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Abstract

Context and objectives

Although urbanization is a major driver of biodiversity erosion, it does not affect all species equally. The
neutral genetic structure of populations in a given species is affected by both genetic drift and gene flow
processes. In cities, the size of animal populations determines drift and can depend on multiple processes,
whereas gene flow essentially depends on the ability of species to disperse across urban areas. Considering
this, we tested whether variations in dispersal constraints alone could explain the variability of neutral
genetic patterns commonly observed in urban areas. Besides, we assessed how the spatial distribution of
urban green spaces (UGS) and peri-urban forests acts on these patterns.

Methods

We simulated multi-generational genetic processes in virtual populations of animal species occupying either
UGS or forest areas (both considered as a virtual species habitat) within and around 325 European cities. We
used three dispersal cost scenarios determining the ability of species to cross the least favorable land cover
types, while maintaining population sizes constant among scenarios. We then assessed genetic diversity
and genetic differentiation patterns for each city and each habitat types across the three cost scenarios.
Results

Overall, as dispersal across the least favorable land cover types was more constrained, genetic diversity
decreased and genetic differentiation increased. Across scenarios, the scale and strength of the relationship
between genetic differentiation and dispersal cost-distances varied substantially, alike previously observed
empirical genetic patterns. Forest areas contributed more to habitat connectivity than UGS, due to their
larger area and mostly peri-urban location. Hence, population-level genetic diversity was higher in forests
than in UGS and genetic differentiation was higher between UGS populations than between forest popu-
lations. However, interface habitat patches allowing individuals to move between different habitat types
seemed to locally buffer these contrasts by promoting gene flow.

Discussion and conclusion

Our results showed that variations in spatial patterns of dispersal, and thus gene flow, could explain the
variability of empirically observed genetic patterns in urban contexts. Besides, the largest habitat areas and
biodiversity sources are likely to be found in areas surrounding city centers. This should encourage urban
planners to pay attention to the areas promoting dispersal movements between urban habitats (e.g., UGS)
and peri-urban habitats (e.g., forests), rather than among urban habitats, when managing urban biodiversity.
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Introduction

Most of humankind currently lives in cities and urban areas are predicted to cover three times the area
they covered in 2000 by 2030 (Seto et al., 2012), and four times by 2050 (Angel et al., 2011). Urbanization is an
important component of the anthropogenic pressures triggering the erosion and spatial redistribution of bio-
diversity (Diaz et al., 2019). Indeed, it favors the spread of invasive species, concentrates pollution, and urban
lifestyles are important drivers of natural resource over-exploitation and greenhouse gas emissions (McDon-
ald et al.,, 2020). Last but not least, it is a direct cause of habitat destruction and fragmentation (Beninde et al.,
2015). As a result, many empirical studies have evidenced negative effects of urbanization on biodiversity
(Aronson et al., 2014; Piano et al., 2020). However, this relationship is complex and variable across taxa, bio-
logical organization levels (ecosystems, species, genes), and across cities (Fidino et al., 2020). Urban ecology
research is therefore needed and particularly crucial if humanity is willing to limit its impact on biodiversity
and to maintain the ecosystem services it provides (Verrelli et al., 2022).

Urban ecology studies have shown that species are not all affected in the same way by urbanization (Aron-
son et al., 2014; Blair, 1996; Fanelli et al., 2022; Fidino et al., 2020). While some species are mostly, if not only,
presentin cities because they are specialist of anthropized environments (urban adapters), others cannot sur-
vive in these areas (urban avoiders). Some more ubiquitous species are present in both urban and non-urban
areas. These urban tolerant species are reliable indicators of urban influences on population dynamics along
rural-to-urban gradients. They may also be the most affected by the impact of urban planning on environ-
mental conditions across such gradients.

Species-specific responses to urbanization not only affect species diversity patterns, but also explain the
variability of genetic patterns observed at the intra-specific level along rural-to-urban gradients. Although
rapid genetic adaptations to urbanization have been observed in several species (Santangelo et al., 2022), ur-
banization also shapes neutral genetic patterns in a significant manner (Fusco et al., 2021; Miles et al., 2019).
For instance, urban populations of human pests can exhibit higher levels of genetic diversity than non-urban
ones (Miles et al., 2018). In contrast, Khimoun et al. (2020) and Schoville et al. (2013) did not detect any sig-
nificant difference in genetic diversity nor any patterns of isolation by distance pattern when studying ant
and butterfly populations, respectively, in urban and non-urban settings. Similarly, the relationship between
amphibian genetic diversity or differentiation and the degree of urbanization of several North American cities
was not significant in the study by Schmidt and Garroway (2021). On the contrary, Delaney et al. (2010) showed
that urbanization decreased genetic diversity and increased genetic differentiation in three lizard species and
one bird species, mainly due to higher road density in urban areas. Likewise, Stillfried et al. (2017) showed
that urban populations of wild boars exhibited lower genetic diversity levels than suburban ones in Berlin.

The variability of the neutral genetic patterns observed in urban settings stems from the demographic
dynamics determining the intensity of both genetic drift and gene flow (Frankham et al., 2004; Miles et al.,
2019; Munshi-South and Richardson, 2020). On the one hand, genetic drift can lead to allele loss, especially
in small-sized populations. On the other hand, gene flow following successful dispersal events between pop-
ulations leads to genetic exchanges. This can compensate for the diversity loss due to drift and decrease the
resulting genetic differentiation between populations. Consequently, both the size of urban populations and
the permeability of urban environments to individual dispersal drive genetic diversity and genetic differen-
tiation, because they determine genetic drift and gene flow. As such, the genetic patterns described above
span the whole range of patterns that are theoretically expected from variations in the respective intensity
of drift and gene flow across urban and non-urban areas (Frankham et al., 2004; Hutchison and Templeton,
1999). Under strong genetic drift and low gene flow, a low genetic diversity is expected. Besides, isolation
by distance patterns should not be significant, due to the prevailing role of local stochasticity on pairwise ge-



netic differentiation irrespective of pairwise distances among populations. On the contrary, under moderate
genetic drift and gene flow, a significant isolation by distance pattern and a higher genetic diversity level are
expected. Finally, at intermediate levels, isolation by distance patterns are expected, at least temporarily, until
a pairwise distance threshold beyond which drift becomes the prevailing stochastic driver of genetic differen-
tiation. However, because these predicted genetic patterns depend on the respective intensities of both drift
and gene flow, disentangling the influence of these two processes is a complex task.

In urban tolerant species, genetic drift could explain most of the variability observed in genetic patterns
given that some of these species only form small populations in urban areas (e.g., Lourenco et al. (2017)),
thereby exacerbating drift effects, whereas others can maintain large populations (e.g., Miles et al. (2018)).
Yet, gene flow, which is mainly driven by the ability of urban tolerant species to disperse across urban fabric,
could also be the prevailing driver of genetic responses to urbanization. Accordingly, assessing how dispersal
limitations and resulting gene flow reductions shape genetic patterns is crucial for several reasons. First, many
biodiversity conservation programs rely on habitat connectivity conservation and restoration for maintaining
genetic diversity in urban areas. They assume that dispersal limitation is the main cause of biodiversity loss.
Besides, they often focus on Urban Green Spaces (thereafter referred to as UGS) as biodiversity sources, al-
though their spatial location within cities could convert them into sink patches (Lepczyk et al., 2017; Pulliam,
1988; Verrelli et al., 2022), thus compromising the efficiency of habitat and ecological corridor restoration
in urban cores. Determining to which point species movements in these areas are sufficient for preventing
diversity loss is therefore needed for estimating the potential benefit of such measures. For that purpose,
simulations have been commonly recommended in landscape genetics (Balkenhol et al., 2016; Munshi-South
and Richardson, 2020), particularly for studying how neutral genetic patterns emerge from the interplay of
drift and gene flow processes, independently of adaptive processes. They also proved to be efficient for re-
producing empirically observed genetic patterns in urban areas (Rochat et al., 2017).

Considering this, our research objective in this study was to answer the following question: how does dis-
persal limitation explain the variability of genetic patterns in urban tolerant species? To this end, we simulated
neutral genetic patterns resulting from multi-generational gene flow between populations of urban tolerant
species located in both UGS and forest areas within and around 325 European cities. Using scenarios intro-
ducing variations in the ability of three virtual animal species to disperse across urban fabric, we assessed
how this ability affects genetic patterns, independently from any other process. Across scenarios, genetic
drift intensity was constant for a given set of populations. The simulated variations in dispersal, for each city,
could thus affect genetic patterns by modifying the respective intensities of drift and gene flow. We also com-
pared the connectivity of UGS and forest areas, and contrasted the genetic diversity and differentiation levels
observed in these habitats to shed light on how the connectivity and spatial configuration of habitats drive
genetic responses to dispersal scenarios in cities.

Material and methods

To answer our research questions, we needed to assess the genetic responses to urbanization of urban
tolerant species having different abilities to cross artificial areas, while being equivalent in terms of popula-
tion density and dispersal abilities to cross favorable areas. We also needed to assess these responses at the
level of entire urban areas and to replicate the analyses to ensure that our results were not merely due to
the specificity of a single study area. To meet these conditions, we implemented a simulation approach and
applied it to 325 European urban areas, hereafter referred to as cities.

For each city, we first modeled the connectivity of habitat patch networks for forest-dwelling species oc-
cupying both UGS and forest patches according to three dispersal scenarios, using a graph-based approach.



Then, we simulated drift and gene flow processes in populations occupying both types of habitats, and ana-
lyzed the resulting genetic pattern at both the within-population (genetic diversity) and between-population
(genetic differentiation) levels. We provide details in the following sub-sections.

Habitat connectivity analyses

Land cover data

We used urban land cover data from the Urban Atlas 2018 database of the Copernicus European agency.
These land cover data are available for 788 functional urban areas, sensu Organisation for Economic Co-
operation and Development (OECD, Moreno-Monroy et al. (2021)), counting at least 50,000 inhabitants in 38
member or partner states of the European Union. These vector land cover data include 27 land cover types
at a relatively fine spatial resolution (Minimum Mapping Unit: 0.25 ha inside urban core areas, and 1 ha in sur-
rounding rural areas). They were reclassified into 10 land cover types (Table S1) and rasterized at a spatial res-
olution of 5 m. The two "Forests" and "UGS" land cover types were considered for delineating habitat patches
in the analyzes. "Forests" tended to be peripheral (i.e., peri-urban) whereas "UGS" were mostly located within
city cores, although in each city, some patches did not conform to this pattern. UGS included public green ar-
eas predominantly dedicated to recreational use (e.g., gardens, parks), as well as suburban natural areas that
are used and managed as urban parks. We obtained the spatial coordinates of the center of every city from
the Open Street Map database using Nominatim and the jsonlite R package (Ooms, 2014). In most cases, it
coincided with the city hall, which is commonly used as the center of cities (Lemoy and Caruso, 2020)(Figure 1).

We delineated the cities under study by standardizing their proportion of artificial areas in order to assess
the influence of dispersal on genetic patterns in areas having the same degree of urbanization, although
differing in the configuration of their urban fabric and natural areas. Delineating study areas of the same
spatial extent would have led the differences among cities to mainly reflect the effect of varying densities of
artificial areas (i.e., proportion of sealed area in the study area). In contrast, we here assessed species genetic
responses in areas which differ in the location and shape of their urban fabric. To that end, we calculated the
proportion of artificial areas in disks of increasing radius centered on the city center. These radius ranged
from 5 km to 40 km, with steps of 500 m. The target proportion of artificial areas was fixed at 20% + 1%
after preliminary analyses. This threshold allowed us to maximize the number of cities for which a radius
encompassing a fixed proportion of artificial areas could be found between 5 and 40 km and to minimize
the variance of this radius. Cities were included in our sample when at least 95 % of the delineated disk was
covered by the Urban Atlas land cover data (Figures 1A and 1B). When required, we completed the remaining
peripheral sectors with Corine Land Cover data, matching their typology with our land cover classification, as
indicated in Table S2. Our method selected 325 cities and mainly excluded coastal cities and very small or very
large cities for which the proportion of artificial areas was never below or above 20 %, respectively, within the
range of considered radii.

Dispersal cost scenarios

We wanted to assess whether genetic responses were affected by the capacity of species to cross the least
favorable areas when dispersing from one habitat patch to another. We therefore made three dispersal cost
scenarios, consisting of cost values associated with land cover types and representing the cost of species
movements across pixels of each land cover type (Table 1). These costs were similar to the costs used by
Sahraoui et al. (2017) and Tannier et al. (2016) for modeling habitat connectivity in urban areas for forest
species such as rodents (e.g., Mustela putorius) or birds (e.g., Picus canus). They were minimal (1) in habitat
areas and higher in land cover types supposed to highly affect forest species movements, such as grasslands
(10), agricultural areas (50) or wetlands (100). These costs were constant across scenarios. In contrast, the
costs associated with water, roads and artificial land cover types increased from scenario 1 to 3. They were



Figure 1. (A) Land cover map of a city under consideration (city of Besangon, East of France), represented by
a disc including 20% artificial areas. (B) The 325 European cities considered in our analyzes. (C) Example of
least-cost paths (brown lines) connecting forest patches (dark green) and UGS patches (light green). (D)
Example of genetic simulation output. The purple and orange dot sizes represent the simulated allelic

richness in forest and UGS populations, respectively, according to the cost scenario 2.
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equal to 90, 900 and 9,000 for water and roads, and to 100, 1,000 and 10,000 for artificial areas in scenarios 1,
2 and 3, respectively. This reflects the fact that built-up areas are more difficult to cross than unfavorable yet
open areas such as roads or water bodies. A cost scenario based on similar assumptions has been empirically
validated by Balbi et al. (2019) in an urban context. The cost variations in the least favorable land cover types
for a forest species allowed us to distinguish three virtual species with different dispersal behaviors in urban
areas. Nonetheless, the total cost they could endure during dispersal was kept equal for the three virtual
species. This means that they had similar absolute capacities to disperse whatever the cost scenario. Yet, the
spatial paths they followed when dispersing could vary substantially from one scenario to another depending
on the configuration of land cover types. Using these cost scenarios, we thus aimed to isolate the effect of
variations in spatial patterns of dispersal on genetic patterns across rural-to-urban gradients.

Land cover types Scenario 1 Scenario 2 Scenario 3
Forests 1 1 1
Urban Green Spaces 1 1 1
Grasslands 10 10 10
Semi-natural areas 10 10 10
Agricultural areas 50 50 50
Other open areas 50 50 50
Wetlands 100 100 100
Water 90 900 9000
Roads 90 900 9000
Artificial areas 100 1000 10000

Table 1. Dispersal cost values associated with each land cover type according to the scenarios considered.
Scenarios 1 to 3 represent an increasing aversion of forest species for dispersal movements across water,
roads, and artificial areas.

Landscape graphs

We modeled habitat connectivity with landscape graphs using the Graphab 2.8 software program (Foltéte
etal., 2021). Landscape graphs represent habitat patch networks as sets of habitat patches (nodes) connected
by potential dispersal paths (links)(Urban and Keitt, 2001). We built them using the Urban Atlas land cover
data and the three dispersal cost scenarios (one graph per scenario). Each forest or UGS habitat patch above
0.25 ha was a node of the graphs. Although a single type of habitat patch (node) is most often considered
in graph-based connectivity analyzes, the special feature of our analyzes was the distinction between forests
and UGS, considered as two distinct types of nodes in subsequent analyzes (Savary et al., in prep.).

We computed least-cost paths between every pair of habitat patches. This simple method estimates disper-
sal paths by finding the ones connecting patches while minimizing the total cost accumulated when crossing
pixels with specified cost values. Despite the known limitations of this method (Zeller et al., 2012), it has proved
to be relevant in empirical studies measuring species movements in urban areas (e.g., Balbi et al. (2019)). For
each scenario, we obtained a set of potential dispersal paths and the accumulated cost along them, i.e., the
cost-distance (Figure 1C). We then created three minimum planar graphs, sensu Fall et al. (2007), in every ur-
ban area. In these graphs, links correspond to least-cost paths, connect neighbor patches, and are weighted
by the corresponding cost-distances.

We used these graphs to assess the contribution of each habitat patch to the connectivity of the habitat
network and identify whether the distribution of forest and UGS patches could drive potential source-sink
dynamics. To that purpose, we computed the ‘Flux’ (F) connectivity metric for each patch to estimate the
amount of habitat that is reachable from the focal patch. It considers the area of the other patches and the



cost-distances associated with the shortest path to these other patches on the graph, as follows:

n
Fi - E ajeiaXdij

J=Lj#i
with 7 the focal patch index, j the index of every other patch among the n habitat patches, d;; the cost-distance
between patches i and j, and a; the area of each patch j.

« was set such that the probability of covering a cost-distance equivalent to an average path of 5 km (dsx:m)
is equal to 0.05, i.e., p(dskm) = e~“dskm = (.05. This distance can be considered as the maximum dis-
persal distance of forest species with medium dispersal capacities (Sahraoui et al., 2017). To obtain dsx,,, we
assessed the relationship between (1) the length in metric units of the least-cost paths not crossing the least fa-
vorable areas and (2) the corresponding cost-distances, using log-log linear regressions (Tournant et al., 2013).
For that purpose, we only considered the set of paths (spatial trajectories and associated cost-distances) that
never crossed any pixel of artificial area, road or water, as they are supposed to be representative of the most
common species movements. We then used the estimated relationship between the length of these paths
and their cost-distances to convert 5 km into cost units and computed the average converted value for each
urban area and each scenario. ds.,, averaged 20,000 cost-distance units. By using the same d5,, and « val-
ues for all three dispersal scenarios in this analysis and for parameterizing the genetic simulations (see below),
we ensured that the virtual species we considered had similar absolute capacities to disperse whatever the
cost scenario.

When computing the F' metric, we distinguished cases where patches ¢ and j were respectively either (i)
both forest patches (Frorests Forest), (il) forest and UGS patches (Frorestsugs), (i) UGS and forest patches
(Fuaso Forest) OF (iv) both UGS patches (Fygs«<uas)- For each urban area and scenario, forest patches asso-
ciated with Frrestsuas Values in the upper quartile of the distribution were considered as "Forest Interface"
patches. Similarly, UGS patches associated with Fiyas« Forest Values in the upper quartile of the distribution
were considered as "UGS Interface" patches. Indeed, these habitat patches are the most important ones for
the connectivity between several types of habitats. We expect them to be mostly, though not strictly, located
at the periphery of city centers. They could therefore play a significant role in potential source-sink dynam-
ics. Their connectivity could also drive genetic diversity transfers from less to more anthropized habitat areas,
and conversely, e.g., when UGS Interface patches are connected to other UGS located closer to the city center.

Finally, we computed the Equivalent Connectivity (£/C) metric for estimating the connectivity of the whole
habitat patch network. This metric represents the area of the unique patch that would provide species with
the same amount of reachable habitat as the whole habitat patch network, given its degree of subdivision and
the resistance of the matrix (Saura et al., 2011). We used the following formula (see also Figure S1):

n n
B0 \[323 et

i=1 j=1

Given that we distinguished two types of habitat patches, we could estimate the contribution to EC' of (i)
the forest patches and the connections between them (ECrorest. Forest: DOth @ and j are forest patches), (ii)
the UGS patches and the connections between them (ECygs.uas, both i and j are UGS patches) and (iii) the
connections between forest and UGS patches, weighted by their respective areas (ECrorest.uGs: ¢ is a forest
patch and j a UGS patch, or conversely). To make these values comparable among cities, we standardized
them by the total area of each city. We also assessed the relative value of the three EC components here
considered, standardizing each of them by their sum.



Genetic simulations

Population size and location

The large number of patches in each city prevented us from simulating a population in all habitat patches,
due to limitations in computational capacities. Furthermore, we can reasonably assume that habitat patches
are not all occupied in actual metapopulations. Nevertheless, we wanted the number of populations to reflect
the subdivision of habitat areas. Therefore, for each type of habitat k, the number of populations Npopy, . in
city c ranged from 10 to 400 and was proportional to the logarithm of the number of patches of that type in
the city c (pn ), such that:

log pp,c — log(miny; pp,;)
log(maxy; py i) — log(miny; pp ;)

with miny; py, ; and maxy; pp, ; the minimum and maximum number of patches of type h across all cities.

Npopp,. = 10+ (400 — 10)

Then, for each city and habitat type, we randomly sampled a number of patches equal to Npopy, . among
the habitat patches of type h in the city ¢, before populating them with individuals. As we wanted the total
population in a given city to reflect the total amount of habitat of that city, the total number of individuals
Nind, in each city ranged from 500 to 10,000 and was proportional to the logarithm of the total habitat area
in each city (using the same formula as above). Log-transformations normalized the distributions of popula-
tion and individual numbers.

Each population (i.e., sampled habitat patch) was then populated with at least 10 individuals, in a way
that reflected the area of its patch. We wanted to assign larger populations to large habitat patches while
ensuring that the total number of individuals across populations was equal to Nind.. Thus, the numbers of
individuals in each population were randomly drawn following a multinomial distribution. Each sampled patch
was associated with a probability of being assigned supplementary individuals (beyond the minimum effective
of 10 individuals) that was proportional to its area (see Figure S2 for an histogram of patch areas). For each city,
these probabilities summed to 1. Therefore, cities with many habitat patches had many populations, cities
with large habitat areas had many individuals overall, and large habitat patches on average contained many
individuals. On average, there were 23 individuals per population (median: 19), and the largest population
included 229 individuals in a 1000 ha patch. Consequently, population sizes varied among patches and among
cities, thereby affecting drift intensities. Yet, drift intensity was constant across dispersal scenarios in every
patch, making it possible to directly attribute genetic response variations across scenarios to variations in
dispersal patterns.

Dispersal and reproduction parameters

Dispersal between populations depended on cost-distances computed for the three cost scenarios. 10 % of
the individuals of each population could disperse from their origin population to another at each generation,
over a total of 250 generations. The dispersal probability from population ¢ to population j decreased with
cost-distance, such that: pg,, = e~ We used the same « value as specified in the previous section.

The population size was constant over time and the sex-ratio initially equal to 1. After birth, individuals
potentially dispersed (see above) and could then only mate and reproduce with individuals from the same
population. Each female had 3 offspring, with a sex-ratio averaging 1, and supernumerary individuals, either
juveniles or adults, died to keep the local population constant. Initial genotypes were randomly generated by
drawing 1in 20 alleles, twice for each of the 20 simulated loci and for every individual. Mutations could happen
at a 0.0005 rate. We carried out the simulations using PopGenReport R package (Adamack and Gruber, 2014).



Genetic data analyses

We wanted to assess the influence of the dispersal scenarios on the genetic responses simulated in each
type of habitat. Thus, at the end of the simulations, we assessed both (i) intra-population genetic diversity
(local) and (ii) inter-population genetic differentiation (pairwise), and their variations according to the scenarios
and types of habitat (i.e., Forest, UGS, and their respective "interface" patches). Besides, to gain insights into
gene flow influence on spatial genetic patterns in cities, we assessed the scaling properties of isolation by
landscape resistance patterns, and whether populations formed genetic clusters coinciding with the spatial
structure of habitat patches. Genetic analyses were performed using the graph4lg package (Savary et al.,
2021b) in R (R Core Team, 2020).

Genetic diversity and differentiation

We estimated genetic diversity within each population as the mean number of alleles per locus when con-
sidering all individuals, i.e., allelic richness. We then averaged allelic richness for each habitat type ("Forest",
"Forest Interface", "UGS", "UGS Interface"), each scenario and each city (n = 4 x 3 x 325). In parallel, we as-
sessed pairwise genetic differentiation using the Dps index (Bowcock et al., 1994), i.e., 1— proportion of shared
alleles. We distinguished three types of population pairs, i.e., "Forest-Forest", "Forest.UGS" and "UGS.UGS",
and averaged values for each scenario and city (n = 3 x 3 x 325).

Isolation by Landscape Resistance (IBLR)

Isolation by distance (IBD) patterns have been known for a long time for providing insights into the relative
influence of drift and gene flow on genetic differentiation (Hutchison and Templeton, 1999; Slatkin, 1993). We
wanted to assess to which degree differences in spatial patterns of dispersal due to cost scenarios could affect
the spatial genetic structure. We therefore analyzed isolation by landscape resistance patterns (IBLR) and
their scaling properties. For that purpose, we iteratively computed Mantel correlation coefficients between
Dps and cost-distances, while filtering population pairs according to increasing cost-distance thresholds until
all population pairs became included. We identified the threshold at which this coefficient was maximal and
called it Distance of Maximum Correlation (DMC), following Van Strien et al. (2015). To obtain comparable
values across cities, we standardized the range of the DMC between 0 and 1 by dividing it by the maximum
cost-distance between population pairs. A value of 1 is supposed to indicate cases where IBLR leads to a
continuous and linear relationship between Dps and cost-distances at the scale of the whole study area (i.e.,
the equivalent of the case | IBD pattern sensu Hutchison and Templeton (1999), although we did not use
the exact same framework as for classical Isolation By Distance analyses (Rousset, 1997)). On the contrary,
values between 0 and 1 could indicate the presence of a plateau in the relationship (case IV IBD pattern sensu
Hutchison and Templeton (1999))(Van Strien et al., 2015). Besides, the correlation coefficient value between
Dps and cost-distances at the DMC showed us to what extent genetic differentiation increased due to increases
in cost-distance.

Module partitions

In each city and for each scenario (n = 325 x 3), we modeled population genetic structure using a genetic
graph. Each node represented a population, and the links were weighted by Dps values. To identify genetic
clustering patterns potentially emerging from dispersal limitations between sets of habitat patches, we identi-
fied modules in these graphs using the fast greedy modularity algorithm by Clauset et al. (2004). This algorithm
identifies the partition of populations into modules maximizing a modularity index. This index takes genetic
differentiation values into account and takes large values when populations from the same module are also
genetically similar.
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We wanted to determine (i) whether the spatial distribution of genetic modules reflected the dispersal con-
straints imposed by the different cost scenarios, and (ii) whether populations from different types of habitat
tended to be assigned to different genetic clusters as well. We therefore compared the genetic modules with
(i) modules computed in similar population graphs with links weighted by cost-distance values instead of Dps
values, and (ii) the classification of habitat patches into forests or UGS. In the former case, we set the number
of modules in each spatial cost-distance graph to be equal to the optimal number of modules identified in
each corresponding genetic graph. Then, we compared these partitions using the Adjusted Rand Index (AR,
Hubert and Arabie (1985)), following the method described by Savary et al. (2022). This index takes its maximal
value (1) when two nodes from the same module in one graph also belong to the same module in the other
graph. Itis equal to 0 when two partitions are comparable to random partitions. It takes its minimal value (-1)
when partitions are totally distinct, i.e., when two nodes from the same module are in different modules in
the other graph.

Genetic response modeling

We modeled the different genetic responses as a function of the dispersal cost scenarios (and habitat type
or type of population pairs for the allelic richness and genetic differentiation, respectively) using mixed-effects
models with random intercepts at the city level. This allowed us to take into account the lack of statistical inde-
pendence between simulations made for three cost scenarios in the same city. In that way, we also accounted
for the fact that all cities do not have the same habitat area, number of populations and individuals, which
created overall differences in genetic structure, irrespective of cost scenarios.

Because all our genetic responses did not have the same range of values and distributions, we used mixed-
effects models assuming various distributions and link functions (when generalized), as explained in the Re-
sults section and Supporting Information 3. Models were fitted with a Restricted Maximum Likelihood ap-
proach using the 1me4 (Bates et al., 2007) and glmmTMB (Brooks et al., 2017) R packages. The adequation be-
tween the distribution of the residuals and the models’ assumptions were checked using a simulation-based
approach implemented in the DHARMa R package (Hartig, 2020). We only interpreted the models whose resid-
uals matched these assumptions. Because we modeled simulated values for which we controlled the number
of replicates, we did not interpret the p-values (which took the lowest value reported by the R software pro-
gram in most cases)(White et al., 2014). Mean values per fixed effect level and their confidence intervals (95
%) were obtained using emmeans (Russel, V. L., 2021).

When both the cost scenarios and the habitat type (4 levels: Forest, Forest Interface, UGS, UGS Interface)
or type of pairs (3 levels: Forest-Forest, Forest-UGS, UGS-UGS) were considered as fixed effects, we included
an interaction between these two variables in the models. Indeed, variations in dispersal were not supposed
to affect the genetic responses similarly according to the type of habitat considered.

Assessing results’ sensitivity to city size and habitat amount variations among cities

We wanted to check whether the results were consistent across cities regardless of prominent differences
in terms of city size and habitat cover. To this end, we analyzed the results by considering separate groups
of cities, created from the quartiles of the city sizes (study area radii) and of the total amount of habitat (UGS
and forest total area). Additionally, we assessed whether allelic richness contrasts between habitat types were
similar when the connectivity of UGS (ECygs.uas) was larger than that of forests (ECporest. Forest)-
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Results

Habitat connectivity

The 325 cities delineated in this study were covered at 20 % £ 1 % by artificial areas and had a radius
ranging from 5 to 40 km, with a mean of 10.8 km and a median of 8.5 km. Their population averaged 300,000
inhabitants in 2018 (median: 140,000, maximum: 6,000,000). In these areas, the overall amount of reachable
habitat (FC) was mainly due to forest patches and much less to UGS, with ECpest. Forest largely higher
than ECygs.uas, and than ECr,rest.ucs, although to a lesser extent (Figure 2A). This contrast was stronger
when modeling connectivity according to dispersal cost scenarios 2 and 3 (Figures S3 and S4). However, in
some urban areas where forest areas are very limited, the contribution of UGS to the amount of reachable
habitat was the highest, as reflected by the proportional share of ECy¢gs.uas (Figure 2B).

Genetic diversity

The simulated genetic diversity varied substantially both among cities and among cost scenarios and habi-
tat types (Figure 3). We modeled the mean allelic richness across populations for each city and type of habitat
occupied by the populations (Forest, UGS, Forest Interface, UGS Interface), as a function of habitat type and
cost scenario using a linear mixed-effects model (LMM) with random intercept at the city level. The random
effects explained 78 % of the overall variance (ICC: 0.783) due to large differences among cities. The residual
distribution was satisfactory, as well as the model fit (conditional R? = 0.91, marginal R? = 0.56). Although
population sizes, drift intensity, dispersal rates and dispersal distances were constant in a given city from
one scenario to another, the overall allelic richness decreased substantially from scenario 1 to 3 in all types
of populations when taking among-cities differences into account (Table 2), as expected from Figure 3. This
resulted from stronger constraints on gene flow exerted by artificial areas, roads, and water bodies, which
modified the respective intensities of drift and gene flow. The effect of the interaction between cost scenarios
and habitat types was much lower than their main effects (x? values from Wald test: main effect of cost sce-
nario: X2=1 6037.6, main effect of habitat type: X2=5960.9, interaction: X2=89O.1 ). Inthe cost scenario 1, allelic
richness was in all habitats relatively higher than in other scenarios, although it took slightly lower values in
UGS (Table 2). For a given type of habitat (Forest, UGS), the highest allelic richness was observed in Interface
habitats. It strongly decreased from scenario 1 to 3 but the decrease depended on the type of patches in
which the populations were located. In Forest and Forest Interface patches, allelic richness was halved from
scenario 1 to 3 (Forest: 10.68 to 5.93, Forest Interface: 11.68 to 6.60). It was almost divided by three in UGS
Interface (10.95 to 4.19), and almost by four in UGS (9.37 to 2.39) (see Cl in Table 2).

Genetic differentiation

The mean genetic differentiation (Dps) between populations was high overall (> 0.6) and increased from 0.62
to 0.72 and 0.85 in scenarios 1, 2 and 3, respectively (Figure 4). Genetic differentiation was lower between
forest populations than between UGS populations and took intermediate values between forest and UGS
populations. We first used a generalized linear mixed model (GLMM) assuming a beta distribution and using
a logit link function to model the Dps values as a function of the cost scenario and type of population pair
(i.e., Forest-Forest, Forest-UGS, UGS-UGS). We also used a LMM assuming a normal distribution. The GLMM
provided a slightly better fit than the LMM. However, its residuals were slightly over-dispersed, whereas the
LMM residuals had a satisfactory distribution. Both models provided similar results and we here present the
LMM results. The random effects (city-level random intercepts) explained 76 % of the overall variance (ICC:
0.759) due to large differences among cities. The model fit was good (conditional R? =0.90, marginal R? = 0.58).
There were large differences among both cost scenarios and types of population pairs, after accounting for
among-cities differences (Table 3). In that case also, the effect of the interaction between cost scenarios and
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Figure 2. Absolute and relative values of the different EC' components computed in the 325 cities according
to cost scenario 1. (A) ECFrorest. Forest (8reen), ECrporet.uas (purple) and ECygs.uas (orange) divided by
the total study area, for each city. (B) Respective contributions of ECporest. Forest (8reen), ECporest.ucs
(purple) and ECygs.ucgs (orange) to the connectivity of the habitat network. The total connectivity value of
the network is the sum of the three EC components, which is slightly different from the global EC' value
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Figure 3. Distribution of the mean allelic richness of populations located in "Forest", "Forest Interface",
"UGS" and "UGS Interface" patches in the 325 cities for the three dispersal cost scenarios. "Forest Interface"
patches correspond to the forest patches most connected to UGS according to the Fryrest—ugs metric,
whereas "UGS Interface" patches correspond to the UGS patches most connected to forests according to the
FyGas— rorest metric. n = 325 values per box

Scenario 1 Scenario 2 Scenario 3

Mean allelic richness

Forest UGS Forest UGS Forest UGS Forest UGS Forest UGS Forest UGS
Interface Interface Interface Interface Interface Interface

Population location

Scenario Habitat type Estimate Lower.Cl Upper.Cl
Sc. 1 Forest 10.68 10.41 10.96
Sc. 2 Forest 9.18 8.90 9.46
Sc. 3 Forest 5.93 5.65 6.21
Sc. 1 UGS 9.37 9.09 9.65
Sc. 2 UGS 4.73 4.45 5.01
Sc. 3 UGS 2.39 2.12 2.67
Sc. 1 Forest Interface 11.68 11.40 11.95
Sc. 2 Forest Interface 10.05 9.77 10.33
Sc. 3 Forest Interface 6.60 6.32 6.87
Sc. 1 UGS Interface 10.95 10.67 11.23
Sc. 2 UGS Interface 8.13 7.85 8.41
Sc. 3 UGS Interface 4.19 3.91 4.47

Table 2. Results of the mixed-effects model of the simulated genetic diversity. Predicted values and confi-
dence intervals of the mean allelic richness across populations at the city level as a function of dispersal cost
scenario, habitat type and their interaction. "Forest Interface" patches correspond to the forest patches most
connected to UGS according to the Fr,rest«;uGs mMetric, whereas "UGS Interface" patches correspond to the
UGS patches most connected to forests according to the Fyyg s Forest Metric.

types of population pairs was much lower than their main effects (main effect of cost scenario: x? =11824.2,
main effect of population pairs type: x2 =3714.1, interaction: x2 =850.0). Overall, the genetic differentiation
among populations was lower in scenario 1 than in scenario 2, and the latter lower than in scenario 3, in
accordance with Figure 4 (Table 3). The genetic differentiation among Forest populations was overall lower
than between Forest and UGS populations, itself lower than among UGS populations. The increase in genetic
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Figure 4. Distribution of the mean genetic differentiation (D pg) computed between forest patches
(Forest.Forest), forest and UGS patches (Forest.UGS) and UGS patches (UGS.UGS) in the 325 cities for the
three dispersal cost scenarios. n = 325 values per box

Scenario 1 Scenario 2 Scenario 3

0.8

0.6

Mean Dpg

0.44

For'est For'est U ('35 For'est For'est U ('SS For'est For'est U éS
Forest UGS UGS Forest UGS UGS Forest UGS UGS

Type of population pair

differentiation from scenarios 1 to 2 and 3 was slightly lower for pairs of populations located in forests (see
mean values and their Cl in Table 3).

Scenario Population pair Estimate Lower.CI Upper.Cl
Sc. 1 Forest-Forest 0.599 0.589 0.609
Sc. 2 Forest-Forest 0.620 0.610 0.630
Sc. 3 Forest-Forest 0.764 0.754 0.774
Sc. 1 Forest-UGS 0.628 0.618 0.638
Sc. 2 Forest-UGS 0.752 0.742 0.762
Sc. 3 Forest-UGS 0.881 0.871 0.891
Sc. 1 UGS-UGS 0.644 0.634 0.654
Sc. 2 UGS-UGS 0.801 0.790 0.811
Sc. 3 UGS-UGS 0.902 0.892 0.912

Table 3. Results of the mixed-effects model of the simulated genetic differentiation. Predicted values and
confidence intervals of the DPS among populations at the city level as a function of dispersal cost scenario,
type of population pairs, and their interaction.

Distance of Maximum Correlation (DMC)

IBLR relationships were very different from one dispersal cost scenario to another. In scenario 1, the DMC
was overall equal to the maximum cost-distance between populations (Figure 5A), suggesting that gene flow
and drift jointly influenced genetic differentiation at the scale of the whole study area. The slope of the IBLR
relationship, reflected by the Mantel correlation coefficient at the DMC (Figure 5B), was less steep in this

15



Figure 5. (A) Distance of Maximum Correlation (DMC), computed as the threshold distance used for selecting
the subset of population pairs giving the maximum Mantel correlation coefficient between genetic distances
(Dpg) and cost-distances, in the 325 cities and for the three dispersal cost scenarios. The DMC is divided by
the maximum cost-distances between populations in the corresponding city and cost scenario and therefore
ranges from 0 to 1. (B) Mantel correlation coefficients measured at the DMC. n = 325 values per box
O bpMmC ® Correlation coefficient at the DMC
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scenario, indicating that the increase of genetic differentiation was somehow limited when cost-distances
increased. In contrast, in scenario 2, the mean DMC was equal to 0.47 and the corresponding correlation
coefficients were high. This implies that for a subset of populations separated by cost-distances lower than a
given threshold, there was a strong linear relationship between genetic distances and cost-distances reflecting
significant gene flow between neighbor populations. Finally, in scenario 3, the low DMC values (Figure 5A)
suggest that the IBLR relationships were weak and that genetic drift had a much stronger influence than
gene flow on genetic differentiation. The mixed-effects models did not have a satisfactory fit for the DMC.
In contrast, they confirmed that the differences in the correlation coefficients measured at the DMC across
cost scenarios, visible in Figure 5B, were substantial even when taking among-cities differences into account.
The values predicted by the LMM were equal to 0.55 (95% Cl [0.54, 0.56]) in the scenario 1, 0.81 (95% CI [0.80,
0.83])inthe scenario 2, and 0.78 (95% CI [0.76, 0.79]) in the scenario 3 (see Supporting Information 3). However,
given that the distribution of the DMC values in the latter scenario reflects an absence of IBLR relationship,
the corresponding correlation coefficients should not be interpreted for the scenario 3.

Population graph modularity

The modules identified in genetic graphs best coincided with the modules from similar graphs with links
weighted by cost-distances in scenario 2 (Figure 6A). Indeed, mean ARI values were equal to 0.12, 0.27 and
0.00 in scenarios 1, 2 and 3, respectively (corresponding median values: 0.02, 0.25, 0.00). Similarly, in scenario
2, genetic modules best reflected the distinction between forest and UGS patches (Figure 6B). This means
that, in this scenario, it was more likely for two populations belonging to the same genetic cluster to be close
when considering cost-distances, and to be located in the same habitat type. Thus, the genetic structure of
populations and either their spatial structure when taking dispersal constraints into account, or their habitat
type classification (UGS vs forests) matched in a stronger way in this intermediate cost scenario. This was not
the case when gene flow was less constrained by unfavorable areas (i.e., scenario 1) or, on the contrary, highly
constrained by these areas (i.e., scenario 3). We did not interpret the results of the mixed-effects models of
ARl values, because the strong heteroscedasticity and atypical distribution of their values prevented us from
obtaining satisfactory models.
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Figure 6. Adjusted Rand Index (ARI) comparing the partitions into modules of the genetic graph with links
weighted by genetic distances (D pg) with (A) module partitions obtained from similar graphs with links
weighted by cost-distances or with (B) the classifications of populations into forest or UGS populations

according to the type of patch they occupy. An ARl value is computed for each city and each cost scenario,

such that n = 325 values per box
Q Genetic modules vs spatial modules @ Genetic modules vs habitat types

0.00

Scenario 1  Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3

Consistency of analysis results among cities having different sizes and habitat amount

The heterogeneity of city sizes, due to the varying radius of the disks containing 20 % of artificial areas, had
negligible effects on the results. In the supplementary materials, we provide the same figures as included in
this section plotted separately after splitting the urban areas in 4 quartiles based on their total area (Figures S5,
S6, 57, S8, 59, and S10). Similarly, the results were highly consistent when considering cities including varying
total habitat areas (Figures S11, S12, S13, and S14). Finally, in the few cities where the connectivity of UGS
was higher than that of forests due to small forest areas, allelic richness contrasts were consistent with the
ones observed for the whole set of cities in scenarios 2 and 3 (Table S3). However, in these cities, under the
scenario 1, UGS and UGS interface patches tended to maintain higher diversity levels than forest patches.

Discussion

We simulated the genetic structure of urban tolerant forest species occupying forests and urban green
spaces in 325 European cities, while varying species abilities to cross the least favorable areas. We thereby
found that in urban contexts, variations in dispersal movement behaviors alone can shape highly variable
genetic diversity contrasts between habitat types and isolation by landscape resistance patterns. The sub-
stantial variations in simulated genetic responses between forests and urban green spaces could be due to
their connectivity differences, reflecting their respective extent, spatial configuration and location within the
urban matrix. These results were obtained without making any assumption regarding the respective quality
of these habitats in our simulations. Urban ecologists should thus bear in mind the strong influence that dis-
persal between urban habitats exhibiting different spatial distributions can have on genetic patterns when
assessing the relative influence of dispersal, adaptation, resource availability or biotic interactions on species
responses to urban environments. Our results also provide insights into connectivity modeling and biodiver-
sity conservation in these contexts.
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Variations in dispersal constraints can shape highly contrasted genetic patterns

In our simulations, as dispersal across the least favorable land cover types became more costly, genetic
diversity tended to decrease in both forest and UGS, and genetic differentiation tended to increase between
populations. Although overall genetic responses, such as the mean allelic richness, differed among cities, varia-
tions among cost scenarios for a given city were relatively consistent. Contrasts were mainly due to differences
of total habitat areas and number of patches, which determined the number of populations and individuals,
and consequently the intensity of drift in each city. In urban contexts, differences in effective population sizes
among species are known for being an important driver of the variability of their genetic responses (Schmidt
et al., 2020), and are frequently invoked as the main driver of genetic diversity (Miles et al., 2019). However,
these population size differences do not explain the strongly contrasted genetic responses among cost sce-
narios we obtained for a given city because the number of individuals in each population stayed constant
whatever the scenario. Thus, only gene flow variations can explain these contrasts.

The resistance of artificial areas, roads and water bodies to species dispersal varied according to the cost
scenario, but the total cost-distance that a fixed proportion of individuals could cover at each generation did
not vary. In other words, the scenarios essentially modified the spatial pattern of dispersal movements, but
not the effective distance they could cover. Consequently, for a given number of dispersing individuals, dis-
persal paths crossing unfavorable land cover types became less likely to be followed from scenario 1 to 3
because the cost of paths crossing other land cover types (e.g., grasslands, agricultural areas) remained the
same whatever the scenario. Our results thus reflect the potential genetic responses of several species hav-
ing the same individual density within patches, the same absolute dispersal abilities, and dispersal rates, but
different dispersal behaviors in urban environments. It is noteworthy that simulated variations in the spatial
pattern of dispersal can reproduce the inter-specific variability of patterns of genetic diversity and differentia-
tion commonly observed in empirical landscape genetic studies (as reviewed by Fusco et al. (2021) and Miles
et al. (2019)). For instance, the very subtle differences in genetic diversity simulated under the scenario 1 re-
call the empirical results of Khimoun et al. (2020). In contrast, the sharper differences simulated under the
scenario 3 are akin to the significant genetic contrasts between urban and non-urban settings observed by
Delaney et al. (2010) in several species. Although our results do not provide an explanation for these specific
empirical findings, they show that differences in dispersal patterns could be sufficient to generate similar ge-
netic patterns.

When drift intensity is constant but the spatial pattern of gene flow changes, the relative influence of drift
and gene flow on genetic differentiation is logically modified in a different way according to the respective lo-
cation of populations. Variations in the spatial range at which the relationship between genetic differentiation
and cost-distances was the strongest revealed how contrasted genetic differentiation patterns were across
scenarios. Indeed, when gene flow was not strongly restricted across artificial areas, roads and water bod-
ies, genetic differentiation only increased progressively as cost-distance increased, producing a continuous
pattern of genetic variations at the scale of the entire urban areas. This pattern is similar to the case | IBD
pattern, according to the typology by Hutchison and Templeton (1999), and suggests that stepping-stone dis-
persal movements can prevent strong genetic differentiation in species with good abilities to disperse within
cities. On the contrary, this pattern was only apparent between subsets of populations in scenario 2, and ge-
netic differentiation increased more strongly with cost-distances. This corresponds to the case IV IBD pattern,
according to Hutchison and Templeton (1999), and indicates that considering species having intermediate abil-
ities to move across cities, the continuous and progressive increase of genetic differentiation resulting from
dispersal limitation is only observed at small scales, within well connected subsets of populations. Finally,
when dispersal movements in unfavorable areas were highly constrained, the relationship between genetic
differentiation and cost-distances flattened out because drift became the main driver of the genetic response,
and not gene flow anymore, which somehow recalls the case Il IBD pattern described by Hutchison and Tem-
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pleton (1999). In sum, changes in dispersal cost scenarios led to contrasted genetic differentiation patterns
because they modified the relative frequency of dispersal events over each path connecting two populations.
In other words, they rewired dispersal networks. The consequences of these changes in dispersal spatial pat-
terns reinforce previous calls for a better consideration of population network topology in landscape genetics
(Savary et al.,, 2021a; Van Strien, 2017).

In landscape genetics, unbridgeable barriers to dispersal are commonly inferred by identifying landscape
features separating spatially structured genetic clusters of populations (Manel et al., 2007; Safner et al., 2011).
Interestingly, our results show that genetic modules best reflected the spatial structure of genetic differenti-
ation patterns in the second cost scenario, and not in the third one, which exerted the strongest constraints
on dispersal movements. We could have expected the opposite and this suggests that there is an analytical
limit in our ability to detect barriers to dispersal when gene flow is so constrained that drift is the main driver
of genetic differentiation.

Several studies have evidenced that other processes than gene flow drive different population dynamics
and individual fitness in urban populations as compared with non-urban ones. For example, urban bird popu-
lations can feed on more diverse food items, sometimes at the expense of their quality (Sinkovics et al., 2021),
and can exhibit shifted and/or more variable phenotypes (Thompson et al., 2021), due to plasticity or genetic
adaptations. If our results do not deny the existence of these well-known processes, they nonetheless call for
a better consideration of dispersal spatial patterns when inferring the respective influence of different drivers
of population genetic structure in urban areas.

Influence of the spatial distribution of multiple urban habitat types

Forest populations tended to maintain a higher genetic diversity than UGS populations and to be less differ-
entiated than pairs of UGS populations. Besides, genetic differentiation levels measured between these two
types of habitats were intermediate, as compared with the high and low levels measured within UGS and for-
est patches, respectively. Similar genetic responses to urbanization have already been empirically observed
in several species, from birds and reptiles (Delaney et al., 2010), to rodents (DeMarco et al., 2021; Gortat et al.,
2015) and larger mammals (Stillfried et al., 2017; Wandeler et al., 2003). In our simulations, they mainly stem
from the fact that the contribution of forest areas to the overall amount of reachable habitat was much larger
than that of UGS in most cities. Besides, UGS patches are usually smaller and also harder to reach due to
their location within the urban fabric. This explains why, except in scenario 1, even in cities where UGS con-
tributed more to the amount of reachable habitat than forests, similar genetic contrasts were observed. These
differences in terms of area and connectivity between UGS and surrounding natural areas provide a likely ex-
planation to previous empirical observations in urban landscape genetics, as habitat amount and connectivity
are often mentioned as key drivers of urban biodiversity (Beninde et al., 2015).

The stronger relative isolation of UGS was also apparent in the genetic clustering pattern. In the second
cost scenario, we observed that forest and UGS populations tended to form separate genetic clusters. This
sub-structuration of genetic differentiation patterns within the urban core areas had also been empirically
evidenced in striped field mouse populations in Warsaw (Gortat et al., 2015) or in wild boar populations in
Berlin (Stillfried et al., 2017).

However, we also observed that the presence of habitat patches well connected to patches of another
habitat type seemed to locally buffer these differences among habitat types by promoting gene flow at the
interface between forest and UGS. Therefore, the connectivity analyzes and genetic simulations together sug-
gest that peri-urban and less anthropized areas can be important sources of biodiversity in cities when they
are connected to intra-urban habitat patches, in accordance with previous simulations (Snep et al., 2006) and
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empirical observations (Stillfried et al., 2017). The corollary of this is the potential sink role of UGS, as pre-
viously raised by Lepczyk et al. (2017) and Verrelli et al. (2022). This could have a negative influence on the
long-term persistence and genetic adaptation of wild populations both within and outside cities, and remains
to be investigated.

Implications for biodiversity management in urban areas

Making urban planning policies compatible with the conservation of biodiversity is crucial. These policies
are commonly based on biodiversity surveys and on the conservation of so-called "green infrastructures",
including several types of natural areas, UGS and the corridors connecting them. Our results stress several
points that should deserve more attention in that context. First, genetic diversity and connectivity differences
between forest and UGS were substantial regardless of the spatial extent of the city under consideration. In
most cases, the largest habitat areas and biodiversity levels are to be found in natural areas surrounding city
centers and not in UGS. This should encourage planners to consider large areas including the most biodiverse
and favorable places to wildlife, often located at the periphery of cities.

Our connectivity analyzes and genetic simulations in 325 European cities also suggest that urban planners
should identify habitat interface areas and consider them as "gateways" through which species can move from
less to more anthropized habitats, as suggested by Gortat et al. (2017). We could also expect these areas to
play a crucial role for maintaining species diversity within cities as long as gene flow and drift effects affect
single species genetic structure in a comparable way as colonization and extinction processes affect species
diversity (Vellend and Geber, 2005).

Finally, our results confirm that species which can hardly move across artificial areas and roads will not
maintain high levels of genetic diversity within cities. This can explain why some species are very rarely ob-
served in urban areas, but this could also mean that urban populations of some species are already engaged
in a local extinction vortex. As such, considering the long-term effect of urbanization on genetic structure
and its potential consequences for population persistence is key for biodiversity management (Sarrazin and
Lecomte, 2016), and particularly in urban areas where these processes can be fast (Szulkin et al., 2020).

Limitations and perspectives

Our analyzes focused only on urban tolerant forest species occupying forest and UGS. These species only
represent a small proportion of urban biodiversity. Reproducing these analyses by considering either special-
ist species using another type of habitat or more generalist species could help obtain a broader picture of
biodiversity dynamics in urban settings. Besides, most forest patches were located at the periphery of cities,
whereas UGS were more central, and this peculiar spatial distribution largely affected our results. Assessing
how the spatial distribution of other types of urban and/or peri-urban habitats affects genetic patterns would
also be needed.

For comparison purposes, we here assumed that UGS mapped by the Urban Atlas database were suitable
for urban tolerant forest species. However, habitat patches may not all be suitable for these species and
many other patches could fit their needs within cities (e.g., private wooded backyards in residential areas).
This limitation should encourage the use of fine-grained remote sensing data to map urban habitats with
more accuracy. Yet, acquiring such maps for a number of cities providing sufficient statistical power in a stan-
dardized way remains a challenge.

Although the genetic simulations we carried out can help prioritize habitat patches in urban planning con-
text, they only reflect the potential genetic responses of a single species. These simulations could be advanta-
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geously completed by empirical surveys for assessing whether they closely reflect actual ecological processes.
Our simulation framework could also be implemented in areas where genetic data are already available for
testing whether dispersal limitations can explain the empirically observed genetic structure. Besides, adding
to the simulation local habitat features, and how they locally influence several species based on their niche op-
timum, breadth, and competitive interactions (alike in the meta-community simulation framework of Thomp-
son et al. (2020)) could provide insights into species diversity patterns in urban areas. This could help deter-
mine whether connectivity restoration measures are always positive for biodiversity conservation in urban
areas; which may not always be guaranteed when invasive species also benefit from them.

Finally, although substantial differences among urban areas in terms of reachable amounts of habitat (i.e.,
connectivity) probably explain most of the variability in genetic responses across cities, we did not investigate
the structural causes of these differences. Indeed, the interplay of urban form with the spatial configuration of
forest and UGS likely determines habitat connectivity patterns and species genetic structure. Further research
is needed for understanding these relationships and providing broad guidance on urban planning at a time
when increased urbanization and biodiversity conservation too often seem incompatible.
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