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Abstract 16 

Decades of empirical research have revealed how the geological history of our planet shaped plant 17 

evolution by establishing well-known patterns (e.g., how mountain uplift resulted in high rates of 18 

diversification and replicate radiations in montane plant taxa). Under this approach, information is passed 19 

from geology to botany by interpreting data in light of geological processes. Instead, in this synthesis, I 20 

describe how by integrating natural history, phylogenetics, and population genetics, botanical research 21 

can inform our understanding of past geological and climatic processes. This conceptual shift aligns with 22 

the goals of the emerging field of geogenomics. In the Neotropics, plant geogenomics is a powerful tool 23 

for the reciprocal exploration of two long standing questions in biology and geology: how the dynamic 24 

landscape of the region came to be and how it shaped the evolution of the richest flora. Current challenges 25 

that are specific to analytical approaches for plant geogenomics are discussed. I describe the scale at 26 

which various geological questions can be addressed from biological data, and what makes some groups 27 

of plants excellent model systems for geogenomics research. Although plant geogenomics is discussed 28 

with reference to the Neotropics, the recommendations given here for approaches to plant geogenomics 29 

can and should be expanded to exploring long-standing questions on how the earth evolved with the use 30 

of plant DNA. 31 

 32 
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Geological history in the Neotropics has played a key role in shaping the evolution of the world’s richest 36 

flora (Gentry, 1982; Hughes et al., 2013). Geomorphic processes in the region —driven greatly by rapid 37 

mountain building (Hoorn et al., 2010; Boschman, 2021)—, have led to identifiable evolutionary patterns. 38 

These patterns include accelerated diversification (e.g., explosive radiations in Andean bellflowers, 39 

Lupinus, and several other taxa living at high-elevations; (Hughes and Eastwood, 2006; Madriñán et al., 40 

2013; Lagomarsino et al., 2016; Tribble et al., 2023), limited gene flow across landscape units (e.g., in 41 

Amphirrox longifolia and two species of Marathrum across the Rio Negro and Andean mountains 42 

respectively; Nazareno et al., 2017; Bedoya et al., 2021), and replicated radiations (e.g., repeated 43 

evolution of leaf ecomorphs in a Neotropical clade of Viburnum; Donoghue et al., 2022). Plant evolution 44 

research has shed light on such patterns by interpreting biological data in reference to known geological 45 

events. Although past geological studies have provided insight into the timing of processes that led to the 46 

configuration of the dynamic and heterogeneous landscape matrix in the Neotropics (e.g., Hoorn et al., 47 

2010; Montes et al., 2015), precise landscape models for the region carry large uncertainty and are 48 

unavailable across most landscape units through time. 49 

The massive amount of genomic data currently being generated, the long-recognized role of landscape 50 

change in shaping the evolution of the Neotropical flora, and the current gap in our knowledge about the 51 

timing and process of formation of many landscape units in the region, presents an opportunity to use 52 

patterns inferred from large-scale genetic data to generate, constrain, or reduce uncertainty in landscape 53 

evolution models in the Neotropics. This approach aligns with the goal of Geogenomics, an emerging 54 

field (Baker et al., 2014) that involves the reciprocal integration of geologic, climatic, ecological, 55 

paleontological, and genomic data to test landscape evolution hypotheses from biological data (Badgley et 56 

al., 2017; Rahbek et al., 2019; Dolby et al., 2022). The reciprocal investigation and testing of biological 57 

and geomorphic processes in geogenomics research, sets it apart from other fields like comparative 58 

phylogeography, which search for landscape and climatic features that are correlated with patterns of 59 



  Plant Geogenomics 

 4 

genomic variation in co-distributed taxa (Edwards et al., 2022), without explicitly testing models of 60 

landscape or climatic evolution. 61 

Here I review recent contributions to plant geogenomics in the Neotropics that show how by integrating 62 

natural history, phylogenetics, and population genetics, botanical research can go beyond investigating 63 

patterns in light of landscape change and inform our understanding of past geologic and climatic 64 

processes in the Neotropics. I also discuss what makes some groups of plants ideal model systems for 65 

learning about past landscapes with the use of plant DNA, and offer practical considerations for plant 66 

geogenomics, including the scale at which geological hypotheses can be tested from genomic data. 67 

Research aligned with the goals of geogenomics and using animals as study systems (e.g., birds, 68 

mammals, and amphibians), has tested landscape hypotheses in the Neotropics (Albert et al., 2006; 69 

Boubli et al., 2015; Thom and Aleixo, 2015; Godinho and Da Silva, 2018; Naka et al., 2022; Rodriguez-70 

Muñoz et al., 2022). However, responses to a common geological or climatic event across taxa are 71 

idiosyncratic (Donoghue and Smith, 2004; Bacon et al., 2015; Antonelli et al., 2018). Geogenomics 72 

research in plants is fundamental to a more holistic understanding of the geophysical history of the 73 

Neotropics, and instrumental to our understanding of how landscape changes contributed to the high plant 74 

richness in the region. 75 

WHY AND HOW TO SHIFT THE PARADIGM? 76 

Plant evolutionary patterns can inform paleogeograhic dynamics— Since the proposal of the 77 

‘riverine barrier’ hypothesis by A.R. Wallace in 1852, historical biogeography has aimed to study 78 

distributional patterns of organisms with reference to landscape units. Research in this area has 79 

tremendously advanced our understanding of plant evolution on our constantly changing planet. 80 

Examples where dated phylogenies were interpreted according to landscape model reconstructions 81 

abound (e.g., biogeographic studies in Asteraceae, Bromeliaceae, Lamiaceae, Malpighiaceae, 82 

Myristicaceae, Orchidaceae, and Solanaceae (Davis et al., 2002; Bell, 2005; Givnish et al., 2011, 2016; 83 

Dupin et al., 2017; Frost et al., 2017, 2022; Mandel et al., 2019; Rose et al., 2022). A more recent 84 
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approach to modeling species geographic ranges is biogeographic dating, a time-stratified framework 85 

where molecular, paleogeographic, and biogeographic evidenced are jointly modeled to estimate time-86 

calibrated phylogenies and species ancestral ranges. Under this approach, paleogeographic hypotheses 87 

impose constraints on the rates of biogeographic change and vice versa (Landis, 2017). For example, 88 

estimated dates of island formation in the Hawaiian archipelago (Lim and Marshall, 2017) were 89 

incorporated as the maximum ages at which dispersal to each island could have taken place in a 90 

biogeographic study of Hawaiian silverswords (Asteraceae; Landis et al., 2018; Fig. 1A). This analytical 91 

framework was expanded to re-examine the ancestral biome reconstruction of Viburnum (Landis et al., 92 

2021). 93 

 94 

Figure 1. Approaches to questions at the intersection of geology and plant evolution, from evidence to hypothesis 95 
generation. A) Biogeographic dating sensu Landis et al., 2017; 2018. Modeling of ancestral ranges is conducted by 96 
imposing proposed times for the formation of islands in the Hawaiian archipelago (top) as constraints on the rates of 97 
biogeographic change (bottom). B) A geogenomics approach, where divergence times for three populations of river 98 
plants are used to constrain the approximate timing and pattern of connections of paleodrainages through time. 99 
Fossil (e.g., phytoliths) and geologic (e.g., stratigraphic) data would further provide support for the formulated 100 
hypothesis. 101 

A major assumption of these approaches is that there is a model of the context in which plants evolved in 102 

a given area. The example above is unusual in the extent to which we know the exact timing of island 103 
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formation in the Hawaiian archipelago. However, unifying, accurate, and precise landscape or climatic 104 

models are unavailable for a majority of regions and time scales. This gap can be explained by uncertainty 105 

in analytical tools for dating strata (Schoene et al., 2013), the complexity of past landscape dynamics, and 106 

the high degree of heterogeneity of topographic units. While geological advances continue to improve 107 

paleogeographic reconstructions, biological information can be used for inference of geologic events 108 

(Wegener, 1966). Today’s exponential growth of genomic data presents an opportunity to improve what 109 

we know about landscape configurations over time using a geogenomics approach. In the Neotropics, 110 

plant geogenomics research is a tool for the reciprocal exploration of how the dynamic landscape of the 111 

region came to be and how it shaped the evolution of the richest flora. 112 

 113 

Selection of study systems, reciprocity in geogenomics and the problem of scale — Figure 1B 114 

shows how inferred divergence times of river plants could be used to propose a hypothesis for fluvial 115 

connections in the past. The efficacy of this approach is dependent on the temporal and spatial 116 

concordance of geological and biological processes. In other words, geogenomics research requires 117 

careful selection of model systems whose evolutionary histories reflect that of landscape units, as 118 

organismal responses to geomorphic barriers are highly heterogeneous (Araya‐Donoso et al., 2022; 119 

Rodriguez-Muñoz et al., 2022). A famous example of this heterogeneity is the variable timing of dispersal 120 

in terrestrial organisms (i.e., plants, birds, mammals, reptiles, amphibians, and arthropods) across the 121 

isthmus of Panama (Bacon et al., 2015). The hypothesis-testing approach shown in Figure 1B would 122 

necessitate that the plants studied live strictly in riverine habitats, are naturally distributed across rivers, 123 

and have limited gene flow across drainage basins (e.g., low dispersal ability, unsuccessful establishment 124 

of migrant populations, or other pre or pro-zygotic barriers to gene flow). 125 

 By concurrently interpreting geological and biological data, geogenomics reduces biases 126 

introduced from using geological data alone —which inherently carry uncertainty— to constrain 127 

biological processes (e.g., divergence times). It also better informs the interpretation of biological data 128 
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(e.g., dated phylogenies or algorithms for detection of gene flow events) to constrain geological 129 

hypotheses. For example, although both geological and biological models carry uncertainty, a temporal 130 

and spatial correspondence between a geological hypothesis (i.e., timing of mountain building) and 131 

biological processes for a given study system (i.e., inferred divergence times), would support such 132 

geological hypothesis. Patterns inferred from genomic data (Fig. 2C-E) for allopatric operational 133 

taxonomic units would further inform the study system’s responses to mountain building. Then, 134 

biological patterns inferred for this same study system can be used to formulate hypotheses of mountain 135 

building of a different topographic unit, or of other landscape events linked to mountain building. The 136 

paleontological record could further inform plant responses to some geological events (e.g., (Strömberg, 137 

2005; Stiles et al., 2020; Carvalho et al., 2021). 138 

Estimating the timing of geomorphic events from genomic data is scale-dependent. The example shown 139 

in Figure 1B is an oversimplification of a deep time (i.e., millions of years) event spanning large 140 

geographic distances. Here, the connections of river drainages— not of single rivers—are inferred. On the 141 

other end of the spectrum, the genomic signature of a landscape event (Fig. 2) could be erased by 142 

demographic processes and the strong influence of genetic drift on plants with small population sizes. 143 

Thus, geologic events may be reconstructed most reliably only if occurring at shallow time scales. For 144 

example, using genomic data to estimate the timing of connections across high-elevation ecosystems in 145 

topographically complex landscapes is likely to be limited to recent dispersal and vicariance events. For 146 

example, páramo plants experienced demographic changes due to the contraction and expansion of high-147 

elevation ecosystems during the Pleistocene glaciations (Flantua et al., 2019), only the most recent of 148 

which may be identifiable from genomic data (Nevado et al., 2018). 149 

Genomic approaches to plant geogenomics— Genomic signatures of past geologic events may 150 

be identified with four main approaches: 1) estimation of divergence times of species/populations 151 

distributed across landscape units (Fig. 1B); 2) identification of the distribution of genetic variation across 152 

the landscape (i.e., genetic structure; Fig. 2C); 3) investigation of introgression events (e.g., phylogenetic 153 



  Plant Geogenomics 

 8 

network inference, summary methods for the detection of gene flow from site patterns, and likelihood-154 

based methods for inference of introgression; Fig. 2D; Green et al., 2010; Durand et al., 2011; Blischak et 155 

al., 2018; Nauheimer et al., 2021; Ji et al., 2023); and 4) demographic modeling (i.e., using site frequency 156 

spectra and whole genomes; Fig. 2E; Adams and Hudson, 2004; Gutenkunst et al., 2009; Li and Durbin, 157 

2011; Schiffels and Durbin, 2014). 158 

 159 

Figure 2. Hypothetical example of three lines of genomic evidence that can be used to identify landscape change 160 
events from biological data. Two hypothetical examples presented correspond to uplift and connection of mountain 161 
segments A), and a river capture event B) taking place at time t2. These events resulted in secondary contact and 162 
admixture of two previously isolated plant populations (orange and green). Admixture linked to geologic processes, 163 
leaves a signature in the genetic constitution of populations that may be identifiable from C) inference of admixture 164 
proportions, D) identification of introgression events through phylogenetic network inference, and E) modeling of 165 
past demographic dynamics. Bidirectional arrows indicate how geologic processes can inform the interpretation of 166 
genomic patterns, which can then be used to test geologic hypotheses (see ‘Selection of study systems, reciprocity in 167 
geogenomics and the problem of scale’ for how geogenomics avoids circularity). IP: Inheritance probability, or the 168 
proportion of genes contributed by each parental population to a reticulation node, if gene trees are used for network 169 
inference. 170 
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Figure 2 shows a hypothetical example of uplift and connection of mountain segments (A) and a river 171 

capture event (B) taking place at time t2 and generating patterns of genomic variation that can be 172 

identified with the approaches mentioned above. The examples assume lack of plant dispersal across 173 

landscape units. The hypothetical events resulted in secondary contact and admixture of two previously 174 

isolated populations of plants (green and orange), exemplifying spatial and temporal correspondence of 175 

geological and biological processes. Gene flow following secondary contact may be revealed by an 176 

admixture plot (Fig. 2C, top). However, signatures of admixture could be eroded by subsequent events 177 

such as genetic drift (Fig. 2C, bottom), particularly in small populations (e.g., plant populations in 178 

savanna pockets within the Amazon, sky islands like the páramos, or river-rapids). Exploration of non-179 

bifurcating relationships through phylogenetic network inference could also detect the branches of the 180 

tree involved in the reticulation event (green and orange populations; Fig. 2D), and the inheritance 181 

probability (IP; the proportion of genes contributed by each parental population to a reticulation node, if 182 

gene trees are used for network inference; Solís-Lemus et al., 2017). Ideally, the demographic model in 183 

Fig. 2E would be identified as the best fit for genomic data generated from the three populations. 184 

Variations of this model would include permitting changes in population size and asymmetric gene flow. 185 

Concordant patterns across approaches would facilitate interpretation of the resulting patterns as 186 

indicators of a specific past geomorphic process (recent connections of previously disconnected mountain 187 

segments (Fig. 2A) and river capture events (Fig. 2B). However, the gene flow patterns detected in Fig. 2 188 

could also result from long-distance dispersal across landscape units. Phylogeographic and population 189 

structure analyses of the study systems would be necessary to determine the extent and direction of gene 190 

flow across populations/species. This would inform the extent to which these patterns are indicative of an 191 

underlying landscape change event. Sedimentological and stratigraphic data in the area where the species 192 

are distributed would further support the landscape change hypothesis formulated. The above highlights 193 

the reciprocal integration of geologic, climatic, and genomic data to test landscape evolution hypotheses 194 

from biological data sensu Dolby et al., 2022. 195 



  Plant Geogenomics 

 10 

Rigorously constraining landscape and climatic hypotheses with the use of time-trees, admixture plots, 196 

phylogenetic networks, and inferred demographic models requires the joint application of at least two of 197 

the four approaches for various reasons. Putative hybrid ancestry in admixture proportions might instead 198 

result from the retention of ancestral polymorphisms from shared ancestry (Lawson et al., 2018), 199 

scenarios that can often be distinguished through demographic modeling. Furthermore, the signatures of 200 

polymorphism in truly admixed populations are expected to be removed with time (Clark, 1997). There 201 

are also practical limits to existing algorithms: phylogenetic network inference is computationally feasible 202 

only for a small number of terminal taxa, does not identify the direction at which gene flow took place, 203 

and may suffer from non-identifiability as complexity of the model increases (Yu et al., 2014; Pardi and 204 

Scornavacca, 2015; Solís-Lemus and Ané, 2016; Solís-Lemus et al., 2017). Similarly, demographic 205 

models inferred from genetic data can only be applied to a limited number of populations (Farleigh et al., 206 

2021), suffer from non-identifiability (Terhorst and Song, 2015), and require a priori specifications of 207 

parameters and demographic events (unknown in most empirical systems; Li and Durbin, 2011; Loog, 208 

2021). 209 

Caveats important but not exclusive to plant geogenomics include the scarcity of fossil evidence useful 210 

for calibration for many taxa. (Crane et al., 2004; Schenk, 2016). Dated phylogenies for a large number of 211 

plant groups are inferred from secondary calibrations and are subject to potential bias (Schenk, 2016). 212 

Gene flow can also affect inference of divergence times (Leaché et al., 2014). Inferred chronograms are a 213 

means to exploring plausible evolutionary and landscape change scenarios, but they should be taken 214 

cautiously and re-examined as more sources of data and analytical tools become available. Issues more 215 

specific to plants include escalating costs of sequencing of genomic-scale data for taxa with big genomes, 216 

widespread hybridization, polyploidization, and various mating systems (Stebbins, 1950), as well as the 217 

difficulty of developing analytical tools that accommodate these complexities (Blischak et al., 2023; but 218 

see Garrison and Marth, 2012; Serang et al., 2012; Blischak et al., 2018b; Gerard et al., 2018; Clark et al., 219 

2019 for genotyping tools that enable ploidy specification and algorithms for genotype likelihood 220 
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estimation). Other challenges include the identification of paralogous and orthologous loci prior to 221 

phylogenetic inference (Yang and Smith, 2014; Johnson et al., 2016; Gardner et al., 2021; Morales-222 

Briones et al., 2022; Freyman et al., 2023; Mendez-Reneau et al., 2023), a scarcity of resources for 223 

analysis of shared ancestry in polyploids (but see Kolář, 2021; Shastry et al., 2021), and demographic 224 

modeling under various ploidy and mating systems scenarios (but see Roux and Pannell, 2015; Blischak 225 

et al., 2023; Roux et al., 2023). Simulation studies testing the effect of strategies and violations of model 226 

assumptions in plant geogenomics research (Schenk, 2016; Stift et al., 2019) are critical to better 227 

constrain and propose plausible geological scenarios from biological data in light of uncertainty. 228 

PLANT EVOLUTION AND GEOGENOMICS IN THE NEOTROPICS, OR, HOW ELSE ARE 229 

PLANTS SPECIAL 230 

The original proposal of the geogenomics neologism (Baker et al., 2014) identified major geologic 231 

questions in the Neotropics to be addressed with biological data. The groundwork for many of these 232 

questions consists of a model of the geologic history of northern South America since the Paleogene by 233 

Hoorn et al., 2010, who provided a review of paleontological, sedimentological, ecological, and 234 

geological data for the region. Below I show how plant evolution research conducted over the past 235 

decade, exemplify how the hypotheses laid out by Hoorn et al., 2010, by Baker et al., 2014, and by the 236 

several prior studies that they were based on, can be constrained from biological data. 237 

 Fine-scale uplift history of different segments and Cordilleras of the Northern Andes— 238 

Landscape models indicate that the uplift of the Andes (which in northern South America are split into the 239 

Western, Central, and Eastern Cordilleras) was an asynchronous process that started in the Late 240 

Cretaceous (Horton, 2018; Gianni et al., 2020). A current challenge is to generate a finer-scale geological 241 

model that reflects the asynchrony and spatial heterogeneity of the Andes, particularly for the Western 242 

and Central cordilleras (Sanín et al., 2022b). A recent study by Sanín et al., 2022b tackled this challenge 243 

and revised the geologic history of uplift across the three mountain ranges that constitute the northern 244 
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Andes, using genomic data generated for the Geonoma undata–G. orbignyana species complex 245 

(Arecaceae). 246 

The study integrated inference of genetic structure, phylogenetic relationships, divergence times, and 247 

demographic modeling with information from past geological studies in the region (Velandia et al., 2005; 248 

Mora et al., 2008; Veloza et al., 2012; Anderson et al., 2016; Montes et al., 2019, 2021; Mora-Páez et al., 249 

2019; Noriega-Londoño et al., 2020). They provide evidence for a scenario where mountain segments 250 

were already uplifted but disconnected until the Pliocene, when continuous cordilleras were formed. 251 

Phylogeographic breaks coincide with the location of strike-slip faults (i.e., vertical fractures where 252 

blocks have moved horizontally). The authors suggest that extensional and compressional features of the 253 

faults may represent initial negative topography that is subsequently inverted (Dewey et al., 1998; Veloza 254 

et al., 2012; Montes et al., 2019; Zapata et al., 2023). This resulted in the connection of previously 255 

isolated mountain segments during the Pliocene. Geological samples of ignimbritic rocks (i.e., a type 256 

volcanic rocks) further indicate that vulcanism contributed to mountain connectivity and the closure of 257 

low mountain passes in the Plio-Pleistocene (< ~2 Ma; Sanín et al., 2022a). This resulted in increased 258 

dispersal of high-elevation mountain palms (i.e., Ceroxylon) throughout the northern Andean cordilleras. 259 

Phylogeographic inference in the Tococa-Azteca plant-ant mutualism (Torres Jimenez et al., 2021) and 260 

biogeographic modeling in the Rubiaceae (Antonelli et al., 2009) further support the prior existence of 261 

lowland passes across the Andean mountains, and the dispersal through lowland portals in frogs, 262 

mammals, and non-avian reptiles (Rodriguez-Muñoz et al., 2022). 263 

Drainage basin reconfiguration through time— In addition to being a major driver of 264 

Neotropical diversification (Antonelli et al., 2009; Antonelli and Sanmartín, 2011; Sklenář et al., 2011; 265 

Smith et al., 2014; Hoorn et al., 2018), Andean uplift reconfigured watersheds across South America 266 

(Albert et al., 2006; Hoorn et al., 2010; Ruokolainen et al., 2019). However, the configuration of 267 

paleodrainages through time remains largely unknown. To propose a hypotheses for past river 268 

connections in northern South America, I have used two species of strictly riverine plants (Marathrum, 269 
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Podostemaceae) with broad distributions across the Andes as a model system. Collecting genomic data 270 

for populations from different drainage basins, I inferred population structure, phylogenetic networks, 271 

divergence dates, and population summary statistics (Bedoya et al., 2021). After establishing that gene 272 

flow is limited in populations across drainage basins via population structure analyses, I used the timing 273 

and pattern of population divergence across river drainages as evidence to argue that drainage basins 274 

became separated at ~12 and ~4 Ma as a result of major pulses of Andean uplift (Gregory-Woodzicki, 275 

2000; Garzione et al., 2008; Hoorn et al., 2010; Mora et al., 2010; Anderson et al., 2016; Boschman, 276 

2021). This paleodrainage model was subsequently validated by a paleogeographic model of northern 277 

South America through the Miocene, built from geochronological, petrographic, and thermochronological 278 

data (Zapata et al., 2023). Strictly riverine plants are a great study system in geogenomics in the 279 

Neotropics. Limited gene flow has been reported for various species in the Podostemaceae (Baggio et al., 280 

2013; Katayama et al., 2016). However, long-distance dispersal may explain the pantropical distribution 281 

of some groups in the family (Kita and Kato, 2004; Koi et al., 2015; Ruhfel et al., 2016). Research in this 282 

group should be expanded to investigate the link between river structure, distance between river rapids 283 

within and across rivers, and plant dispersal. This to better understand the prevalence of range evolution 284 

through river capture events and long distance dispersal in the group, and assess to what extent geologic 285 

hypotheses can be formulated from genomic data across space in the group. 286 

Additional botanical studies have introduced promising study systems to constrain hypotheses for river 287 

reconfiguration in the past, including Mauritia flexuosa (Arecaceae), whose populations are inferred to 288 

have strong genetic structure across drainage basins in the Amazon (Sander et al., 2018). Other examples 289 

include Amphirrox longifolia (Violaceae) and Buchenavia oxycarpa (Combretaceae), tree species with 290 

limited gene flow across broad portions of the Rio Negro in the Amazon basin (Nazareno et al., 2017, 291 

2019). 292 

Neogene and Pleistocene marine incursions in the Neotropics— Landscape change models 293 

developed from palynological, sedimentological, geochemical, and macrofossil data indicate that Pebas 294 
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Lake, a vast wetland-like system of > 1 million km2, was in place in northern and central South America 295 

from ca. 23–10 Ma (Hoorn, 1993; Wesselingh et al., 2002; Hoorn et al., 2010; Linhares et al., 2017; 296 

Jaramillo, 2023). Isotopic and palynological evidence shows a marine influence on this water body, but 297 

conflicting interpretations of the Miocene depositional environment and extent of marine incursions at the 298 

time remain unresolved (Frailey et al., 1988; Hoorn, 1993, 2006; Räsänen et al., 1995; Webb, 1995; 299 

Vonhof et al., 2003; Latrubesse et al., 2007, 2010; Jaramillo et al., 2017). 300 

Based on distributional information, dispersal biology, and calibrated phylogenies of plant taxa, Bernal et 301 

al., (2019) proposed the hypothesis that the current occurrence of plants from estuarine or coastal zones in 302 

western Amazonia is the legacy of Miocene marine incursions in the region. Divergence times of 303 

populations of Pachira aquatica (Malvaceae) and Manicaria saccifera (Arecaceae) suggest that 304 

Amazonian and costal populations differentiated as a result of the complete retreat of the marine-305 

influenced embayment. Appropiate testing of this hypothesis to reconstruct the extent of past estuarine 306 

environments requires further geogenomics studies, for which the authors provide a list of 28 candidate 307 

species from deltaic or estuarine environments in the region. Evidence for past estuarine connections from 308 

botanical data also include a study of a relict inland mangrove ecosystem (Rhizophora mangle) in the 309 

Yucatán peninsula (Aburto-Oropeza et al., 2021). Population genetic analyses of genotyping-by-310 

sequencing data, together with floristics, sedimentological, paleontological evidence, and sea-level 311 

modeling, point to the mangrove relict reaching its current inland location in the Yucatán peninsula 312 

during last interglacial (ca. 120 K years). 313 

FUTURE CONSIDERATIONS FOR PLANT GEOGENOMICS 314 

Given their putatively limited gene flow across landscape units, distributional patterns, and affinity to 315 

specific habitats, many plant groups are excellent systems for geogenomics research. Recent botanical 316 

investigations demonstrate that the analysis of data derived from plant DNA can improve our knowledge 317 

of topography, riverine, and habitat connections through time. 318 
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Geogenomics research advocates for building interdisciplinary networks (e.g., Sanín et al., 2022a and the 319 

Baja GeoGenomics consortium; https://bajageogenomics.org). Future questions in geogenomics would 320 

necessitate such integrative collaborations. For example, investigating the extent of expansion, 321 

contraction, and flickering connectivity of high elevation Neotropical grasslands (i.e., páramos) requires 322 

reciprocally testing the concordance of inferred timing and patterns of gene flow (e.g., in Lupinus; 323 

Nevado et al., 2018), and landscape models derived from palynological evidence during the Pleistocene 324 

(e.g., Flantua et al., 2019). Exploring concordance across other páramo plant taxa, may further support or 325 

reject landscape hypotheses for how high-elevation grasslands connected and disconnected in the past. 326 

The timing of formation, long-term persistence, geographical isolation, and expansion or contraction of 327 

seasonally dry topical forests (SDTFs), are other future questions to be addressed with plant geogenomics 328 

in the Neotropics. To explore these questions, biological (e.g., divergence time estimation from sequence 329 

data and biogeographic modeling; Pennington et al., 2004; Särkinen et al., 2012; Fernandes et al., 2022) 330 

and paleontological data (Toby Pennington et al., 2000; Burnham and Carranco, 2004; Mayle et al., 2004; 331 

Werneck et al., 2011; Martínez et al., 2020, 2021), have been provided independently. Integrating these 332 

findings into a geogenomics framework would involve selecting study systems in the SDTFs where 333 

geomorphic, ecological (Pennington et al., 2006), and evolutionary processes are concordant, and 334 

applying the approaches here described. 335 

This synthesis focuses on recent and future approaches to understanding how the richest flora and one of 336 

the most species-rich landscapes evolved through time. However, the recommendations given here for 337 

plant geogenomics would allow for the exploration of questions at the intersection of geology and biology 338 

across the globe (e.g., the origin of disjunct arid and semi-arid regions across the Americas, and the 339 

evolution of arid-adapted species with amphitropical distributions). At a time when rapid technological 340 

innovation allows for the generation of massive amounts of genomic data, classical botanical knowledge 341 

is critical for identifying good study systems where plant DNA can help us address long-standing 342 

questions on earth’s geologic history. 343 

https://bajageogenomics.org/
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