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Abstract 8 

Species occupancy is often defined as the proportion of areal units (sites) in a landscape that the focal 9 

species occupies, but it is usually estimated as the proportion of sampled sites in which the species has 10 

been observed. Assuming perfect detection (i.e. no false absences), we show that three quantities–the 11 

degree of sampling bias (in terms of site selection), the proportion of sites that have been sampled and 12 

the variability of true occupancy across sites–determine the extent to which a sample-based estimate 13 

of occupancy differs from the truth. That these are the only three quantities to affect the accuracy of 14 

estimates of species occupancy is the fundamental insight of the “Meng equation”, an algebraic re-15 

expression of statistical error. We use simulations to show how each of the three quantities vary with 16 

the spatial resolution of the analysis and that actual estimation error is lower at coarser resolutions. 17 

Although finely resolved estimates of species occupancy have the potential to be more useful than 18 

coarse ones, this potential is only realised if the estimates are at least reasonably accurate. 19 

Consequently, wherever there is the potential for sampling bias, there is a trade-off between spatial 20 

resolution and accuracy, and the Meng equation provides a theoretical framework in which analysts 21 

can consider the balance between the two.  22 
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Introduction 24 

Species occupancy, which we define as the proportion of areal units (sites) in some defined landscape 25 

occupied by the focal species, is often of interest to ecologists (Kéry & Royle, 2016). It is used to 26 

quantify species’ range dynamics (Dennis et al., 2019; Outhwaite et al., 2020; Powney et al., 2019; 27 

Stroh et al., 2023), identify correlates and drivers of those range dynamics (Cooke et al., 2023; 28 

Woodcock et al., 2016), track the spread of invasive species and their effects on native taxa (Roy et 29 

al., 2012) and monitor progress towards (inter-) national biodiversity targets (Boyd, August, et al., 30 

2023). Clearly, information on species occupancy has the potential to be useful, but realising this 31 

potential is conditional on available data being an accurate reflection of reality.  32 

A major source of inaccuracy when estimating species occupancy is geographic sampling bias. In 33 

most circumstances—and particularly at fine scales across large areas—it is not possible to sample all 34 

sites, so occupancy must be estimated from the subset of sites that have been sampled (Kéry & Royle, 35 

2016). If occupancy differs between sampled and non-sampled sites, then the sample is not 36 

representative, and the sample-based estimate of species occupancy will differ from its true value in 37 

the wider landscape (Boyd, Powney, et al., 2023; Meng, 2018). Sampling biases are just one of many 38 

sources of error when estimating species occupancy (e.g. Isaac et al., 2014; MacKenzie et al., 2002). 39 

Further complicating estimation of species occupancy is that it varies with spatial resolution. 40 

Occupancy always increases as the resolution is coarsened, but the rate at which it increases depends 41 
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on the fine-scale properties of the species’ geographic distribution (Azaele et al., 2012; Kunin, 1998; 42 

Wilson et al., 2004). Occupancy is a better surrogate for abundance, which is often of primary 43 

interest, at fine resolutions (Kunin, 1998). Indeed, where the scale of analysis is roughly the size of an 44 

individual, occupancy and abundance are equivalent. A species’ abundance is more variable than its 45 

occupancy (e.g. Dennis et al., 2019), since local occupancy does not decline until local abundance 46 

reaches zero and cannot increase once it is above zero. Consequently, working at finer scales, where 47 

occupancy is a better surrogate for abundance, means having a greater power to detect change.  48 

Although estimates of occupancy are nominally more useful at fine scales, there are reasons to work 49 

at coarser resolutions too. One reason is that resourcing constraints might preclude the additional 50 

sampling effort required to estimate occupancy at fine resolutions. Another is that the effects of 51 

sampling biases become more pronounced where there are more sites in the landscape (Boyd, 52 

Powney, et al., 2023; Meng, 2018), which is obviously the case at finer resolutions (i.e. where the 53 

sites are smaller). The fact that sampling biases are more pervasive at finer spatial resolutions raises 54 

questions about how the accuracy of estimates of species occupancy scales with resolution. Although 55 

working at coarser resolutions will clearly improve accuracy at the extremes—we can be surer a 56 

species occupies planet earth than a set of small plots on its surface—how accuracy varies along the 57 

gradient from fine to coarse resolutions under sampling bias has not, to our knowledge, been 58 

investigated in ecology.  59 

Here then, we investigate how the error of sample-based estimators of species occupancy vary with 60 

spatial resolution. Assuming no false absences (or that a model has adequately corrected them), we 61 

begin by demonstrating that three, and only three, quantities determine the magnitude of the error: the 62 

degree of sampling bias (in terms of site selection), the proportion of sites sampled and the variability 63 

of true occupancy across sites. That these are the only quantities affecting estimation error is a key 64 

implication of Meng’s (2018) decomposition of survey error. We use simulations to show how each 65 

of the three quantities and error vary with spatial resolution under sampling bias (at the finest 66 

resolution) and how varying the level of sampling bias affects the error. A trade-off emerges between 67 

finely resolved and accurate estimates, which we discuss in detail. Analysts should consider our 68 

results when deciding on the most appropriate resolution at which to estimate species occupancy.  69 

Methods  70 

Quantifying estimation error 71 

We consider a landscape comprising 𝑁 sites. The presence of at least one individual of the focal 72 

species is a binary variable 𝑌 taking the value 1 at sites where it is present and 0 elsewhere. 73 

Occupancy 𝑃(𝑌 = 1) is the proportion of sites at which the species is present, which is equivalent to 74 

the mean of 𝑌 across sites �̅�. Of the 𝑁 sites, a subset 𝑛 are sampled. Whether each site is one of the 𝑛 75 

sampled sites is another binary variable 𝑅 (𝑅 = 1 where the site is sampled and 𝑅 = 0 otherwise). It 76 

is not possible to calculate mean occupancy across all 𝑁 sites, �̅�𝑁, because information is not available 77 

on sites with 𝑅 = 0. Instead, it is common to estimate �̅�𝑁 as mean occupancy across sampled sites �̅�𝑛.  78 

Assuming no measurement error (e.g. false absences), the actual error of �̅�𝑛 as an estimator of �̅�𝑁 is 79 

(Meng, 2018) 80 

 
�̅�𝑛 − �̅�𝑁 = 𝜌(𝑅, 𝑌)√

1−𝑓

𝑓
 𝜎𝑌.  

 

equation 1 

The first quantity on the right, 𝜌(𝑅, 𝑌), is the (population) correlation between 𝑌 and 𝑅. It is a 81 

measure of both the sign and magnitude of sampling bias. In simple terms, 𝜌(𝑅, 𝑌) is negative where 82 

𝑌 is generally smaller in the sample than in the population and vice versa. 𝑓 is the sampling rate 83 

(𝑛/𝑁), and the second quantity on the right is a measure of data quantity. The final quantity 𝜎𝑌 is the 84 



population standard deviation of 𝑌. It is 0 where 𝑌 is constant, in which case a sample size of 1 is 85 

sufficient to estimate �̅�𝑁 with no error, and it is largest where 𝑌 is most variable. Hence, it can be 86 

considered a measure of “problem difficulty” (Meng, 2018), although we refer to it as occupancy 87 

variability given the context in which we are working. 88 

Importantly, eq. 1 gives the actual error of �̅�𝑛 as an estimator of �̅�𝑁 for a given sample: that is, for one 89 

realisation of 𝑅. In what follows, we consider replicate realisations of 𝑅 from given 𝑅-generating (i.e. 90 

sampling) mechanisms and the average �̅�𝑛 − �̅�𝑁 across those samples.  91 

Effects of spatial resolution on error 92 

Eq. 1 provides a basis for understanding the effects of resolution on absolute error when estimating 93 

species occupancy. Assuming perfect detection, it implies that there are three, and only three, ways to 94 

reduce error: decrease the sampling bias 𝜌(𝑅, 𝑌), increase the sampling rate 𝑓 and/or decrease the 95 

occupancy variability 𝜎𝑌. Below we describe a set of simulations that demonstrate the effects of 96 

coarsening the spatial resolution on each of these quantities and on error.  97 

Simulation setup 98 

Virtual landscape, species and samples  99 

The virtual landscape comprises a square grid of 𝑁 = 6400 cells (80 × 80) at the finest resolution. 100 

Each cell might represent, say, a 1 ×  1 km grid square, but the precise definition is not important for 101 

drawing general conclusions.  102 

We simulated six species’ geographic distributions, of different sizes and with different levels of 103 

clustering, in the virtual landscape. Our approach was a simplified version of the one used by Guélat 104 

& Kéry (2018). For each species, the first step was to populate every cell in the landscape with an 105 

index 𝑋 sampled from a multivariate normal distribution  106 

 𝑋~𝒩(𝝁, 𝜹),  
 

equation 2 

where 𝝁 is an 𝑁-vector of 0’s (i.e. mean 𝑋 for each grid cell) and 𝜹 is an 𝑁 × 𝑁 covariance matrix. 107 

We used an exponential decay function to define the covariance matrix 108 

  𝜹 = 𝑒−𝜑 𝑫𝒊,𝒋 ,  
 

equation 3 

where 𝜑 is the decay constant and 𝑫𝒊,𝒋 is the Euclidian distance between grid cells 𝑖 and 𝑗. Larger 109 

values of 𝜑 result in patchier distributions, because the covariance between grid cells diminishes 110 

faster with the distance between them.  111 

The next step was to convert the continuous index 𝑋 to a binary one (i.e. occupied vs unoccupied) 112 

with a specified proportion of cells being occupied. For each species, we set a threshold percentile of 113 

𝑋 across grid cells (1 − �̅�𝑁) above which the cell was designated occupied and below which it was 114 

designated unoccupied. Table 1 lists the parameters used to simulate each species’ geographic 115 

distribution and the resulting properties of those distributions. 116 

It was important that the simulated species’ distributions spanned a range of plausible sizes and levels 117 

of clustering, because these properties determine how �̅�𝑁 scales with resolution (Kunin, 1998). We 118 

tested whether the distributions covered sufficiently wide ranges of these parameters using their 119 

fractal dimensions (Kunin, 1998). The fractal dimension 𝐷 of a species’ distribution is given by 𝐷 =120 

2(1 − 𝑏), where 𝑏 is the slope of its scale-area curve (i.e. a plot of the logarithm of range size against 121 

the logarithm of the area of each grid cell; Hartley & Kunin, 2003). We calculated 𝑏 over the finest 122 

three resolutions, because for the medium and common species, including the coarsest two resolutions 123 

resulted in nonlinear scale-area curves (i.e. their distributions are non-fractal at coarse scales). The 124 

theoretical limits of the fractal dimension are 0, representing a species whose distribution is very 125 



sparse, and 2, representing a species whose distribution is very clustered (Hartley & Kunin, 2003). 126 

Our virtual species’ distributions spanned the majority of this range (0.31−1.64). Note that 𝐷 is 127 

positively related to �̅�𝑁 (Wilson et al., 2004).  128 

Table 1. Properties of the six virtual species’ distributions at the finest spatial resolution. The 129 

autocorrelation parameter is the exponential decay constant in eq. 3, and higher values produce a more 130 

dispersed distribution. The theoretical limits for the fractal dimension are 0, representing a highly 131 

dispersed species, and 2, representing a very clustered one. The fractal dimension also varies with �̅�𝑁 132 

(Wilson et al., 2004). 133 

Distribution 

properties 

Exponential decay 

parameter in 

autocorrelation 

function  

Proportion of sites 

occupied (at the finest 

scale) 

Fractal dimension 

Rare and sparse  0.6 0.01 0.31 

Rare and clustered 0.1 0.01 0.87 

Medium and sparse 0.6 0.25 1.20 

Medium and clustered 0.1 0.25 1.39 

Common and sparse 0.6 0.5 1.57 

Common and 

clustered 

0.1 0.5 1.64 

 134 

For each species, we simulated 100 virtual samples at the finest resolution. Whilst it might seem more 135 

logical to simulate one set of samples for all species, this would not allow control over 𝜌(𝑅, 𝑌), the 136 

sampling bias, which depends on the focal species’ geographic distribution. For most simulations, we 137 

simulated the samples in such a way that 𝐸𝑅[𝜌(𝑅, 𝑌)]~0.05 and 𝑓 =  0.1, where 𝐸𝑅[𝜌(𝑅, 𝑌)] is the 138 

expectation (average) of 𝜌(𝑅, 𝑌) over the 100 simulated samples (i.e. with respect to 𝑅). See the 139 

supplementary Fig. S1 for the distributions of 𝜌(𝑅, 𝑌) across samples for each species. We based the 140 

values of 𝜌(𝑅, 𝑌) and 𝑓 on an empirical example: a citizen science dataset on vascular plant sampling 141 

and the species Calluna vulgaris’ occupancy in Britain (Boyd et al., 2023). Whilst we generally set 142 

𝐸𝑅[𝜌(𝑅, 𝑌)]~0.05 and 𝑓 =  0.1 , we also demonstrate the effects of varying both parameters (in the 143 

supplementary material for 𝑓). Switching the sign of 𝜌(𝑅, 𝑌) (i.e. whether occupancy is larger or 144 

smaller in the sample than the population) would switch the sign of the error in the estimate of mean 145 

occupancy, but for simplicity we only present the positive case.  146 

Analysis of error at each resolution 147 

The goal of our analysis was to determine how the actual error of �̅�𝑛 as an estimator of �̅�𝑁  (�̅�𝑛 − �̅�𝑁; 148 

assuming perfect detection) varies with spatial resolution. Starting at the finest resolution, we 149 

calculated the value of each quantity in eq. 1 (including the actual error; averaged across the 100 150 

samples). We then coarsened the resolution by aggregating every square of four grid cells into one 151 

(i.e. doubling the length and width of the site). After coarsening the resolution, we recalculated each 152 

quantity in eq. 1, coarsened the resolution again and repeated the process until each grid cell was 16× 153 

its original height and width. Fig. 1 shows how a species’ distribution (medium and clustered; Table 154 

1) and a sample vary with resolution. 155 



 156 

Figure 1. Top row: a virtual species’ (“medium and clustered”; Table 1) geographic distribution at 157 

each spatial resolution. Green cells are occupied, and grey cells are not. Bottom row: a virtual sample 158 

at each resolution. 𝜌(𝑅, 𝑌)~0.05 and 𝑓~0.1 at the finest resolution (1 × 1). Purple cells are sampled, 159 

and grey cells are not. Sampled cells may be either occupied or not.  160 

Results  161 

Error 162 

For all virtual species, estimates of occupancy are more accurate at coarser resolutions. This is evident 163 

both in terms of the absolute actual error (Fig. 2A), which is on the left side of eq. 1, and the relative 164 

actual error (Fig. 2B), which expresses the absolute error as a percentage of true occupancy. Relative 165 

error is larger for rare species. Absolute error is larger for the medium and common species, 166 

particularly at the finer resolutions.  167 

 168 

Figure 2. (A) absolute error, (B) relative error (i.e. the absolute error expressed as a percentage of true 169 

occupancy), (C) mean occupancy (i.e. true occupancy), (D) sampling bias, (E) sampling rate and (F) 170 

occupancy variability 𝜎𝑌 at each resolution. The resolution is the height and width of the grid cells in 171 

arbitrary units. Points represent the average of each statistic over 100 simulated samples. At the finest 172 

resolution, 𝜌(𝑅, 𝑌)~0.05 and 𝑓~0.1, the target values for the simulations.  173 



True occupancy 174 

Although well-documented (Azaele et al., 2012; Kunin, 1998), it is worth revisiting the scaling 175 

properties of �̅�𝑁  (i.e. a species’ true occupancy) here, because they provide insight into the scaling 176 

properties of error. �̅�𝑁 always increases with resolution, but the rate at which it increases depends on 177 

the properties of the species’ distribution at the finest resolution (Fig. 2C). Species that are common 178 

and sparsely distributed at the finest resolution quickly reach �̅�𝑁 = 1 as the resolution is coarsened. 179 

By contrast, species that are rare and clustered at the finest resolution do not reach �̅�𝑁 = 1 at any of 180 

the resolutions we considered (Fig. 2A).  181 

Sampling bias 182 

In our simulations, the sampling bias 𝜌(𝑅, 𝑌) tends towards 0 as the resolution is coarsened. There are 183 

plausible scenarios in which it will not, however, a point that we expand on in the Discussion.  184 

Sampling rate  185 

The sampling rate 𝑓 scales in a similar way with resolution to �̅�𝑁. It always increases with resolution, 186 

and sparser samples increase at a greater rate. In our simulations, sparser samples are slightly more 187 

likely for the sparsely distributed species, because we forced a correlation between the species’ 188 

distributions and the samples (i.e. a sampling bias). Hence, 𝑓 does not increase at exactly the same 189 

rate for all species.  190 

Occupancy variability 191 

As occupancy is binary, 𝜎𝑌 = √�̅�𝑁(1 − �̅�𝑁) (Bradley et al., 2021). It is largest where �̅�𝑁 is near 0.5 192 

and smallest where �̅�𝑁 is near 0 or 1. Given that �̅�𝑁 increases with resolution (Fig. 2C), coarsening the 193 

resolution for species with �̅�𝑁 < 0.5 increases 𝜎𝑌 until �̅�𝑁 = 0.5 (Fig. 2F). Further coarsening the 194 

resolution decreases 𝜎𝑌, because �̅�𝑁 moves away from 0.5 and towards 1. For species with �̅�𝑁 ≥ 0.5 195 

at the finest resolution, coarsening the resolution always decreases 𝜎𝑌. 196 

Scaling of error with resolution at different levels of sampling bias 197 

In most simulations, we set 𝜌(𝑅, 𝑌)~0.05 at the finest resolution, but it is instructive to see how 198 

actual error scales with resolution under different levels of sampling bias. Error generally scales in the 199 

same way with resolution regardless of the level of sampling bias, but is greater in magnitude under 200 

stronger sampling bias (Fig. 3). Under a simple random sample at the finest resolution, where the 201 

expected sampling bias 𝐸𝑅[𝜌(𝑅, 𝑌)] = 0, there is roughly no error at any resolution (recalling that we 202 

present the average error across samples, which essentially removes sampling error). Note that we 203 

were not able to simulate highly biased samples (𝐸𝑅[𝜌(𝑅, 𝑌)]~0.15) for the common species (blue 204 

lines in Fig. 3). For these species, �̅�𝑁 is very different to 𝑓, which makes a large and positive 𝜌(𝑅, 𝑌) 205 

highly unlikely, and our algorithm for generating the samples could not achieve it.  206 



 207 

Figure 3. Absolute error at each resolution under four levels of sampling bias 𝜌(𝑅, 𝑌) (at the finest 208 

resolution). The resolution is the height and width of the grid cells in arbitrary units. The simple 209 

random sample has approximately no sampling bias at the finest resolution. Each line represents one 210 

virtual species: red = rare, green = medium and blue = common. Solid lines depict species with 211 

clustered distributions at the finest resolution and dashed lines indicate species that are highly 212 

dispersed at the finest resolution. Points represent the average of each statistic over 100 simulated 213 

samples. 𝑓 ~ 0.1 at the finest resolution in all cases.  214 

Discussion 215 

Nobody would dispute the fact that estimates of species occupancy are more accurate at coarse scales 216 

asymptotically: we can be surer that a species occupies Britain than it does some 1 km grid square 217 

therein. Our contribution has been to show that accuracy varies somewhat predictably along the 218 

spectrum from fine to coarse resolutions. Indeed, Meng’s (2018) three-part decomposition provides a 219 

clear theoretical framework within which analysts can consider quantities like the potential sampling 220 

bias and the sampling rate when deciding on the appropriate resolution at which to estimate 221 

occupancy. Coarsening the resolution will be particularly beneficial where sampling biases are likely 222 

to be large (e.g. when using citizen science data; Pescott et al., 2019, Stroh et al., 2023).  223 

The Meng (2018) equation tells us that to increase the accuracy of estimates of species occupancy, we 224 

should work at the spatial resolution at which the sampling bias and the variability of occupancy in 225 

the landscape are smallest and at which the sampling rate is highest. Maximising the sampling rate is 226 

simplest, because it always increases with resolution. The effect of resolution on the variability of 227 

occupancy in the landscape depends on the species’ prevalence (i.e. �̅�𝑁) at the finest resolution. If 228 

there is good reason to think that �̅�𝑁 ≥ 0.5—say, from an expert drawn range map—then coarsening 229 

the resolution will always reduce 𝜎𝑌. On the other hand, if there is good reason to think that the 230 

species is rare, then coarsening the resolution will increase 𝜎𝑌 until the �̅�𝑁 reaches 0.5. The effect of 231 

spatial resolution on sampling bias 𝜌(𝑅, 𝑌) is the most difficult to assess of the three quantities that 232 

determine error.  233 



In our simulations, 𝜌(𝑅, 𝑌) generally decreased as the spatial resolution was coarsened, but this will 234 

not be universally true. Recall that we presented the average 𝜌(𝑅, 𝑌) across 100 samples: for some of 235 

the individual samples, 𝜌(𝑅, 𝑌) occasionally increased from one resolution to the next. More general 236 

insight into how 𝜌(𝑅, 𝑌) might scale with resolution in other situations can be gleaned from the 237 

formula for Pearson’s correlation coefficient. 𝜌(𝑅, 𝑌) is the Pearson’s correlation between 𝑅 and 238 

occupancy 𝑌, which is to say their covariance divided by the product of their standard deviations. We 239 

have already seen that coarsening the resolution of analysis increases the standard deviation of 𝑌 𝜎𝑌 240 

until �̅�𝑁 ≥ 0.5, at which point further coarsening the resolution reduces it. The same logic applies to 241 

the standard deviation of the 𝑅, which is also a binary variable. It follows that the denominator in the 242 

formula for 𝜌(𝑅, 𝑌), the product of the standard deviations of 𝑌 and 𝑅, increases as the resolution is 243 

coarsened to the point where �̅�𝑁 ≥ 0.5 and 𝑃(𝑅 = 1) ≥ 0.5, at which point further coarsening the 244 

resolution reduces it. For a given covariance between occupancy and 𝑅 then, coarsening the resolution 245 

of analysis will reduce 𝜌(𝑅, 𝑌) where �̅�𝑁 ≥ 0.5 and 𝑃(𝑅 = 1) ≥ 0.5. Further work is needed to 246 

understand how the covariance between occupancy and 𝑅 will vary with spatial resolution under 247 

different conditions.  248 

Of course, error is not the sole criterion on which analysts should base their decision about the spatial 249 

resolution at which to work, because estimates of species occupancy become less useful at coarse 250 

resolutions (assuming a given level of accuracy). For one, the power to detect change is greater at fine 251 

scales, because trends at some fine scale might not be evident at a coarser one (Jönsson et al., 2021). 252 

Coarsening the resolution of estimation thus stands somewhat in opposition to the principle espoused 253 

by the Convention on Biological Diversity (CBD) that indicators should be sensitive to change 254 

(https://www.cbd.int/indicators/indicatorprinciples.shtml; although the CBD also ask for “scientific 255 

soundness” and “policy relevance”, implying minimal error as a strongly desirable property). Other 256 

limitations of working at coarse resolutions are that occupancy is a better surrogate for abundance and 257 

often more relevant to policy at fine scales (Kunin, 1998; Spake et al., 2022), and that modelling the 258 

ecological or data generating processes becomes more difficult where the scale of analysis is much 259 

coarser than the scales at which they operate (but see Hill, 2012). Clearly, there is a trade-off between 260 

the usefulness and accuracy of estimates of species occupancy.  261 

Importantly, however, the usefulness of an estimate is conditional on it being at least reasonably 262 

accurate. Imagine a species whose occupancy declines at some fine scale over time. It is sampled in 263 

two time-periods, and the sampling bias is strong in both periods. If the sampling bias switches 264 

direction from negative in the first period to positive in the next, then we may fail to detect the decline 265 

or even spuriously detect an increase (depending on the relative magnitudes of the sampling bias; 266 

Bowler et al., 2022; Pescott et al., 2019). Working at a coarser resolution might reduce the error in 267 

both time-periods to the point where the actual trend (at the coarser scale) is detectable and the chance 268 

of detecting a spurious trend is low. Of course, if the sampling bias has the same sign in both time-269 

periods, then we may be able to detect the decline at the fine resolution despite under- or 270 

overestimating occupancy in both periods (Pocock et al., 2023). Ultimately intuition about the 271 

likelihood of such scenarios requires familiarity with the species’ datasets being used for an analysis 272 

and clear assessments of the likely risk of bias (Boyd et al., 2022; Boyd, Powney, et al., 2023).  273 

A good example of the potential for bias being balanced against the desire for finely-resolved 274 

estimates of species occupancy is found in the latest plant atlas of the Botanical Society of Britain and 275 

Ireland (Stroh et al., 2023). The data were analysed at a 10 × 10 km scale—much coarser than the 1 ×276 

1 km resolution used by others in the area (e.g. Boyd, August, et al., 2023)—and particular time-277 

periods were omitted, because of serious concerns about sampling biases affecting species data at 278 

finer scales across the 20th century. For example, rarer and more critical taxa were more likely to be 279 

reported at finer scales in the early part of the time series. Moreover, 𝑓 was known to be far smaller at 280 

smaller scales in these earlier periods (Pescott et al., 2019).  281 

https://www.cbd.int/indicators/indicatorprinciples.shtml


Like all simulations, ours are a simplification of reality, which might have implications for the wider 282 

applicability of our results. We did not account for the fact that additional data tend to be available at 283 

coarser resolutions; for example, digitised specimens may be resolved only to some vague locality, 284 

and historic distribution data from species’ Atlases tend to be more coarsely resolved than 285 

contemporary data (Groom et al., 2018; Kunin et al., 2000; Pescott et al., 2019). These additional data 286 

would increase the sampling rate 𝑓 at coarse resolutions, which, as we have shown, would be likely to 287 

increase the accuracy of sample-based estimates of mean occupancy. [Note that it is possible to 288 

combine fine and coarse data using integrated distribution models and to draw inferences at the finer 289 

scale (Pacifici et al., 2019). Whether the fact that data might be available solely at coarse scales for 290 

historic time-periods, and at multiple scales for recent ones, will impact inference is an open question. 291 

Moreover, it is worth noting that the parameters of any such integrated model will also be subject to 292 

potential biases in estimation in the face of important unmodelled sampling variation.] Our 293 

assumption of perfect detection (i.e. no false absences) is also unrealistic, so it is worth considering 294 

whether the prevalence of false absences is likely to be lower at fine or coarse resolutions. On the one 295 

hand, if a coarse resolution is chosen when planning data collection, false absences might be higher if 296 

the portions of the larger cells that are sampled are not suitable for the focal species (Altwegg & 297 

Nichols, 2019). On the other, if the resolution is chosen at the analysis stage, coarsening the spatial 298 

resolution increases the number of sampling events per grid cell, so, all else being equal, it is more 299 

likely that the focal species will be detected if it is present.  300 

Rather than accepting false absences, it is common practice to try to correct them using some sort of 301 

occupancy-detection model (MacKenzie et al., 2002; Royle, 2006). Coarsening the resolution of the 302 

analysis risks violating the closure assumption of occupancy-detection models (Altwegg & Nichols, 303 

2019; Jönsson et al., 2021), but also increases the amount of repeat visits to the same site, which are 304 

needed to estimate detectability and correct false absences. Interesting possibilities are that multi-scale 305 

occupancy models (Mordecai et al., 2011), which relax the closure assumption, could be used and that 306 

fine-scale sampling events could be used as spatial replicates to estimate detection probabilities and 307 

correct false absences at coarser scales (cf. Srivathsa et al., 2018). While failing to correct false 308 

absences can make estimates of species occupancy worse, it is important to remember that 309 

successfully correcting them only reduces error to its baseline level determined by sampling biases 310 

(Meng, 2018).  311 

Coarsening the resolution of an analysis is one approach to counter some of the error introduced by 312 

sampling biases, but there are alternatives. One is to estimate mean occupancy in the population using 313 

a weighted sample mean, where the weights are equal to the inverse of the (estimated) sample 314 

inclusion probabilities (Boyd, Stewart, et al., 2023; Johnston et al., 2020). If successful, weighting of 315 

this type brings the distribution of occupancy in the sample closer to its distribution in the population 316 

and can be recast as a means to minimising 𝜌(𝑅, 𝑌) (Meng, 2022). Several approaches to estimating 317 

sampling weights for unstructured (i.e. nonprobability) samples, the principal type of data used to 318 

estimate species occupancy, exist (Boyd, Stewart, et al., 2023; Elliott & Valliant, 2017). Weighting is 319 

often more successful where available covariates explain larger portions of the variance in sample 320 

inclusion (i.e. 𝑅) and the variable of interest (occupancy; Collins et al., 2001), and it would be useful 321 

to investigate how this scales with spatial resolution.  322 

Analysts consider several factors when deciding on the appropriate resolution at which to estimate 323 

species occupancy. Examples include the focal species’ home range sizes (Wilson & Schmidt, 2015), 324 

the scale at which they use the landscape more generally (Powney et al., 2019), the number of 325 

replicate visits to the same site within closure periods (Outhwaite et al., 2019) and the resolution at 326 

which the data were collected (Higa et al., 2015). We propose that analysts should also consider the 327 

fact that estimates are likely to be more accurate at coarse resolutions, because a highly erroneous 328 

finer-scale estimate is unlikely to be useful for most applications. The Meng (2018) equation provides 329 



a theoretical framework in which accuracy and the desire for finely resolved information can be 330 

balanced.  331 

Code availability 332 

All code needed to fully reproduce our analysis is available at 333 

https://github.com/robboyd/biasVsResolution.  334 

References 335 

Altwegg, R., & Nichols, J. D. (2019). Occupancy models for citizen-science data. Methods in Ecology 336 

and Evolution, 10(1), 8–21. https://doi.org/10.1111/2041-210X.13090 337 

Azaele, S., Cornell, S. J., & Kunin, W. E. (2012). Downscaling species occupancy from coarse spatial 338 

scales. Ecological Applications, 22(3), 1004–1014. https://doi.org/10.1890/11-0536.1 339 

Bowler, D. E., Callaghan, C. T., Bhandari, N., Henle, K., Barth, M. B., Koppitz, C., Klenke, R., 340 

Winter, M., Jansen, F., Bruelheide, H., & Bonn, A. (2022). Temporal trends in the spatial bias of 341 

species occurrence records. Ecography. https://doi.org/10.1111/ecog.06219 342 

Boyd, R. J., August, T., Cooke, R., Logie, M., Mancini, F., Powney, G., Roy, D., Turvey, K., & Isaac, 343 

N. (2023). An operational workflow for producing periodic estimates of species occupancy at 344 

large scales. Biological Reviews, 9. https://doi.org/10.32942/OSF.IO/2V7JP 345 

Boyd, R. J., Powney, G. D., Burns, F., Danet, A., Duchenne, F., Grainger, M. J., Jarvis, S. G., Martin, 346 

G., Nilsen, E. B., Porcher, E., Stewart, G. B., Wilson, O. J., & Pescott, O. L. (2022). ROBITT: A 347 

tool for assessing the risk-of-bias in studies of temporal trends in ecology. Methods in Ecology 348 

and Evolution, 13(March), 1497– 1507. https://doi.org/10.1111/2041-210X.13857 349 

Boyd, R. J., Powney, G. D., & Pescott, O. L. (2023). We need to talk about nonprobability samples. 350 

Trends in Ecology & Evolution, xx(xx), 1–11. https://doi.org/10.1016/j.tree.2023.01.001 351 

Boyd, R. J., Stewart, G. B., & Pescott, O. L. (2023). Descriptive inference using large , 352 

unrepresentative nonprobability samples : An introduction for ecologists. Ecoevorxiv, April. 353 

https://doi.org/10.32942/X2359P 354 

Bradley, V. C., Kuriwaki, S., Isakov, M., Sejdinovic, D., Meng, X. L., & Flaxman, S. (2021). 355 

Unrepresentative big surveys significantly overestimated US vaccine uptake. Nature, 600(7890), 356 

695–700. https://doi.org/10.1038/s41586-021-04198-4 357 

Collins, L. M., Schafer, J., & Kam, C. (2001). A Comparison of Restrictive Strategies in Modern 358 

Missing Data Procedures. Psychological Methods, 6(June). https://doi.org/10.1037/1082-359 

989X.6.4.330 360 

Cooke, R., Mancini, F., Boyd, R., Evans, K. L., Shaw, A., Webb, T. J., & Isaac, N. J. B. (2023). 361 

Protected areas support more species than unprotected areas in Great Britain , but lose them 362 

equally rapidly. Biological Conservation, 278(December 2022), 109884. 363 

https://doi.org/10.1016/j.biocon.2022.109884 364 

Dennis, E. B., Brereton, T. M., Morgan, B. J. T., Fox, R., Shortall, C. R., Prescott, T., & Foster, S. 365 

(2019). Trends and indicators for quantifying moth abundance and occupancy in Scotland. 366 

Journal of Insect Conservation, 23(2), 369–380. https://doi.org/10.1007/s10841-019-00135-z 367 

Elliott, M. R., & Valliant, R. (2017). Inference for nonprobability samples. Statistical Science, 32(2), 368 

249–264. https://doi.org/10.1214/16-STS598 369 

Groom, Q. J., Marsh, C. J., Gavish, Y., & Kunin, W. E. (2018). How to predict fine resolution 370 

occupancy from coarse occupancy data. Methods in Ecology and Evolution, 9(11), 2273–2284. 371 

https://doi.org/10.1111/2041-210X.13078 372 

https://github.com/robboyd/biasVsResolution


Guélat, J., & Kéry, M. (2018). Effects of spatial autocorrelation and imperfect detection on species 373 

distribution models. Methods in Ecology and Evolution, 9(6), 1614–1625. 374 

https://doi.org/10.1111/2041-210X.12983 375 

Hartley, S., & Kunin, W. E. (2003). Scale Dependency of Rarity, Extinction Risk, and Conservation 376 

Priority. Conservation Biology, 17(6), 1559–1570. https://doi.org/10.1111/j.1523-377 

1739.2003.00015.x 378 

Higa, M., Yamaura, Y., Koizumi, I., Yabuhara, Y., Senzaki, M., & Ono, S. (2015). Mapping large-379 

scale bird distributions using occupancy models and citizen data with spatially biased sampling 380 

effort. Diversity and Distributions, 21(1), 46–54. https://doi.org/10.1111/ddi.12255 381 

Hill, M. O. (2012). Local frequency as a key to interpreting species occurrence data when recording 382 

effort is not known. Methods in E, 3(2012), 195–205. https://doi.org/10.1111/j.2041-383 

210X.2011.00146.x 384 

Isaac, N. J. B., van Strien, A. J., August, T. A., de Zeeuw, M. P., & Roy, D. B. (2014). Statistics for 385 

citizen science: Extracting signals of change from noisy ecological data. Methods in Ecology 386 

and Evolution, 5(10), 1052–1060. https://doi.org/10.1111/2041-210X.12254 387 

Johnston, A., Moran, N., Musgrove, A., Fink, D., & Baillie, S. R. (2020). Estimating species 388 

distributions from spatially biased citizen science data. Ecological Modelling, 422(December 389 

2019), 108927. https://doi.org/10.1016/j.ecolmodel.2019.108927 390 

Jönsson, G. M., Broad, G. R., Sumner, S., & Isaac, N. J. B. (2021). A century of social wasp 391 

occupancy trends from natural history collections: spatiotemporal resolutions have little effect 392 

on model performance. Insect Conservation and Diversity, 14(5), 543–555. 393 

https://doi.org/10.1111/icad.12494 394 

Kéry, M., & Royle, J. A. (2016). Applied hierarchical modelling in ecology: analysis of species 395 

distribution, abundance and species richness in R and BUGS. Academic press. 396 

Kunin, W. E. (1998). Extrapolating species abundance across spatial scales. Science, 281(5382), 397 

1513–1515. https://doi.org/10.1126/science.281.5382.1513 398 

Kunin, W. E., Hartley, S., & Lennon, J. J. (2000). Scaling down: On the challenge of estimating 399 

abundance from occurrence patterns. American Naturalist, 156(5), 560–566. 400 

https://doi.org/10.1086/303408 401 

MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle, A. A., & Langtimm, C. A. 402 

(2002). Estimating site occupancy rates when detection probabilities are less than one. Ecology, 403 

83(8), 2248–2255. https://doi.org/10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2 404 

Meng, X.-L. (2018). Statistical paradises and paradoxes in big data (I): Law of large populations, big 405 

data paradox, and the 2016 us presidential election. Annals of Applied Statistics, 12(2), 685–726. 406 

https://doi.org/10.1214/18-AOAS1161SF 407 

Meng, X.-L. (2022). Comments on the Wu ( 2022 ) paper by Xiao-Li Meng 1 : Miniaturizing data 408 

defect correlation : A versatile strategy for handling non-probability samples. Survey 409 

Methodology, 48(2), 1–22. 410 

Mordecai, R. S., Mattsson, B. J., Tzilkowski, C. J., & Cooper, R. J. (2011). Addressing challenges 411 

when studying mobile or episodic species: Hierarchical Bayes estimation of occupancy and use. 412 

Journal of Applied Ecology, 48(1), 56–66. https://doi.org/10.1111/j.1365-2664.2010.01921.x 413 

Outhwaite, C., Gregory, R. D., Chandler, R. E., Collen, B., & Isaac, N. J. B. (2020). Complex long-414 

term biodiversity change among invertebrates, bryophytes and lichens. Nature Ecology & 415 

Evolution. https://doi.org/10.1038/s41559-020-1111-z 416 

Outhwaite, C., Powney, G., August, T., Chandler, R., Rorke, S., Pescott, O. L., Harvey, M., Roy, H. 417 



E., Fox, R., Roy, D. B., Alexander, K., Ball, S., Bantock, T., Barber, T., Beckmann, B. C., Cook, 418 

T., Flanagan, J., Fowles, A., Hammond, P., … Isaac, N. J. B. (2019). Annual estimates of 419 

occupancy for bryophytes, lichens and invertebrates in the UK, 1970-2015. Scientific Data, 6(1), 420 

259. https://doi.org/10.1038/s41597-019-0269-1 421 

Pacifici, K., Reich, B. J., Miller, D. A. W., & Pease, B. S. (2019). Resolving misaligned spatial data 422 

with integrated species distribution models. Ecology, 100(6), 1–15. 423 

https://doi.org/10.1002/ecy.2709 424 

Pescott, O. L., Humphrey, T. A., Stroh, P. A., & Walker, K. J. (2019). Temporal changes in 425 

distributions and the species atlas: How can British and Irish plant data shoulder the inferential 426 

burden? British & Irish Botany, 1(4), 250–282. https://doi.org/10.33928/bib.2019.01.250 427 

Pocock, M. J. O., Logie, M., Isaac, N. J. B., Fox, R., & August, T. (2023). The recording behaviour of 428 

field-based citizen scientists and its impact on biodiversity trend analysis. Ecological Indicators, 429 

151(April), 110276. https://doi.org/10.1016/j.ecolind.2023.110276 430 

Powney, G. D., Carvell, C., Edwards, M., Morris, R. K. A., Roy, H. E., Woodcock, B. A., & Isaac, N. 431 

J. B. (2019). Widespread losses of pollinating insects in Britain. Nature Communications, 432 

10(2019), 1–6. https://doi.org/10.1038/s41467-019-08974-9 433 

Roy, H. E., Adriaens, T., Isaac, N. J. B., Kenis, M., Onkelinx, T., Martin, G. S., Brown, P. M. J., 434 

Hautier, L., Poland, R., Roy, D. B., Comont, R., Eschen, R., Frost, R., Zindel, R., Van 435 

Vlaenderen, J., Nedvěd, O., Ravn, H. P., Grégoire, J. C., de Biseau, J. C., & Maes, D. (2012). 436 

Invasive alien predator causes rapid declines of native European ladybirds. Diversity and 437 

Distributions, 18(7), 717–725. https://doi.org/10.1111/j.1472-4642.2012.00883.x 438 

Royle, J. A. (2006). Site occupancy models with heterogeneous detection probabilities. Biometrics, 439 

62(1), 97–102. https://doi.org/10.1111/j.1541-0420.2005.00439.x 440 

Spake, R., Barajas-Barbosa, M. P., Blowes, S. A., Bowler, D. E., Callaghan, C. T., Garbowski, M., 441 

Jurburg, S. D., Van Klink, R., Korell, L., Ladouceur, E., Rozzi, R., Viana, D. S., Xu, W. B., & 442 

Chase, J. M. (2022). Detecting Thresholds of Ecological Change in the Anthropocene. Annual 443 

Review of Environment and Resources, 47, 797–821. https://doi.org/10.1146/annurev-environ-444 

112420-015910 445 

Srivathsa, A., Puri, M., Kumar, N. S., Jathanna, D., & Karanth, K. U. (2018). Substituting space for 446 

time: Empirical evaluation of spatial replication as a surrogate for temporal replication in 447 

occupancy modelling. Journal of Applied Ecology, 55(2), 754–765. 448 

https://doi.org/10.1111/1365-2664.13005 449 

Stroh, P. A., Walker, K., Humphrey, T. A., Pescott, O. L., & Burkmar, R. (2023). Plant Atlas 2020: 450 

Mapping Changes in the Distribution of the British and Irish Flora. Princeton Univ. Press. 451 

Wilson, R. J., Thomas, C. D., Fox, R., Roy, D. B., & Kunin, W. E. (2004). Spatial patterns in species 452 

distributions reveal biodiversity change. Nature, 432(7015), 393–396. 453 

https://doi.org/10.1038/nature03031 454 

Wilson, T., & Schmidt, J. H. (2015). Scale dependence in occupancy models: Implications for 455 

estimating bear den distribution and abundance. Ecosphere, 6(9). https://doi.org/10.1890/ES15-456 

00250.1 457 

Woodcock, B. A., Isaac, N. J. B., Bullock, J. M., Roy, D. B., Garthwaite, D. G., Crowe, A., & Pywell, 458 

R. F. (2016). Impacts of neonicotinoid use on long-term population changes in wild bees in 459 

England. Nature Communications, 7. https://doi.org/10.1038/ncomms12459 460 

 461 

 462 


