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Abstract (100-120 words) 17 
Hypothesis testing requires meaningful ways to quantify relevant biological phenomena and 18 
account for alternative mechanisms that could explain the same pattern. Researchers combine 19 
experiments, statistics, and indices to account for these confounding mechanisms. Key concepts 20 
in ecology and evolution, like niche breadth or fitness, can be represented by several indices, 21 
which often provide uncorrelated estimates. Is this because the indices use different types of 22 
noisy data or because the targeted phenomenon is complex and multidimensional? We discuss 23 
implications of these scenarios and propose five steps to aid researchers in identifying and 24 
combining indices, experiments, and statistics. Supported by efforts to build databases of 25 
hypotheses and indices and document assumptions, these steps help provide a formal strategy to 26 
reduce self-confirmatory bias.  27 
 28 

HIGHLIGHTS (900 characters) 29 
 30 

1. Many hypotheses in ecology and evolution rely on indices that capture abstract 31 
phenomena, which can be multi-faceted or noisy (e.g., niche breadth indices may capture 32 
tolerance or preference using variable abundance data). Hence, the estimates are often 33 
uncorrelated. 34 

2. The indices, along with experiments and statistical methods, help to control for 35 
confounding factors. This variety of approaches limits cross-study comparisons, enabling 36 
confirmation bias. 37 

3. We formalize guidelines to link hypotheses, study design, and index selection to help 38 
mitigate these challenges, using as an example the relationship between niche breadth 39 
and geographic range size. Repositories of hypotheses and indices, building on existing 40 



collaborative tools and databases, could help researchers navigate murky methodological 41 
decision points in hypothesis testing. 42 

 43 
44 



 45 

When indices disagree: facing conceptual and practical challenges 46 

Indices and hypothesis testing 47 
 48 

“For measurements to be meaningful…they must retain their connection to the theoretical 49 
and instrumental context from which they were derived” - Houle et al. 2011 50 

 51 
Hypothesis testing is the cornerstone of ecology, evolution, and scientific endeavours more 52 

broadly, and it requires two critical decisions: (i) how to quantify the biological phenomenon of 53 

interest, and (ii) how to handle confounding factors (i.e., alternative mechanisms that can drive 54 

the response variable, (cf. Catford et al. 2021)). Indices —numerical estimates that summarize 55 

data, aiming to capture critical aspects of the phenomenon of interest (box 1)— help to solve the 56 

first question and —along with experiments and statistical tools— are also used to control for 57 

confounding factors. Hence, indices play a central role in theory development and testing in 58 

ecology and evolution. However, the phenomena in these branches of science are often multi-59 

faceted, sometimes ill-defined, and are numerically estimated by a wide variety of indices. For 60 

instance, we identified more than 50 indices of niche breadth (see box 1) which can generate 61 

uncorrelated estimates (Carscadden et al. unpublished), and similar index proliferation has 62 

occurred in fields as diverse as habitat fragmentation (McGarigal and Marks 1995) and 63 

phylogenetic diversity (Tucker et al. 2016).  64 

 65 

The variety of options for both decision points (measuring focal phenomena and handling 66 

confounding factors) makes it unclear how to compare different studies and, in extreme 67 

scenarios, we run the risk of self-confirmatory bias by inadvertently selecting indices and 68 

approaches whose results match our intuition. Here, we illustrate key considerations in each 69 

decision point and outline guidelines linking index selection to hypothesis testing, using the 70 

hypothesis that niche breadth (NB) drives range size to frame our discussion. We also discuss 71 

how a more nuanced understanding of indices may shed some light on the phenomenon itself. 72 

Decision point 1: Quantifying a complex biological phenomenon 73 

The proliferation of NB indices stems from the many ways NB has been defined and the 74 

numerous biological properties it has been invoked to explain (reviewed in Carscadden et al. 75 



2020). For example, NB has been defined as resource impacts and growth isoclines in 76 

competition (Chase and Leibold 2003), as presence across climatic zones (Warren and Seifert 77 

2010), and as dietary breadth in food choice tests (Jorge et al. 2014). Further, it has been studied 78 

as a driver of diverse patterns and processes, from geographic range size (Hirst et al. 2017) to 79 

ecosystem function and stability (Endres et al. 2021) to evolution patterns (Visher and Boots 80 

2020). 81 

 82 

A diversity of indices can be advantageous because the same property (such as NB, fitness, or 83 

diversity) will need to be calculated in different ways in different organisms, test different 84 

responses (e.g., thermal vs. trophic niche breadth), deal with continuous or categorical data, or 85 

improve statistical properties (e.g., Fridley et al. 2007, Manthey and Fridley 2009, Zeleny 2009). 86 

In this case, we expect indices to be correlated, e.g., generate similar rankings of, say, plant 87 

species by thermal NB. Indices have also diversified over time as new factors are deemed 88 

important and computational complexity increases. For instance, indices of dietary NB began as 89 

counts of species eaten (Fig. 1a) and then eventually incorporated preference, measured as 90 

variation in the numbers of each prey species consumed (Fig. 1b) (Levins 1968). However, these 91 

indices implicitly treated all prey species as equally abundant, and therefore could not determine 92 

if variation in consumption rates were due to differences in prey availability or dietary 93 

preferences. Subsequently, more comprehensive indices — like Czekanowski's proportional 94 

similarity proposed by Feinsinger et al. (1981)— accounted for variation in prey availability 95 

(Fig. 1c). Later, Dolédec et al. (2000) proposed the Outlying Mean Index (OMI) that estimates 96 

NB based on the similarity of used and available habitat. The OMI index is often associated with 97 

abiotic niche axes (e.g., average temperature, salinity), and accounts for the span of the resources 98 

used by focal species, the resource usage frequency by the focal species, the relative abundance 99 

of the resource, and the similarity of the used resources to the most abundant resources (Fig. 1d). 100 

These examples show that when new indices are developed and published, it is often because 101 

they aim to capture an aspect of the phenomenon of interest that was not included in previous 102 

indices, and which yields novel insights and results likely uncorrelated with previous indices. 103 

 104 

How should we interpret the correlation (or lack of it) of estimates generated by different 105 

indices? And how should we select among them? If all indices are measuring the same biological 106 



phenomenon, they should provide correlated values when applied to the same situation. In this 107 

case, only the simpler and most statistically robust indices could be needed. But what if indices 108 

yield dissimilar rankings? One possibility is that the measurement error of each NB index is very 109 

high. If we then think about NB as a latent variable, and each NB index as providing some 110 

information about NB and a large amount of error,  then, incorporating estimates from multiple 111 

indices may actually improve our understanding of NB, even if the rankings generated by the 112 

indices were poorly correlated (Fig 2a) (Shipley 2016). Another possibility is that the 113 

measurement error of each index is almost zero. Then, the poorly correlated estimates suggest 114 

that the phenomenon is complex and could have distinct internal dimensions (Fig 2b). In the case 115 

of NB, we can distinguish between tolerance (what can be eaten), preference (what is more likely 116 

to be eaten), and performance (e.g., nutritious value of the of the prey for the predator), for 117 

instance (Fig 1d). Similarly, fitness is expected to be positively correlated with survival, 118 

reproduction, and growth, but there are strong trade-offs between them, which means that the 119 

four variables cannot be positively correlated at the same time (Laughlin et al. 2020). We posit 120 

that the underlying assumption that different indices are ultimately measuring the same 121 

biological phenomenon is rarely tested. 122 

 123 

Mapping hypotheses to indices may help clarify which facets of multidimensional phenomena 124 

(e.g., NB, fitness) are most relevant for a given theory. Because every index specifies the 125 

mathematical relationships between variables, they carry fixed assumptions about how biological 126 

entities or properties interact in nature. Evaluating the built-in properties of indices in light of 127 

focal hypotheses can give rise to guidelines for index selection and help stave off the potential 128 

for self-confirmatory bias.  129 

Decision point 2: Navigating confounding factors in hypothesis testing 130 

Confounding factors are variables that correlate with predictors and the response and can 131 

represent alternative mechanisms not considered in the initial hypothesis (Laubach et al. 2021). 132 

Accounting for confounding factors in any experiment or observational study is a considerable 133 

challenge (Grace and Irvine 2020, Catford et al. 2021, Kimmel et al. 2021). For example, like 134 

other complex biological phenomena, NB can act as a predictor or response in different 135 

hypotheses, as in the connection between NB and geographic range size (RS, Box 1). On the one 136 



hand, it has been hypothesized that when a species has a narrow fundamental niche breadth 137 

(NBf), it will be geographically restricted because it can only tolerate a narrow range of 138 

environmental conditions (Brown 1984). This hypothesis, hereafter NBf-to-RS, has been 139 

generally supported. However, it is also possible that a more widespread species will be exposed 140 

to more environmental conditions, resulting in a broader realized NB (RS-to-NBr). Over time, a 141 

species that encounters a wide range of environmental conditions could also evolve a wider 142 

fundamental NB than a species constrained in a small area (RS-to-NBf). These three hypotheses 143 

operate at different timescales, implying different assumptions and eventually different 144 

confounding factors. Given these hypotheses’ different assumptions (Table B1), it may not be 145 

adequate to use the same index and data to test the NBf-to-RS and RS-to-NBf hypotheses. 146 

Therefore, it is up to the researcher to determine the best way to account for the different 147 

confounding factors, either using experiments, statistical controls, or comprehensive indices 148 

(Houle et al. 2011). 149 

 150 

Experiments are considered the gold standard for testing hypotheses in biology, as they can 151 

confirm causation by directly manipulating alternative causes (Shipley 2016). However, the 152 

generality they provide is constrained: only a few species, conditions, and mechanisms can be 153 

tested, and important processes may be excluded in simplified experimental settings. Some 154 

hypotheses, like NBf-to-RS, are particularly challenging to test because of the large spatial or 155 

temporal scales involved. Given these limitations, experimental approaches require a thoughtful 156 

framing of predictions. For example, Hirst et al. (2017) developed seven predictions derived 157 

from the NBf-to-RS hypothesis that could be experimentally tested in an alpine daisy system 158 

(e.g., wide-ranging species should perform better under novel conditions). Each experiment 159 

represents a sub-hypothesis applied to a particular criterion (e.g., survival, growth, germination, 160 

viability, of seeds and seedlings). They directly compared the performance of each species under 161 

different conditions, ranking the species’ NBf by the number of environmental scenarios in 162 

which a species survived, and whether it outperformed other species or not. More generally, a 163 

platonic ‘ideal’ experiment would manipulate each potential confounding factor to test if the 164 

predictor (here, NBf), and no other process, drives the response. 165 

 166 

Statistics provide several tools to address confounding mechanisms. For instance, 167 



phylogenetically independent contrasts can account for variation in NB or RS that may be 168 

explained by phylogenetic relatedness (Brandle et al. 2002). Another way identify the impact of 169 

a confounding mechanism is by randomizing the observed data using rules consistent with the 170 

expected effect of that mechanism, adding rules until randomized data matches the observed 171 

pattern (Jorge et al. 2014). Using this approach, Boucher-Lalonde & Currie (2016) showed that 172 

the observed positive correlation between NBr and RS can be explained by the underlying spatial 173 

auto-correlation structures of temperature and precipitation. Structural equation modelling 174 

(SEM) compares the correlation structure predicted under a given causal hypothesis with the 175 

observed correlations (Shipley 2016). Using SEM, Sheth et al. (2014) demonstrated a 176 

mechanism underlying the NB-to-RS relationship in monkeyflowers: wide niche breadth 177 

increased the proportion of habitat that is suitable, which in turn increased the species’ 178 

geographic range (no direct connection between NB and RS was detected). SEM’s theoretical 179 

framework also provides insights about measurement of unobserved variables and unintended 180 

consequences of common correlational analyses. For example, the correlation of two variables 181 

that reciprocally affect each other, like NB and RS, cannot provide an unbiased estimate of the 182 

effect of one on the other. Given observational data, an ideal statistical approach should allow 183 

distinguishing between alternative causal mechanisms. 184 

 185 

Indices that integrate multiple aspects of a focal phenomenon (‘comprehensive indices’ 186 

hereafter) provide a third strategy to deal with confounding factors. This is partially because —as 187 

previously discussed— many indices have been proposed to address a potential bias caused by 188 

properties that previous indices did not consider. For instance, using the OMI index, Heino & 189 

Soininen found partial support for the NBf-to-RS hypothesis (Table B1) in unicellular eukaryotes 190 

in streams; however, species’ distributions were best predicted by availability of adequate habitat 191 

(a potential confounding factor), rather than NB (Heino and Soininen 2006). In essence: a 192 

hypothetical ‘complete’ comprehensive index could account for every potential confounding 193 

factor for any NB-related hypothesis. 194 

 195 

These three strategies are widely used and combined, often in a single study (e.g., (Hirst et al. 196 

2017)): experiments provide ultimate proof of causality; statistical controls allow generality 197 

using widespread raw data when experiments are unfeasible; and robust comprehensive indices 198 



enable comparability among studies. These three quantitative strategies are also combined with 199 

literature review, which can help to account for potential confounding factors under the scenario 200 

that relevant information (either theoretical or empirical) already exists. Of these strategies, we 201 

posit that selecting among comprehensive indices is becoming a larger challenge over time: 202 

indices have proliferated, increases in computer power and data availability have made indices 203 

easy to estimate (in contrast to experiments), and indices are assumed to provide some intrinsic 204 

insight into biological processes (in contrast to statistical approaches). 205 

 206 

A way forward: Mapping assumptions of hypotheses and indices 207 

 208 

Given the variation among NB indices, we tried to identify scenarios in which one index could 209 

be better than another. We found no general guidelines in the way that indices are used to test 210 

hypotheses in the literature because indices, experiments, and statistical analyses are combined in 211 

heterogeneous ways. For instance, there is no need to include the abundance of preys in a 212 

comprehensive index (see Fig 1c) if prey abundance is standardized in an experiment (Basset and 213 

Rossi 1987), but it would be inappropriate to infer niche breadth in natural conditions without 214 

including prey abundance in the analysis (Feinsinger et al. 1981). These examples show that 215 

several indices potentially generating uncorrelated estimates can be adequately used for the same 216 

purpose if potential confounding factors are adequately addressed in the study design. 217 

 218 

Identifying confounding factors and integrating them into ecological and evolutionary studies is 219 

not a new task, but it has received recent interest in the eco-evo research community (Shipley 220 

2016, Grace and Irvine 2020, Laubach et al. 2021, Catford et al. 2021). For instance, Gerhold et 221 

al. (2015) identified seven assumptions (and associated confounding factors) underlying the 222 

hypothesis that environmental filtering leads to phylogenetic clustering in communities while 223 

competition leads to communities of more distantly related species. Similarly, the ‘Hierarchy-of-224 

Hypotheses’ is a tool that has been used to identify critical assumptions underlying theories such 225 

as the enemy release hypothesis and the escalation hypothesis of evolution (Jeschke et al. 2012, 226 

Heger et al. 2021). These examples demonstrate an organized effort to formally identify 227 

confounding factors in different eco-evo subdisciplines. 228 



 229 

Building on these examples (and on widely successful efforts to standardize and share data on 230 

organismal traits, locations, phylogenies, and other biological information), we believe that it is 231 

possible to generate databases of hypotheses and their underlying assumptions, and of indices 232 

and the factors that they consider (Fig 3). Such databases could support a framework to compare 233 

the assumptions and factors captured in any index and those of the hypothesis being tested. 234 

Focusing on a NB hypothesis, these steps include (1) identifying the hypothesis’ underlying 235 

assumptions; (2) identifying the assumptions captured by the study design; (3) identifying the set 236 

of NB indices that can be estimated with the data available; (4) assessing if all of the hypothesis’ 237 

assumptions are controlled by an index (Fig. 1d) or study design, adjusting the study design, data 238 

collection, or index selection, and repeating the previous two steps; and (5) explicitly 239 

acknowledging any gaps or alternative hypothesis that could also explain the observed results. 240 

Here, the steps (1) and (3) will be mostly derived from the databases of hypotheses (as in Table 241 

B1) and indices (as in Fig. 1d). Using standardized language (e.g., consistent definitions and 242 

terminology), the hypotheses and index repositories could be linked, showing the gaps that need 243 

to be addressed (step 4). Statistical considerations (like the expected theoretical distribution of 244 

the index) will help to further refine the search for optimal indices, building on top of the 245 

biological meaning provided by the formal connection between hypothesis, research design, and 246 

indices. 247 

 248 

Concluding remarks  249 

 250 

Despite their intuitive appeal and simplicity, many key properties in ecology and evolutionary 251 

biology (e.g., NB, fitness, diversity) are abstract concepts that could represent multi-dimensional 252 

phenomena. We can strengthen our understanding of these abstract concepts by formalizing the 253 

assumptions of the hypotheses that rely on them. Databases linking hypotheses, indices, and 254 

assumptions can be built leveraging community science, projects in graduate courses, cross-255 

validation techniques, and other strategies. Researchers newly entering a field of study will 256 

benefit the most from a tool that can support critical thinking on the connections between 257 

hypotheses, indices, and research design. However, we also believe that structured approaches 258 



for navigating key methodological decision points —like the one presented here— could help 259 

reduce self-confirmatory bias and, even more important, some of the context dependency that 260 

researchers often find in ecology and evolution.  261 

Outstanding questions (2000 characters) 262 

 263 

Besides niche breadth, diversity, fitness, and fragmentation, which other concepts in ecology or 264 

evolution suffer from a large number of indices that are often uncorrelated? 265 

 266 

The history of index development shows that critical assumptions and limitations are often 267 

missed when hypotheses and concepts are first proposed. How to make revisions of published 268 

results more dynamic and flexible? 269 

 270 

How to improve tools that can help students and researchers identify potential confounding 271 

factors when testing hypothesis? 272 

 273 

Like fitness, niche breadth (NB) is a complex phenomenon. NB is composed of tolerance to 274 

several conditions, the preference for some of them, and the performance that the species obtains 275 

when using them, but it is not well explored if there are positive or negative correlations among 276 

them as in the case of reproductive effort and biomass accumulation for fitness. Can indices shed 277 

light on the internal structure of complex phenomena in ecology and evolution (e.g., identify 278 

trade-offs between different aspects of the phenomena)? 279 

 280 

How often the context dependency reported in ecology and evolution could be triggered by 281 

differences in the aspect of a complex concept being measured?  282 

 283 
 284 
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Figure 1. Niche breadth (NB) indices can generate contrasting results when integrating different criteria. Criteria can relate to 384 
potential confounding factors (e.g., prey abundance) or different aspects of the NB, like tolerance (criterion 1, panel d), preference 385 
(comparison of criteria 2 and 3), or nutritious value (criterion 5). (a-c) histograms represent hypothetical species’ consumption of 386 
some continuous resource (x-axis), like prey size. The y-axis changes with the index, as well as the estimated species’ NB (wide, 387 
narrow). Range (a) only considers whether a resource is consumed or not, so the blue species has wider dietary NB. Shannon's 388 
evenness index (b) incorporates relative abundance of the consumed resource. Because the yellow species consumes prey species 389 



more evenly, it is deemed to have wider NB. Feinsinger proposed the Czekanowski's proportional similarity metric (c) to incorporate 390 
the availability of the consumed resources: the blue species’ NB is considered now wider because the consumption pattern is more 391 
similar to the resource availability (in red) than the yellow species’ consumption, suggesting that the blue species is less selective. 392 
Panel (d) presents some criteria that can be used in these and other niche breadth metrics (non-exhaustive).  393 
 394 
 395 
 396 



 397 

 398 
 399 
Figure 2. Measurements of complex biological phenomena commonly used in ecology and 400 
evolution are often poorly correlated, or even uncorrelated. It may occur if each measurement is 401 
noisy, or if each measurement represents different aspects of the biological phenomenon. In 402 
each case, the way to connect with hypotheses may change. These two reasons are 403 
complementary. PS: Czekanowski's proportional similarity (Feinsinger et al. 1981), TFC: 404 
Template function comparison (Izem and Kingsolver 2005). 405 
 406 
 407 
 408 



 409 
Figure 3. Formal decision framework to support the identification of alternative hypotheses, 410 
adequate indices, and improvement of the study design. Currently, most researchers follow the 411 
same strategy, but limitations in the information flow may hinder the capability of several 412 
researchers to identify all the assumptions underlying hypotheses in which complex biological 413 
concepts (like niche breadth) are presented. By reducing subjectivity in the index selection 414 
process, the hypotheses’ and indices’ repositories proposed can provide a systematic and 415 
standardized approach to assess the correspondence between hypotheses, indices, and study 416 
design. In the figure, NBf: fundamental niche breadth, NBr: realized niche breadth, RS: range 417 
size, HA: habitat available. 418 
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 421 
________________________________________________________________ 422 
Box 1 423 
 424 
Index 425 
A mathematical formula that quantifies a biological phenomenon. The mathematical formulation 426 
of an index captures assumptions and a conceptual connection between observed data (e.g., 427 
amount of food ingested from a given prey species) and the biological phenomenon of interest 428 
(e.g., the more prey species a predator consumes the wider the niche breadth of the predator). 429 
Improved understanding of the assumptions, capabilities, constraints, and mathematical 430 
properties of the index evolves over time, leading to adjustments or completely new indices. 431 
 432 
Niche breadth 433 
A species’ niche breadth (NB) is the range of conditions that allows its population growth (e.g., 434 
temperature) or the diversity of resources it consumes (e.g., prey types) (Carscadden et al. 2020). 435 
Realized niche breadth (NBr) describes the range of conditions or resources a species actually 436 
withstands or uses based on what it encounters in nature and its interactions with other species 437 
(Hutchinson 1978). In contrast, fundamental niche breadth (NBf) describes the conditions or 438 
resources a species could tolerate (Hutchinson 1978) and is often estimated experimentally.  439 
 440 
 441 
Table B1. Comparison of the assumptions underlying three alternative explanations to the 442 
positive correlation between niche breadth (NB) and range size (RS), and the approaches used 443 
by three studies to test those assumptions. Assumptions that do not apply are in gray.  444 
 445 
 446  

Proposed mechanism† Case studies (focusing on NBf-to-RS) 
Assumptions NBf-

to-
RS 

RS-to-
NBf 

RS-to-NBr Hirst et al. 2017 
(Hirst et al. 

2017) 

Boucher-Lalonde 
& Currie 2016 

(Boucher-
Lalonde and 
Currie 2016) 

Heino & Soininen 
2006 

(Heino and 
Soininen 2006) 

Species are comparable and independent 
entities. x x x Phylogenetic 

test 
Discussed Assumed for focal 

group (Diatoms) 
Habitat heterogeneity increases with larger 
areas. x x x Literature 

review 
Statistically 
tested 

Comprehensive 
index 

All the habitats are similarly abundant but 
heterogeneously distributed in the study area. x x X Literature 

review 
Statistically 
tested 

Comprehensive 
index 

Niche breadth metric captures the effect of 
resources on species performance without the 
effect of competitors, predators, dispersal 
limitation, and abundance (fundamental niche). 

x x  

Performance 
measured 
directly 

Assumed (NB 
metric uses 
occurrence data) 

Assumed (NB 
metric uses 
occurrence data) 

Niche breadth metric captures the effect of 
resources on the species performance within its 
current range (realized niche). 

  x 
   

Species interactions are weak or affect all the 
species being compared in similar ways. x x x Experimental 

manipulation 

  

Dispersal does not limit species distribution or 
has a similar effect on all species. x x x Experimental 

manipulation 
Statistically 
tested 

Statistically tested 



 
Proposed mechanism† Case studies (focusing on NBf-to-RS) 

Assumptions NBf-
to-
RS 

RS-to-
NBf 

RS-to-NBr Hirst et al. 2017 
(Hirst et al. 

2017) 

Boucher-Lalonde 
& Currie 2016 

(Boucher-
Lalonde and 
Currie 2016) 

Heino & Soininen 
2006 

(Heino and 
Soininen 2006) 

Dispersal is not large enough to prevent local 
adaptation, and not so small that could 
facilitate speciation. 

x x  

   

Species' fundamental niche does not change 
during dispersal period. x  x 

   

Species adapt to their environments and lose 
adaptations to unused environments. 

 x  
   

Species have had enough time to disperse 
through the study area. x  x Experimental 

manipulation 

  

Species have had time for their fundamental NB 
to evolve, given exposure to new conditions 

 x  
   

Findings related to NB as a cause of RS    Weak/partial 
support 

Unsupported Supported 
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