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Abstract 1

2

Context and objectives
Although urbanization is a major driver of biodiversity erosion, it does not affect all species equally. The
neutral genetic structure of populations in a given species is affected by both genetic drift and gene flow
processes. In cities, the size of animal populations determines drift and can depend on multiple processes,
whereas gene flow essentially depends on the ability of species to disperse across urban areas. Considering
this, we tested whether variations in dispersal constraints alone could explain the variability of neutral
genetic patterns commonly observed in urban areas. Besides, we assessed how the spatial distribution of
urban green spaces (UGS) and peri-urban forests acts on these patterns.
Methods
We simulated multi-generational genetic processes in virtual populations of animal species occupying either
UGS or forest areas (both considered as a virtual species habitat) within and around 325 European cities. We
used three dispersal cost scenarios determining the ability of species to cross the least favorable land cover
types, while maintaining population sizes constant among scenarios. We then assessed genetic diversity
and genetic differentiation patterns for each city and each habitat types across the three cost scenarios.
Results
Overall, as dispersal across the least favorable land cover types was more constrained, genetic diversity
decreased and genetic differentiation increased. Across scenarios, the scale and strength of the relationship
between genetic differentiation and dispersal cost-distances varied substantially, reproducing a variety of
empirically observed genetic patterns. Forest areas contributed more to habitat connectivity than UGS.
Population-level genetic diversity was higher in forests than in UGS and genetic differentiation was higher
between UGS populations than between forest populations. However, interface habitat patches allowing
individuals to move between different habitat types seemed to locally buffer these contrasts by promoting
gene flow.
Discussion and conclusion
Our results showed that variations in spatial patterns of dispersal, and thus gene flow, could explain the
variability of empirically observed genetic patterns in urban contexts. Besides, the largest habitat areas and
biodiversity sources are likely to be found in areas surrounding city centers. This should encourage urban
planners to pay attention to the areas promoting dispersal movements between urban habitats (e.g., UGS)
and peri-urban habitats (e.g., forests), rather than among urban habitats, whenmanaging urban biodiversity.
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Introduction 34

Most of humankind currently lives in cities and urban areas are predicted to cover three times the area 35

they covered in 2000 by 2030 (Seto et al., 2012), and four times by 2050 (Angel et al., 2011). Urbanization is an 36

important component of the anthropogenic pressures triggering the erosion and spatial redistribution of bio- 37

diversity (Díaz et al., 2019). Indeed, it favors the spread of invasive species, concentrates pollution, and urban 38

lifestyles are important drivers of natural resource over-exploitation and greenhouse gas emissions (McDon- 39

ald et al., 2020). Last but not least, it is a direct cause of habitat destruction and fragmentation (Beninde et al., 40

2015). As a result, many empirical studies have evidenced negative effects of urbanization on biodiversity 41

(Aronson et al., 2014; Piano et al., 2020). However, this relationship is complex and variable across taxa, bio- 42

logical organization levels (ecosystems, species, genes), and across cities (Fidino et al., 2020). Urban ecology 43

research is therefore timely needed and particularly crucial if humanity is willing to limit its impact on biodi- 44

versity and to maintain the ecosystem services it provides (Verrelli et al., 2022). 45

46

Urban ecology studies have shown that species are not all affected in the same way by urbanization (Aron- 47

son et al., 2014; Blair, 1996; Fanelli et al., 2022; Fidino et al., 2020). While some species are mostly, if not only, 48

present in cities because they are specialist of anthropized environments (urban adapters), others cannot sur- 49

vive in these areas (urban avoiders). Somemore ubiquitous species are present in both urban and non-urban 50

areas. These urban tolerant species are reliable indicators of urban influences on population dynamics along 51

rural-to-urban gradients. They may also be the most affected by the impact of urban planning on environ- 52

mental conditions across such gradients. 53

54

Species-specific responses to urbanization not only affects species diversity patterns, but also explains 55

the variability of genetic patterns observed at the intra-specific level along rural-to-urban gradients. Although 56

rapid genetic adaptations to urbanization have been observed in several species (Santangelo et al., 2022), neu- 57

tral geneticmarkers are also affected by urbanization (Fusco et al., 2021;Miles et al., 2019). For instance, urban 58

populations of human pests can exhibit higher levels of genetic diversity than non-urban ones (Miles et al., 59

2018). In contrast, Khimoun et al. (2020) and Schoville et al. (2013) did not detect any significant difference 60

in genetic diversity or isolation by distance pattern when studying ant and butterfly populations, respectively, 61

in urban and non-urban settings. Similarly, the relationship between amphibian genetic diversity or differ- 62

entiation and the degree of urbanization of several North American cities was not significant in the study by 63

Schmidt and Garroway (2021). On the contrary, Delaney et al. (2010) showed that urbanization decreased 64

genetic diversity and increased genetic differentiation in three lizard species and one bird species, mainly due 65

to higher road density in urban areas. Likewise, Stillfried et al. (2017) showed that urban populations of wild 66

boars exhibited lower genetic diversity levels than suburban ones in Berlin. 67

68

The variability of the neutral genetic patterns observed in these urban tolerant species stems from the 69

demographic dynamics determining the intensity of both genetic drift and gene flow (Frankham et al., 2004; 70

Miles et al., 2019; Munshi-South and Richardson, 2020). On the one hand, genetic drift can lead to allele loss, 71

especially in small-sized populations. On the other hand, gene flow following successful dispersal events be- 72

tween well connected populations leads to genetic exchanges. This can compensate for the diversity loss 73

due to drift and decrease the resulting genetic differentiation between populations. Consequently, both the 74

size of urban populations and the permeability of urban environments to individual dispersal drive genetic 75

diversity and genetic differentiation, because they determine genetic drift and gene flow. As such, the genetic 76

patterns described above span the whole range of patterns that are theoretically expected from variations 77

in the respective intensity of drift and gene flow across urban and non-urban areas (Frankham et al., 2004; 78

Hutchison and Templeton, 1999). 79

80
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In urban tolerant species, genetic drift could explain most of the variability observed in genetic patterns 81

given that some of these species only form small populations in urban areas (e.g., Lourenço et al. (2017)), 82

thereby exacerbating drift effects, whereas others can maintain large populations (e.g., Miles et al. (2018)). 83

Yet, gene flow, which is mainly driven by the ability of urban tolerant species to disperse across urban fabric, 84

could also be the prevailing driver of genetic responses to urbanization. Thus, because the observed genetic 85

patterns depend on the respective intensities of both drift and gene flow, disentangling the influence of these 86

two processes is a complex task. However, assessing how dispersal limitations and resulting gene flow reduc- 87

tions shape genetic patterns is crucial for several reasons. First, many biodiversity conservation programs rely 88

on habitat connectivity conservation and restoration for maintaining genetic diversity in urban areas. They 89

assume that dispersal limitation is the main cause of biodiversity loss. Besides, they often focus on UGS as 90

biodiversity sources, although their spatial location within cities could convert them into sink patches (Lepczyk 91

et al., 2017; Pulliam, 1988; Verrelli et al., 2022), thus compromising the efficiency of habitat and ecological cor- 92

ridor restoration in urban cores. Determining to which point species movements in these areas are sufficient 93

for preventing diversity loss is therefore needed for estimating the potential benefit of such measures. Fur- 94

thermore, genetic adaptation or phenotypic plasticity in response to urbanization are commonly invoked for 95

explaining the relative success of species in urban areas, thus accounting for the potential role of gene flow 96

alone on this success could improve our understanding of the mechanisms involved. 97

98

Considering this, our research objective in this study was to answer the following question: how does dis- 99

persal limitation explain the variability of genetic patterns in urban tolerant species? To this end, we simulated 100

neutral genetic patterns resulting from multi-generational gene flow between populations of urban tolerant 101

species located in both UGS and forest areas within and around 325 European cities. Using scenarios intro- 102

ducing variations in the ability of three virtual animal species to disperse across urban fabric, we assessed 103

how this ability affects genetic patterns, independently from any other process. Across scenarios, genetic 104

drift intensity was constant for a given set of populations. The simulated variations in dispersal, for each city, 105

could thus affect genetic patterns by modifying the respective intensities of drift and gene flow. We also com- 106

pared the connectivity of UGS and forest areas, and contrasted the genetic diversity and differentiation levels 107

observed in these habitats to identify the potential factors driving genetic responses to dispersal scenarios in 108

cities. 109

Material and methods 110

To answer our research questions, we needed to assess the genetic responses to urbanization of urban 111

tolerant species having different abilities to cross artificial areas, while being equivalent in terms of population 112

density and dispersal abilities to cross favorable areas. We also needed to assess these responses at the level 113

of entire urban areas and to replicate the analyses to ensure that our results were not merely due to the speci- 114

ficity of a single study area. To meet these conditions, we implemented a simulation approach and applied it 115

to 325 European urban areas, hereafter referred to as cities. Simulations have been commonly recommended 116

in landscape genetics (Balkenhol et al., 2016; Munshi-South and Richardson, 2020), particularly for studying 117

how neutral genetic patterns emerge from the interplay of drift and gene flow processes, independently of 118

adaptive processes. They also proved to be efficient for reproducing empirically observed genetic patterns in 119

urban areas (Rochat et al., 2017). 120

121

For each city, we first modeled the connectivity of habitat patch networks for forest species (i.e., UGS and 122

forest patches) according to three dispersal scenarios, using a graph-based approach. Then, we simulated 123

drift and gene flow processes in populations occupying both types of habitats, and analyzed the resulting 124

genetic structure at both the within-population (genetic diversity) and between-population level (genetic dif- 125

ferentiation). We provide details in the following sub-sections. 126
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Habitat connectivity analyses 127

Land cover data 128

We used urban land cover data from the Urban Atlas 2018 database of the Copernicus European agency. 129

These land cover data are available for 788 functional urban areas, sensu OECD (Moreno-Monroy et al., 2021), 130

counting at least 50,000 inhabitants in 38member or partner states of the European Union. These vector land 131

cover data include 27 land cover types at a relatively fine spatial resolution (Minimum Mapping Unit: 0.25 ha 132

inside urban core areas, and 1 ha in surrounding rural areas). They were reclassified into 10 land cover types 133

(Table S1) and rasterized at a spatial resolution of 5 m. The two "Forests" and "UGS" land cover types were 134

considered for delineating habitat patches in the analyzes. "Forests" tended to be peripheral (i.e., peri-urban) 135

whereas "UGS" were mostly located within city cores, although in each city, some patches did not conform 136

to this pattern. We obtained the spatial coordinates of the center of every city from the Open Street Map 137

database using Nominatim and the jsonlite R package (Ooms, 2014). In most cases, it coincided with the 138

city hall, which is commonly used as the center of cities (Lemoy and Caruso, 2020; Walker, 2018; Wilson et al., 139

2012)(Figure 1). 140

141

We delineated the cities under study by standardizing their proportion of artificial areas in order to assess 142

the influence of dispersal on genetic patterns in areas having the same degree of urbanization, although dif- 143

fering in the configuration of their urban fabric and natural areas. Delineating study areas of the same spatial 144

extent would have led differences among cities to mainly reflect the effect of varying densities of artificial ar- 145

eas (i.e., proportion of sealed area in the study area). In contrast, we here assessed species genetic responses 146

in areas which differ in the location and shape of their urban fabric. To that end, we calculated the proportion 147

of artificial areas in disks of increasing radius centered on the city center. The target proportion of artificial 148

areas was fixed at 20%± 1% after preliminary analyses because this allowed us to maximize the number of 149

cities for which the radius of the study area was between 5 and 40 km, while minimizing the variance of this 150

radius. Cities were included in our sample when at least 95 % of the delineated disk was covered by the Urban 151

Atlas land cover data (Figures 1A and 1B). When required, we completed the remaining peripheral sectors with 152

Corine Land Cover data, matching their typology with our land cover classification, as indicated in Table S2. 153

Our method selected 325 cities and mainly excluded coastal cities and very small or very large cities for which 154

the proportion of artificial areas was never below or above 20 %, respectively, within the range of considered 155

radii. 156

Dispersal cost scenarios 157

Our analyzes focused on the demographically driven genetic responses to urbanization of forest species 158

occupying both forests and UGS. We wanted to assess whether these responses were affected by the capacity 159

of species to cross the least favorable areas when dispersing from one habitat patch to another. We therefore 160

made three dispersal cost scenarios, consisting of cost values associated with land cover types and represent- 161

ing the cost of species movements across pixels of each land cover type (Table 1). These costs were similar 162

to the costs used by Sahraoui et al. (2017) and Tannier et al. (2016) for modeling habitat connectivity in urban 163

areas for forest species such as rodents (e.g., Mustela putorius) or birds (e.g., Picus canus). They were minimal 164

(1) in habitat areas and higher in land cover types supposed to highly affect forest species movements, such 165

as grasslands (10), agricultural areas (50) or wetlands (100). These costs were constant across scenarios. In 166

contrast, the costs associated with water, roads and artificial land cover types increased from scenario 1 to 167

3. They were equal to 90, 900 and 9,000 for water and roads, and to 100, 1,000 and 10,000 for artificial areas 168

in scenarios 1, 2 and 3, respectively. This reflects the fact that built-up areas are more difficult to cross than 169

unfavorable yet open areas such as roads or water bodies. A cost scenario based on similar assumptions has 170

been empirically validated by Balbi et al. (2019) in an urban context. The cost variations in the least favorable 171

land cover types for a forest species allowed us to distinguish three virtual species with different dispersal 172
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behaviors in urban areas. Nonetheless, the total cost they could endure during dispersal was kept equal for 173

the three virtual species. This means that they had similar absolute capacities to disperse whatever the cost 174

scenario. Yet, the spatial paths they followed when dispersing could vary substantially from one scenario 175

to another depending on the configuration of land cover types. Using these cost scenarios, we thus aimed 176

to isolate the effect of variations in spatial patterns of dispersal on genetic patterns across rural-to-urban 177

gradients. 178

Land cover types Scenario 1 Scenario 2 Scenario 3
Forests 1 1 1
Urban Green Spaces 1 1 1
Grasslands 10 10 10
Semi-natural areas 10 10 10
Agricultural areas 50 50 50
Other open areas 50 50 50
Wetlands 100 100 100
Water 90 900 9000
Roads 90 900 9000
Artificial areas 100 1000 10000

Table 1. Dispersal cost values associated with each land cover type according to the scenarios considered.
Scenarios 1 to 3 represent an increasing aversion of forest species for dispersal movements across water,
roads, and artificial areas.

Landscape graphs 179

We modeled habitat connectivity with landscape graphs using the Graphab 2.8 software program (Foltête 180

et al., 2021). Landscape graphs represent habitat patch networks as sets of habitat patches (nodes) connected 181

by potential dispersal paths (links)(Urban and Keitt, 2001). We built them using the Urban Atlas land cover 182

data and the three dispersal cost scenarios (one graph per scenario). Each forest or UGS habitat patch above 183

0.25 ha was a node of the graphs. Although a single type of habitat patch (node) is most often considered 184

in graph-based connectivity analyzes, the special feature of our analyzes was the distinction between forests 185

and UGS, considered as two distinct types of nodes in subsequent analyzes. 186

187

We computed least-cost paths between every pair of habitat patches. This simplemethod estimates disper- 188

sal paths by finding the ones connecting patches while minimizing the total cost accumulated when crossing 189

pixels with specified cost values. Despite the known limitations of thismethod (Zeller et al., 2012), it has proved 190

to be relevant in empirical studies measuring species movements in urban areas (e.g., Balbi et al. (2019)). For 191

each scenario, we obtained a set of potential dispersal paths and the accumulated cost along them, i.e., the 192

cost-distance (Figure 1C). We then created three minimum planar graphs, sensu Fall et al. (2007), in every ur- 193

ban area. In these graphs, links correspond to least-cost paths, connect neighbor patches, and are weighted 194

by the corresponding cost-distances. 195

196

We used these graphs to assess the contribution of each habitat patch to the connectivity of the habitat
network and identify whether the distribution of forest and UGS patches could drive potential source-sink
dynamics. To that purpose, we computed the ’Flux’ (F ) connectivity metric for each patch. This metric is
largely inspired by the incidence function used in metapopulation models (Hanski and Gilpin, 1991; Moilanen
and Nieminen, 2002) and estimates the amount of habitat that is reachable from the focal patch. It considers
the area of the other patches and the cost-distances associated with the shortest path to these other patches

6



on the graph, as follows:

Fi =

n∑
j=1;j ̸=i

aje
−α×dij

with i the focal patch index, j the index of every other patch among then habitat patches, dij the cost-distance 197

between patches i and j, and aj the area of each patch j. 198

199

αwas set such that the probability of covering a cost-distance equivalent to an average path of 5 km (d5km) 200

is equal to 0.05, i.e., p(d5km) = e−αd5km = 0.05. This distance can be considered as the maximum dispersal 201

distance of forest species with medium dispersal capacities (Sahraoui et al., 2017). To obtain d5km, we con- 202

sidered the set of links for assessing the relationship between (1) the length in metric units of the least-cost 203

paths not crossing the most unfavorable areas and (2) the corresponding cost-distances, using log-log linear 204

regressions (Tournant et al., 2013). We then converted 5 km into cost units and computed the average value 205

for each urban area and each scenario. d5km averaged 20,000 cost-distance units. By using the same d5km 206

and α values for all three dispersal scenarios in this analysis and for parameterizing the genetic simulations 207

(see below), we ensured that the virtual species we considered had similar absolute capacities to disperse 208

whatever the cost scenario. 209

210

When computing the F metric, we distinguished cases where patches i and j were respectively either (i) 211

both forest patches (FForest↔Forest), (ii) forest and UGS patches (FForest↔UGS ), (iii) UGS and forest patches 212

(FUGS↔Forest) or (iv) both UGS patches (FUGS↔UGS ). For each urban area and scenario, forest patches asso- 213

ciated withFForest↔UGS values in the upper quartile of the distribution were considered as "Forest Interface" 214

patches. Similarly, UGS patches associated with FUGS↔Forest values in the upper quartile of the distribution 215

were considered as "UGS Interface" patches. Indeed, these habitat patches are the most important ones for 216

the connectivity between several types of habitats. We expect them to be mostly, though not strictly, located 217

at the periphery of city centers. They could therefore play a significant role in potential source-sink dynam- 218

ics. Their connectivity could also drive genetic diversity transfers from less to more anthropized habitat areas, 219

and conversely, e.g., when UGS Interface patches are connected to other UGS located closer to the city center. 220

221

Finally, we computed the Equivalent Connectivity (EC) metric for estimating the connectivity of the whole
habitat patch network. This metric represents the area of the unique patch that would provide species with
the same amount of reachable habitat as the whole habitat patch network, given its degree of subdivision and
the resistance of the matrix (Saura et al., 2011). We used the following formula (see also Figure S1):

EC =

√√√√ n∑
i=1

n∑
j=1

aiaje−α×dij

Given that we distinguished two types of habitat patches, we could estimate the contribution to EC of (i) 222

the forest patches and the connections between them (ECForest.Forest, both i and j are forest patches), (ii) 223

the UGS patches and the connections between them (ECUGS.UGS , both i and j are UGS patches) and (iii) the 224

connections between forest and UGS patches, weighted by their respective areas (ECForest.UGS , i is a forest 225

patch and j a UGS patch, or conversely). To make these values comparable among cities, we standardized 226

them by the total area of each city. We also assessed the relative value of the three EC components here 227

considered, standardizing each of them by their sum. 228

Genetic simulations 229

Population size and location 230

Wewanted to simulate genetic processes realistically reflecting population dynamics and genetic response 231

in UGS and forest across European cities. The large number of patches in each city prevented us from sim- 232
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ulating a population in all habitat patches, due to limitations in computational capacities. Nevertheless, we 233

wanted the number of populations to reflect the subdivision of habitat areas. Therefore, for each type of 234

habitat h, the number of populations Npoph,c in city c ranged from 10 to 400 and was proportional to the 235

logarithm of the number of patches of that type in the city c (ph,c), such that: 236

Npoph,c = 10 + (400− 10)
log ph,c − log(min∀i ph,i)

log(max∀i ph,i)− log(min∀i ph,i)

withmin∀i ph,i andmax∀i ph,i the minimum and maximum number of patches of type h across all cities. 237

Then, for each city and habitat type, we randomly sampled a number of populations equal to Npoph,c 238

among the habitat patches of type h in the city c. As we wanted the total population in a given city to reflect 239

the total amount of habitat of that city, the total number of individualsNindc in each city ranged from 500 to 240

10,000 and was proportional to the logarithm of the total habitat area in each city (using the same formula as 241

above). Log-transformations normalized the distributions of population and individual numbers. 242

243

Each population (i.e., sampled habitat patch) was then populated with at least 10 individuals, in a way 244

that reflected the area of its patch. We wanted to assign larger populations to large habitat patches while 245

ensuring that the total number of individuals across populations was equal to Nindc. Thus, the numbers 246

of individuals in each population were randomly drawn following a multinomial distribution. Each sampled 247

patch was associated with a probability of being assigned supplementary individuals (beyond the minimum 248

effective of 10 individuals) that was proportional to its area. For each city, these probabilities summed to 1. 249

Therefore, cities with many habitat patches had many populations, cities with large habitat areas had many 250

individuals overall, and large habitat patches each contained many individuals. In average, there were 23 251

individuals per population (median: 19), and the largest population included 229 individuals in a 1000 ha patch. 252

Consequently, population sizes varied among patches and among cities, thereby affecting drift intensities. Yet, 253

drift intensity was constant across dispersal scenarios in every patch, making it possible to directly attribute 254

genetic response variations across scenarios to variations in dispersal patterns. 255

Dispersal and reproduction parameters 256

Dispersal between populations depended on cost-distances computed for the three cost scenarios. 10 % of 257

the individuals of each population could disperse from their origin population to another at each generation, 258

over a total of 250 generations. The dispersal probability from population i to population j decreased with 259

cost-distance, such that: pdij
= e−αdij . We used the same α value as specified in the previous section. 260

261

The population size was constant over time and the sex-ratio initially equal to 1. After birth, individuals 262

potentially dispersed (see above) and could then only mate and reproduce with individuals from the same 263

population. Each female had 3 offspring, with a sex-ratio averaging 1, and supernumerary individuals, either 264

juveniles or adults, died to keep the population constant. Initial genotypes were randomly generated by draw- 265

ing 1 in 20 alleles, twice for every 20 loci and for every individual. Mutations could happen at a 0.0005 rate. 266

We carried out the simulations using PopGenReport R package (Adamack and Gruber, 2014). 267

Genetic data analyses 268

We wanted to assess the influence of the dispersal scenarios on the genetic responses simulated in each 269

type of habitat. Thus, at the end of the simulations, we assessed both (i) intra-population genetic diversity 270

(local) and (ii) inter-population genetic differentiation (pairwise), and their variations according to the scenarios 271

and types of habitat (i.e., Forest, UGS, and their respective "interface" patches). Besides, to gain insights into 272

gene flow influence on spatial genetic patterns in cities, we assessed the scaling properties of isolation by 273

landscape resistance patterns, and whether populations formed genetic clusters coinciding with the spatial 274
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structure of habitat patches. Genetic analyses were performed using the graph4lg package (Savary et al., 275

2021b) in R (R Core Team, 2020). 276

Genetic diversity and differentiation 277

We estimated genetic diversity within each population as the mean number of alleles per locus when con- 278

sidering all individuals, i.e., allelic richness. We then averaged allelic richness for each habitat type ("Forest", 279

"Forest Interface", "UGS", "UGS Interface"), each scenario and each city (n = 4 × 3 × 325). In parallel, we as- 280

sessed pairwise genetic differentiation using the DPS index (Bowcock et al., 1994), i.e., 1− proportion of shared 281

alleles. We distinguished three types of population pairs, i.e., "Forest-Forest", "Forest.UGS" and "UGS.UGS", 282

and averaged values for each scenario and city (n = 3× 3× 325). 283

Isolation by Landscape Resistance (IBLR) 284

Isolation by distance (IBD) patterns have been known for a long time for providing insights into the rela- 285

tive influence of drift and gene flow on genetic differentiation (Hutchison and Templeton, 1999; Slatkin, 1993). 286

During the simulations, gene flow was driven by cost-distance values computed under three scenarios con- 287

straining differently the dispersal paths. We wanted to assess to which degree differences in spatial patterns 288

of dispersal due to cost scenarios could affect the spatial genetic structure. We therefore analyzed isolation by 289

landscape resistance patterns (IBLR) and their scaling properties. For that purpose, we iteratively computed 290

Mantel correlation coefficients between DPS and cost-distances, while filtering population pairs according to 291

increasing cost-distance thresholds until all population pairs became included. We identified the threshold at 292

which this coefficient was maximal and called it Distance of Maximum Correlation (DMC), following Van Strien 293

et al. (2015). We standardized the DMC by the maximum cost-distance between population pairs to obtain 294

comparable values across cities. Large values are supposed to indicate cases where IBLR leads to a contin- 295

uous and linear relationship between DPS and cost-distances at the scale of the whole study area (i.e., the 296

equivalent of the case I IBD pattern sensu Hutchison and Templeton (1999), although we did not use the ex- 297

act same framework as for classical Isolation By Distance analyses (Rousset, 1997)). On the contrary, values 298

between 0 and 1 could indicate the presence of a plateau in the relationship (case IV IBD pattern sensu Hutchi- 299

son and Templeton (1999))(Van Strien et al., 2015). Besides, the correlation coefficient value between DPS 300

and cost-distances at the DMC showed us to what extent genetic differentiation increased due to increases in 301

cost-distance. 302

Module partitions 303

In each city and for each scenario (n = 325× 3), we modeled population genetic structure using a genetic 304

graph. Each node represented a population, and the links were weighted by DPS values. To identify genetic 305

clustering patterns potentially emerging from dispersal limitations between sets of habitat patches, we identi- 306

fiedmodules in these graphs using the fast greedymodularity algorithm by Clauset et al. (2004). This algorithm 307

identifies the partition of populations into modules maximizing a modularity index. This index takes genetic 308

differentiation values into account and takes large values when populations from the same module are also 309

genetically similar. 310

311

We wanted to determine (i) whether the spatial distribution of genetic modules reflected the dispersal con- 312

straints imposed by the different cost scenarios, and (ii) whether populations from different types of habitat 313

tended to be assigned to different genetic clusters as well. We therefore compared the genetic modules with 314

(i) modules computed in similar population graphs with links weighted by cost-distance values instead of DPS 315

values, and (ii) the classification of habitat patches into forests or UGS. In the former case, we set the number 316

of modules in each spatial cost-distance graph to be equal to the optimal number of modules identified in 317

each corresponding genetic graph. Then, we compared these partitions using the Adjusted Rand Index (ARI, 318
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Hubert and Arabie (1985)), following themethod described by Savary et al. (2022). This index takes itsmaximal 319

value (1) when two nodes from the same module in one graph also belong to the same module in the other 320

graph. It is equal to 0 when two partitions are comparable to random partitions. It takes its minimal value (-1) 321

when partitions are totally distinct, i.e., when two nodes from the same module are in different modules in 322

the other graph. 323

Genetic response modeling 324

Wemodeled the different genetic responses as a function of the dispersal cost scenarios (and habitat type 325

or type of population pairs for the allelic richness and genetic differentiation, respectively) usingmixed-effects 326

models with random intercepts at the city level. This allowed us to take into account the lack of statistical inde- 327

pendence between simulationsmade for three cost scenarios in the same city. In that way, we also accounted 328

for the fact that all cities do not have the same habitat area, number of populations and individuals, which 329

created overall differences in genetic structure, irrespective of cost scenarios. 330

331

Because all our genetic responses did not have the same range of values and distributions, we usedmixed- 332

effects models assuming various distributions and link functions (when generalized), as explained in the Re- 333

sults section and Supporting Information 3. Models were fitted with a Restricted Maximum Likelihood ap- 334

proach using the lme4 (Bates et al., 2007) and glmmTMB (Brooks et al., 2017) R packages. The adequation be- 335

tween the distribution of the residuals and the models’ assumptions were checked using a simulation-based 336

approach implemented in the DHARMa R package (Hartig, 2020). We only interpreted themodels whose residu- 337

als matched these assumptions. Because wemodeled simulated values for which we controlled sample sizes, 338

we did not interpret the p-values (which took the lowest value reported by the R software program in most 339

cases). Mean values per fixed effect level and their confidence intervals (95 %) were obtained using emmeans 340

(Russel, V. L., 2021). 341

342

When both the cost scenarios and the habitat type or type of pairs were considered as fixed effects, we 343

included an interaction between these two variables in the models. Indeed, variations in dispersal were not 344

supposed to affect the genetic responses similarly according to the type of habitat considered. 345

346

Assessing results’ sensitivity to city size and habitat amount variations among cities 347

We wanted to check whether the results were consistent across cities regardless of prominent differences 348

in terms of city size and habitat cover. To this end, we analyzed the results by considering separate groups 349

of cities, created from the quartiles of the city sizes (study area radii) and of the total amount of habitat (UGS 350

and forest total area). Additionally, we assessedwhether allelic richness contrasts between habitat types were 351

similar when the connectivity of UGS (ECUGS.UGS ) was larger than that of forests (ECForest.Forest). 352

Results 353

Habitat connectivity 354

The 325 cities delineated in this study were covered at 20 %± 1 % by artificial areas and had amean radius 355

of 10.8 km. Their population averaged 300,000 inhabitants in 2018 (median: 140,000, maximum: 6,000,000). 356

In these areas, the overall amount of reachable habitat (EC) was mainly due to forest patches and much 357

less to UGS, with ECForest.Forest largely higher than ECUGS.UGS , and than ECForest.UGS , although to a 358

lesser extent (Figure 2A). This contrast was stronger when modeling connectivity according to dispersal cost 359

scenarios 2 and 3 (Figures S2 and S3). However, in some urban areas where forest areas are very limited, 360
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the contribution of UGS to the amount of reachable habitat was the highest, as reflected by the proportional 361

share of ECUGS.UGS (Figure 2B). 362

363

Genetic diversity 364

The simulated genetic diversity varied substantially both among cities and among cost scenarios and habi- 365

tat types (Figure 3). Wemodeled the mean allelic richness across populations for each city and type of habitat 366

occupied by the populations (Forest, UGS, Forest Interface, UGS Interface), as a function of habitat type and 367

cost scenario using a linear mixed-effects model (LMM) with random intercept at the city level. The random 368

effects explained 78 % of the overall variance (ICC: 0.783) due to large differences among cities. The residual 369

distribution was satisfactory, as well as the model fit (conditional R2 = 0.91, marginal R2 = 0.56). Although 370

population sizes, drift intensity, dispersal rates and dispersal distances were constant in a given city from one 371

scenario to another, the overall allelic richness decreased substantially from scenario 1 to 3 in all types of pop- 372

ulations when taking among-cities differences into account (Table 2), as expected from Figure 3. This resulted 373

from stronger constraints on gene flow exerted by artificial areas, roads, and water bodies, which modified 374

the respective intensities of drift and gene flow. The effect of the interaction between cost scenarios and 375

habitat types was much lower than their main effects (χ2 values from Wald test: main effect of cost scenario: 376

χ2=16037.6, main effect of habitat type: χ2=5960.9, interaction: χ2=890.1). Allelic richness was very high in 377

all habitats in the cost scenario 1, although slightly lower in UGS (Table 2). For a given type of habitat (Forest, 378

UGS), the highest allelic richness was observed in Interface habitats. It strongly decreased from scenario 1 to 379

3 but the decrease depended on the type of patches in which the populations were located. In Forest and For- 380

est Interface patches, allelic richness was halved from scenario 1 to 3 (Forest: 10.68 to 5.93, Forest Interface: 381

11.68 to 6.60). It was almost divided by three in UGS Interface (10.95 to 4.19), and almost by four in UGS (9.37 382

to 2.39) (see CI in Table 2). 383

Scenario Habitat type Estimate Lower.CI Upper.CI
Sc. 1 Forest 10.68 10.41 10.96
Sc. 2 Forest 9.18 8.90 9.46
Sc. 3 Forest 5.93 5.65 6.21
Sc. 1 UGS 9.37 9.09 9.65
Sc. 2 UGS 4.73 4.45 5.01
Sc. 3 UGS 2.39 2.12 2.67
Sc. 1 Forest Interface 11.68 11.40 11.95
Sc. 2 Forest Interface 10.05 9.77 10.33
Sc. 3 Forest Interface 6.60 6.32 6.87
Sc. 1 UGS Interface 10.95 10.67 11.23
Sc. 2 UGS Interface 8.13 7.85 8.41
Sc. 3 UGS Interface 4.19 3.91 4.47

Table 2. Results of the mixed-effects model of the simulated genetic diversity. Predicted values and confi-
dence intervals of the mean allelic richness across populations at the city level as a function of dispersal cost
scenario, habitat type and their interaction. "Forest Interface" patches correspond to the forest patches most
connected to UGS according to the FForest↔UGS metric, whereas "UGS Interface" patches correspond to the
UGS patches most connected to forests according to the FUGS↔Forest metric.

Genetic differentiation 384

Themean genetic differentiation (DPS) between populationswas high overall (> 0.6) and increased from0.62 385

to 0.72 and 0.85 in scenarios 1, 2 and 3, respectively (Figure 4). Genetic differentiation was lower between 386
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forest populations than between UGS populations and took intermediate values between forest and UGS 387

populations. We first used a generalized linear mixed model (GLMM) assuming a beta distribution and using 388

a logit link function to model the DPS values as a function of the cost scenario and type of population pair 389

(i.e., Forest-Forest, Forest-UGS, UGS-UGS). We also used a LMM assuming a normal distribution. The GLMM 390

provided a slightly better fit than the LMM. However, its residuals were slightly over-dispersed, whereas the 391

LMM residuals had a satisfactory distribution. Both models provided similar results and we here present the 392

LMM results. The random effects (city-level random intercepts) explained 76 % of the overall variance (ICC: 393

0.759) due to large differences among cities. Themodel fit was good (conditionalR2 = 0.90,marginalR2 = 0.58). 394

There were large differences among both cost scenarios and types of population pairs, after accounting for 395

among-cities differences (Table 3). In that case also, the effect of the interaction between cost scenarios and 396

types of population pairs was much lower than their main effects (main effect of cost scenario: χ2 =11824.2, 397

main effect of population pairs type: χ2 =3714.1, interaction: χ2 =850.0). Overall, the genetic differentiation 398

among populations was lower in scenario 1 than in scenario 2, and the latter lower than in scenario 3, in 399

accordance with Figure 4 (Table 3). The genetic differentiation among Forest populations was overall lower 400

than between Forest and UGS populations, itself lower than among UGS populations. The increase in genetic 401

differentiation from scenarios 1 to 2 and 3 was slightly lower for pairs of populations located in forests (see 402

mean values and their CI in Table 3). 403

Scenario Population pair Estimate Lower.CI Upper.CI
Sc. 1 Forest-Forest 0.599 0.589 0.609
Sc. 2 Forest-Forest 0.620 0.610 0.630
Sc. 3 Forest-Forest 0.764 0.754 0.774
Sc. 1 Forest-UGS 0.628 0.618 0.638
Sc. 2 Forest-UGS 0.752 0.742 0.762
Sc. 3 Forest-UGS 0.881 0.871 0.891
Sc. 1 UGS-UGS 0.644 0.634 0.654
Sc. 2 UGS-UGS 0.801 0.790 0.811
Sc. 3 UGS-UGS 0.902 0.892 0.912

Table 3. Results of the mixed-effects model of the simulated genetic differentiation. Predicted values and
confidence intervals of the DPS among populations at the city level as a function of dispersal cost scenario,
type of population pairs, and their interaction.

Distance of Maximum Correlation (DMC) 404

IBLR relationships were very different from one dispersal cost scenario to another. In scenario 1, the DMC 405

was overall equal to the maximum cost-distance between populations (Figure 5A), suggesting that gene flow 406

and drift jointly influenced genetic differentiation at the scale of the whole study area. The slope of the IBLR 407

relationship, reflected by the Mantel correlation coefficient at the DMC (Figure 5B), was less steep in this 408

scenario, indicating that the increase of genetic differentiation was somehow limited when cost-distances 409

increased. In contrast, in scenario 2, the mean DMC was equal to 0.47 and the corresponding correlation 410

coefficients were high. This implies that for a subset of populations separated by cost-distances lower than a 411

given threshold, therewas a strong linear relationship between genetic distances and cost-distances reflecting 412

significant gene flow between neighbor populations. Finally, in scenario 3, the low DMC values (Figure 5A) 413

suggest that the IBLR relationships were weak and that genetic drift had a much stronger influence than 414

gene flow on genetic differentiation. The mixed-effects models did not have a satisfactory fit for the DMC. 415

In contrast, they confirmed that the differences in the correlation coefficients measured at the DMC across 416

cost scenarios, visible in Figure 5B, were substantial even when taking among-cities differences into account. 417

The values predicted by the LMM were equal to 0.55 (95% CI [0.54, 0.56]) in the scenario 1, 0.81 (95% CI [0.80, 418

0.83]) in the scenario 2, and 0.78 (95%CI [0.76, 0.79]) in the scenario 3 (see Supporting Information 3). However, 419

12



given that the distribution of the DMC values in the latter scenario reflects an absence of IBLR relationship, 420

the corresponding correlation coefficients should not be interpreted for the scenario 3. 421

Population graph modularity 422

The modules identified in genetic graphs best coincided with the modules from similar graphs with links 423

weighted by cost-distances in scenario 2 (Figure 6A). Indeed, mean ARI values were equal to 0.12, 0.27 and 424

0.00 in scenarios 1, 2 and 3, respectively (corresponding median values: 0.02, 0.25, 0.00). Similarly, in scenario 425

2, genetic modules best reflected the distinction between forest and UGS patches (Figure 6B). This means 426

that, in this scenario, it was more likely for two populations belonging to the same genetic cluster to be close 427

when considering cost-distances, and to be located in the same habitat type. Thus, the genetic structure of 428

populations and either their spatial structure when taking dispersal constraints into account, or their habitat 429

type classification (UGS vs forests) matched in a stronger way in this intermediate cost scenario. This was not 430

the case when gene flow was less constrained by unfavorable areas (i.e., scenario 1) or, on the contrary, highly 431

constrained by these areas (i.e., scenario 3). We did not interpret the results of the mixed-effects models of 432

ARI values, because the strong heteroscedasticity and atypical distribution of their values prevented us from 433

obtaining satisfactory models. 434

Consistencyof analysis results among cities havingdifferent sizes andhabitat amount 435

The heterogeneity of city sizes, due to the varying radius of the disks containing 20 % of artificial areas, had 436

negligible effects on the results. In the supplementary materials, we provide the same figures as included in 437

this section plotted separately after splitting the urban areas in 4 quartiles based on their total area (Figures S4, 438

S5, S6, S7, S8 and S9). Similarly, the results were highly consistent when considering cities including varying 439

total habitat areas (Figures S10, S11, S12 and S13). Finally, in the few cities where the connectivity of UGS 440

was higher than that of forests due to small forest areas, allelic richness contrasts were consistent with the 441

ones observed for the whole set of cities in scenarios 2 and 3 (Table S3). However, in these cities, under the 442

scenario 1, UGS and UGS interface patches tended to maintain higher diversity levels than forest patches. 443

Discussion 444

We simulated the genetic structure of urban tolerant forest species occupying forests and urban green 445

spaces in 325 European cities, while varying species abilities to cross the least favorable areas. We thereby 446

found that in urban contexts dispersal behavior differences alone can shape highly variable genetic diversity 447

contrasts between habitat types and isolation by landscape resistance patterns. The substantial variations in 448

simulated genetic responses between forests and urban green spaces could be due to their connectivity dif- 449

ferences, reflecting their respective extent, spatial configuration and location within the urban matrix. These 450

results were obtained without making any assumption regarding the respective quality of these habitats in 451

our simulations. Urban ecologists should thus bear in mind the strong influence that dispersal between ur- 452

ban habitats exhibiting different spatial distributions can have on genetic patterns when assessing the relative 453

influence of dispersal, adaptation, resource availability or biotic interactions on species responses to urban 454

environments. Our results also provide insights into connectivity modeling and biodiversity conservation in 455

these contexts. 456

Variations in dispersal constraints can shape highly contrasted genetic patterns 457

In our simulations, as dispersal across the least favorable land cover types became more costly, genetic 458

diversity tended to decrease in both forest and UGS, and genetic differentiation tended to increase between 459

populations. Althoughoverall genetic responses, such as themean allelic richness, differed among cities, varia- 460

tions among cost scenarios for a given city were relatively consistent. Contrasts weremainly due to differences 461
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of total habitat areas and number of patches, which determined the number of populations and individuals, 462

and consequently the intensity of drift in each city. In urban contexts, differences in effective population sizes 463

among species are known for being an important driver of the variability of their genetic responses (Schmidt 464

et al., 2020), and are frequently invoked as the main driver of genetic diversity (Miles et al., 2019). However, 465

these population size differences do not explain the strongly contrasted genetic responses among cost sce- 466

narios we obtained for a given city because the number of individuals in each population stayed constant 467

whatever the scenario. Thus, only gene flow variations can explain these contrasts. 468

469

The resistance of artificial areas, roads and water bodies to species dispersal varied according to the cost 470

scenario, but the total cost-distance that a fixed proportion of individuals could cover at each generation did 471

not vary. In other words, the scenarios essentially modified the spatial pattern of dispersal movements, but 472

not their range. Consequently, for a given number of dispersing individuals, dispersal paths crossing unfavor- 473

able land cover types became less likely to be followed from scenario 1 to 3 because the cost of paths crossing 474

other land cover types (e.g., grasslands, agricultural areas) remained the same whatever the scenario. Our re- 475

sults thus reflect the potential genetic responses of several species having the same individual density within 476

patches, the same absolute dispersal abilities, and dispersal rates, but different dispersal behaviors in urban 477

environments. It is noteworthy that simulated variations in the spatial pattern of dispersal can reproduce the 478

inter-specific variability of patterns of genetic diversity and differentiation commonly observed in empirical 479

landscape genetic studies (as reviewed by Fusco et al. (2021) and Miles et al. (2019)). For instance, the very 480

subtle differences in genetic diversity simulated under the scenario 1 recall the empirical results of Khimoun 481

et al. (2020). In contrast, the sharper differences simulated under the scenario 3 are akin to the significant 482

genetic contrasts between urban and non-urban settings observed by Delaney et al. (2010) in several species. 483

Although our results do not provide an explanation for these specific empirical findings, they show that differ- 484

ences in dispersal patterns could be sufficient to generate similar genetic patterns. 485

486

When drift intensity is constant but the spatial pattern of gene flow changes, the relative influence of drift 487

and gene flow on genetic differentiation is logically modified in a different way according to the respective lo- 488

cation of populations. Variations in the spatial range at which the relationship between genetic differentiation 489

and cost-distances was the strongest revealed how contrasted genetic differentiation patterns were across 490

scenarios. Indeed, when gene flow was not strongly restricted across artificial areas, roads and water bod- 491

ies, genetic differentiation only increased progressively as cost-distance increased, producing a continuous 492

pattern of genetic variations at the scale of the entire urban areas. This pattern is similar to the case I IBD 493

pattern, according to the typology by Hutchison and Templeton (1999), and suggests that stepping-stone dis- 494

persal movements can prevent strong genetic differentiation in species with good abilities to disperse within 495

cities. On the contrary, this pattern was only apparent between subsets of populations in scenario 2, and ge- 496

netic differentiation increased more strongly with cost-distances. This corresponds to the case IV IBD pattern, 497

according to Hutchison and Templeton (1999), and indicates that considering species having intermediate abil- 498

ities to move across cities, the continuous and progressive increase of genetic differentiation resulting from 499

dispersal limitation is only observed at small scales, within well connected subsets of populations. Finally, 500

when dispersal movements in unfavorable areas were highly constrained, the relationship between genetic 501

differentiation and cost-distances flattened out because drift became themain driver of the genetic response, 502

and not gene flow anymore, which somehow recalls the case III IBD pattern described by Hutchison and Tem- 503

pleton (1999). In sum, changes in dispersal cost scenarios led to contrasted genetic differentiation patterns 504

because they modified the relative frequency of dispersal events over each path connecting two populations. 505

In other words, they rewired dispersal networks. The consequences of these changes in dispersal spatial pat- 506

terns reinforce previous calls for a better consideration of population network topology in landscape genetics 507

(Savary et al., 2021a; Van Strien, 2017). 508

509
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In landscape genetics, unbridgeable barriers to dispersal are commonly inferred by identifying landscape 510

features separating spatially structured genetic clusters of populations (Manel et al., 2007; Safner et al., 2011). 511

Interestingly, our results show that genetic modules best reflected the spatial structure of genetic differenti- 512

ation patterns in the second cost scenario, and not in the third one, which exerted the strongest constraints 513

on dispersal movements. We could have expected the opposite and this suggests that there is an analytical 514

limit in our ability to detect barriers to dispersal when gene flow is so constrained that drift is the main driver 515

of genetic differentiation. 516

517

Several studies have evidenced that other processes than gene flow drive different population dynamics 518

and individual fitness in urban populations as compared with non-urban ones. For example, urban bird popu- 519

lations can feed on more diverse food items, sometimes at the expense of their quality (Sinkovics et al., 2021), 520

and can exhibit shifted and/or more variable phenotypes (Thompson et al., 2021), due to plasticity or genetic 521

adaptations. If our results do not deny the existence of these well-known processes, they nonetheless call for 522

a better consideration of dispersal spatial patterns when inferring the respective influence of different drivers 523

of population genetic structure in urban areas. 524

Influence of the spatial distribution of multiple urban habitat types 525

Forest populations tended tomaintain a higher genetic diversity than UGS populations and to be less differ- 526

entiated than pairs of UGS populations. Besides, genetic differentiation levels measured between these two 527

types of habitats were intermediate, as compared with the high and low levels measured within UGS and for- 528

est patches, respectively. Similar genetic responses to urbanization have already been empirically observed 529

in several species, from birds and reptiles (Delaney et al., 2010), to rodents (DeMarco et al., 2021; Gortat et al., 530

2015) and larger mammals (Stillfried et al., 2017; Wandeler et al., 2003). In our simulations, they mainly stem 531

from the fact that the contribution of forest areas to the overall amount of reachable habitat was much larger 532

than that of UGS in most cities. Besides, UGS patches are usually smaller and also harder to reach due to 533

their location within the urban fabric. This explains why, except in scenario 1, even in cities where UGS con- 534

tributedmore to the amount of reachable habitat than forests, similar genetic contrasts were observed. These 535

differences in terms of area and connectivity between UGS and surrounding natural areas provide a likely ex- 536

planation to previous empirical observations in urban landscape genetics, as habitat amount and connectivity 537

are often mentioned as key drivers of urban biodiversity (Beninde et al., 2015). 538

539

The stronger relative isolation of UGS was also apparent in the genetic clustering pattern. In the second 540

cost scenario, we observed that forest and UGS populations tended to form separate genetic clusters. This 541

sub-structuration of genetic differentiation patterns within the urban core areas had also been empirically 542

evidenced in striped field mouse populations in Warsaw (Gortat et al., 2015) or in wild boar populations in 543

Berlin (Stillfried et al., 2017). 544

545

However, we also observed that the presence of habitat patches well connected to patches of another 546

habitat type seemed to locally buffer these differences among habitat types by promoting gene flow at the 547

interface between forest and UGS. Therefore, the connectivity analyzes and genetic simulations together sug- 548

gest that peri-urban and less anthropized areas can be important sources of biodiversity in cities when they 549

are connected to intra-urban habitat patches, in accordance with previous simulations (Snep et al., 2006) and 550

empirical observations (Stillfried et al., 2017). The corollary of this is the potential sink role of UGS, as pre- 551

viously raised by Lepczyk et al. (2017) and Verrelli et al. (2022). This could have a negative influence on the 552

long-term persistence and genetic adaptation of wild populations both within and outside cities, and remains 553

to be investigated. 554
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Implications for biodiversity management in urban areas 555

Making urban planning policies compatible with the conservation of biodiversity is crucial. These policies 556

are commonly based on biodiversity surveys and on the conservation of so-called "green infrastructures", 557

including several types of natural areas, UGS and the corridors connecting them. Our results stress several 558

points that should deserve more attention in that context. First, genetic diversity and connectivity differences 559

between forest and UGS were substantial regardless of the spatial extent of the city under consideration. In 560

most cases, the largest habitat areas and biodiversity levels are to be found in natural areas surrounding city 561

centers and not in UGS. This should encourage planners to consider large areas including themost biodiverse 562

and favorable places to wildlife, often located at the periphery of cities. 563

564

Our connectivity analyzes and genetic simulations in 325 European cities also suggest that urban planners 565

should identify habitat interface areas and consider themas "gateways" throughwhich species canmove from 566

less to more anthropized habitats, as suggested by Gortat et al. (2017). We could also expect these areas to 567

play a crucial role for maintaining species diversity within cities as long as gene flow and drift effects affect 568

single species genetic structure in a comparable way as colonization and extinction processes affect species 569

diversity (Vellend and Geber, 2005). 570

571

Finally, our results confirm that species which can hardly move across artificial areas and roads will not 572

maintain high levels of genetic diversity within cities. This can explain why some species are very rarely ob- 573

served in urban areas, but this could also mean that urban populations of some species are already engaged 574

in a local extinction vortex. As such, considering the long-term effect of urbanization on genetic structure 575

and its potential consequences for population persistence is key for biodiversity management (Sarrazin and 576

Lecomte, 2016), and particularly in urban areas where these processes can be fast (Szulkin et al., 2020). 577

Limitations and perspectives 578

Our analyzes focused only on urban tolerant forest species occupying forest and UGS. These species only 579

represent a small proportion of urban biodiversity. Reproducing these analyses by considering either special- 580

ist species using another type of habitat or more generalist species could help obtain a broader picture of 581

biodiversity dynamics in urban settings. Besides, most forest patches were located at the periphery of cities, 582

whereas UGS were more central, and this peculiar spatial distribution largely affected our results. Assessing 583

how the spatial distribution of other types of urban and/or peri-urban habitats affects genetic patterns would 584

also be needed. 585

586

For comparison purposes, we here assumed that UGS mapped by the Urban Atlas database were suitable 587

for urban tolerant forest species. However, habitat patches may not all be suitable for these species and 588

many other patches could fit their needs within cities (e.g., private wooded backyards in residential areas). 589

This limitation should encourage the use of fine-grained remote sensing data to map urban habitats with 590

more accuracy. Yet, acquiring such maps for a number of cities providing sufficient statistical power in a stan- 591

dardized way remains a challenge. 592

593

Although the genetic simulations we carried out can help prioritize habitat patches in urban planning con- 594

text, they only reflect the potential genetic responses of a single species. These simulations could be advanta- 595

geously completed by empirical surveys for assessing whether they closely reflect actual ecological processes. 596

Our simulation framework could also be implemented in areas where genetic data are already available for 597

testing whether dispersal limitations can explain the empirically observed genetic structure. Besides, adding 598

to the simulation local habitat features, and how they locally influence several species based on their niche op- 599

timum, breadth, and competitive interactions (alike in the meta-community simulation framework of Thomp- 600
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son et al. (2020)) could provide insights into species diversity patterns in urban areas. This could help deter- 601

mine whether connectivity restoration measures are always positive for biodiversity conservation in urban 602

areas; which may not always be guaranteed when invasive species also benefit from them. 603

604

Finally, although substantial differences among urban areas in terms of reachable amounts of habitat (i.e., 605

connectivity) probably explain most of the variability in genetic responses across cities, we did not investigate 606

the structural causes of these differences. Indeed, the interplay of urban formwith the spatial configuration of 607

forest and UGS likely determines habitat connectivity patterns and species genetic structure. Further research 608

is needed for understanding these relationships and providing broad guidance on urban planning at a time 609

when increased urbanization and biodiversity conservation too often seem incompatible. 610
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Figure 1. (A) Land cover map of a city under consideration, represented by a disc including 20% artificial
areas. (B) The 325 European cities considered in our analyzes. (C) Example of least-cost paths (brown lines)
connecting forest patches (dark green) and UGS patches (light green). (D) Example of genetic simulation

output. The purple and orange dot sizes represent the simulated allelic richness in forest and UGS
populations, respectively, according to the cost scenario 2.
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Figure 2. Absolute and relative values of the different EC components computed in the 325 cities according
to cost scenario 1. (A) ECForest.Forest (green), ECForet.UGS (purple) and ECUGS.UGS (orange) divided by
the total study area, for each city. (B) Respective contributions of ECForest.Forest (green), ECForest.UGS

(purple) and ECUGS.UGS (orange) to the connectivity of the habitat network. The total connectivity value of
the network is the sum of the three EC components, which is slightly different from the global EC value

because of square root properties.
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Figure 3. Distribution of the mean allelic richness of populations located in "Forest", "Forest Interface",
"UGS" and "UGS Interface" patches in the 325 cities for the three dispersal cost scenarios. "Forest Interface"
patches correspond to the forest patches most connected to UGS according to the FForest→UGS metric,

whereas "UGS Interface" patches correspond to the UGS patches most connected to forests according to the
FUGS→Forest metric. n = 325 values per box
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Figure 4. Distribution of the mean genetic differentiation (DPS ) computed between forest patches
(Forest.Forest), forest and UGS patches (Forest.UGS) and UGS patches (UGS.UGS) in the 325 cities for the

three dispersal cost scenarios. n = 325 values per box
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Figure 5. (A) Distance of Maximum Correlation (DMC), computed as the threshold distance used for selecting
the subset of population pairs giving the maximum Mantel correlation coefficient between genetic distances
(DPS ) and cost-distances, in the 325 cities and for the three dispersal cost scenarios. The DMC is divided by
the maximum cost-distances between populations in the corresponding city and cost scenario and therefore

ranges from 0 to 1. (B) Mantel correlation coefficients measured at the DMC. n = 325 values per box
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Figure 6. Adjusted Rand Index (ARI) comparing the partitions into modules of the genetic graph with links
weighted by genetic distances (DPS ) with (A) module partitions obtained from similar graphs with links
weighted by cost-distances or with (B) the classifications of populations into forest or UGS populations

according to the type of patch they occupy. An ARI value is computed for each city and each cost scenario,
such that n = 325 values per box
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