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Abstract7

Information-theoretic (IT) and multi-model averaging (MMA) statistical8

approaches are widely used but suboptimal tools for pursuing a multifacto-9

rial approach (also known as the method of multiple working hypotheses)10

in ecology. (1) Conceptually, IT encourages ecologists to perform tests on11

sets of artificial models. (2) MMA improves on IT model selection by im-12

plementing a simple form of shrinkage estimation (a way to make accurate13

predictions from a model with many parameters, by “shrinking” parameter14

estimates toward zero). However, other shrinkage estimators such as pe-15

nalized regression or Bayesian hierarchical models with regularizing priors16

are more computationally efficient and better supported theoretically. (3)17

In general the procedures for extracting confidence intervals from MMA18

are overconfident, giving overly narrow intervals. If researchers want to19

accurately estimate the strength of multiple competing ecological processes20

along with reliable confidence intervals, the current best approach is to use21

full (maximal) statistical models (possibly with Bayesian priors) after making22

principled, a priori decisions about which predictors to include.23
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Much modern scientific research quantifies the importance of multiple pro-25

cesses in natural or human systems. Some examples from my own work in26

ecology and evolution consider the effects of herbivory and fertilization on27

standing biomass (Gruner et al. 2008); the effects of bark, wood density, and28

fire on tree mortality (Brando et al. 2012); or the effects of taxonomic and29

genomic position on evolutionary rates (Ghenu et al. 2016). This multifactorial30

approach (McGill 2016) complements, rather than replacing, the traditional31

hypothesis-testing or strong-inferential framework (Platt 1964; Fox 2016).132

A standard approach to analyzing multifactorial systems, particularly com-33

mon in ecology, goes as follows: (1) Construct a full model that encompasses34

as many of the processes (and their interactions) as is feasible. (2) Fit the35

full model and make sure that it describes the data reasonably well (e.g. by36

computing R2 values or estimating degree of overdispersion). (3) Construct37

possible submodels of the full model by setting subsets of parameters to38

zero. (4) Compute information-theoretic measures of quality, such as the39

Akaike or Bayesian/Schwarz information criteria, for every submodel. (5)40

Use multi-model averaging (MMA) to estimate model-averaged parameters41

and confidence intervals (CIs); possibly draw conclusions about the impor-42

tance of different processes by summing the information-theoretic weights43

(Burnham and Anderson 2002). I argue that this approach, even if used44

sensibly as advised by proponents of the approach (e.g. with reasonable45

numbers of candidate submodels), is a poor way to approach multifactorial46

problems.47

My goal is to tease apart the contributions of many processes, all of which48

we believe are affecting our study system to some degree. If our scientific49

questions are (something like) “How important is this factor, in an absolute50

sense or relative to other factors?”, not “Which of these factors are actually51

doing anything at all in my system?”, why are we working so hard to fit52

many models of which only one (the full model) incorporates all of the53

factors? If we do not have particular, a priori discrete hypotheses (such54

as “A influences the outcome but B does not”) about our system (and a55

multifactorial approach would suggest that we should not), why does so56

much of our data-analytic effort go into various ways to test between, or57

combine and reconcile, multiple discrete models? In software engineering,58

this would be called an “XY problem”2: rather than thinking about the best59

1While there is much interesting debate over the best methods for gathering evidence
to distinguish among two or more particular, intrinsically discrete hypotheses (Taper and
Ponciano 2015), that is not my focus here.

2http://www.perlmonks.org/?node=XY+Problem
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way to solve our real problem X (understanding multifactorial systems), we60

have gotten bogged down in the details of how to make a particular tool,61

Y (multimodel approaches) provide the answers we need. Most critiques62

of MMA address technical concerns such as the influence of unobserved63

heterogeneity (Brewer, Butler, and Cooksley 2016), or criticize the misuse of64

information-theoretic methods by researchers (Cade 2015), but do not ask65

why we are comparing discrete models in the first place. (Many statisticians66

now emphasize the importance of causal inference (Fieberg and Johnson 2015;67

Laubach et al. 2021; Kimmel et al. 2021; Arif and MacNeil 2022); while this is68

important, it is not the focus here.)69

In contrast to averaging across discrete hypotheses, or treating a choice of70

discreting hypotheses as an end goal, fitting multiple models as a step in a71

null-hypothesis significance testing (NHST) procedure is defensible. While72

much maligned, NHSTs are a useful part of data analysis — not to decide73

whether we really think a null hypothesis is false (they almost always are),74

but to see if we can distinguish signal from noise. Another interpretation is75

that NHSTs can test whether we can reliably determine the direction of effects76

— that is, not whether the effect of a predictor on some process is zero, but77

whether we can tell unequivocally that it is positive (or negative (Jones and78

Tukey 2000; Dushoff, Kain, and Bolker 2019)). We perform these tests by79

statistically comparing a full model to a reduced model that pretends the80

effect is exactly zero.81

However, researchers using multimodel approaches are not fitting one-step-82

reduced models to test hypotheses; rather, they are fitting a wide range of83

submodels, typically in the hope that model choice or multimodel averaging84

will help them deal with insufficient data in a multifactorial world. If we85

had enough information (even “big data” doesn’t always provide as the86

information as we need: Meng (2018)), we could fit just the full model,87

drawing our conclusions from the estimates and CIs with all of the factors88

considered simultaneously. But we nearly always have too many predictors,89

and not enough data; we don’t want to overfit (which will inflate our CIs90

and p-values to the point where we can’t tell anything for sure), but at the91

same time we are scared of neglecting potentially important effects.92

Stepwise regression, the original strategy for separating signals from noise, is93

now widely deprecated (Harrell 2001; Whittingham et al. 2006). Information-94

theoretic tools mitigate the instability of stepwise approaches, allow simul-95

taneous comparison of many, non-nested models, and avoid the stigma96

of NHST. A further step forward, multi-model averaging (Burnham and97
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Anderson 2002), accounts for model uncertainty and avoids focusing on a98

single best model. Some forms of model averaging provide simple shrink-99

age estimators; averaging the strength of effects between models where they100

are included and models where they are absent “shrinks” the estimated101

effects toward zero (Cade 2015). More recently, however, model averaging102

is experiencing a backlash, as studies point out that multimodel averaging103

may run into trouble when variables are collinear (Freckleton (2011; but cf.104

Walker 2017)); when we are careless about the meaning of main effects in105

the presence of interactions; when we average model parameters rather than106

model predictions (Cade 2015); or when we use summed model weights to107

assess the relative importance of predictors (Galipaud et al. (2014; but cf.108

Zhang, Zou, and Carroll 2015)).109

In ecology, information criteria were introduced by applied ecologists who110

were primarily interested in making the best possible predictions to inform111

conservation and management; they were less concerned with inference or112

quantifying the strength of underlying processes Johnson and Omland (2004).113

Rather than using information criteria as tools to identify the best predictive114

model, or to obtain the best overall (model-averaged) predictions, most115

current users of information-theoretic methods use them either to quantify116

variable importance, or, by multimodel averaging, to have their cake and117

eat it too — to avoid either over- or underfitting while quantifying effects118

in multifactorial systems. These researchers encounter two problems, one119

conceptual and one practical.120

The conceptual problem with model averaging reflects the original sin of121

unnecessarily discretizing a continuous world. Suppose we want to un-122

derstand the effects of temperature and precipitation on biodiversity. The123

model-comparison or model-averaging approach would construct five mod-124

els: a null model with no effects of either temperature or precipitation, two125

single-factor models, an additive model, and a full model allowing for in-126

teractions between temperature and precipitation. We would then fit all (or127

many) of these models and then model-average their parameters. We might128

be doing this in an effort to get good predictions, or to to test our confidence129

that we know the signs of particular effects (measured in the context of130

whatever processes are included in the reduced and the full models), but131

they are only means to an end, and we shouldn’t fool ourselves into thinking132

that we are using the method of multiple working hypotheses. For example,133

Chamberlin (1897, reprinted as Raup and Chamberlin (1995)) argued that134

in teaching about the origin of the Great Lakes we should urge students “to135

conceive of three or more great agencies [pre-glacial erosion, glacial erosion,136
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crust deformation] working successively or simultaneously, and to estimate137

how much was accomplished by each of these agencies.” Chamberlin was138

not suggesting that we test which individual mechanism or combination139

of mechanisms fits the data best (in whatever sense), but instead that we140

acknowledge that the world is multifactorial.141

The technical problem with model averaging is its computational inefficiency.142

Individual models can take minutes or hours to fit, and we may have to fit143

dozens or scores of sub-models in the multi-model averaging process. There144

are efficient tools available for fitting “right-sized” models that avoid many145

of the technical problems of model averaging. Penalized methods such as146

ridge and lasso regression (Dahlgren 2010) are well known in some scientific147

fields; in a Bayesian setting, informative priors centered at zero have the same148

effect of regularizing — pushing weak effects toward zero and controlling149

model complexity (more or less synonymous with the shrinkage of estimates150

described above) (Lemoine 2019). Developed for optimal (predictive) fitting151

in models with many parameters, penalized models have well-understood152

statistical properties; they avoid the pitfalls of model-averaging correlated153

or nonlinear parameters; and, by avoiding the need to fit many sub-models154

in the model-averaging processes, they are much faster.3155

Here I am not concerned whether ‘truth’ is included in our model set (it isn’t),156

and how this matters to our inference (Bernardo and Smith 1994; Barker and157

Link 2015). I am claiming the opposite, that our full model is usually as close158

to truth as we can get; we don’t really believe any of the less complex models.159

If we are trying to get the best predictions, or to compare the strength of160

various processes in a multifactorial context, there may be better ways to161

do it. In situations where we really want to compare qualitatively different,162

non-nested hypotheses (Luttbeg, Langen, and Adams 2004), AIC or BIC or163

any appropriate model-comparison tool is fine; however, if the models are164

really qualitatively different, perhaps we shouldn’t be trying to merge them165

by averaging, unless prediction is our only goal.166

Penalized models have their own challenges. A big advantage of information-167

theoretic methods is that, like wrapper methods for feature selection in ma-168

chine learning (Chandrashekar and Sahin 2014), we can use model averaging169

as long as we can fit component models and extract the log-likelihood and170

number of parameters — we never need to build new software. Although171

powerful computational tools exist for fitting penalized versions of linear and172

3Although they often require a computationally expensive cross-validation step in order
to choose the degree of penalization.
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generalized linear models (e.g. the glmnet package for R) and mixed mod-173

els (glmmLasso), software for some more exotic models (e.g. zero-inflated174

models, quantile regressions, models for censored data) may not be readily175

available. Fitting these models requires the user to choose the degree of176

penalization. This process is conveniently automated in tools like glmnet,177

but correctly assessing out-of-sample accuracy (and hence the correct level178

of penalization) is tricky for data that are correlated in space or time (Wenger179

and Olden 2012; Roberts et al. 2016).180

Finally, frequentist inference (computing p-values and CIs) for parameters181

in penalized models — one of the basic outputs we want from a statistical182

analysis of a multifactorial system — is a current research problem; statis-183

ticians have proposed a variety of methods (Pötscher and Schneider 2010;184

Javanmard and Montanari 2014; Lockhart et al. 2014; Taylor and Tibshirani185

2018), but they are far from being standard options in software. Scientists186

should encourage their friends in statistics and computer science to build187

tools that make penalized approaches easier to use.188

Statisticians derived confidence intervals for ridge regression long ago (Oben-189

chain 1977) — but, surprisingly, they are identical to the confidence intervals190

one would have gotten from the full model without penalization! Wang and191

Zhou (2013) similarly proved that model-averaging CIs derived as suggested192

by Hjort and Claeskens (2003) are asymptotically (i.e. for arbitrarily large193

data sets) equivalent to the CIs from the full model. Analytical and simula-194

tion studies (D. Turek and Fletcher 2012; Fletcher and Turek 2012; D. B. Turek195

2013; D. Turek 2015; Kabaila, Welsh, and Abeysekera 2016; Dormann et al.196

2018) have shown that a variety of alternative methods for constructing CIs197

are overoptimistic, i.e. that they generate too-narrow confidence intervals198

with coverage lower than the nominal level. Simulations from several of the199

studies above show that MMA confidence intervals constructed according to200

the best known procedures typically include the true parameter values only201

about 80% or 90% of the time. In particular, Kabaila, Welsh, and Abeysekera202

(2016) say that constructing CIs that take advantage of shrinkage but still203

achieve correct coverage will be very difficult to achieve using model aver-204

aged confidence intervals. (The only examples I have been able to find of205

MMA confidence intervals with close to nominal coverage are from Chapter206

5 of Burnham and Anderson (2002).) In short, it seems difficult to find model-207

averaged confidence intervals that compete successfully with the standard208

confidence interval based on the full model.209

Free lunches do not exist in statistics, any more than anywhere else. We can210

6



use penalized approaches to improve prediction accuracy without having211

to sacrifice any input variables (by trading bias for variance), but the only212

known way to gain statistical power for testing hypotheses, or narrowing213

our uncertainty about our predictions, is to limit the scope of our models a214

priori (Harrell 2001), to add information from pre-specified Bayesian priors215

(or equivalent regularization procedures), or to collect more data. Burnham216

and Anderson (2004) defined a “savvy prior’ ’ that reproduces the results of217

AIC-based multimodel averaging in a Bayesian framework, but it is a weak218

conceptual foundation for understanding multifactorial systems. Because it219

is a prior on discrete models, rather than on the magnitude of continuous220

parameters that describe the strength of different processes, it will give221

rise to a spike-and-slab type marginal prior on parameters that assigns a222

positive probability to the unrealistic case of a parameter being exactly zero;223

furthermore, the prior will depend on the particular set of models being224

considered.225

Multimodel averaging is probably most popular in ecology (Google Scholar226

returns ≈ 60,000 hits for “multimodel averaging” alone and 30,000 for “mul-227

timodel averaging ecology”). However, multifactorial systems — and the228

problems of approaching inference through comparing and combining dis-229

crete models that consider artificially limited subsets of the processes we230

know are operating — occur throughout the sciences of complexity, those231

involving biological and human processes. In psychology, economics, so-232

ciology, epidemiology, ecology, and evolution, every process that we can233

imagine has some influence on the outcomes that we observe. Pretending234

that some of these processes are completely absent can be a useful means to235

an inferential or computational end, but it is (almost) never what we actually236

believe about the system. We should not let this useful pretense become our237

primary statistical focus.238

If we have good experimental designs and sensible scientific questions, mud-239

dling through with existing techniques will often give reasonable results240

(Murtaugh 2009). But researchers should at least be aware that the round-241

about statistical methods they currently use to understand multifactorial242

systems were designed for prediction, or the comparison of discrete hy-243

potheses, rather than for quantifying the relative strength of simultaneously244

operating processes. When prediction is the primary goal, penalized meth-245

ods can work better (faster and with better-understood statistical properties)246

than multimodel averaging. When estimating the magnitude of effects or247

judging variable importance, penalized or Bayesian methods may be appro-248

priate — or we may have to go back to the difficult choice of focusing on a249

7



restricted number of variables for which we have enough to data to fit and250

interpreting the full model.251
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