of evolutionary or trait space, but these are 

generally categorized into three groups based on whether they capture: richness (or spread), 

divergence (or uniqueness), and evenness (or regularity/uniformity). Phylogenetic and functional 
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richness are typically highly correlated with species richness, and generally encode relatively little 

additional information. Divergence on the other hand, indicative of the evolutionary or functional 

differences among species, is largely independent of species richness and quantifies the redundancy 

of species. By reflecting the uniformity of species  in functional or phylogenetic space, evenness 

metrics have especially linked to ecosystem function and the biodiversity-productivity 

relationship23. 

2.2 Species diversity 

A large part of the explosion in global biodiversity research has focused on modeling species 

richness (the number of unique taxa) across plant, microbial and animal taxa. These global 

assessments are generally created from ground-sourced datasets that may contain plot-level 

measures of species composition, georeferenced point occurrences, or both. Some may also utilize 

regional checklists, range maps24, floras25, and taxonomic monographs as data sources26. A 

common theme is that observed data are interpolated or extrapolated – using either machine 

learning27, species distribution modeling28, or process–based models29 – according to correlations 

with remotely-sensed and modeled environmental variables (e.g. temperature, precipitation, 

topography, geology, etc.)30.  

2.3 Global estimates of diversity  

While global species diversity maps provide important insights to improve our fundamental 

understanding of ecology, they are not typically aimed at isolating the effects of anthropogenic 

change on diversity patterns. While the predominance of modeled environmental variables—and 

general lack of human influences—in the construction of these maps results in high predictive 

accuracy of diversity patterns across environmental gradients, this also leads to low predictive 

accuracy for quantifying the impacts of human disturbance (Figure 1). This may be due to a paucity 

of biodiversity data in both heavily degraded and intact landscapes, and across a sufficient range of 

land use types and intensities. Furthermore, these maps often exclude remote-sensed information 

that can help reveal ecosystem and habitat structure, which are well known to indicate and be 

influenced by local species composition23. These maps of species diversity and 

phylogenetic/functional divergence have improved our understanding of global biodiversity 
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patterns but, critically, they do not provide an accurate estimation of biodiversity at fine spatial 

scales.  

Another inherent challenge facing global biodiversity products is incomplete data coverage. Most 

global biodiversity databases generally over-represent some regions and under-represent other 

regions, due to disparities in financing and accessibility, which often drive a bias toward developed 

nations. On top of the geographic gaps in data coverage, there are also considerable disparities in 

taxonomic coverage. For example, larger, and more charismatic organisms tend to be over-

represented in biodiversity assessments. The IUCN database contains distribution data for over 80% 

of described vertebrate species and 14% of vascular plants, but only 2% of invertebrate species are 

represented despite invertebrates representing the vast majority of animal species. In addition, 

microbes represent 88% to 99% of all species on Earth31,32 but are vastly underrepresented, with 

only 0.4% of known fungi and protists included in the IUCN database, which is the source of many 

biodiversity maps33–37. This is changing due to recent advances in high-throughput sequencing 

technologies that enable us to observe and quantify microscopic and otherwise cryptic species38, 

and the availability of microbial biodiversity maps is expanding exponentially. 

Finally, maps of species diversity and phylogenetic/functional diversity tend to be temporally static 

and coarsely resolved. Biodiversity databases include information over several years at least, but 

often also include decades-old observations. Maps generated from these databases therefore 

represent an average of the time frame of observations. Additionally, the relevant databases for a 

particular map may involve different sampling methods and encompass different spatial and 

temporal scales. Sampling methodologies are generally taxon and/or habitat specific, and may also 

differ by region and discipline or agency. Altogether, this makes it difficult to harmonize available 

data and generate well rounded estimates that scale in space, and change over time in response to 

shifting conditions on the ground.  

2.4 Ecosystem diversity 

In contrast to genetic and species diversity, ecosystem-level metrics provide a more up-to-date view 

of current conditions because they are predominantly measured and modeled from satellite imagery 

(e.g. radar and multispectral imaging). A variety of products exist, including maps of human 
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modifications, land use and land cover, tree cover, canopy height, above and belowground biomass, 

habitat heterogeneity, leaf area index, and net primary productivity, for which satellite imagery are 

the primary inputs. We focus on the subset of these products that measure some aspect of 

biodiversity, i.e., ecosystem structure, function39, and connectivity40,41.  

Ecosystem structure, function, and connectivity are emergent properties that arise from the 

combination of species, landscape physiognomy, climate, and human modifications. It is the 

interplay between living organisms and their environment that generates these ecosystem properties 

and contributes to carbon, water, and nutrient cycling dynamics, which then feed back to affect both 

living organisms and their environment. These ecosystem properties provide a direct link to 

measures of ecosystem services42,43.  

The three-dimensional structure of an ecosystem characterizes the environmental context in which 

species coexist. Structural diversity has been shown to improve ecosystem function11 and stability44. 

Ecosystem function captures the ecological processes that occur within an ecosystem, including 

primary and secondary productivity, decomposition, nutrient cycling, and the natural disturbance 

regime. Similarly, connectivity describes both the spatial arrangement of habitat fragments 

(structural component) and species-specific dispersal abilities and limitations (functional 

component). Connectivity is commonly measured using graph theory, which divides the landscape 

into edges and nodes, and it may also evaluate the resistance of flow between nodes.  

2.4. Ecosystem intactness 

Given the challenges of capturing dynamic changes in diversity at a global scale, a widely used 

proxy is the degree to which the current landscape resembles the potential natural state. The two 

most prominent of these so-called intactness metrics are the Ecosystem Integrity Index (EII) by the 

United Nations Environment Programme World Conservation Monitoring Centre45, and the Mean 

Species Abundance (MSA) metric by the Netherlands Environmental Assessment Agency46.  

The EII includes three components: structure, function, and composition. Ecosystem structure is 

based on the human modification index (HMI)47; ecosystem function is measured by the ratio of 

actual to potential net primary productivity48; and ecosystem composition is measured by the 

Biodiversity Intactness Index (BII)49. The BII estimates the intactness of a community of plants, 
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vertebrates, and relatively few invertebrates by scaling species richness and community abundance 

according to the impacts of land use, land use intensity, human population density, and distance to 

roads. For a given location, the EII uses the lowest score of the three components. The MSA metric 

is conceptually similar to the BII, but estimates an average intactness value that is weighted by the 

fraction of each land use type per pixel.  

The MSA and EII represent the current state-of-the-art in global biodiversity modeling. Yet, there 

are several aspects of diversity that these metrics do not capture that are critical components of 

biodiversity. First, both metrics are primarily based on the PREDICTS database50,51, which is 

valuable for quantifying the impact of human disturbance on biodiversity, but under-represents 

several large taxonomic groups including non-vascular plants, invertebrate animals, and microbes. 

Each of these groups respond differently to human disturbance and show unique global distribution 

patterns52,53 (Liu 2020, Prober 2014). The underrepresentation of these important taxa may 

therefore bias global biodiversity assessments. Second, it is difficult to know how impacts may 

differ by region, given uneven data availability among regions. While global patterns are critical 

for making standardized assessments, there are some contexts in which region- and taxon-specific 

models may be more appropriate. Third, BII and MSA are measures of the proportion of natural 

biodiversity rather than absolute values of biodiversity. A quantification of biodiversity such as 

species composition would be a useful input for other models such as phylogenetic and functional 

divergence, but this is not extractable from either intactness metric. Even with these caveats, these 

are currently the best metrics available for realistic biodiversity estimates, and new versions with 

additional features are in development.  

3. (Solution) A framework for observing the biological complexity on Earth 

A truly integrative and holistic measure of biodiversity that is globally relevant and locally accurate 

will require a wealth of information, and it will never be fully complete, as emerging scientific 

assessments will continue to generate more information. However, it is important to establish 

dynamic frameworks that can incorporate new and emerging information as it becomes available. 

To address the need for a standardized measure of the state of nature, we present the first generation 

of a holistic yet comprehensible framework (hereafter referred to as SEED) that generates a 

globally-standardized index between 0 and 1 and represents the similarity between the current state 
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of biocomplexity of an ecosystem relative to its native state. This quantitative framework can be 

used to estimate both current biocomplexity in the real landscape, and potential biocomplexity 

according to reference areas where nature has only been subjected to minimal human disturbance.  

Our biocomplexity metric is designed to represent the multidimensionality of nature by defining 

nine primary axes of variation, which are nested within the three main levels of variation that define 

biodiversity: genetics, species, and ecosystems (Figure 2). Within the (phylo)genetic and species 

levels of variation, we distinguish three primary taxonomic groups: animals, plants, and microbes 

(bacteria and fungi). Within ecosystems, we distinguish structure, function, and connectivity. These 

axes could represent or incorporate components already identified as Essential Biodiversity 

Variables (EBVs) in the GEO BON framework39. 

For simplicity, a single biocomplexity value can be estimated for any area of interest on a 

standardized scale. To aid comprehension and facilitate action-impact assessments, the SEED 

biocomplexity index can be separated to its primary axes of variation. A sample site can be 

summarized in the style of a radar plot (Figure 2), whereby the current values for each axis (yellow) 

are plotted alongside values for the potential natural state (white). The mean similarity between the 

current and potential measures for all nine axes combined creates a score: the SEED biocomplexity 

index, which ranges between 0 and 1, where 0 represents a complete absence of biocomplexity (e.g. 

an open pit mine or paved area), and 1 represents an area that is equal to its potential natural state 

(i.e., a  minimally-disturbed ecosystem). 

3.1 Integrating dimensions of biodiversity 

Consolidating the multiple dimensions of biodiversity into a single value is a critical feature that 

makes our biocomplexity index generalizable and comprehensible. After combining all relevant 

available layers within each of the biodiversity dimensions (Figure 2), these nine axes are 

consolidated into a single biocomplexity index using a Gaussian kernel estimator.  

𝐾(𝑋𝑓, 𝑋𝑟) = 𝑒𝑥𝑝 [−
||𝑋𝑓−𝑋𝑟||

2

2𝜎2
]    (Eq. 1) 

https://docs.google.com/document/d/1AySRB_lYhNgquHebVb3ga3PaJPro8I_IP1GROWRjWhE/edit?usp=sharing
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The Gaussian kernel, K, is used in machine learning classification algorithms and is a nonlinear 

transformation of the Euclidean distance, ||𝑋𝑓 − 𝑋𝑟||
2

 that measures the similarity between values 

for the focal area, 𝑋𝑓, and the reference area, 𝑋𝑟. The tuning parameter, 𝜎, allows user control of 

the distance-similarity relationship. We explored various values of 𝜎 and settled on 𝜎2 = 0.2 to 

produce a final index that is near zero in highly degraded landscapes (HMI≅1) and near one in 

minimally impacted landscapes (Figure S1). This allows the index to represent a complete range of 

habitat degradation over the globe. Thus, the biocomplexity value measures the intactness of nature 

as the average intactness among nine biodiversity dimensions with equal weighting.    

So as not to award importance to one dimension over another, we give equal weight to each of the 

nine biodiversity dimensions by scaling them to range from zero to one. First, we ensure equitability 

among all species within each taxonomic group, i.e., animals, plants, and fungi/microbes. That is, 

each species counts as one regardless of size, rarity, or charisma. Then, we divide the total species 

richness (or phylogenetic/functional divergence) by its global maximum value. Species richness, 

phylogenetic and functional divergence are all positive valued metrics, whereby higher values 

indicate higher biodiversity. Scaling in this way converts the range to zero (no species present, or 

no divergence) and one (the global maximum estimated richness/divergence) in each group. One 

key result from this is that animals, plants, and microbes are equitable as opposed to the common 

case wherein smaller, more cryptic taxa are overlooked in favor of more visible or personable taxa. 

If, however, evidence emerges which suggests that a different weighting scheme is warranted, this 

method can be adapted to keep up with the evolving scientific landscape.  

Ecosystem level dimensions require a different approach because the contributing variables have 

non uniform properties, which prevents simple addition or averaging of layers. Not only do these 

variables differ in magnitude and range, but they also may align along different scales, whereby 

higher values may or may not be ideal for a given location. Ecosystem structure, for example, is 

currently composed of six metrics: forest canopy cover54, vegetation height55, leaf area index56, 

above and belowground biomass57, and habitat heterogeneity58. We expect differences in canopy 

cover, height and LAI between forest and non-forest cover classes. A useful measure of structure 

will characterize the unique combination of features that distinguish different land cover classes. 
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We therefore scale all ecosystem variables to range from zero to one, then calculate the similarity 

using Equation 1, rather than calculating the average. While the average value can still be 

informative (see Figure 3), similar mean focal and reference values may falsely be obtained if the 

values of each layer counterbalance each other.  

3.2. Reference area versus a counterfactual landscape 

Measuring the level of biocomplexity degradation requires establishing a baseline potential state 

that can be used for comparison. Estimating this baseline state poses several philosophical questions 

regarding the non-static nature of natural systems. It also poses data limitations for regions of the 

world that have been heavily degraded and lack ‘pristine’ potential states, such as large regions of 

the Northern Hemisphere59. Thus, we opt for a more direct approach than estimating a potential 

natural state for all biodiversity dimensions and underlying layers. Specifically, we identify 

minimally modified areas as points of reference with a procedure that involves few assumptions, 

considers the full suite of biodiversity together, and allows for a contemporary definition of natural 

as opposed to a historical estimate60. To ensure ecologically relevant comparisons, we developed 

an algorithm that uses the 846 delineated ecoregions61, the HMI47, a map of land-cover62, and a map 

of potential natural vegetation (PNV)62 to select reference areas for each land-cover type within 

each ecoregion. In each ecoregion, we identify the least-impacted areas for each land cover class, 

using the fifth percentile of HMI scores as an upper limit (Figure 3.a). This threshold is set just high 

enough to ensure a sufficiently large area, enabling representative and robust estimates (Figure 3.a). 

This least-impacted area serves as the reference area for all areas of the same land cover type within 

that ecoregion (e.g., Figure 3.b,d). All artificial land use classes in the land-use/land-cover map are 

updated with the predicted land cover from the PNV (Figure 3.c). All comparisons for the 

biocomplexity index are then guided by the land cover class of the focal and reference area within 

each ecoregion. 

Although a natural landscape with minimal disturbance is not a universal goal, this minimal-

disturbance baseline is the most appropriate benchmark for measuring the state of nature. We fully 

acknowledge that different targets will be appropriate in different settings. For example, food 

security and financial wellbeing are the primary considerations in agricultural settings, while 

restoration targets in conservation settings may deviate from a fully natural state due to a myriad of 
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ecological and socioeconomic factors as well as previous alterations to the landscape63. 

Management practices and targets will vary depending on the local situation, and progress toward 

these targets can be evaluated against local minimal-disturbance benchmarks and other landscapes 

in similar settings. In these contexts, the SEED index provides a useful tool to benchmark local 

achievement against a globally standardized biodiversity metric and enable a standardized 

assessment of biodiversity improvement in response to management practices39. 

3.3. Illustration of the SEED biocomplexity framework 

The first generation of this biocomplexity index was developed using a comprehensive list of the 

most up-to-date maps of phylogenetic, species, and ecosystem diversity. To illustrate the 

capabilities of the framework, we first show the viability of our dimensionality reduction 

calculation and reference area approach using ecosystem structure as an example. We then analyze 

the biocomplexity index using the available layers for ecosystem structure, ecosystem function, 

plant diversity64, and animal diversity65 (see Section 2). To account for the fact that species diversity 

maps do not explicitly incorporate the effects of human impact (Figure 1), we scaled the available 

measures of animal and plant diversity by the Mean Species Abundance intactness metric. We then 

compare this prototype with other biodiversity estimators (BII and MSA) and provide an analysis 

of Gabon as a case study. These comparisons serve as a calibration of divergent patterns between 

the SEED index and biodiversity estimates that are based on measures of biodiversity intactness 

(see section 2.4).  

Based on our dimensional reduction calculation and reference area approach, we find that 17% of 

the earth's terrestrial land area remains relatively intact. A large majority of this unmodified land 

area – according to our reference area algorithm – lies in the northern boreal and tundra biomes 

(Figure 3.a & S2). Using the ecosystem structure values for these reference areas for each land 

cover in each ecoregion, we estimate the integrity of every terrestrial pixel (e.g., Figure 3.b and 

3.d). In analyzing the integrity of ecosystem structure alone, we show some features similar to other 

intactness/integrity measures. Notable areas of low structural integrity include a narrow band across 

the savannas of sub-Saharan West Africa and previously forested areas in northern India, Eastern 

China, and the Midwestern United States (Figure 3.e).  
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The Saharan and Saudi Arabian deserts stand out as highly intact landscapes (Figure 3.e) despite 

also having very low ecosystem structure on average (Figure 3.f). This important distinction 

illustrates the difference between quantity and integrity, defined as the ratio between observed and 

reference quantities. It is important to have both measures available to distinguish sites that have 

high quantity values from sites with high integrity values. On average, ecosystem structure is high 

in forests, low in grasslands, and intermediate in savannas and shrublands (Figure 3.f). Within 

shrublands, ecosystem structure values are bimodally distributed, potentially reflecting open and 

closed shrublands.  

The value in our biocomplexity framework lies in its ability to integrate multiple dimensions of 

diversity. Even with only four (plant and animal diversity, ecosystem structure and function) of our 

target of nine dimensions included in this version of SEED, the index offers a more comprehensive 

view of nature's state than existing metrics (Figure 4.a). Incorporating these dimensions of 

biodiversity into the SEED index leads to several notable differences in global patterns, relative to 

metrics based on ecosystem intactness. Specifically, our index appears to be more conservative than 

MSA and BII. SEED was systematically lower than BII and diverged from MSA in a less 

predictable manner (i.e., generally producing higher or lower estimates; Figure 4.b). The 

distribution of MSA values is bimodal compared with the unimodal BII and the somewhat 

intermediate SEED index (Figure S1, S3). This means that MSA may more commonly characterize 

an ecosystem as ‘pristine’ or ‘highly degraded’, while SEED would more commonly characterize 

the same ecosystem as ‘moderately intact’.  

The differences between SEED and the other metrics may arise from the inclusion of both structural 

and functional ecosystem attributes. Both the MSA and BII represent the intactness of species 

diversity and do not include ecosystem level measures. Degradation according to MSA and BII is 

therefore characterized as diminished species diversity. However, diminished diversity may occur 

in an area that possesses considerable structural integrity or productivity, leading to a moderate 

rating on the SEED index. 

To demonstrate the current utility of the SEED index, we illustrate emergent properties of 

biocomplexity for Gabon. Gabon is a global leader in the exploration of financial and policy 
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mechanisms that incentivize sustainable forest management and nature conservation66. Our analysis 

shows that urban/built-up areas score lowest overall, followed by grasslands and savannas, which 

both exist mostly in either a degraded state (i.e., with a peak at low SEED index) or a relatively 

intact state (Figure 4.d). Forests and wetlands showed similar bimodalities, but sites in these cover 

classes more commonly scored as relatively intact (Figure 4.d). Shrublands exhibit a range of 

intactness values, but they are most commonly in a degraded state. These findings are in line with 

reported patterns in biodiversity and levels of human modification. For example, the bimodality in 

forests and wetlands could result from regulations protecting a majority of Gabonese forests and 

resulting in high intactness values, while a fraction has been converted to palm-oil plantations67,68 

with low intactness. Similarly, a large proportion of wetlands are close to the coast where they are 

susceptible to human degradation, while the rest may consist of more intact flooded forests and 

grassland69. 

3.4. Spatial and temporal scalability and next steps 

There is a growing demand for spatial and temporal scalability in global biodiversity monitoring, 

but achieving this remains a challenge for ecology. Determining how biodiversity scales in space 

and time has been the focus of countless investigations, and one general result is that outcomes are 

highly context dependent. Meeting the demand for scalability will require reimagining our approach 

to biodiversity modeling.  

Building on classic correlative models of species occurrence/richness in response to climatic and 

physiographic properties, new models are starting to include conceptual routines that mimic species 

assemblage rules, species-area relationships, and successional dynamics (including recovery and 

degradation type responses). In support of such models, satellite imagery offers high resolution data 

with global coverage and sometimes spanning multiple decades. Hybrid biodiversity models will 

emerge soon that link biodiversity data with remote sensing products such as spectral diversity, leaf 

traits, vegetation height, density and other structure components. The integration of remote sensing 

in biodiversity modeling will be the key distinguishing factor that transforms new approaches from 

simply predicting general patterns to the prediction of local conditions and the actual state of nature.  
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Advances in remote sensing such as hyper-spectral analysis are also expected to provide valuable 

data to assess how plant species and functional biodiversity respond to different practices70. Indeed, 

remote sensing capabilities will soon be extended with the deployment of hyperspectral 

satellites, such as the Surface Biology and Geomorphology (SBG) satellite by NASA71 (launching 

in 2027) and the Copernicus Hyperspectral Imaging Mission for the Environment (CHIME) satellite 

by the European Space Agency72 (launching in 2028).  

Future on-the-ground sampling could focus on under-sampled regions to fill in key gaps and narrow 

the uncertainty in global diversity maps. These new datasets can be collected using the standard 

methodologies (e.g. habitat surveillance, plot surveys73). Additionally, a number of next-generation 

technologies have emerged – such as eDNA38,74, bioacoustics75, and data collected by low-flying 

drones – have the potential to scale data collection in a cost-effective manner 76.  

Incorporation of these emerging technologies into the SEED framework will continually improve 

the resolution of the index (currently at 1 km), allowing for more fine-scale assessments (aiming 

for 30 meters resolution) of biodiversity and dynamic changes over time. A core aim in the continual 

development and fine-tuning of the SEED index is to incorporate emerging methods and 

technologies, to ensure the best possible estimation of biodiversity. 

4. Conclusion and future outlook 

As new policy frameworks and nature markets are developed to promote and protect biodiversity, 

the key challenge for ecologists is to produce a realistic estimate of the state of nature that is valid 

on both local and global scales and can reliably inform these developing policies and markets. Such 

an integrative metric is needed to evaluate progress toward climate change and land protection 

pledges (e.g. the GBF, Bonn Challenge77, and UN Sustainable Development Goals78), bring 

transparency to policy frameworks, and to encourage corporate accountability (under the Taskforce 

for Nature-related Financial Disclosures (TNFD)79 and Science-Based Targets for Nature 

(SBTN)80). 

We present the SEED framework that consolidates the primary dimensions of biodiversity to 

produce a standardized and comprehensible measure of biocomplexity. Our framework is flexible, 

allowing for a dynamic index that evolves alongside the development of new data products and 
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scientific advancements. Here we demonstrate that the first generation of the SEED index captures 

coarse scale changes in biodiversity (Figure 4), providing a multidimensional understanding of the 

state of nature at the national scale. Yet, there are several key challenges that need to be addressed 

to improve the resolution of our metric at finer spatial and temporal scales. Toward this goal, we 

have already begun building models that integrate remote sensing data products into maps of 

species richness and phylogenetic divergence that will improve the spatial and temporal resolution 

of our index.  

To ensure that the most high-integrity and up-to-date ecological information is available to policy- 

and decision-makers, we invite the wider scientific community to collaborate on the continual 

advancement of this biocomplexity metric. We strongly believe that for this biodiversity metric to 

lead to positive outcomes, it must accurately represent "on-the-ground" biodiversity. Achieving this 

level of accuracy presents a scientific challenge that requires the collaboration of a diverse team of 

experts, including ecologists, remote-sensing specialists, and others from around the globe. 

Leveraging the latest scientific and technological breakthroughs, we aim to enhance and refine the 

biocomplexity metric, thus fostering better outcomes for ecosystem protection and restoration. 
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Figures 

 

Figure 1. Performance of species richness maps in human modified landscapes. This figure 

illustrates how maps of species richness, e.g., (a) plant64 and (b) mammals65, may not reflect the 

true impacts of humans, which can be seen here in (c) the aerial view from Sentinel-281 and (d) the 

human modification index47. These maps all focus on Paris (outline) and the surrounding landscape. 
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Figure 2. SEED biocomplexity index. Example visualization of the SEED framework for an area 

of interest, showing the dimensionality-reduced values across 3 axes for each of the 3 scales of 

variation (genetic, species, and ecosystems). For each axis, the visualization shows the difference 

between the current state (yellow), and the potential natural state based on a comparable, minimally-

disturbed ecosystem (white). The distance between the current and potential measures creates a 

score – the SEED biocomplexity index – which ranges from 0 and 1, where 0 represents a complete 

absence of biocomplexity, and 1 represents an area that is equivalent in complexity to its potential 

natural state. Arrows indicate the relationships between the three scales of variation and the 

Essential Biodiversity Variables (EBVs). 
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Figure 3. Assessing the potential state of ecosystems through the identification of relevant 

reference areas. a) and b) Reference areas representing the 5% least disturbed areas within each 

combination of ecoregion and land cover type. c) Potential land cover obtained from 62, substituting 

artificial ecosystems with the potential layer from the same study. The artificial class is composed 

of plantations, arable land, pasture, urban areas and rural gardens. d) Potential land cover types at 

a local scale in Gabon, indicating which reference areas from (b) are used to calculate biodiversity 

values for those areas. e) Ecosystem structural integrity, obtained by comparing ecosystems with 

their reference. Structural components include canopy height, homogeneity, LAI, and forest cover, 

above-ground and below-ground biomass. f) Violin plots of SEED structural absolute values and 

integrity across different land-use categories.   
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Figure 4. Comparative analysis of the SEED Index. a) Global representation of the SEED index. 

b) Comparisons between the SEED index and MSA (left) or BII (right). c) The SEED index in the 

country of Gabon and surrounding areas. d) SEED index densities across six land cover classes in 

Gabon. The artificial class is composed of plantations, arable land, pasture, urban areas and rural 

gardens.  
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Supplementary Figures 

 

Figure S1. Density plot showcasing the distribution of the first generation of the SEED index in 

relation to MSA and BII at a global scale. 
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Figure S2. Distribution of human modification index (HMI) thresholds identified in the reference 

area approach, for each combination of land-cover and ecoregion, summarized for each biome 

(Dinerstein et al., 2017). The proportion of land identified as a reference in each biome compared 

to the total area is plotted on the top-right. In very intact areas, the HMI may be close to 0 in most 

of its extent, resulting in more than 5% of the area being considered as a reference. In boreal forests 

and tundra, which are largely unmodified biomes, 31% and 55% of their respective areas will serve 

as reference points. 
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a) 

b) 

Figure S3. Violin plots illustrating the distribution of differences between the first generation of 

the SEED index and a) MSA, and b) BII, across different land-cover classes. 
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a) 

 

b) 

 

Figure S4. Boxplots illustrating the distribution of the first generation of the SEED index: a) across 

different land-cover classes in the Gabon region, and b) specifically within different artificial land-

cover classes. 
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