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Abstract8

When the mutation rate is high and/or the population size is large, recurrent mutation can lead
to multiple, independently generated copies of the same beneficial allele spreading through the10
population. However, classical analyses of fixation probability and time assume that the mutation
rate is low and therefore, that fixation and extinction of a beneficial allele occur faster than the12
appearance of additional copies. We developed a diffusion equation approximation for the fixation
probability and time that accounts for recurrent mutation, incomplete fixation, and fixation from14
standing genetic variation. Our results show that when the number of new beneficial alleles
per generation in the population is greater than one, fixation is guaranteed, and fixation time is16
significantly lower than expected by the standard approximation. Moreover, we show that fixation
time is significantly shorter if the initial allele frequency is greater than 0, or if fixation is defined18
for an allele frequency lower than 1.
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Introduction
Analyses of the fixation probability and time of beneficial mutations have mostly focused on scenarios30
in which the appearance of the beneficial allele is rare enough so that it becomes extinct or fixed
before the next beneficial allele appears (Kimura, 1962, Kimura and Ohta, 1969). However, adaption32
sometimes occur in large populations and/or with high mutation rates, leading to high mutation supply
(mutation rate × population size), such that multiple new mutants are produced in every generation,34
rather than many generations passing between the occurrence of each mutant. Some examples are
the rapid appearance of many, selectively similar, beneficial alleles (Karasov et al., 2010, Barroso-36
Batista et al., 2014, Levy et al., 2015, Nguyen Ba et al., 2019); the quick appearance and fixation of
large-effect, rapidly forming, copy number variants (Egan et al., 2007, Yona et al., 2012, Payen et al.,38
2014, Avecilla et al., 2022); and evidence for mutation rate variation across the genome (Egan et al.,
2007, Harpak et al., 2016). Indeed, it has been suggested that “recurrent, parallel mutation modes40
can profoundly shape the paths taken by evolution and undermine common models of evolutionary
genetics” (Press et al., 2019).42

Here, we derive an approximation for the fixation probability and the fixation time under the
effect of mutation, selection, and genetic drift. Comparing our approximations to simulation results,44
we find they perform very well. We find that when the mutation supply is high enough (roughly
one mutant individual per generation), fixation is certain and rapid. Importantly, it is significantly46
faster than implied by approximations that neglect mutation, as such approximations perform poorly,
underestimating the fixation probability and overestimating the fixation time. We also compare our48
approximations to those previously derived by Hermisson and Pfaffelhuber (2008) in their analysis
of genetic hitchhiking. We find that our approximation is more flexible: it allows one to assume any50
initial frequency for the beneficial allele—which is likely to appear in more than one individual if
the mutation supply is large—and it also allows to approximate the time for the beneficial allele to52
reach any upper frequency, rather than 1, which is useful for applying the approximation to results of
evolutionary experiments or simulations, in which researchers may not want to wait until the beneficial54
allele is completely fixed in the population.

In the following we present a simple Wright-Fisher model with a single, bi-allelic locus under the56
effects of selection, recurrent mutation, and drift; we derive diffusion equation approximations for the
fixation probability and time in this model; compare these approximations to simulation results and58
previous approximations; and discuss our results.

Model and Results60

Wright-Fisher model
Here, we consider a Wright-Fisher model of a haploid population with non-overlapping generations62
and a constant population size 𝑁 . We focus on a single bi-allelic locus with alleles 𝐴 and 𝑎. The
frequencies of alleles 𝐴 and 𝑎 are 𝑥 and 1− 𝑥, respectively. The fitness of allele 𝐴 relative to 𝑎 is 1+ 𝑠,64
such that 𝑠 > 0 is the selection coefficient of 𝐴, and the effect of selection is given by

𝑥𝑠 =
𝑥(1 + 𝑠)

𝑥(1 + 𝑠) + (1 − 𝑥) . (1)66

We assume that mutations from 𝑎 to 𝐴 occur with rate 𝜇 and neglect back-mutations from 𝐴 to 𝑎 (the
case with back mutations was analyzed by Ewens (2004)). Thus, the effect of mutation is given by68

𝑥𝑚 = 𝑥𝑠 + (1 − 𝑥𝑠)𝜇. (2)

Finally, the effect of random genetic drift is given by70

𝑥′ = 𝑛/𝑁, 𝑛 ∼ Bin(𝑁, 𝑥𝑚), (3)
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such that 𝑥′ is the frequency of allele 𝐴 in the next generation.72

Diffusion equation approximation
Let 𝑎(𝑥) = E[𝑥′−𝑥] and 𝑏(𝑥) = Var[𝑥′−𝑥] be the expectation and variance of the change in frequency74
of allele 𝐴. We define the scaled selection parameter as 𝛼 = 𝑁𝑠 and the scaled mutation parameter as
𝜃 = 2𝑁𝜇, which is also called the mutation supply. We therefore have (see Ewens, 2004, eq. 5.6)76

𝑎(𝑥) = 𝛼𝑥(1 − 𝑥) + 𝜃 (1 − 𝑥)/2, (4a)
𝑏(𝑥) = 𝑥(1 − 𝑥). (4b)78

Next, we follow Ewens (2004, ch. 4 and 5) to determine the fixation probability and the fixation
time of allele 𝐴. In the following results, Γ(𝑥) and Γ(𝑥, 𝑦, 𝑧) are the gamma function and the80
generalized incomplete gamma function, given by the integral equations Γ(𝑥) =

∫ ∞
0 𝑡𝑥−1𝑒−𝑡 d𝑡 and

Γ(𝑥, 𝑦, 𝑧) =
∫ 𝑧

𝑦
𝑡𝑥−1𝑒−𝑡 d𝑡. When 𝑥 = 1, the generalized incomplete gamma function can be simplified,82

Γ(1, 𝑦, 𝑧) = 𝑒−𝑦 − 𝑒−𝑧.

Analysis of fixation probability84

The probability that a beneficial mutant allele fixates, i.e., takes over the population, is an important
quantity in population genetics and evolutionary theory (reviewed in Patwa and Wahl, 2008, McCan-86
dlish and Stoltzfus, 2014). Early approximations of the fixation probability used branching processes
(Haldane, 1927, Eshel, 1981). Modern and more accurate approximations usually use a diffusion88
process to calculate the probability that the allele frequency 𝑥 reaches 1 before it reaches 0. However,
to the best of our knowledge, the literature does not have an approximation for the fixation probability90
under directional mutation (i.e., mutation from 𝑎 to 𝐴) with a high mutation rate. The following result
provides such an approximation, with proof in Appendix A.92

Result 1. The fixation probability of a beneficial allele initially at a frequency 𝑝 > 0, 𝜋(𝑝), is the94
probability that the allele reaches frequency 𝑥 = 1 before it reaches frequency 𝑥 = 0. So, 𝜋(𝑝) is
approximated by one of the following:96

1. Low mutation supply: If 0 ≤ 𝜃 < 1, then

𝜋(𝑝) = Γ(1 − 𝜃, 0, 2𝑝𝛼)
Γ(1 − 𝜃, 0, 2𝛼) . (5)98

2. High mutation supply: If 𝜃 ≥ 1, then 𝜋(𝑝) = 1.

Remark 1. Note that without mutation, 𝜃 = 0, the expression simplifies to the classical approximation100
(Kimura, 1962),

𝜋(𝑝) = 1 − 𝑒−2𝑝𝛼

1 − 𝑒−2𝛼 . (6)102

Remark 2. The case distinction in Result 1 follows from the fact that the boundary 𝑥 = 0 is inaccessible
if 1 ≤ 𝜃 (see Appendix A.3).104
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Analysis of fixation time
Next we focus on the fixation time (conditioned on fixation), which has also been previously estimated106
using a diffusion equation approximation, e.g., by Kimura and Ohta (1969) and Ewens (2004, eq. 4.21).
The following result gives an approximation for our model with unidirectional mutation, with proof108
in Appendix A.

110

Result 2. The conditional fixation time of a beneficial allele initially at a frequency 𝑝 > 0, 𝑡 (𝑝), is
the waiting time for the allele to reach frequency 𝑥 = 1 conditioned on reaching 𝑥 = 1 before reaching112
𝑥 = 0,

𝑡 (𝑝) =
∫ 1

0
𝑡 (𝑥, 𝑝) d𝑥, (7)114

using one of the following Green’s functions, 𝑡 (𝑥, 𝑝):
1. Low mutation supply: If 0 ≤ 𝜃 < 1, then Green’s function is116

𝑡 (𝑥, 𝑝) = 2𝜃𝑒2𝛼𝑥 (𝛼𝑥)𝜃−1

(1 − 𝑥)Γ(1 − 𝜃, 0, 2𝛼) ×
{
𝑡0(𝑥, 𝑝), if 0 ≤ 𝑥 ≤ 𝑝 < 1
𝑡1(𝑥, 𝑝), if 0 < 𝑝 ≤ 𝑥 ≤ 1

, (8)

where118

𝑡0(𝑥, 𝑝) =
Γ(1 − 𝜃, 2𝑝𝛼, 2𝛼) Γ(1 − 𝜃, 0, 2𝑥𝛼)2

Γ(1 − 𝜃, 0, 2𝛼𝑝) , (9a)

𝑡1(𝑥, 𝑝) = Γ(1 − 𝜃, 2𝑥𝛼, 2𝛼) Γ(1 − 𝜃, 0, 2𝑥𝛼). (9b)120

2. High mutation supply: If 𝜃 ≥ 1, then Green’s function is

𝑡 (𝑥, 𝑝) = 2𝜃𝑒2𝛼𝑥 (𝛼𝑥)𝜃−1

1 − 𝑥
×
{
Γ(1 − 𝜃, 2𝑝𝛼, 2𝛼), if 0 ≤ 𝑥 ≤ 𝑝 < 1,
Γ(1 − 𝜃, 2𝑥𝛼, 2𝛼), if 0 < 𝑝 ≤ 𝑥 ≤ 1.

(10)122

Remark 3. Note that due to the change of parameters from 𝑠 to 𝛼 and from 𝜇 to 𝜃, to get the fixation
time in generations we have to multiply the result by the population size, 𝑁 .124

Remark 4. In general, it is not possible to get analytical expressions for 𝑡 (𝑝) (eq. (7)). However,
one can numerically integrate these expressions, which serves many practical applications. However,126
this requires the integration of gamma functions, and should be performed with care. For example,
numerical integration with Wolfram Mathematica was successful, but using Python with scipy failed128
for some parameter values.

Remark 5. Without mutation, 𝜃 = 0, the fixation time 𝑡 (𝑝) has been approximated previously by130
Kimura and Ohta (1969) (see also Ewens, 2004, Durrett, 2008). We present this result and a closed-
form solution that uses exponential integral functions in Appendix B.132

Approximation for strong selection
Hermisson and Pfaffelhuber (2008, abbreviated HP henceforth) have approximated the conditional134
fixation time in our model with recurrent mutation, assuming strong selection (large 𝛼).

In the following, 𝐻𝑥 =
∑∞

𝑛=1
𝑥

𝑛(𝑛+𝑥) , which is an analytic continuation of the harmonic numbers for136
real-values 𝑥:

𝐻𝑥 =

𝑥∑︁
𝑘=1

1
𝑘
= 1 + 1

2
+ . . . + 1

𝑥
+
(

1
1 + 𝑥

+ . . .

)
−
(

1
1 + 𝑥

+ . . .

)
=

∞∑︁
𝑛=1

1
𝑛
− 1
𝑛 + 𝑥

=

∞∑︁
𝑛=1

𝑥

𝑛(𝑛 + 𝑥) .138

We now repeat their result using our notation.
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Result 3. Suppose the beneficial allele is initially absent (𝑝 = 0). Then the fixation time 𝑡 (0) can be140
approximated by one of the following.

1. Low mutation supply: If 0 < 𝜃 < 1, then142

𝑡 (0) = 2
𝛼

(
log(2𝛼) + 𝛾𝑒

)
+ O

(
log(𝛼)
𝛼2

)
. (11)

2. High mutation supply: If 𝜃 ≥ 1, then144

𝑡 (0) = 2
𝛼

(
log(2𝛼) + 𝛾𝑒

)
− 𝐻𝜃−1

𝛼
+ O

(
log(𝛼)
𝛼2

)
+ 1
𝜃
O

(
𝛼𝑒−𝛼

)
. (12)

Intrigued by the Figure 3b, we assumed that the reduction in fixation time is independent of 𝜇146
if we assume fixation to be at a value 𝑧 < 1. By informed guessing and testing various parameter
combinations against eq. (7) with the appropriate Green’s function, we conclude that the difference is148
roughly

𝑡− =
log(2(1 − 𝑧)𝛼) + (2 − 𝑧)𝛾𝑒

𝛼
. (13)150

Thus, to quickly calculate the time until the population reaches a fixation cut-off 𝑧, one can use the
formula152

𝑡 (0) − 𝑡− =

log
(

2𝛼
1−𝑧

)
+ 𝑧𝛾𝑒 + 𝟙𝜃∈(1,∞)𝐻𝜃−1

𝛼
, (14)

where 𝟙𝑥∈𝐴 denotes the indicator function that is one if 𝑥 is an element of the set 𝐴 and zero otherwise.154
The insets of Figure 3 show the very small relative error of eq. (14) compared to eq. (7).

Unfortunately, we did not find a and adjustment for an initial number of mutants 𝑛0 > 1.156

Numerical results: Fixation probability
We quantitatively compare our approximation (eq. (5), 𝜃 ≥ 0), the classical approximation (eq. (6),158
𝜃 = 0), and simulation results (eqs. (1) to (3)), in Figure 1. For small population sizes, the fixation
probability goes to 1, because the initial number of copies of the beneficial allele is not far from160
the population size. For intermediate population sizes, roughly, 100 < 𝑁 < 100, 00 the fixation
probability is roughly 2𝑠 · 𝑝𝑁 (Haldane, 1927, eq. 1.0). Importantly, for larger population sizes in162
which 𝜃 ≥ 1, our approximation (blue lines) increases to 1 as the mutational supply (𝜃 = 2𝑁𝜇)
increases, whereas Kimura’s approximation (orange lines) remains constant, underestimating the164
fixation probability (compare with markers).

Numerical results: Fixation time166

Again, we provide a quantitative comparison of the above approximations and simulation results
(eqs. (1) to (3)) in Figure 2. Several observations are worth mentioning. First, the classical approx-168
imation (eq. (B1)) is very good when the population size is small (i.e., mutation load is low, 𝜃 ≤ 1,
left of the vertical line). Second, with a large population size (i.e., high mutation load, 𝜃 ≥ 1, right of170
the line), the classical approximation overestimates the fixation time. Third, both our approximation
(Result 2) and the HP approximation (Result 3) perform well, even when the classical approximation172
fails. Fourth, although the HP approximation assumes strong selection, it performs well even for very
weak selection (𝑠 = 3 · 10−6), although not as well as our approximation (compare blue and orange174
lines in Figure 2b).

However, the HP approximation overestimates the fixation time when two implicit assumptions176
are not met. First, it approximates the time for the beneficial allele to reach 100% frequency. However,

5



●

●

●

●

●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ●

●
●

●

●

●

●

●

●
● ● ●■

■

■

■

■

■
■

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■
■

■

■

■

■

■

■

■
■ ■ ■●

●

●

●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

■

■

■

■

■

■
■

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

● ● ●● ● ●

●

●

●
●

● ●
● ● ● ● ● ● ● ● ●

● ●
● ● ●

● ● ●
●

●

●

●

●

●

●
● ● ● ● ●■ ■ ■■ ■ ■

■

■

■
■

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■
■ ■ ■

■ ■ ■ ■
■

■

■

■

■

■ ■ ■ ■ ■ ■● ● ●● ● ●

●

●

●
● ●

● ●
●

● ● ●
●

●
● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ●
●

● ● ● ● ●

■ ■ ■■ ■ ■

■

■

■
■ ■ ■ ■ ■

■ ■ ■ ■
■

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

101 103 105 107
0.0

0.2

0.4

0.6

0.8

1.0

Population size, N

F
ix
at
io
n
pr
ob
ab
ili
ty

Figure 1: Fixation probability for increasing population size. Markers for results of simulations
of the Wright-Fisher model (eqs. (1) to (3); error bars denote 50% CI.), lines for diffusion equation
approximations: blue and orange for model with mutation (𝜇 = 1·10−7; Result 1) and without mutation
(𝜇 = 0; eq. (6)), respectively. Lines and markers at the bottom are for fixation from a single copy of
the beneficial allele (𝑝 = 1/𝑁); lines and markers at the top are for fixation from 10 copies of the
beneficial allele (𝑝 = 10/𝑁). Gray vertical line indicates the population size 𝑁 = 𝜇/2 at which 𝜃 = 1.
Here, the selection coefficient is 𝑠 = 0.03.

waiting for complete fixation of the beneficial allele may take too long in many applications, including178
both simulations and experiments. In such cases, our approximation can still be used by simply
changing the upper bound of the integral in eq. (7) from 1 to the required frequency 𝑧, such that we180
compute 𝑡𝑧 (𝑝) =

∫ 𝑧

0 𝑡 (𝑥, 𝑝) d𝑥. Comparing this and the HP approximation to results of simulations
in which we wait for the beneficial allele to reach 95% frequency, rather than 100%, we find that our182
approximation performs well whereas the HP approximation overestimates so much that it is actually
better to use the classical approximation (eq. (B1)), again by changing the upper bound of the second184
integral from 1 to 𝑧 (Figure 3).

In addition, the HP approximation also assumes that the beneficial allele is initially absent, that is,186
𝑝 = 0. However, this may be unrealistic with a high mutation supply, which is expected to generate
high standing variation. Consider a population evolving under stress, such as heat or drug treatment,188
until the fixation of a beneficial allele relieve the stress. Assuming this allele was neutral or deleterious
before the stress, its frequency would have been roughly 𝜇 or 𝜇/𝑠, respectively. Under strong mutation,190
both values could be much larger than zero, meaning that fixation proceeds from an initial frequency
𝑥 ≫ 0 to 𝑥 = 1. Our approximation (Result 2) explicitly takes the positive initial frequency of the192
beneficial allele into consideration as a parameter 𝑝, and indeed, it performs well when the initial
frequency is greater than zero (Figure 4). However, the fixation time decreases as the initial frequency194
increases, and thus the HP approximation overestimates the fixation time in these cases, whereas the
classical approximation performs well, as long as the mutation supply is low (𝜃 ≤ 1), as it can also196
take the initial frequency as parameter (eq. (B1)).

Discussion198

Recurrent mutation is defined here as the repeated production of a mutant genotype such that multiple
independently produced mutants are co-segregating in the population. This can occur when the200
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Figure 2: Fixation time for increasing population size. Time for the beneficial allele to go from
one copy, 𝑥 = 1/𝑁 , to full fixation, 𝑥 = 1, conditioned on fixation (i.e., 𝑥 ≠ 0). Markers for results of
simulations of the Wright-Fisher model (eqs. (1) to (3); error bars denote 50% CI), lines for diffusion
equation approximations: blue and orange for model with (𝜇 = 1 · 10−7; Result 2) and without
mutation (𝜇 = 0; eq. (B1)), respectively. Black line (sometimes overlapping the blue line) is the
HP approximation (eqs. (11) and (12)). In both panels the fixation time with and without mutation
diverges at 𝜃 = 1, with the former being lower. (a) Strong selection, 𝑠 = 0.03. (b) Weak selection,
𝑠 = 0.000003. HP approximation fits well, only overestimating by a bit for majority of population
sizes.

mutation supply is high due to large population sizes and/or high mutation rates. Note that here the
term “mutation” includes not only single-nucleotide substitutions, but any genetic modification, such202
as focal or segmental duplications, aneuploidy, transposition, or short tandem repeats, all of which
may have high mutation rates compared to point mutations (Press et al., 2019). Recurrent mutation204
has been somewhat neglected in the evolutionary theory literature due to the common assumption
that mutations are rare, although previous studies have investigated its effect on the site-frequency206
spectrum (Harpak et al., 2016, Jenkins and Song, 2011, Wakeley et al., 2023), soft vs. hard selective
sweeps (Pennings and Hermisson, 2006), genetic hitchhiking (Hermisson and Pfaffelhuber, 2008),208
and estimation of recombination rates (McVean et al., 2002).

Here we have developed a diffusion equation approximation for the fixation probability and time210
of a beneficial mutant allele under the effects of selection, drift, and importantly, recurrent mutation
(𝜃 = 2𝑁𝜇 > 1). We find that if recurrent mutations occur, then our approximation (Results 1 and 2)212
for the fixation probability and time is superior to the classic approximations (Kimura, 1962, Kimura
and Ohta, 1969), which can significantly overestimate both quantities. Our approximation is flexible,214
as it considers both the evolutionary parameters (selection coefficient 𝑠, mutation rate 𝜇, population
size 𝑁), and the boundary conditions: the initial and final mutant frequencies (𝑝 and 𝑧, respectively).216
Nevertheless, if these boundary conditions are chosen such that the mutant increases in frequency from
absence (𝑝 = 0) to full fixation (𝑧 = 1), then the previously developed HP approximations (eqs. (11)218
and (12)) are sufficient. Otherwise, our approximations are more accurate and flexible.

The diffusion equation is often used in evolutionary theory to describe evolutionary dynamics, that220
is, to describe the change in allele frequency over time in a population due to the effects of natural
selection, mutation, and random genetic drift. Diffusion equation approximations have been derived222
for the probability and waiting time for an allele to fix in a population since the classical studies by
Kimura (Kimura, 1962, Kimura and Ohta, 1969) under various models (Ewens, 2004, Durrett, 2008).224
However, the literature is missing an explicit analysis of the diffusion equation approximation in the
case of a beneficial allele under the effect of strong mutation, in which the mutant allele continues to be226
generated even after the first copy has appeared; existing analyses assume selection without mutation
(Kimura, 1962, Kimura and Ohta, 1969), uni-directional mutation without selection, and bi-directional228
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Figure 3: Time to reach 95% for increasing population size and mutation rate. Time for the
beneficial allele to go from one copy, 𝑥 = 1/𝑁 , to 95%, or 𝑥 = 0.95, rather than full fixation. Markers
for results of simulations of the Wright-Fisher model (eqs. (1) to (3); error bars denote 50% CI), lines
for diffusion equation approximations. Blue and orange for model with (𝜇 = 1 · 10−7; Result 2) and
without mutation ( 𝜇 = 0; eq. (B1)), respectively, integrated numerically from 0 to 0.95 rather than
to 1. Black line (sometime overlapping the blue line) is the HP approximation (eqs. (11) and (12)),
which assumes full fixation (100%) rather than high frequency (95%), and therefore overestimates
the fixation time. Here, the selection coefficient is 𝑠 = 0.03; (a) Mutation rate is 𝜇 = 1 · 10−7;
(b) Population size is 𝑁 = 6 · 106. The insets show the relative error of the adjusted HP approximation
eq. (14) compared to the blue line.

weak mutation and selection (Ewens, 2004). Thus, our results close a gap in the theoretical literature
on the fixation of beneficial alleles.230

When the frequency of the mutant is low, a high mutation rate may be high enough to be a major
factor in its evolution (i.e. its increase in frequency). When the mutant reaches a high frequency,232
its further evolution will be driven by natural selection. However, in some scenarios, the high
mutation rate implies that other mutants are also likely to appear, leading to rapid adaptation, clonal234
interference, and soft sweeps. In these cases, the focal mutant is unlikely to reach fixation before
the appearance of additional mutations, either on other backgrounds, leading to clonal interference,236
or on the background of the focal mutant, leading to further adaptation. Thus, the assumptions
underlying our approximations may not be met. Still, these approximations are superior to the classic238
approximations, and can be used to estimate if the focal mutant has enough time to fix or reach some
target establishment frequency before other beneficial mutants appear.240
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Figure 4: Fixation time with various initial frequencies. From top to bottom are shown fixation
times for initial frequencies of the beneficial allele: top, 𝑝 = 1/𝑁; middle, 𝑝 = 100/𝑁; bottom,
𝑝 = 1, 000/𝑁 . Markers for results of simulations of the Wright-Fisher model (eqs. (1) to (3); error
bars denote 50% CI), lines for diffusion equation approximations. Blue and orange for model with
(𝜇 = 10−7; Result 2) and without mutation (𝜇 = 0; eq. (B1)), respectively. Importantly, the fixation
time decreases as the initial frequency increases. The approximations fit the simulations well, and
the difference between models with and without mutation shrink as the initial frequency increases.
Error bars are small and similar to those in Figure 2, and not shown to avoid over-plotting. Here, the
selection coefficient is 𝑠 = 0.03.

Appendices
Appendix A Proofs of Result 1 and Result 2242

A.1 Boundary types
There are two important properties that characterize the boundary: (i) a boundary is accessible if244
there is a positive probability that it can be reached in finite time from a given interior point, and (ii)
is absorbing if the process remains forever at the boundary after reaching the boundary.246

Here, we determine the boundary type of 𝑥 = 0 and 𝑥 = 1.This is nicely demonstrated by Durrett
(2008), which not only differs in notation from Ewens (2004), but also provides helpful examples.248
We focus on a specific example (Durrett, 2008, example 7.33, pg. 295) that studies a Wright-Fisher
diffusion with mutations in both directions, but without selection. It is explained that adding selection250
does not change the (in)finiteness of the integrals. If 0 ≤ 𝜃 < 1, then 𝑥 = 0 is accessible but not
absorbing, whereas it is not accessible for 𝜃 ≥ 1. In our model there is no mutation in the other252
direction, from 𝐴 to 𝑎, so the boundary 𝑥 = 1 is absorbing.

Therefore, for 0 ≤ 𝜃 < 1 there is a positive probability 1 − 𝜋(𝑝) > 0 that population initially with254
frequency 𝑝 of allele 𝐴 reaches 𝑥 = 0 before it reaches 𝑥 = 1. However, mutation will eventually
introduce the extinct 𝐴 allele and thus this state, 𝑥 = 0, is not absorbing. Therefore, to continue with256
the derivation of the fixation times, we have to consider the two cases: 0 ≤ 𝜃 < 1 and 1 ≤ 𝜃.
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A.2 Boundary x = 0 is accessible, 0 ≤ 𝜃 < 1258

An important quantity that we will use in the following analyses is 𝜓(𝑥). It is given in eq. 4.16 in
(Ewens, 2004). Substituting 𝑎(𝑥) and 𝑏(𝑥) from eq. (4) we have260

𝜓(𝑥) = exp
(
−2

∫
𝑥

𝑎(𝑦)
𝑏(𝑦) d𝑦

)
= 𝑒−2𝛼𝑥𝑥−𝜃 , (A1)

Note that 𝜓 is different from Ψ, which denotes the digamma function.262
If 𝜃 < 1, we use eqs. 4.22 and 4.23 of Ewens (2004) to calculate Green’s function,

𝑡 (𝑥, 𝑝) = 2
𝑏(𝑥)𝜓(𝑥) ×

{(
1 − 𝜋(𝑝)

) ∫ 𝑥

0 𝜓(𝑦) d𝑦, if 0 ≤ 𝑥 ≤ 𝑝 < 1,
𝜋(𝑝)

∫ 1
𝑥
𝜓(𝑦) d𝑦, if 0 < 𝑝 ≤ 𝑥 ≤ 1,

(A2)264

where 𝜋(𝑝) is the fixation probability. Substituting 𝜋(𝑝) from eq. (5) into eq. (A2) gives the following
Green’s function,266

𝑡∗(𝑥, 𝑝) = 2𝜃𝑒2𝑥𝛼 (𝛼𝑥)𝜃−1

(1 − 𝑥) Γ(1 − 𝜃, 0, 2𝛼) ×
{
𝑡0(𝑥, 𝑝), if 0 ≤ 𝑥 ≤ 𝑝 < 1,
𝑡1(𝑥, 𝑝), if 0 < 𝑝 ≤ 𝑥 ≤ 1,

(A3)

where268

𝑡0(𝑥, 𝑝) = Γ(1 − 𝜃, 2𝑝𝛼, 2𝛼) Γ(1 − 𝜃, 0, 2𝑥𝛼) (A4a)
𝑡1(𝑥, 𝑝) = Γ(1 − 𝜃, 2𝑥𝛼, 2𝛼) Γ(1 − 𝜃, 0, 2𝑝𝛼). (A4b)270

All derivations are done with the help of the computer algebra software Wolfram Mathematica.
So far the fixation time was calculated for a population that randomly reaches one of the absorbing272

states, either 𝑥 = 0 or 𝑥 = 1. In this study we want to focus on the time until the population hits and is
absorbed in 𝑥 = 1, that is, we are interested in the conditional fixation time, conditioned on reaching274
𝑥 = 1 before 𝑥 = 0.

In equation 4.48 in Ewens (2004, pg. 146) we have the formula to compute the sojourn times276
conditioned that the process hits 𝑥 = 1 first, which gives the following Green’s function,

𝑡 (𝑥, 𝑝) = 𝑡∗(𝑥, 𝑝) 𝜋(𝑥)
𝜋(𝑝) = 𝑡∗(𝑥, 𝑝) Γ(1 − 𝜃, 0, 2𝑥𝛼)

Γ(1 − 𝜃, 0, 2𝑝𝛼) , (A5)278

by substituting eq. (5) for 𝜋(𝑝). Substituting eq. (A3) into eq. (A5) gives eq. (8).

A.3 Boundary x = 0 is not accessible, 1 ≤ 𝜃280

If 𝜃 ≤ 1, only 𝑥 = 1 is an accessible boundary state and we have to use eqs. 4.40 and 4.41 from Ewens
(2004),282

𝑡 (𝑥, 𝑝) = 2
𝑏(𝑥) 𝜓(𝑥) ×


∫ 1
𝑝
𝜓(𝑦) d𝑦, if 0 ≤ 𝑥 ≤ 𝑝 < 1,∫ 1

𝑥
𝜓(𝑦) d𝑦, if 0 < 𝑝 ≤ 𝑥 ≤ 1.

(A6)

Inserting eq. (4) and eq. (A1) into eq. (A6) and solving with Wolfram Mathematica, we get eq. (10).284

A.4 Green’s function 𝑡 (𝑥, 𝑝) at 𝜃 = 1
We showed above that there have to be two different derivations for Green’s functions, depending on286
𝜃. However, at 𝜃 = 1, the expressions coincide; the limit from below is a bit more complex, but can
be calculated with Wolfram Mathematica. We get288

lim
𝜃 ↑1

𝑡 (𝑥, 𝑝) = lim
𝜃 ↓1

𝑡 (𝑥, 𝑝) = 2𝑒2𝑥𝛼

1 − 𝑥
×
{
Γ(0, 2𝑝𝛼, 2𝛼), if 0 ≤ 𝑥 ≤ 𝑝 < 1,
Γ(0, 2𝑥𝛼, 2𝛼), if 0 < 𝑝 ≤ 𝑥 ≤ 1.

(A7)
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Appendix B Approximation of fixation time without mutation290

We set 𝜃 = 0 in eqs. (A5), (8) and (9) and use Wolfram Mathematica to find a representation of Green’s
function, 𝑡 (𝑥, 𝑝), with hyperbolic functions, which is shorter than a representation with exponentials292
(e.g. Kimura and Ohta (1969, eq. 17)). Thus, the expected conditional fixation time without mutation
is approximated by294

𝑡 (𝑝) =
∫ 𝑝

0
𝐼1 d𝑥 +

∫ 1

𝑝

𝐼2 d𝑥, (B1)

where296

𝐼1 =
2
(
coth(𝑝𝛼) − coth(𝛼)

)
sinh2(𝑥𝛼)

(1 − 𝑥)𝑥𝛼 ,

𝐼2 =
2csch(𝛼) sinh(𝑥𝛼) sinh

(
(1 − 𝑥)𝛼

)
(1 − 𝑥)𝑥𝛼 .298

Wolfram Mathematica further gives an explicit result for eq. (B1) in terms of hyperbolic integrals,
but we prefer to show a non-hyperbolic version,300 ∫ 𝑝

0
𝐼1 d𝑥 =

∫ 𝑝

0

exp(−2𝑥𝛼)
(
exp(2𝑝𝛼) − exp(2𝛼)

) (
1 − exp(2𝑥𝛼))2

)(
1 − exp(2𝛼)

) (
1 − exp(2𝑝𝛼)

)
(1 − 𝑥)𝑥𝛼

d𝑥

=
exp(2𝑝𝛼) − exp(2𝛼)

(1 − exp(2𝛼) (1 − exp(2𝑝𝛼))𝛼 (𝐸1 + 𝐿1) ,302 ∫ 𝑧

𝑝

𝐼2 𝑑𝑥 =

∫ 𝑧

𝑝

exp(−2𝑥𝛼)
(
exp(2𝑥𝛼) − exp(2𝛼)

) (
−1 + exp(2𝑥𝛼))

)(
1 − exp(2𝛼)

)
(1 − 𝑥)𝑥𝛼

d𝑥

=
𝐸 𝑧

2 + 𝐿𝑧
2(

1 − exp(2𝛼)
)
𝛼

304

where

𝐸1 = exp(−2𝛼)Γ
(
0,−2𝛼,−2(1 − 𝑝)𝛼

)
+306

exp(2𝛼)Γ
(
0, 2𝛼, 2(1 − 𝑝)𝛼

)
−
(
𝐸𝑖(2𝑝𝛼) + 𝐸𝑖(−2𝑝𝛼)

)
𝐿1 = 2(log

( 2𝑝𝛼
1 − 𝑝

)
+ 𝛾𝑒)308

𝐸 𝑧
2 = exp(2𝛼)

(
Γ
(
0, 2𝑝𝛼, 2(1 − 𝑝)𝛼

)
− Γ

(
0, 2𝑧𝛼, 2(1 − 𝑧)𝛼

) )
+

Γ
(
0,−2𝛼,−2(1 − 𝑝)𝛼

)
− Γ

(
0,−2𝑧𝛼,−2(1 − 𝑧)𝛼

)
310

𝐿𝑧
2 =

(
1 + exp(2𝛼)

)
log

( 𝑝(1 − 𝑧)
𝑧(1 − 𝑝)

)
𝐸2 = exp(2𝛼)

(
Γ
(
0, 2𝑝𝛼, 2(1 − 𝑝)𝛼

)
+ 𝐸𝑖(−2𝛼)

)
+ Γ

(
0,−2𝑝𝛼,−2(1 − 𝑝)𝛼

)
+ 𝐸𝑖(2𝛼)312

𝐿2 =
(
1 + exp(2𝛼)

) (
log

( 𝑝

(2𝛼(1 − 𝑝)

)
− 𝛾𝑒

)
Here, 𝐸 𝑧

2 and 𝐿𝑧
2 represent the expressions if the upper bound is 𝑧 < 1. Since just setting 𝑧 = 1 does314

not work, one needs to take the limit 𝑧 → 1 in 𝐸 𝑧
2 + 𝐿𝑧

2. This results in 𝐸2 + 𝐿2.
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