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Abstract 8 

Species occupancy is often defined as the proportion of areal units (sites) in a landscape that the focal 9 

species occupies, but it is usually estimated from the subset of sites that have been sampled. 10 

Assuming no measurement error, we show that three quantities–the degree of sampling bias (in terms 11 

of site selection), the proportion of sites that have been sampled and the variability of true occupancy 12 

across sites–determine the extent to which a sample-based estimate of occupancy differs from its true 13 

value across the wider landscape. That these are the only three quantities (measurement error 14 

notwithstanding) to affect the accuracy of estimates of species occupancy is the fundamental insight 15 

of the “Meng equation”, an algebraic re-expression of statistical error. We use simulations to show 16 

how each of the three quantities vary with the spatial resolution of the analysis and that absolute 17 

estimation error is lower at coarser resolutions. Absolute error scales similarly with resolution 18 

regardless of the size and clustering of the virtual species’ distribution. Finely resolved estimates of 19 

species occupancy have the potential to be more useful than coarse ones, but this potential is only 20 

realised if the estimates are at least reasonably accurate. Consequently, wherever there is the potential 21 

for sampling bias, there is a trade-off between spatial resolution and accuracy, and the Meng equation 22 

provides a theoretical framework in which analysts can consider the balance between the two. An 23 

obvious next step is to consider the implications of the Meng equation for estimating a time trend in 24 

species occupancy, where it is the confounding of error and true change that is of most interest.  25 
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1 Introduction 27 

The proportion of “sites” occupied by some species (its occupancy) is often of interest to ecologists 28 

(Kéry & Royle, 2016). Sites were originally conceived as discrete habitat patches or relatively small 29 

sampling units (MacKenzie et al., 2002), but increasingly they represent contiguous larger-scale units 30 

defined by the analyst (e.g. squares on a map; Van Strien et al., 2013). This latter definition has often 31 

been used when estimating species occupancy at national and supranational scales (Boyd, August, et 32 

al., 2023; Isaac et al., 2014). 33 

In most circumstances—and particularly at fine scales across large areas—data are not available for 34 

all sites, so occupancy must be estimated from the subset of sites that have been sampled (Kéry & 35 

Royle, 2016). If the focal species is more or less likely to occupy sampled than non-sampled sites, 36 

then the sample is geographically biased (a formal definition is provided below), and the sample-37 

based estimate will differ from its true value across the wider landscape (Boyd, Powney, et al., 2023; 38 

Meng, 2018). Geographic sampling biases are just one source of error when estimating species 39 

occupancy, the other major source being measurement error at sampled sites (MacKenzie et al., 40 

2002). 41 
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A further complication when estimating species occupancy is that it varies with spatial resolution. 42 

Occupancy always increases as the resolution is coarsened, but the rate at which it increases depends 43 

on the size and clustering of the species’ distribution at the finer scales (Azaele et al., 2012; Kunin, 44 

1998; Wilson et al., 2004). All else being equal, fine scale estimates of species occupancy are 45 

preferable to coarse ones. For example, colonisations and local extinctions at small-scale sites are 46 

more probable than at larger scales, so working at a finer resolution means that occupancy is more 47 

sensitive to change (Dennis et al., 2019).  48 

Although estimates of occupancy are nominally more useful at fine scales, there are reasons to work 49 

at coarser resolutions too. One reason is that, given finite resources, sampling at a fine scale might 50 

come at the expense of sampling over a large geographic area. Another is that the effects of sampling 51 

bias become more pronounced where there are more sites in the landscape (Boyd, Powney, et al., 52 

2023; Meng, 2018), which is obviously the case at finer resolutions (i.e. where the sites are smaller). 53 

The fact that sampling biases are more pervasive at finer spatial resolutions raises questions about 54 

how the accuracy of estimates of species occupancy scales with resolution. Although working at 55 

coarser resolutions will clearly improve accuracy at the extremes—we can be surer a species occupies 56 

planet Earth than a set of small plots on its surface—how accuracy varies along the gradient from fine 57 

to coarse resolutions under sampling bias has not, to our knowledge, been investigated in ecology.  58 

Here then, we investigate how the error of sample-based estimators of species occupancy vary with 59 

spatial resolution. Assuming no false absences (or that a model has adequately corrected them), we 60 

begin by demonstrating that three, and only three, quantities determine the magnitude of the error: the 61 

degree of sampling bias (in terms of site selection), the proportion of sites sampled and the variability 62 

of true occupancy across sites. That these are the only quantities affecting estimation error is a key 63 

implication of Meng’s (2018) decomposition of survey error. We use simulations to show how each 64 

of the three quantities, and both relative and absolute error, vary with spatial resolution under 65 

sampling bias (at the finest resolution) and how varying the level of sampling bias affects the error. A 66 

trade-off emerges between finely resolved and accurate estimates, which we discuss in detail. 67 

2 Methods  68 

2.1 Quantifying estimation error 69 

We consider a landscape comprising 𝑁 contiguous sites of equal area. The presence of at least one 70 

individual of the focal species is a binary variable 𝑌 taking the value 1 at sites where it is present and 71 

0 elsewhere. Occupancy 𝑃(𝑌 = 1) is the proportion of sites at which the species is present, which is 72 

equivalent to the mean of 𝑌 across sites �̅�. Of the 𝑁 sites, a subset 𝑛 are sampled. Whether each site is 73 

one of the 𝑛 sampled sites is another binary variable 𝑅 (𝑅 = 1 where the site is sampled and 𝑅 = 0 74 

otherwise). It is not possible to calculate mean occupancy across all 𝑁 sites, �̅�𝑁, because information 75 

on 𝑌 is not available for sites with 𝑅 = 0. Instead, it is common to estimate �̅�𝑁 as mean occupancy 76 

across sampled sites �̅�𝑛.  77 

Assuming no measurement errors, or that a model has corrected them, the absolute error of �̅�𝑛 as an 78 

estimator of �̅�𝑁 is (Meng, 2018) 79 

 
�̅�𝑛 − �̅�𝑁 = 𝜌(𝑅, 𝑌)√

1−𝑓

𝑓
 𝜎𝑌.  

 

equation 1 

The first quantity on the right, 𝜌(𝑅, 𝑌), is the (population) correlation between 𝑌 and 𝑅. It is a 80 

measure of both the sign and magnitude of sampling bias. In simple terms, 𝜌(𝑅, 𝑌) is negative where 81 

𝑌 is generally smaller in the sample than in the population and vice versa. 𝑓 is the sampling rate 82 

(𝑛/𝑁), and the second quantity on the right is a measure of data quantity. The final quantity 𝜎𝑌 is the 83 

population standard deviation of 𝑌. It is 0 where 𝑌 is constant, in which case a sample size of 1 is 84 



sufficient to estimate �̅�𝑁 with no error, and it is largest where 𝑌 is most variable. Hence, it can be 85 

considered a measure of “problem difficulty” (Meng, 2018), although we refer to it as occupancy 86 

variability given the context in which we are working. 87 

Importantly, eq. 1 gives the absolute error of �̅�𝑛 as an estimator of �̅�𝑁 for a given sample: that is, for 88 

one realisation of 𝑅. In what follows, we consider replicate realisations of 𝑅 from given 𝑅-generating 89 

(i.e. sampling) mechanisms and the average �̅�𝑛 − �̅�𝑁 across those samples.  90 

2.2 Effects of spatial resolution on error 91 

Eq. 1 provides a basis for understanding the effects of resolution on absolute error when estimating 92 

species occupancy. Assuming perfect detection, it implies that there are three, and only three, ways to 93 

reduce error: decrease the sampling bias 𝜌(𝑅, 𝑌), increase the sampling rate 𝑓 and/or decrease the 94 

occupancy variability 𝜎𝑌. Below we describe a set of simulations that demonstrate the effects of 95 

coarsening the spatial resolution on each of these quantities and on both absolute and relative error.  96 

2.3 Simulation setup 97 

2.3.1 Virtual landscape, species and samples  98 

The virtual landscape comprises a square grid of 𝑁 = 6400 cells (80 × 80) at the finest resolution. 99 

Each cell might represent, say, a 1 × 1 km grid square, but the precise definition is not important for 100 

drawing general conclusions.   101 

We simulated six species’ geographic distributions of different sizes and with different levels of 102 

clustering in the virtual landscape. Our approach was a simplified version of the one used by (Guélat 103 

& Kéry, 2018). For each species, the first step was to populate every cell in the landscape with a 104 

continuous index 𝑋 sampled from a multivariate normal distribution  105 

 𝑋~𝒩(𝝁, 𝜹),  
 

equation 2 

where 𝝁 is an 𝑁-vector of zeros (i.e. mean 𝑋 for each grid cell) and 𝜹 is an 𝑁 × 𝑁 covariance matrix. 106 

We used an exponential decay function to define the covariance matrix 107 

  𝜹 = 𝑒−𝜑 𝑫𝒊,𝒋 ,  
 

equation 3 

where 𝜑 is the decay constant and 𝑫𝒊,𝒋 is the Euclidian distance between grid cells 𝑖 and 𝑗. Larger 108 

values of 𝜑 result in patchier distributions, because the covariance between grid cells diminishes 109 

faster with the distance between them.  110 

The next step was to convert the continuous index 𝑋 to a binary one (i.e. occupied vs unoccupied) 111 

with a specified proportion of cells being occupied. For each species, we set a threshold percentile of 112 

𝑋 across grid cells (1 − �̅�𝑁) above which the cell was designated occupied and below which it was 113 

designated unoccupied. Table 1 lists the parameters used to simulate each species’ geographic 114 

distribution and the resulting properties of those distributions. 115 

It was important that the simulated species’ distributions spanned a range of plausible sizes and levels 116 

of clustering, because these properties determine how �̅�𝑁 scales with resolution (Kunin, 1998). We 117 

tested whether the distributions covered sufficiently wide ranges of these parameters using their 118 

fractal dimensions (Kunin, 1998). The fractal dimension 𝐷 of a species’ distribution is given by 𝐷 =119 

2(1 − 𝑏), where 𝑏 is the slope of its scale-area curve or occupancy-area relationship (Hartley & 120 

Kunin, 2003). We calculated 𝑏 over the finest three resolutions, because, for the medium and common 121 

species, including the coarsest two resolutions resulted in nonlinear scale-area curves (i.e. their 122 

distributions are non-fractal at coarse scales). The theoretical limits of the fractal dimension are 0, 123 

representing a species whose distribution is very sparse, and 2, representing a species whose 124 

distribution is very clustered (Hartley & Kunin, 2003). Our virtual species’ distributions spanned most 125 



of this range (0.31−1.64). Like (Wilson et al., 2004), we found that 𝐷 is positively related to �̅�𝑁, 126 

which reflects the facts that a small distribution can only be so clustered, and a large distribution can 127 

only be so dispersed.  128 

Table 1. Properties of the six virtual species’ distributions at the finest spatial resolution. The 129 

autocorrelation parameter is the exponential decay constant in eq. 3, and higher values produce a more 130 

dispersed distribution. The theoretical limits for the fractal dimension are 0, representing a highly 131 

dispersed species, and 2, representing a very clustered one. The fractal dimension also varies with �̅�𝑁 132 

(Wilson et al., 2004). 133 

Distribution 

properties 

Exponential decay 

parameter in 

autocorrelation 

function  

Proportion of sites 

occupied (at the finest 

scale) 

Fractal dimension 

Rare and sparse  0.6 0.01 0.31 

Rare and clustered 0.1 0.01 0.87 

Medium and sparse 0.6 0.25 1.20 

Medium and clustered 0.1 0.25 1.39 

Common and sparse 0.6 0.5 1.57 

Common and 

clustered 

0.1 0.5 1.64 

 134 

For each species, we simulated 100 virtual samples at the finest resolution. Whilst it might seem more 135 

logical to simulate one set of samples for all species, this would not allow control over 𝜌(𝑅, 𝑌), the 136 

sampling bias, which depends on the focal species’ geographic distribution. For most simulations, we 137 

simulated the samples in such a way that 𝐸𝑅[𝜌(𝑅, 𝑌)]~0.05 and 𝑓 =  0.1, where 𝐸𝑅[𝜌(𝑅, 𝑌)] is the 138 

expectation (average) of 𝜌(𝑅, 𝑌) over the 100 simulated samples (i.e. with respect to 𝑅). See the 139 

supplementary Fig. S1 for the distributions of 𝜌(𝑅, 𝑌) across samples for each species. We based the 140 

values of 𝜌(𝑅, 𝑌) and 𝑓 on an empirical example: a citizen science dataset on vascular plant sampling 141 

and the species Calluna vulgaris’ occupancy in Britain (Boyd et al., 2023). Whilst we generally set 142 

𝐸𝑅[𝜌(𝑅, 𝑌)]~0.05 and 𝑓 =  0.1 , we also demonstrate the effects of varying both parameters (in the 143 

supplementary material for 𝑓). Switching the sign of 𝜌(𝑅, 𝑌) (i.e. whether occupancy is larger or 144 

smaller in the sample than the population) would switch the sign of the error in the estimate of mean 145 

occupancy, but for simplicity we only present the positive case.  146 

2.4 Analysis of error at each resolution 147 

The goal of our analysis was to determine how the absolute error of �̅�𝑛 as an estimator of �̅�𝑁  (�̅�𝑛 −148 

�̅�𝑁; assuming perfect detection) varies with spatial resolution. Starting at the finest resolution, we 149 

calculated the value of each quantity in eq. 1 (including the absolute error; averaged across the 100 150 

samples). We then coarsened the resolution by aggregating every square of four grid cells into one 151 

(i.e. doubling the length and width of the site). After coarsening the resolution, we recalculated each 152 

quantity in eq. 1, coarsened the resolution again and repeated the process until each grid cell was 16× 153 

its original height and width. Fig. 1 shows how a species’ distribution (medium and clustered; Table 154 

1) and a sample vary with resolution. 155 



 156 

Figure 1. Top row: a virtual species’ (“medium and clustered”; Table 1) geographic distribution at 157 

each spatial resolution. Green cells are occupied, and grey cells are not. Bottom row: a virtual sample 158 

at each resolution. 𝜌(𝑅, 𝑌)~0.05 and 𝑓~0.1 at the finest resolution (1 × 1). Purple cells are sampled, 159 

and grey cells are not. Sampled cells may be either occupied or not.  160 

3 Results  161 

3.1 Error 162 

For all virtual species, estimates of occupancy are more accurate at coarser resolutions. This result is 163 

evident both in terms of the absolute actual error (Fig. 2A), which is on the left side of eq. 1, and the 164 

relative actual error (Fig. 2B), which expresses the absolute error as a percentage of true occupancy. 165 

Relative error is larger for rare species. Absolute error is larger for the medium and common species, 166 

particularly at the finer resolutions.  167 

 168 

Figure 2. (A) absolute error, (B) relative error (i.e. the absolute error expressed as a percentage of true 169 

occupancy), (C) mean occupancy (i.e. true occupancy), (D) sampling bias, (E) sampling rate and (F) 170 

occupancy variability 𝜎𝑌 at each resolution. The resolution is the height and width of the grid cells in 171 

arbitrary units. Points represent the average of each statistic over 100 simulated samples. At the finest 172 

resolution, 𝜌(𝑅, 𝑌)~0.05 and 𝑓~0.1, the target values for the simulations.  173 



3.2 True occupancy 174 

Although well-documented (Azaele et al., 2012; Kunin, 1998), it is worth revisiting the scaling 175 

properties of �̅�𝑁  (i.e. a species’ true occupancy) here, because they provide insight into the scaling 176 

properties of error. �̅�𝑁 always increases with resolution, but the rate at which it increases depends on 177 

the properties of the species’ distribution at the finest resolution (Fig. 2C). Species that are common 178 

and sparsely distributed at the finest resolution quickly reach �̅�𝑁 = 1 as the resolution is coarsened. 179 

By contrast, species that are rare and clustered at the finest resolution do not reach �̅�𝑁 = 1 at any of 180 

the resolutions we considered (Fig. 2A).  181 

3.3 Sampling bias 182 

In our simulations, the sampling bias 𝜌(𝑅, 𝑌) tends towards 0 as the resolution is coarsened. There are 183 

plausible scenarios in which it will not, however, a point that we expand on in the Discussion.  184 

3.4 Sampling rate  185 

The sampling rate 𝑓 scales in a similar way with resolution to �̅�𝑁. It always increases with resolution, 186 

and sparser samples increase at a greater rate. In our simulations, sparser samples are slightly more 187 

likely for the sparsely distributed species because of the correlation between the species’ distributions 188 

and the samples (i.e. the programmed sampling bias). Hence, 𝑓 does not increase at exactly the same 189 

rate for all species.  190 

3.5 Occupancy variability 191 

As occupancy is binary, its standard deviation 𝜎𝑌 is given by √�̅�𝑁(1 − �̅�𝑁). 𝜎𝑌 is largest where �̅�𝑁 is 192 

near 0.5 and smallest where �̅�𝑁 is near 0 or 1. Given that �̅�𝑁 increases with resolution (Fig. 2C), 193 

coarsening the resolution for species with �̅�𝑁 < 0.5 increases 𝜎𝑌 until �̅�𝑁 = 0.5 (Fig. 2F). Further 194 

coarsening the resolution decreases 𝜎𝑌, because �̅�𝑁 moves away from 0.5 and towards 1. For species 195 

with �̅�𝑁 ≥ 0.5 at the finest resolution, coarsening the resolution always decreases 𝜎𝑌. 196 

3.6 Scaling of error with resolution at different levels of sampling bias 197 

In most simulations, we set 𝜌(𝑅, 𝑌)~0.05 at the finest resolution, but it is instructive to see how 198 

actual error scales with resolution under different levels of sampling bias. Error generally scales in the 199 

same way with resolution regardless of the level of sampling bias, but is greater in magnitude under 200 

stronger sampling bias (Fig. 3). Under a simple random sample at the finest resolution, where the 201 

expected sampling bias 𝐸𝑅[𝜌(𝑅, 𝑌)] = 0, there is roughly no error at any resolution (recalling that we 202 

present the average error across samples, which essentially removes sampling error). Note that we 203 

were not able to simulate highly biased samples (𝐸𝑅[𝜌(𝑅, 𝑌)]~0.15) for the common species (blue 204 

lines in Fig. 3). For these species, �̅�𝑁 is very different to 𝑓, which makes a large and positive 𝜌(𝑅, 𝑌) 205 

highly unlikely, and our algorithm for generating the samples could not achieve it.  206 



 207 

Figure 3. Absolute error at each resolution under four levels of sampling bias 𝜌(𝑅, 𝑌) (at the finest 208 

resolution). The resolution is the height and width of the grid cells in arbitrary units. The simple 209 

random sample has approximately no sampling bias at the finest resolution. Each line represents one 210 

virtual species: red = rare, green = medium and blue = common. Solid lines depict species with 211 

clustered distributions at the finest resolution and dashed lines indicate species that are highly 212 

dispersed at the finest resolution. Points represent the average of each statistic over 100 simulated 213 

samples. 𝑓 ~ 0.1 at the finest resolution in all cases.  214 

4 Discussion 215 

Nobody would dispute the fact that estimates of species occupancy are more accurate at coarse scales 216 

asymptotically: we can be surer that a species occupies Britain than it does some 1 km grid square 217 

therein. Our contribution has been to show that accuracy varies somewhat predictably along the 218 

spectrum from fine to coarse resolutions. Indeed, Meng’s (2018) three-part decomposition of 219 

statistical error provides a clear theoretical framework within which analysts can consider quantities 220 

like the potential sampling bias and the sampling rate when deciding on the appropriate resolution at 221 

which to estimate occupancy. Coarsening the resolution will be particularly beneficial where sampling 222 

biases are likely to be large (e.g. when using citizen science data; Pescott et al., 2019, Stroh et al., 223 

2023).  224 

The Meng (2018) equation tells us that to increase the accuracy of estimates of species occupancy, we 225 

should work at the spatial resolution at which the sampling bias and the variability of occupancy in 226 

the landscape are smallest and at which the sampling rate is highest. Maximising the sampling rate is 227 

simplest in theory, because it always increases with resolution (practice of course introduces issues of 228 

resourcing and planning). The effect of resolution on the variability of occupancy in the landscape 229 

depends on the species’ prevalence (i.e. �̅�𝑁) at the finest resolution. If there is good reason to think 230 

that �̅�𝑁 ≥ 0.5—say, from an expert drawn range map—then coarsening the resolution will always 231 

reduce 𝜎𝑌. On the other hand, if there is good reason to think that �̅�𝑁 is truly low, then coarsening the 232 

resolution will increase 𝜎𝑌 until the �̅�𝑁 reaches 0.5.  233 



In our simulations, sampling bias was clearly lower at coarser resolutions (Fig. 2D), but this will not 234 

be universally true. One minor thing to note is that we presented the average 𝜌(𝑅, 𝑌) across 100 235 

samples: for some of the individual samples, 𝜌(𝑅, 𝑌) occasionally increased from one resolution to 236 

the next. More general insight into how 𝜌(𝑅, 𝑌) might scale with resolution in other situations can be 237 

gleaned from the formula for Pearson’s correlation coefficient. 𝜌(𝑅, 𝑌) is the Pearson’s correlation 238 

between 𝑅 and occupancy 𝑌, which is to say their covariance divided by the product of their standard 239 

deviations. We have already seen that coarsening the resolution of analysis increases the standard 240 

deviation of 𝑌 𝜎𝑌 until �̅�𝑁 ≥ 0.5, at which point further coarsening the resolution reduces it. The same 241 

logic applies to the standard deviation of the 𝑅, which is also a binary variable. It follows that the 242 

denominator in the formula for 𝜌(𝑅, 𝑌), the product of the standard deviations of 𝑌 and 𝑅, increases 243 

as the resolution is coarsened to the point where �̅�𝑁 ≥ 0.5 and 𝑃(𝑅 = 1) ≥ 0.5, at which point further 244 

coarsening the resolution reduces it. For a given covariance between occupancy and 𝑅 then, 245 

coarsening the resolution of analysis will reduce 𝜌(𝑅, 𝑌) where �̅�𝑁 ≥ 0.5 and 𝑃(𝑅 = 1) ≥ 0.5. 246 

Further work is needed to understand how the covariance between occupancy and 𝑅 will vary with 247 

spatial resolution under different conditions.  248 

As it is often time trends in species occupancy, rather than one-off estimates, that are of interest, it is 249 

worth considering estimation error in this context. It is generally understood that time-varying 250 

sampling bias (and therefore error) can confound true change in occupancy (Bowler et al., 2022), but 251 

knowing how sampling bias changes over time is made difficult by the various sampling schemes and 252 

analytical approaches that might be employed by researchers. The simplest scenario is where the 253 

analyst estimates occupancy separately for multiple time-periods and calculates the differences 254 

between them. If the sampling bias changes over time, then the estimated differences will be 255 

erroneous. Another way to estimate time trends in occupancy is to restrict the analysis to the pool of 256 

sites that were sampled at some point within the relevant timeframe and to predict (or impute) missing 257 

values in each time-period (Boyd, August, et al., 2023; Isaac et al., 2014). Putting to one side the fact 258 

that there are almost certain to be prediction errors, one ends up in a situation where the distribution of 259 

𝑅 across sites is effectively time-invariant. Crucially, however, this does not mean that the sampling 260 

bias will remain constant over time unless the distribution of 𝑌 across sites is also time-invariant (i.e. 261 

the species’ distribution does not change over time at the relevant scale). A similar scenario arises 262 

when occupancy is estimated using unrepresentative monitoring data whose geographic distribution 263 

does not change over time: for example, long-term monitoring of protected sites. 264 

Understanding how the potential for confounding of error and true temporal change in occupancy 265 

varies with spatial resolution is difficult, but the Meng equation provides several insights here too. For 266 

example, working at coarser resolutions means less temporal variation in �̅�𝑁 (as colonisations and 267 

local extinctions are less probable), which means less temporal variation in 𝜎𝑌. It is also likely to 268 

mean less variation in 𝜌(𝑅, 𝑌)—especially if occupancy is predicted across a fixed pool of sites in 269 

each year, in which case the distribution of 𝑅 is effectively constant over time (again, one must also 270 

consider the fact that the predictions could be wrong at unsampled site/time-period combinations). 271 

Reducing temporal variation in the quantities in eq. 1 will reduce temporal variation in error, which 272 

should reduce the potential for confounding of error and true change in occupancy in many cases. An 273 

obvious exception is where the per-period errors cancel each other out over long timeframes, in which 274 

case they will not bias the estimated trend; however, it is not likely that biodiversity monitors will 275 

know that they are in this situation—if the per period direction of error was known, then it could be 276 

modelled. More elaborate simulations and theoretical work are needed to fully understand the effects 277 

of spatial scale on error when estimating time trends in species occupancy. 278 

The fact that error in estimates of species occupancy is likely to be lower at coarser spatial resolutions 279 

sets up a trade-off between accuracy and “usefulness”. Estimates of species occupancy clearly have 280 

the potential to be more useful at fine scales. For example, working at a finer resolution, at which 281 

local extinctions and colonisations are more probable, means having a greater power to detect change. 282 



(Of course, this argument supposes that the estimates are accurate or at least consistently inaccurate 283 

over time. It also supposes that the power to detect change at some percentile is of primary interest, 284 

which is not always true.) Other limitations of working at coarse resolutions are that occupancy is a 285 

better surrogate for abundance, which is often of interest, and is often more relevant to policy at fine 286 

scales (Kunin, 1998; Spake et al., 2022). When deciding on the appropriate resolution at which to 287 

analyse their data, analysts must balance the need for accurate and useful estimates and remember that 288 

an estimate will not be useful if it is completely wrong.   289 

A good example of the potential for bias being balanced against the desire for finely resolved 290 

estimates of species occupancy is found in the latest plant atlas of the Botanical Society of Britain and 291 

Ireland (Stroh et al., 2023). The data were analysed at a 10 × 10 km scale—much coarser than the 292 

1 × 1 km resolution used by others in the area (Boyd, August, et al., 2023)—and time-periods were 293 

omitted, due to serious concerns about sampling biases affecting species data at finer scales across the 294 

20th century. For example, both rarer and more challenging to identify taxa were more likely to be 295 

reported at finer scales in the early part of the time series. Moreover, 𝑓 was known to be far smaller at 296 

smaller scales in these earlier periods (Pescott et al., 2019).  297 

Like all simulations, ours are a simplification of reality, which might have implications for the wider 298 

applicability of our results. We did not account for the fact that additional data tend to be available at 299 

coarser resolutions; for example, digitised specimens may be resolved only to some vague locality, 300 

and historic distribution data from species’ Atlases tend to be more coarsely resolved than 301 

contemporary data (Groom et al., 2018; Kunin et al., 2000; Pescott et al., 2019). These additional data 302 

would increase the sampling rate 𝑓 at coarse resolutions, which, as we have shown, would be likely to 303 

increase the accuracy of sample-based estimates of mean occupancy. [Note that it is possible to 304 

combine fine and coarse data using integrated distribution models and to draw inferences at the finer 305 

scale (Pacifici et al., 2019). Whether the fact that data might be available solely at coarse scales for 306 

historic time-periods, and at multiple scales for recent ones, will impact inference is an open 307 

question.] Our assumption of perfect detection (i.e. no false absences) is also unrealistic, so it is worth 308 

considering whether the prevalence of false absences is likely to be lower at fine or coarse resolutions. 309 

On the one hand, if a coarse resolution is chosen when planning data collection, false absences might 310 

be higher if the portions of the larger cells that are sampled are not suitable for the focal species 311 

(Altwegg & Nichols, 2019). On the other, if the resolution is chosen at the analysis stage, coarsening 312 

the spatial resolution increases the number of sampling events per site, so, all else being equal, it is 313 

more likely that the focal species will be detected if it is present.  314 

Rather than accepting false absences, it is common practice to try to correct them using some sort of 315 

occupancy-detection model (MacKenzie et al., 2002; Royle, 2006). Coarsening the resolution of the 316 

analysis risks violating the closure assumption of occupancy-detection models (Altwegg & Nichols, 317 

2019; Jönsson et al., 2021), but it also increases the amount of repeat visits to the same site, which are 318 

needed to estimate detectability and correct false absences. Interesting possibilities are that multi-scale 319 

occupancy models (Mordecai et al., 2011), which relax the closure assumption, could be used and that 320 

fine-scale sampling events could be used as spatial replicates to estimate detection probabilities and 321 

correct false absences at coarser scales (Srivathsa et al., 2018). While failing to correct false absences 322 

can make estimates of species occupancy worse, it is important to remember that successfully 323 

correcting them only reduces error to its baseline level determined by sampling biases (Meng, 2018).  324 

Coarsening the resolution of an analysis is one approach to counter some of the error introduced by 325 

sampling biases, but there are alternatives. One is to estimate mean occupancy in the population using 326 

a weighted sample mean, where the weights are equal to the inverse of the (possibly estimated) 327 

sample inclusion probabilities (Boyd, Stewart, et al., 2023; Johnston et al., 2020). If successful, 328 

weighting of this type brings the distribution of occupancy in the sample closer to its distribution in 329 

the population and can be recast as a means to minimising 𝜌(𝑅, 𝑌) (Meng, 2022). Several approaches 330 



to estimating sampling weights for unstructured (i.e. nonprobability) samples, the principal type of 331 

data used to estimate species occupancy, exist (Boyd, Stewart, et al., 2023; Elliott & Valliant, 2017). 332 

Weighting is often more successful where available covariates explain larger portions of the variance 333 

in sample inclusion (i.e. 𝑅) and the variable of interest (occupancy; (Collins et al., 2001), and it would 334 

be useful to investigate how this scales with spatial resolution.  335 

5 Conclusions 336 

Analysts consider several factors when deciding on the appropriate resolution at which to estimate 337 

species occupancy. Examples include the focal species’ home range sizes (Wilson & Schmidt, 2015), 338 

the scale at which they use the landscape more generally (Powney et al., 2019), the number of 339 

replicate visits to the same site within closure periods (Outhwaite et al., 2019) and the resolution at 340 

which the data were collected (Higa et al., 2015). We propose that analysts should also consider the 341 

fact that estimates are likely to be more accurate at coarse resolutions, because a highly erroneous 342 

finer-scale estimate is unlikely to be useful for most applications. The Meng (2018) equation provides 343 

a theoretical framework in which accuracy and the desire for finely resolved information can be 344 

balanced.  345 
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