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Abstract

Network analysis provides a powerful framework to study the complexity underlying the

structure, dynamics, stability, and function of ecological systems. By now, analysing

single-layered networks is a common practice with clear guidelines and well-established

computational tools. Nevertheless, ecological communities are multilayered because they

vary over space and time and contain multiple types of interactions. In recent years,

the analysis of ecological multilayer networks (EMLNs) has allowed researchers to include

such multilayered complexity. However, there is a paucity of practical guidelines and stan-

dardised tools to handle EMLN data, even before downstream analysis. In this article, we

accomplish three objectives: (1) We provide practical guidelines for handling EMLN data.

(2) We developed the EMLN R package to standardise the workflow of creating, storing,

and working with EMLN objects. The package also enables conversion between multiple

formats for downstream analysis with other standard packages. (3) We provide EMLN

data sets for research and training purposes. A dedicated website with explanations, de-

tailed examples, and code accompanies our paper. This website is a gateway for novice

and experienced network ecologists who want to include EMLNs in their research. By

simplifying the analysis of multilayer networks and promoting standardised approaches

we facilitate the analysis of EMLNs. This paves the road towards gaining deeper insights

into functioning and resilience of natural ecosystems.
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1 Introduction

Network theory provides a powerful mathematical framework to describe interactions between

entities, facilitating research into the challenging complexity of natural and experimental eco-

logical systems [1,2]. Network analysis provided ecologists with an incredible toolkit, whose

application has led to a myriad of insights into the structure, function and stability of ecosys-

tems [1–4]. By now, ecological network analysis is common, largely due to the availability and

ease of use of software packages such as igraph and bipartite [5]. However, until recently, eco-

logical networks have been studied in isolation although ecological communities and systems are

inherently multi-dimensional: they vary in space [6,7] and time [8–10], and they often contain

multiple kinds of interactions (e.g., predation and mutualism) [11–15]. The recent development

of multilayer networks in the broader network science [16,17] and specifically of ecological multi-

layer networks (EMLNs) [18,19] addresses this problem. A multilayer network has two or more

layers, each of which is a monolayer network. Multilayer networks can also contain interlayer

links connecting nodes from different layers (Fig. 1). Encoding processes within and between

layers in a single mathematical/computational object provides a more realistic representation of

complex ecological systems. Hence, in the past six years, there has been a surge in the study of

EMLNs, which have proven highly insightful for understanding the structure and dynamics of

ecological communities [10,15,20–22]

On the technical side, however, EMLNs are challenging to use. An EMLN object can contain

many kinds of data because the identities and attributes of nodes and links can vary between

layers. The need to computationally store multiple layers and data types under a single object

complicates the workflow of creating and managing EMLN objects. This is exacerbated when

including node and link attributes, which can vary between layers (e.g., the abundance of a

given species varies in time). Furthermore, EMLNs can contain interlayer links, which do not

exist in monolayer network analysis. From a technical perspective, different software packages

require different formats for working with multilayer networks. These challenges hinder the

application of EMLNs, especially for newcomers. In addition, the mathematical structure of

these networks is not trivial, especially when dealing with a bipartite layer structure, which is

common in ecology (e.g., pollination, parasitism).

Although there are various sources that define multilayer networks in ecology [18] and network

science [16,17,23], their application in practice is still challenging. Importing and handling

multilayer data is the primary hurdle of network ecologists working with EMLNs. Therefore,

the goal of this paper is threefold. (1) To provide practical guidelines for handling EMLN

data. (2) To standardise the workflow of creating, storing, and working with EMLN objects.

This goal includes facilitating conversion between multiple computational formats to enable

downstream network analysis with packages such as igraph [24], bipartite [5], Muxviz [25], and

infomapecology [26]. (3) To provide resources for research and training purposes.

To fulfill these goals, we explain the workflow of working with EMLNs, and define the necessary

data structures. In addition, we developed the EMLN package, which we include with this paper.

The package contains functions to import, store, and convert EMLN data. It also contains an
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extensive curated data set of multilayer networks, which can be used to perform comparative

analyses, teach, and practice. Per the paper’s goal, we focus on pre-analysis workflows, which

involve the formatting and organisation of EMLNs. Therefore, we do not provide explanations

of multilayer network analysis methods (e.g., modularity, centrality, motifs), for which there

are many resources available (e.g., [23,26–28]). Given that EMLN analysis is an advanced

framework, we assume that readers have some basic experience with monolayer network analysis

and are familiar with the basic concepts of EMLNs [18,19]. An overview is presented in Fig. 1

(also see an additional visual guide in [29]).
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Fig. 1: Definitions and examples of ecological multilayer networks (EMLNs) and their un-
derlying data. (A) A spatial network; (B) A node-aligned multiplex network with two interaction
types; (C) A directed temporal network. An EMLN has four components: (1) Layers (e.g., patches,
interaction types, time points). (2) Nodes. Physical nodes are the entities (e.g., the pelican), and
state nodes are realisations of the same physical node in different layers (e.g., the pelican in different
patches). Note that physical nodes do not necessarily appear in all layers. (3) Intralayer links, which
encode interactions within each layer. Trophic (black arrows) and parasitic (red arrows) interactions
are presented as an example. (4) Interlayer links (blue dashed lines) encoding processes that operate
between layers. For example, the relative change in abundance between populations of state nodes.
In (C), the interlayer links are directed to represent the temporal flow. See [17,18] for a complete
definition of EMLNs, including mathematical notations. For the network in (A) there are three
representations: (i) a network; (ii) a supra-adjacency matrix (SAM); and (iii) an extended link list
(ELL). In these representations the green, orange and purple colours are patches. In (ii) the diagonal
blocks represent intralayer links and off-diagonal blue cells are interlayer links. in (iii) coloured rows
are intralayer links corresponding to the colour-corresponding layers, and the blue rows are interlayer
links.
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2 Practical guidelines for constructing multilayer networks

The workflow of multilayer network analysis is similar to that of monolayer networks. Given

a research question and corresponding methodology, one collects data, imports them into pro-

gramming languages like R or Python, and analyses them using dedicated packages (Fig. 2).

However, as mentioned above, EMLNs are more complicated than monolayer ones, which re-

quires considering the following:

• What do layers represent (e.g., space, time, interaction types).

• Layer structure (e.g., unipartite, bipartite).

• Interlayer links. While it is possible to analyse EMLNs without interlayer links, these

form a distinctive component of EMLNs. What interlayer links can encode and how to

measure them is an issue already discussed in detail [19], but that still remains challenging.

Interlayer links should form part of the research question and be measured as part of the

data collection method. In practice, however, this is not easy to do. To date, only a

handful of papers have done so [10,15,21]. A different approach is to infer interlayer links

from existing data. For instance, using species abundance values to encode population

dynamics [18,20]. Despite the surge in EMLN studies, only sporadic examples exist of

fully detailed EMLNs. Another approach is to set a uniform value to all interlayer links

(e.g., [30]). However, this should be avoided because setting an arbitrary value does not

encode hypotheses.

• Node or link attributes, and do they vary across layers.

• The kind of analysis that will be applied, to choose adequate data structures.

With these considerations in mind, in the following subsections we describe the data structures

used to define EMLNs and provide guidelines on how to prepare the data for downstream

analysis.

2.1 Multilayer data structures

There are two common data structures to store a multilayer network in software: Supra-

adjacency matrix (SAM) and extended link list (ELL) (Fig. 1). We describe them in this

section. Mathematically, a multilayer network is a tensor (a matrix with more than two dimen-

sions) [16]. Specifically, the tensor Miα
jβ encodes the link between node i in layer α to node j in

layer β. When α = β the link is intralayer. A tensor can be “flattened” to a rank-2 tensor, also

called SAM, with dimensions NL×NL, where N and L are the total number of physical nodes

and layers, respectively [17] (see visual guide in [29]). In a SAM, each block of size N × N is

a layer and off-diagonal blocks are interlayer links. Hence, all physical nodes are present in all

blocks, even if they were not observed (Fig. 1).

A SAM representation is used by many algorithms (e.g, calculation of centrality measures).

However, a SAM cannot be used to store link attributes beyond weight. In addition, using SAM
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Fig. 2: Typical workflow of working with multilayer network data. Blue rectangles indicate steps
that can be performed using the EMLN package. (A) Data is collected for intralayer and, possibly,
interlayer links. The data is typically stored in multiple Excel sheets or text files (e.g., csv). (B) For
monolayer analysis, each file can be used to construct a monolayer network using the monolayer class,
which contains three data structure types (link list, matrix and igraph). This conversion facilitates
downstream monolayer network analysis. (C) The files can be used to create a single, standardised
object of class multilayer in the EMLN package (see main text for a detailed description). (D)
The multilayer object can be converted to other formats (igraph or a supra-adjacency matrix) for
downstream analysis. We define three levels of multilayer analysis: (E) Monolayer analysis of each
layer by itself (e.g., with R packages igraph or bipartite); (F) Multilayer analysis without interlayer
links (e.g., species/interaction turnover [31], or reducibility with Muxviz [25]). (G)Multilayer analysis
with interlayer links (e.g., community detection with infompaecology [26,32]). Discussion on network
analysis (E, F, G) is beyond the scope of this work.

with bipartite networks is not straightforward. A bipartite network is stored as an incidence

matrix B with dimensions P ×A, where P and A are the number of species in rows (e.g., plants)

and columns (e.g., pollinators). To use a SAM, one needs to first transform each layer to a

square matrix with dimensions N = A+ P such that the adjacency matrix of layer α is:

A(α) =

(
0 BT

B 0

)
(1)

Then, these square matrices are put together as a SAM. We provide a visual example of this

approach in (Fig. 3). A similar approach was taken in a seminal paper that linked food webs

and host-parasite networks [11], although without creating a square matrix for each layer and

without interlayer links.

A more convenient computational object is an ELL (Fig. 1E). In ELLs, each row encodes

an intralayer link (layer from=layer to) or interlayer link (otherwise) between state nodes.

In unipartite networks, the nodes in the node from and node to fields are identical, while

they do not overlap in bipartite networks. Because of the data frame format, additional link

information (e.g., collection methodology, color) can be added as additional columns. It is then

straightforward to construct relations between node and layer IDs that appear in an ELL and

other data frames that contain node and layer attributes (Fig. 4). Moreover, unlike matrices,

which store links and no links (0 values), link lists only store the links and are more efficient in
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memory. This difference is especially relevant for sparse networks (in which a small proportion of

the possible links are realized). However, working with sparse matrix objects in R (e.g., package

Matrix) is also possible.
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Fig. 3: Toy example for creating a supra-adjacency matrix from bipartite layers. (A) A
bipartite network (middle) with plant-pollinator (purple-colored links) and plant-herbivore (green-
colored links) layers. Plants are connected via blue interlayer links to form a diagonally-coupled
multilayer network [18]. The matrix above each layer is the incidence matrix representation of each
layer (without interlayer links). (B) Each incidence matrix is transformed to a symmetric square
adjacency matrix as in equation 1. (C) The two adjacency matrices are joined to a supra-adjacency
matrix. The white blocks are 0-diagonal blocks where interactions cannot occur due to the bipartite
structure of the layers. The blue cells are the interlayer links between plants (e.g., [22]).

2.2 Levels of multilayer analysis

Once a multilayer object is created, network analysis is applied. We identify three levels of

analysis, in increasing complexity (Fig. 2E,F,G). (1) Monolayer analysis, where each layer is

analysed separately and independently. Such analysis can be used to observe how particular

network properties vary across layers [33]. (2) Multilayer analysis without interlayer links. A

typical analysis at this level is that of turnover in species and interactions [7,31,34] across a set

of disconnected layers. In multilayer network science there are by now plenty of methods for

such analysis [23,26,35]. For instance, Kefi et al [36] grouped species in a multiplex food web

according to common interaction patterns of trophic and non-trophic interactions across layers.

(3) Multilayer analysis with interlayer links. While the two former approaches can provide

insights into cross-layer variation (e.g., spatio-temporal variation), they do not explicitly consider

interdependency across layers. The main strength of multilayer networks lies in the interlayer

links (Fig. 1B,D), which explicitly encode processes that operate between layers [15,18–21].

Interlayer links can be used in structural analysis, such as with community detection [26] and

with dynamical analysis. For instance, that of biomass flow in spatial food webs.
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Fig. 4: Data structures. Each rounded rectangle contains the field names of a tibble that is
included in the multilayer class. The name of the tibble is in bold. The arrows indicate which field
names are linked across the tibbles, as in a relational data base (e.g., SQL). Black fields are common
to all networks. Green fields are examples for field names that are idiosyncratic. For instance, not
all data sets will have coordinates or species abundance data.

3 Ecological multilayer network analysis in practice

In this section we provide practical guidelines and code examples to creating multilayer net-

works from data. Storing and analysing monolayer networks is by now a common practice

and there are many software packages and tools to do so. The commonly used ones in ecol-

ogy are the R packages igraph [24] and bipartite [5], though there are implementations for

Python (e.g., NetworkX, and Graph-tool) and Julia (e.g., EcologicalNetworks.jl [37] and

LightGraphs.jl). However, this is not the case for multilayer networks.

Ecologists usually store topology and attribute data as matrices in Excel sheets or csv files

(Fig. 2A,C). The manipulation of multiple files can result in errors and generating an ELL

or SAM is not intuitive. A smooth EMLN workflow requires the ability to import network

data—including intralayer links, interlayer links, and node, link and layer attributes—and store

them within a single computational object. It further requires converting between multilayer

data structures for downstream analysis. For instance, MuxViz [25] uses SAM data structures,

while infomapecology, an R package for community detection, works with ELL [26]. Hence,

converting between SAM, ELL and igraph data structures is essential for EMLN analysis. This

entire workflow can be facilitated with the EMLN package, which we present here.

3.1 The EMLN package: implementation, availability and code

The R package EMLN consists of ten functions (Table 1). We introduce the package us-

ing toy and real data, accompanied by code examples in every step of the way. Consider-

ing that software packages are updated more flexibly and constantly than papers, the code

is provided on an external website hosted on GitHub rather than within the text: https:

//ecological-complexity-lab.github.io/emln_package. For the same reason, we provide

the full documentation of the functions in the package and an overview here. The package code

can be found in https://github.com/Ecological-Complexity-Lab/emln.
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We start with monolayer networks because importing monolayer network data and converting

between data structures (matrix, link list and igraph objects) is the basis for working with layers

in EMLNs.

3.2 Monolayer networks

Monolayer networks are typically stored using matrices and link lists. In R, these correspond to

classes matrix and data.frame (or tibble), respectively. In EMLN, three functions are used for

monolayer network conversion to facilitate monolayer network analysis (Fig. 2B) and to create

the layers of EMLNs. The functions matrix to list bipartite and matrix to list unipartite

take as input an incidence or adjacency matrix, respectively and create a monolayer object. This

object is an R list that contains information on the network (e.g., if it’s directed), a data frame

with node attributes, and three formats for the network: matrix, link list (as a tibble) and an

igraph object. The function list to matrix has the same functionality but takes as input a

link list (as a data.frame), which can represent either a bipartite or an unipartite network.

When using link lists, it is possible to include node and link attributes. We also include in the

package a wrapper function for these three, called create monolayer network, which automat-

ically identifies if the input is a matrix or a link list and creates a monolayer object. Examples

for handling monolayer data with these functions are online.

Table 1: The functions of the package EMLN.

Name Description

matrix to list bipartite Convert a bipartite monolayer incidence matrix to a monolayer
class.

matrix to list unipartite Convert a unipartite monolayer adjacency matrix to a
monolayer class.

list to matrix Convert a monolayer link list to a monolayer class.
create monolayer network A wrapper for the three functions above, which automatically

identifies the input and creates a monolayer object.
create multilayer network Create a multilayer class from multiple matrices or link lists.
get igraph Convert a multilayer object to a list of igraph objects.
get sam Convert a multilayer object to a SAM.
view emln View the multilayer networks included in the package.
search emln Search for multilayer networks included in the package.
load emln Load the multilayer networks included in the package.

3.3 Multilayer networks

In multilayer networks, the SAM and ELL data structures correspond to classes matrix and

data.frame (or tibble), respectively. EMLNs are created using the function create multilayer network.

The function takes as input an R list of either matrices or link lists and uses the function

create monolayer network to handle each of those. Layer structure can be either unipartite or

bipartite, but it is recommended that all layers are of the same network type, which is typically

the case. If interlayer links are present, they can be included as an ELL in a data frame (online

example). Layer attributes can also be included and are obligatory if interlayer links are provided

because the layer names in the layer name column in the layer attributes table must correspond
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to those in the interlayer links. Link and state node attributes can also be included. This can

be done by using link lists as input for layers (online example). The resulting multilayer class

is an R that includes the following tibbles (online example).

• nodes: A tibble with the physical nodes. Nodes have a unique id (generated automatically),

names (original names provided by the user), and optionally, attributes of the physical

nodes, such as taxonomy (e.g., family) or traits.

• layers: A tibble with layer attributes. If not provided by the user it will have a layer id

and layer name columns generated automatically.

• state nodes: A tibble with columns layer id, node id, layer name, node name. Also in-

cludes state node attributes if provided as input.

• extended: A tibble with columns layer from, node from, layer to, node to, weight. If link

attributes were provided they will come after the weight column. This is an ELL with

node and layer names.

• extended ids: The same as extended but with node and layer unique IDs.

These tibbles have common field names that can be used to link them, as in a relational data

base (Fig. 4).

4 Data included with the EMLN package

We curated a database of 78 ecological multilayer networks collected from different sources

(Fig. 5). Details on data preparation are in the EMLN package’s wiki: https://github.com/

Ecological-Complexity-Lab/emln/wiki. The data set includes 12 networks with state node

attributes (obtained by running: search emln(state nodes = TRUE))), and one data set with

interlayer links (obtained by running: search emln(interlayer = TRUE)). This collection of

data is highly useful for comparative analysis and for practising workflows. The data includes

five types of multilayer networks, which are divided into seven types of ecological interaction

networks (e.g., pollination, food web) (Fig. 5C).

9

https://ecological-complexity-lab.github.io/emln_package/multilayer.html#Working_with_node_and_link_attributes
https://ecological-complexity-lab.github.io/emln_package/multilayer.html#The_multilayer_class
https://github.com/Ecological-Complexity-Lab/emln/wiki
https://github.com/Ecological-Complexity-Lab/emln/wiki


0

10

20

0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

Number of nodes

co
un

t

(A)

0

20

40

60

0

50
0

10
00

15
00

Number of layers

co
un

t

(B)

0

10

20

30

40

S
pa

tia
l

Te
m

po
ra

l

E
nv

iro
nm

en
t

M
ul

tip
le

x

P
er

tu
rb

at
io

n

Multilayer Network Type

C
ou

nt

Interaction Type

Anemone−Fish

Food−Web

Host−Parasite

Multiple

Plant−Herbivore

Pollination

Seed−Dispersal

(C)

Multilayer Type Environment Multiplex Perturbation Spatial Temporal

(D)

Fig. 5: Summary of the 78 ecological multilayer networks included in the data set. (A) and
(B) are distributions of the number of nodes and layers in a network, respectively. (C) Distribution
of ecological interaction types (colours) across multilayer network types. Multiple refers to networks
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Interacting with the data sets is straightforward as can be seen in the example code (https://

ecological-complexity-lab.github.io/emln_package/data.html). The function view emln

provides a quick way to browse the network database. It is also possible to search for EMLNs

with specific criteria using the search emln. This function returns the id(s) of the EMLNs.

Then, it is possible to load the data using load emln. This function returns a multilayer class

as described before. Hence, it is possible to convert it to SAM or igraph as with user-created

EMLNs.

5 Using EMLN with other packages for network analysis

While this paper is not meant to provide guidelines for analysis, we still opted to include

a few examples, to illustrate the complete workflow using EMLN in combination with other

packages. These analyses and the results are provided in the accompanying website (https:

//ecological-complexity-lab.github.io/emln_package/analysis_example.html). To fa-

cilitate the analysis, the multilayer object can be converted using dedicated functions to other

formats such as SAM or a list of igraph objects (online example).

In the node-level analysis, we import a real data set [36] and compare the eigenvector centrality of

nodes calculated in each layer separately (monolayer) to that calculated in the SAM (multilayer).

To perform monolayer analyses we convert the layers to igraph using the get igraph function

(Fig. 2B). This creates a list of igraph objects from the network layers. For a multilayer analysis,

we convert the multilayer object to a SAM using get sam (Fig. 2D). For the mesoscale-level

analysis we use a temporal EMLN included in the package. After loading the network, we run

infomapecology to unravel the temporal modular structure of the network. We leverage the fact

that the multilayer object includes a built-in table called extended ids, which is generated

by create multilayer network automatically, because infomapecology receives as input node

ids rather than node names.

6 Conclusions

The analysis of EMLNs can provide novel insights into the organisation and stability of ecological

communities. However, because multilayer networks are, by definition, highly complex and

multi-dimensional, handling data and subsequent analysis are challenging. Providing practical

guidelines and dedicated tools is a necessary step to allow more researchers to take part in this

cutting-edge aspect of network ecology. Here, we described the workflow of EMLN analysis and

provided practical and visual guidelines, as well as detailed code examples in a dedicated website.

The R package we provide standardises data structures and also enables an easy conversion for

downstream analysis with common packages and includes practice data sets. We hope that this

paper provides a springboard for ecologists interested in expanding their toolkit to include the

multilayer nature of ecological networks in their research.
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