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 2 

Abstract 28 
 29 

With the emergence of widespread antibiotic resistance, phages are an appealing alternative to 30 

antibiotics in the fight against multidrug-resistant bacteria. Over the past few years, many phages 31 

have been isolated from various environments to treat bacterial pathogens. While isolating novel 32 

phages for treatment has had some success for compassionate use, developing novel phages into 33 

a general therapeutic will require considerable time and financial resource investments. These 34 

investments may be less significant for well-established phage model systems. The knowledge 35 

acquired from decades of research on their structure, life cycle, and evolution ensures safe 36 

application and efficient handling. The only current downside of established model systems is their 37 

inability to infect pathogenic bacteria. However, evolutionary experiments have shown that it is 38 

possible to extend the host range of phages to infect previously resistant bacteria. The same 39 

experiments could be used in the future to breed model phages to infect pathogens and hence 40 

could provide a new avenue to develop phage therapeutic agents.  41 

 42 

  43 
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Infections caused by multidrug-resistant bacterial strains are one of the most pressing issues in 44 

medicine, a situation that is only expected to worsen in the coming decades (WHO 2021; Murray 45 

et al. 2022). ESKAPEE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, 46 

Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp, and Escherichia coli) are the principal 47 

targets for the development of novel antimicrobial strategies (Mulani et al. 2019). Among 48 

alternative treatment approaches currently under investigation (e.g., pre- and probiotics, 49 

antimicrobial peptides, antibodies, oligonucleotides for silencing resistance genes), bacteriophages 50 

(phages) are one of the most promising alternatives to treat bacterial infections (Rios et al. 2016; 51 

Ghosh et al. 2019; Łojewska and Sakowicz 2021; Streicher 2021). 52 

 53 

The rise and fall of phages as therapeutic agents 54 

Independently discovered by Frederick Twort in 1915 (Twort 1915) and Félix d’Hérelle in 1917 55 

(d’Hérelle 1917), bacteriophages (translating to “bacteria-eater”) are viruses that prey upon 56 

bacteria. Phages are simple entities. Their genomes, either RNA or DNA, single- or double-57 

stranded, are protected by capsids that can take various shapes and sizes (Ackermann 2007). They 58 

are the most numerous biological entities on Earth (Brüssow and Hendrix 2002; Angly et al. 2009) 59 

and are ubiquitous in every natural, human-altered, and artificial biome (e.g., wastewater treatment 60 

reservoirs, industries) (Batinovic et al. 2019). 61 

 62 

In the early 1900s, phages had already been considered as treatments for bacterial infections in 63 

animals and humans (d’Hérelle 1918; d’Hérelle 1919; d’Hérelle 1925). However, the lack of 64 

understanding of phage biology divided the scientific community and slowly undermined clinical 65 

applications. On one side of the debate, Felix d’Hérelle recognised phages as viruses and their 66 

antimicrobial action in vitro and in vivo. On the other side, Jules Bordet (Nobelist and director of 67 

the Pasteur Institute in Brussels at the time) contested Felix d’Hérelle’s work, attributing the 68 

observed bacterial lysis to the action of a “self-perpetuating lytic enzyme” (Summers 2012; 69 

Summers 2017). Furthermore, phages lacked standardised production and controls, and their host 70 

spectra were considered too narrow to effectively treat bacterial infections (Summers 2012). The 71 

association of phage therapy with German and Japanese medicine during the Second World War 72 

and with communism post-war put an end to any further applications in the West (Summers 2012). 73 

Phages were ultimately rejected in favour of newly discovered antibiotics (Nicolaou and Rigol 74 

2018). 75 

 76 

Phage comeback: an old solution for a modern problem 77 
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The overuse and misuse of antibiotics have slowly driven the emergence and spread of multidrug-78 

resistant bacteria, creating an urgent need for alternative or complementary solutions to classic 79 

antibiotic treatments. One of these solutions is phage therapy. Phage therapy is the administration 80 

of one or more virulent (strictly lytic) phages to a patient suffering from a bacterial infection. 81 

Eastern countries such as Poland, Georgia, and Russia never ceased to use phage therapy 82 

(Villarroel et al. 2017; Międzybrodzki et al. 2018). In Western countries, however, phage therapy 83 

experienced a renaissance only relatively recently between the 1980s and 2000s (Carlton 1999; 84 

Summers 2001; Wittebole et al. 2014; Barron 2022) through the re-discovery of phage 85 

antimicrobial effectiveness in mice and farm animals (Smith and Huggins 1982; Smith and Huggins 86 

1983; Barrow and Soothill 1997). Especially in the past two decades, phage therapy has garnered 87 

more and more attention, with recent studies focusing on phages to treat foodborne pathogens 88 

and bacterial infections in humans and animals (Adhya et al. 2005; Maimaiti et al. 2023). 89 

 90 

Two distinct strategies are commonly followed in phage therapy: a broad and a targeted approach 91 

(Gordillo Altamirano and Barr 2019; Froissart and Brives 2021). The broad approach involves 92 

assembling a phage cocktail composed of genetically diverse phages (~ 10 - 40) with a wide host 93 

spectrum, emulating the antibiotics’ much broader killing spectrum (Villarroel et al. 2017; McCallin 94 

et al. 2018). In the targeted approach, phages are isolated from environments where bacteria are 95 

abundant (e.g., sewage or wastewater treatment plants) and tested against the target bacterium. 96 

Phages that successfully lyse the target bacterium are purified and administered to the patient 97 

(Zhvania et al. 2017; Chan et al. 2018; Ferry et al. 2018; Cano et al. 2020; Dedrick et al. 2021; 98 

Dedrick et al. 2023). 99 

 100 

A generic phage cocktail with a broad host spectrum is part of traditional over-the-counter 101 

medicine used in Georgia, Poland and Russia. Vials containing different phage cocktails are sold 102 

without a prescription to patients seeking treatment for proinflammatory or enteric diseases 103 

(Kutter et al. 2010). The EU and USA, however, have preferentially developed personalised-104 

medicine approaches that specifically target the pathogen responsible for the bacterial infection 105 

(Froissart and Brives 2021). Nonetheless, phage therapy is currently considered highly 106 

experimental and can only be used in rare cases as a last resort or compassionate treatment (EMA 107 

2018a; McCallin et al. 2019; FDA 2022; Hitchcock et al. 2023). Compassionate use, also called 108 

expanded access, is a treatment option that allows the use of an unauthorised medical product 109 

outside clinical trials for the treatment of a patient with a serious or immediately life-threatening 110 

disease for which all alternative therapeutic options have been exhausted (EMA 2018a; FDA 2022). 111 
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 112 

Advantages and disadvantages of newly isolated environmental phages  113 

Eligible phages for compassionate use primarily come from environmental samples. Since the 114 

environment is the predominant source of all types of phages, it offers an undeniable advantage 115 

to find phages “on-demand” with desired traits for therapeutic purposes (Weber-Dąbrowska et al. 116 

2016; Schooley et al. 2017; Zhvania et al. 2017; Chan et al. 2018; Ferry et al. 2018). Sewage from 117 

the immediate vicinity of hospitals is almost guaranteed to contain phages active against human 118 

pathogens (Latz et al. 2016). These phages can be easily detected and isolated from environmental 119 

samples (Clokie and Kropinski 2009; Ács et al. 2020), and their clinical efficacy has been 120 

successfully demonstrated in many case studies (McCallin et al. 2019; Abedon et al. 2021). 121 

However, isolating phages and generating high-density virus stocks against Enterococcus faecium and 122 

faecalis or Staphylococcus aureus strains have been challenging despite the enormous variety of phages 123 

present in environmental reservoirs (Mattila et al. 2015). 124 

 125 

However, the characterisation of new phages from the environment is time-consuming, mainly 126 

because of safety assessments. Even if rare, some phages can carry genes encoding dangerous 127 

toxins and other metabolites that could be harmful if they were to be expressed (Krüger and 128 

Lucchesi 2015; Jamet et al. 2017; Dragoš et al. 2021). Moreover, phages can also spread antibiotic-129 

resistance genes via transduction (Colavecchio et al. 2017). 130 

 131 

Before being considered for clinical applications, a phage’s Critical Quality Attributes (CQAs) must 132 

be fully known (Yu et al. 2014; Pirnay et al. 2015; Mutti and Corsini 2019). These include its identity 133 

(origin, family and subfamily, morphology and biology), the presence or absence of potentially 134 

damaging genetic determinants (conferring toxicity, virulence, lysogeny or antibiotic resistance), 135 

the phage’s in vivo efficacy (host range, stability of lysis, efficiency of plating, frequency of 136 

emergence of phage-resistant bacteria), the potential optimisation of its host range (titration), and 137 

its storage conditions (temperature, cryopreservation). Because health agencies require phages to 138 

be fully characterised (CQAs) and produced for clinical trials under Good Manufacturing Practices 139 

(GMPs), there is currently no broadly available phage treatment in Western countries (Rohde et 140 

al. 2018). 141 

 142 

Good Manufacturing Practices represent the quality, safety, and traceability standards a medicinal 143 

product or drug must meet before being authorised for clinical trials and markets (EMA 2018b; 144 

Bretaudeau et al. 2020). Phages are categorised as such in the EU and the USA. One exception is 145 
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Belgium, where phages are produced following a standardised recipe called a monograph (Pirnay 146 

et al. 2018). However, the standardisation of phage production requires considerable investment 147 

of time and money (Bretaudeau et al. 2020), is difficult to adhere to because of high phage mutation 148 

rates (Pirnay et al. 2018), and might be technologically impossible if phages have to be trained to 149 

enhance their lytic ability or when phage cocktails are needed to make the treatment resilient 150 

against evolution of phage resistances (Yang et al. 2020; Borin et al. 2021; Science, Innovation, and 151 

Technology Committee 2023).  152 

 153 

Phage model systems can become promising therapeutic agents 154 

Alongside the use of newly discovered environmental phages for therapy, well-studied phage 155 

model systems should also be considered. Model phages such as Dp-1, T4, T7, MS2 or ΦX174 156 

have significant benefits over uncharacterized environmental phage isolates.  157 

 158 

Model phages are easily obtainable, manipulatable, trackable, and producible at high 159 

concentrations (Skaradzińska et al. 2020). The deep knowledge of these model systems acquired 160 

over the last ~ 100 years makes them relatively predictable and safe therapeutic agents (Bruttin 161 

and Brüssow 2005; Wichman et al. 2005; Bull and Molineux 2008; Budynek et al. 2010; Wichman 162 

and Brown 2010; Azam and Tanji 2019).  163 

 164 

Although model phages have not been used in phage therapy yet, they have been used for different 165 

clinical applications. For example, model phages have been used as gene delivery vehicles for in 166 

vivo treatments (Ghaemi et al. 2010; Bakhshinejad and Sadeghizadeh 2014; Fu and Li 2016; 167 

Hosseinidoust 2017). Phages are engineered to deliver a large variety of molecules, ranging from 168 

degrading-biofilm enzymes (Lu and Collins 2007) to in situ CRISPR-Cas chromosomal targeted 169 

systems (Dong et al. 2021; Huan et al. 2023). These delivery systems have been used for gene 170 

therapy and to treat tumours (Ghaemi et al. 2010; Rao and Zhu 2022; Zhu et al. 2023). 171 

 172 

While phage vectors could also be created to release antimicrobial compounds in situ to treat 173 

pathogenic bacterial strains (Du et al. 2023), the possibility of directly turning model phages into 174 

the primary therapeutic agents has, to our knowledge, not been investigated (Gildea et al. 2022). 175 

Model phages prey on E. coli, Salmonella, and Streptococcus species. While some of the most notorious 176 

pathogens belong to these species, model phages only infect harmless relatives of dangerous 177 

pathogenic strains. However, we believe that current model phages could potentially be bred to (i) 178 

extend their host range to directly infect pathogenic strains belonging to E. coli, Salmonella, and 179 
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Streptococcus species and (ii) reduce the evolution of phage resistance through evolution experiments 180 

(Bull et al. 2003; Meyer et al. 2012; Borin et al. 2021; Romeyer Dherbey et al. 2023). In our opinion, 181 

ΦX174 is a particularly interesting model system. We will highlight specific advantages and features 182 

of this phage model in the following paragraphs.  183 

 184 

ΦX174 may be a suitable candidate for phage therapy 185 

ΦX174 is one of the oldest phage model systems (Sertic and Bulgakov 1935; Wichman and Brown 186 

2010; Lacković and Toljan 2020) that has been used for almost 90 years to study phage, molecular, 187 

synthetic and evolutionary biology (Sanger et al. 1978; Smith et al. 2003; Jaschke et al. 2012; 188 

Mukherjee et al. 2015; Breitbart and Fane 2021). ΦX174 is a small (~ 30 nm) tailless coliphage 189 

belonging to the Microviridae family. It carries a 5,386 nucleotide long ssDNA genome that contains 190 

only 11 genes (Sinsheimer 1959; Sanger et al. 1978). ΦX174 is a virulent phage that relies on 191 

attaching to the core oligosaccharide of the host’s lipopolysaccharide (LPS) for infection. In the 192 

laboratory, ΦX174 infects – and hence is usually grown on – E. coli C, which produces rough type 193 

(i.e., lacking in O-antigen) LPS molecules (Feige and Stirm 1976).  194 

 195 

The biology of ΦX174 is extremely well known. ΦX174 can easily be fully synthesised (Smith et 196 

al. 2003) and manipulated in the laboratory (Christakos et al. 2016) and is highly host-specific. In 197 

a study of 783 different E. coli isolates, only six (0.8 %) isolates could be infected by ΦX174 (Michel 198 

et al. 2010). This high degree of specificity means that ΦX174, like other phages, will likely be 199 

harmless to the patient’s microbiota in contrast to antibiotics (Denou et al. 2009; Galtier et al. 200 

2016; Ramirez et al. 2020; Mu et al. 2021).  201 

 202 

Apart from its high host specificity, there are other reasons for why ΦX174 treatment likely causes 203 

little side effects. Relatives of ΦX174, the Microviridae phages, can be isolated from gut samples 204 

and are considered part of the healthy human gut microbiome (Lim et al. 2015; Manrique et al. 205 

2016; Shkoporov et al. 2019; Sausset et al. 2020). As such, Microviridae phages from the gut are 206 

probably tolerated by the human immune system and will be less prone to be recognised and 207 

degraded prior to successful infection (Hodyra-Stefaniak et al. 2015; Bull et al. 2019). Evidence for 208 

the tolerance of ΦX174 by the immune system without excessive inflammatory response comes 209 

from in vivo experiments. For those experiments, high doses of ΦX174 were given to patients 210 

intravenously to measure differences between healthy individuals and patients with compromised 211 

immunity (Ochs et al. 1971; Fogelman et al. 2000). ΦX174 has even been approved for human 212 
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applications by the U.S. Food and Drug Administration (FDA) as a marker of patients’ immune 213 

responses (Rubinstein et al. 2000; Bearden et al. 2005).  214 

 215 

Another characteristic that makes ΦX174 a potentially safe therapeutic is the fact that it carries a 216 

very small genome that contains only 11 genes. The function of every single gene is known and 217 

has been studied (Sun et al. 2017; Logel and Jaschke 2020; Breitbart and Fane 2021). It does not 218 

carry virulence genes and cannot pick up cargo genes since additional genes do not fit into the very 219 

small capsid (Russell and Müller 1984; Aoyama and Hayashi 1985).  220 

 221 

Despite ΦX174’s high host specificity, the mechanism by which ΦX174 lyses and kills the host is 222 

extremely conserved and can kill a wide range of bacteria. ΦX174 expresses the E protein to lyse 223 

and kill the host by disrupting peptidoglycan synthesis (Orta et al. 2023). Peptidoglycan synthesis 224 

is disrupted through binding to a very conserved and essential protein called MraY (Bernhardt et 225 

al. 2000). In biotechnology, the expression of only the E protein is used to make “ghost cells” 226 

(empty bacterial cell envelopes) for vaccine production. This process works for a wide range of 227 

Gram-negative bacterial pathogens (e.g., Salmonella enteritidis, Vibrio cholera, Helicobacter pylori) (Huter 228 

et al. 1999; Mayr et al. 2005; Ganeshpurkar et al. 2014). Hence, ΦX174 is predicted to be able to 229 

lyse any Gram-negative pathogen as long as it can enter the cell. 230 

 231 

Current limitations of ΦX174  232 

The most significant limitation to the current potential of model phages is their host specificity. 233 

ΦX174, in particular, is highly host-specific (Michel et al. 2010). While this limits possible side 234 

effects, no study has yet demonstrated that ΦX174 can infect pathogens. To treat enterobacterial 235 

pathogens, novel ΦX174 strains must first be evolved. In previous experiments, we showed that 236 

ΦX174 can quickly evolve to infect spontaneously resistant E. coli C mutants (Romeyer Dherbey 237 

et al. 2023). Whether it is as easy to evolve ΦX174 to infect pathogenic strains remains to be tested.  238 

 239 

While its small genome renders ΦX174 extremely tractable for genetic manipulation and analysis, 240 

as well as making it extremely unlikely to transport cargo genes, it also means that there is very 241 

limited space to easily add useful genes (such as effector genes (Du et al. 2023)) to the genome 242 

(Russell and Müller 1984; Aoyama and Hayashi 1985). Phage model systems with bigger genomes 243 

can more easily accommodate additional genes. 244 

 245 



 9 

As with antibiotics, ΦX174 (and most other phages) can infect growing bacteria (Romeyer 246 

Dherbey et al. 2023) but cannot infect bacteria in stationary phase or dormancy (Bläsi et al. 1985). 247 

Hence, ΦX174 may be more suited to treating acute rather than persistent infections. There are 248 

phage model systems that can infect bacteria in stationary phase that, in some situations, may be 249 

more appropriate therapeutic agents (Bryan et al. 2016; Tabib-Salazar et al. 2018; Kaldalu et al. 250 

2020; La Rosa et al. 2021; Maffei et al. 2022). 251 

 252 

For pathogens other than E. coli or Salmonella, ΦX174  may also not be the ideal model system. 253 

Beyond enterobacterial infections, novel phage model systems need to be established to treat other 254 

members of the ESKAPEE group, especially for Acinetobacter baumannii, Enterococcus faecium, and 255 

Staphylococcus aureus (Mattila et al. 2015). 256 

 257 

Evolving phages to infect bacterial pathogens 258 

To develop ΦX174 (and other model phages) into a therapeutic agent to infect pathogens, existing 259 

experimental evolution protocols can be adapted (Bono et al. 2013; Burrowes et al. 2019; Kok et 260 

al. 2023; Romeyer Dherbey et al. 2023) (Fig. 1). Firstly, the bacterial pathogen and several closely 261 

related strains need to be isolated and characterised (Fig. 1A and 1B). Then, a phage strain with 262 

the capacity to infect the pathogenic strain is evolved by serially transferring candidate phages in a 263 

mixture consisting of permissive hosts (necessary to propagate the phage) and the targeted 264 

pathogenic strain (Fig. 1C). Evolving phage populations are inoculated into fresh, exponentially 265 

growing host cultures at each transfer until one or more phages are found to infect the pathogenic 266 

strain.  267 

 268 

Alternatively, the host range of model phages can be extended using the Appelmans protocol 269 

(Burrowes et al. 2019). This experimental evolution protocol is highly effective at increasing phage 270 

host ranges by maximizing the recombination opportunities between phage strains (Fig. 1D). It 271 

has also been used to enhance the infectivity of phages, thus making phages more effective 272 

therapeutic agents (Kok et al. 2023).  273 

 274 

A successful therapeutic agent also needs to minimize the chance of phage resistance evolution. 275 

Phage resistance evolution can be minimized by phage cocktails. A phage cocktail aims to eliminate 276 

common bacterial resistance types and drive evolution toward bacterial mutants that are less fit 277 

and easier to eradicate (Yethon et al. 2000; Matsuura 2013; Pagnout et al. 2019; Simpson and Trent 278 

2019; Burmeister et al. 2020; Mutalik et al. 2020). The immune system and/or specific antibiotics 279 
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could then kill the remaining mutants (Roach et al. 2017; Burmeister et al. 2020; Mangalea and 280 

Duerkop 2020). Phage resistance evolution can also be lowered by subinhibitory levels of 281 

antibiotics. In this case, the antibiotics prevent the emergence of a specific set of bacterial mutants 282 

(Parab et al. 2023). 283 

 284 

The evolution of phage resistance can also be reduced through co-evolution experiments called 285 

phage training (Borin et al. 2021) (Fig. 1E). Instead of co-evolutionary phage training, a targeted 286 

approach can also be applied. For this purpose, phage-resistant mutants are first generated in 287 

fluctuation experiments (Luria and Delbrück 1943; Burmeister et al. 2020; Romeyer Dherbey et al. 288 

2023) (Fig. 1F). New phage strains can then be evolved to infect each resistant mutant (Fig. 1G). 289 

Finally, a selection of the evolved phages can be combined to create an effective phage cocktail 290 

(Yehl et al. 2019; Yang et al. 2020; Nale et al. 2021). Phages in these cocktails cannot only infect a 291 

diverse set of resistant bacterial strains but also recombine both in vitro and in vivo to generate 292 

phages that can infect bacteria with novel resistance phenotypes (De Sordi et al. 2017; Burrowes 293 

et al. 2019; Borin et al. 2021; Srikant et al. 2022; Romeyer Dherbey et al. 2023). This approach is 294 

likely more laborious than the co-evolutionary approach since the bacterium can become phage-295 

resistant through many different pathways. However, knowledge about the identity and order of 296 

mutations makes it easier to understand how phage resistance works and how phages can 297 

overcome different types of resistance. A deeper understanding of phage resistance mechanisms 298 

will also make the application of synthetic approaches more effective. 299 

 300 
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 301 
 302 



 12 

Fig. 1. Proposed procedure to develop a phage model system into a therapeutic agent. A. 303 

and B. Bacterial pathogens are first sequenced and characterised. Phylogenetic trees can help to 304 

identify bacterial strains closely related to the target pathogen. Model phages are then adapted to 305 

the bacterial pathogens as well as closely related strains in vitro. C. A selection of phages is pooled 306 

and serially transferred daily on a host culture containing a mixture of susceptible strains and the 307 

pathogenic strain of interest. Transfers continue until a phage is found to infect the pathogenic 308 

strain (Bono et al. 2013; Romeyer Dherbey et al. 2023). D. Phage host range can also be increased 309 

using the Appelmans protocol. A selection of phages is pooled and iteratively grown on permissive 310 

and non-permissive bacterial strains. To maintain phage diversity from one iteration to another, 311 

the first rows contain permissive strains, followed by resistant pathogenic strains. Adapted from 312 

(Burrowes et al. 2019). E. Phages capable of infecting the pathogenic strains can be further trained 313 

to enhance their lytic ability against the pathogen, for example, by phage training in a coevolution 314 

experiment (Borin et al. 2021) or through a more targeted approach (F and G) (Romeyer Dherbey 315 

et al. 2023). F. Emergence of phage resistance can be reduced by evolving a range of phage mutants 316 

that can infect spontaneously resistant bacteria. Spontaneous phage-resistant mutants can be 317 

generated on agar plates using a fluctuation assay (Luria and Delbrück 1943). G. Left panel: similar 318 

to panel (C), phage strains are evolved to infect different phage-resistant variants without 319 

coevolution of the bacteria (Romeyer Dherbey et al. 2023). Right panel: for resistant strains that 320 

are difficult to infect, additional evolution experiments using a cocktail of phages adapted to easier 321 

resistant phenotypes (resistant phenotypes that phages evolved to infect quickly) may speed up 322 

evolution via recombination. Host diversity can help maintain phage diversity in the experiment 323 

(Romeyer Dherbey et al. 2023). 324 

 325 

The ability of phages to infect a host is critically dependent on the environment (Kim and 326 

Kathariou 2009; Koskella and Brockhurst 2014; Hernandez and Koskella 2019). Hence, once 327 

model phages have been evolved to infect pathogens in vitro, they may also have to be tested and 328 

potentially adapted to in vivo conditions before they can be used as therapeutic agents (De Sordi et 329 

al. 2018; Hernandez and Koskella 2019; Hsu et al. 2019; Castledine et al. 2022). For example, 330 

bacteria susceptible to phages in solid media may be resistant to phage infection in liquid media 331 

(Romeyer Dherbey 2023). Again, experimental evolution may be the perfect tool to either adapt 332 

phages to the host environment or evolve phages that are robust to environmental change. 333 

 334 

Raising phage therapy awareness with established phage model systems 335 
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Phage therapy has the potential to significantly improve treatment outcomes. However, one crucial 336 

aspect that hinges on its success is often overlooked: the perception of the general public. To 337 

engage people with phage therapy, we must ensure effective communication about phage research, 338 

its current limitations, and, most importantly, its potential to save lives (Gordillo Altamirano and 339 

Barr 2019; Ji and Cheng 2021; Niang et al. 2021). 340 

 341 

Medical innovations are often met with great scepticism, especially by the general public (Johnson 342 

et al. 2020; Barrett et al. 2022). For example, the acceptance of the new mRNA COVID-19 vaccine 343 

has been hampered by the spread of misleading or false information (Hussain et al. 2018; Burki 344 

2020; Longhi 2022). As phages are also viruses, their acceptance and the willingness of people to 345 

rely on them as therapeutic agents could be impeded in similar ways. Moreover, phage therapy has 346 

already had to overcome the poor reputation obtained through its association with Axis powers 347 

during the Second World War and Cold War (Summers 2012). To prevent history from repeating 348 

itself, the narrative around phage therapy and its anthropological impact on modern society should 349 

be taken into consideration by scientists (biologists, anthropologists of sciences, sociologists), 350 

media, and politics. 351 

 352 

Fortunately, we still have time to effectively and transparently communicate about the advantages 353 

and limitations of phage therapy. Phage model systems represent a convenient tool for this 354 

endeavour as we can capitalize on our profound insight into their biology and evolution (Luciano 355 

et al. 2002; Hanauer et al. 2017). The knowledge acquired about model phage systems over the last 356 

100 years will facilitate the communication of complex concepts about phages to the general 357 

public. For example, phage T4 is already used in television reports and science cartoons 358 

(Kurzgesagt 2018) as the “default phage”, thanks to its striking morphology. Similarly, other phage 359 

model systems could be exploited to communicate information on phage biology and phage 360 

therapy. Finally, integrating phage biology and phage hunt classes (i.e., phage discovery programs) 361 

may be a good way to construct collective knowledge and disseminate accurate information about 362 

phages (Elbers and Streefland 2000; Staub et al. 2016; Hanauer et al. 2017). 363 

 364 

Conclusion 365 

Established phage model systems are far from old-fashioned. In addition to the purely economical, 366 

biological, and medicinal advantages, they may provide non-negligible sociological benefits. These 367 

advantages could be decisive in establishing phage therapy as a common, safe, and inexpensive 368 

medical practice in the West once the technology is readily available. Extensive research, however, 369 
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has first to be conducted to demonstrate the efficacy of phage model systems to treat infection 370 

caused by pathogenic bacteria. Hence, in parallel with the ongoing search for novel environmental 371 

phages, we advocate investing resources into developing phage model systems for phage therapies. 372 

  373 
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