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Abstract16

1: Resource allocation for invasive species management requires information about the size of17

the invasive population, which may be expensive and time-consuming to obtain. The trade-off be-18

tween investment in monitoring and control efforts is a challenging decision problem, and existing19

mathematical tools are often difficult to interpret, and / or limited to a specific case study.20

2: We propose a partially observable Markov decision process (POMDP) framework to help21

decision makers understand effective monitoring and control policy making. POMDPs can deal with22

uncertainty in both the model and state of the system, but are more challenging to solve due to23

∗Corresponding author. E-mail address: cbaker1@unimelb.edu.au
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the continuous and high-dimensional state space. Rather than limiting the possible states of the24

system, as do most previously proposed methods, we work through the development of a density25

projection approach, which reduces the dimensionality of the space of beliefs by restricting them to a26

parametrised family of probability distributions. This serves to align the mathematical representation27

of the problem with the real-world quantities relevant to human decision making.28

3: The result of our model is a sequence of actions which minimises the expected cost incurred29

in managing the invasive species, where the recommendation depends on an estimate of the species’30

abundance, and the uncertainty in this estimate. We demonstrate the effectiveness of our proposed31

framework with a case study on tropical fire ant (Solenopsis geminata) control and two generic case32

studies of varying complexity. Furthermore, we investigate sensitivity of the results to the choices of33

control cost and efficacy, and monitoring cost and error.34

4: The framework proposed by this paper makes the powerful machinery of POMDPs available35

to environmental managers. It computes the optimal course of action to manage a growing popula-36

tion of an invasive species, incorporating a varying time horizon and multiple control interventions.37

We sidestep the computational difficulties of general POMDPs to provide a clear, visual overview of38

decision-making recommendations, and how these decisions change in new situations. Initial results39

and scenario based analysis show promising results, and the framework could be extended to the40

related field of disease management.41

42

43

Keywords: invasive species, decision making, partially observable Markov decision processes,44

uncertainty45

46

1. Introduction47

An uncontrolled invasive species can have a major impact on the economy and environment (Hoffmann48

and Broadhurst, 2016; Alvarez and Solís, 2018). Therefore, if damage is to be avoided, conservation49

authorities must allocate resources effectively to control or eradicate invasive populations. However,50

making informed decisions relies on knowledge about the severity of the infestation, and obtaining such51

information can be time-consuming and expensive. Therefore, the decision problem facing managers52

involves a challenging combination of both monitoring (information gathering) and control efforts. More53

specifically, two main challenges arise with invasive species management. First, monitoring and control54

efforts have an influence on one another and can therefore, not easily be determined separately. And55
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second, full knowledge of the system and the dynamics of its evolution is often unknown or unavailable56

(Büyüktahtakın and Haight, 2018).57

Approaches to the problem vary widely: the underlying model might be deterministic or stochastic, the58

solution method exact or heuristic, and the potential aims include decision making and policy evaluation.59

For example: Epanchin-Niell et al. (2012) use mathematical programming, optimal control methods60

appear in Rout et al. (2014); Mehta et al. (2007); Hauser and McCarthy (2009) and Mbah and Gilligan61

(2010), and heuristic genetic algorithms are used by Carrasco et al. (2010).62

If the problem is modelled as a stochastic, sequential decision problem, a natural mathematical frame-63

work is that of a Markov Decision Process (MDP). MDPs are conventionally solved by Stochastic Dynamic64

Programming (SDP) (Bellman, 2003), which computes a plan of action in the present which is optimal65

for the uncertain future — examples in the management of invasive species include Williams and Brown66

(2022); Marescot et al. (2013); Hyytiäinen et al. (2013); Polasky (2010); Rout et al. (2011) and Moore67

et al. (2010). A shortcoming of this approach, however, is the fact that MDPs assume perfect knowledge68

of the present state of the system.69

If instead the manager must make their decision based only on a (possibly imperfect) observation70

of the environment, the proper extension to our MDP is a partially observable Markov decision process71

(POMDP) (Monahan, 1982; Littman, 2009). POMDPs are, however, far more difficult to solve than72

MDPs, and this difficulty becomes more pronounced as the state space of the system grows. Therefore,73

POMDP approaches to invasive species management tend to model the system as occupying one of a74

small number of levels of infestation (Chadès et al., 2008; McDonald-Madden et al., 2011; Haight and75

Polasky, 2010; Regan et al., 2011; Chadès et al., 2011; Rout et al., 2014). In addition, the realism of76

their models often relies on the specifics of the situation at hand (Williams and Brown, 2022, Section77

10) — for example (Regan et al., 2011) model a situation where a paddock may contain no weeds, only78

seeds, or seeds and adult weeds: such an approach does not translate directly to, say, animal invasions.79

Furthermore, as discussed by Williams and Brown (2022), representing the results and recommendations80

of a POMDP model in an intuitive and tractable way remains a challenge (see Regan et al. (2011) for81

one approach).82

Arguably the most natural way to represent the state of a pest invasion is as an unbounded and83

possibly continuous population variable: the state of the system is the number or amount present of84

the invasive species in question. However, as indicated by Williams and Brown (2022), continuous state85

space POMDPs are particularly mathematically challenging, and so far have found little application in86
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the ecology literature.87

In this work, we address this issue by working through the construction of a POMDP model based88

on density projection (Williams and Brown, 2022, Section 8). In our model, the uncertain state of the89

ecological system is represented by a continuous probability distribution, parametrised by a small number90

of meaningful quantities.91

By way of some simplifying assumptions, we develop an instance of the density projection method92

which admits an analytic solution. This allows us to compute optimal policies for a wide range of states93

and parameter values, and we investigate the boundaries where the optimal action changes. We represent94

our results in an intuitive visual way, including optimal policies, the cut-off points where the optimal95

policy changes, and the sensitivity of our results to parameter values.96

Our method sidesteps the computational difficulties of POMDPs while maintaining a generic setup:97

as such, we hope it will demonstrate the power of POMDP methods and provide an accessible starting98

point for ecologists incorporating partial observation into their models.99

2. Materials and Methods100

We begin this section by setting up the problem we aim to solve, and by motivating the introduction101

of POMDPs and the density projection approach. Our precise mathematical formulation is deferred to102

Section 2.3.1, after which we derive an analytic solution to a particular instance of this setup.103

2.1. Problem statement104

We consider the problem of surveillance (i.e., monitoring) and control of an invasive species population105

with some unknown abundance, and which is growing at a (possibly) uncertain rate. In response a decision106

maker or manager has some control actions available, each of which eliminates some fraction of the species,107

at some cost. Alternatively, the manager may opt to monitor the species, that is, to spend some resources108

to receive some estimate of the species’ abundance.109

We state this problem as a Partially Observable Markov Decision Process (POMDP) (Åström, 1965;110

Monahan, 1982). A POMDP is specified by sets of states, actions and observations, an objective func-111

tion to be minimised (or maximised), and the probabilities which govern the state transitions and the112

observations.113

The case at hand runs as follows. The state at time t is the abundance Nt of the species, and we114

assume each unit of abundance incurs one unit of cost (that is, cost is measured in units of species115
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abundance). The transitions are governed by a model for the growth of the species. For simplicity, we116

restrict ourselves to the case of exponential growth, so that117

Nt+1 = ert ·Nt,

where the growth rate rt may vary in time. To model an uncertain estimate of the value r, we draw each118

rt from a normal distribution with mean r and variance ∆r2 (Keeling and Rohani, 2008, Section 6.2).119

The actions available to the manager fall into two categories: control and surveillance, i.e., monitoring.120

Control actions are denoted ai for i = 1, 2, . . . , and have respective efficacies ρi and costs ci. The effect121

of action ai, taken at time t, is modelled as reducing the next-step abundance by the fraction ρi, so we122

have123

Nt+1 = (1− ρi)e
rt ·Nt, (1)

with immediate cost Nt + ci. For simplicity, we make the assumption that, in this case, the manager124

receives no observation of the state. This models, for example, a program of laying baits, as in our case125

study (described in Section 4).126

If the manager were certain of the species’ abundance, the decision is between doing nothing (if the127

abundance Nt is small) and controlling the species (if Nt is large). The threshold abundance where the128

decision changes is determined by the cost and efficacy of control actions, and how quickly the species’129

population is growing — this calculation is carried out at the beginning of Section 2.3.2.130

Monitoring actions, denoted Ai, allow the manager to observe the state at some cost Ci. We model131

this as a draw from a lognormal distribution around the true value, with some standard error ei. In a132

fully general circumstances, monitoring actions might also have some control effects.133

2.2. Belief Markov Decision Process134

The conventional approach to solving a POMDP is to consider it as a conventional MDP, where each135

state is a probability distribution over the original states of the system (Åström, 1965). Therefore, the136

new ‘belief state’ space has one dimension for each original state, representing the probability that the137

system is in the given state, given the past history of actions and observations. Since higher dimensions138

are computationally more difficult, the belief state approach is forced to work with a small number of139

states (Chadès et al., 2021; Rout et al., 2014; Chadès et al., 2008), and certainly to avoid an unbounded140

state space.141

5



Beyond the limits imposed by computational concerns, the results of the conventional belief state142

MDP can be difficult to interpret and communicate. For example, in a model which allows for low,143

medium and high abundance, the following unlikely belief is a point in the considered state space:144

P (N = low) = 0.5

P (N = medium) = 0

P (N = high) = 0.5.

Beliefs such as these would only occur in very specific circumstances, and as such including such145

examples in the state space complicates any interpretation of the model. In (Rout et al., 2014), for146

example, this problem is avoided by only giving scenarios for distributions where P (N = high) = 0, at147

the cost of a loss in generality. The interpretability problem is exacerbated by the difficulty of representing148

the value of a given action or state in more than three dimensions, as discussed in (Chadès et al., 2021,149

Section 5.2).150

It is clear, then, that it is valuable from a computational point of view to reduce the dimensionality151

of our state space. Furthermore, these dimensions should reflect quantities that have real-world meaning,152

in order to better reflect the actual ‘belief state’ of a manager.153

2.3. Proposed solution154

We propose that the ‘belief state’ of a manager should be restricted to a parametrised family of155

probability distributions (Zhou et al., 2010). Reflecting the goals stated above, we choose as parameters156

the abundance of the controlled species, and the uncertainty in this value. For our development, we157

choose a lognormal distribution, parametrised by n,∆n such that logN follows a normal distribution158

with mean n and standard deviation ∆n. This choice is made for convenience: exponential growth and159

multiplicative control correspond to translations of the distribution. Such a simplification fulfills the160

desiderata of the previous section, as demonstrated in Section 3. In short, given an estimate with error161

of logN our model computes the optimum policy amongst options of monitoring or control.162
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2.3.1. Problem setup163

We now re-state our decision problem with our suggested simplification. As is conventional for164

POMDPs, the model is specified by a tuple consisting of: state space, observation space, transition165

function, observation function, reward function, time horizon and initial belief (Chadès et al., 2021). In166

our case the state space is simply the abundance N ∈ R≥0, and observations lie in the set R≥0 ∪ {null}.167

The transition function is the growth model specified in Equation (1): that is, exponential growth with168

rate ert and multiplicative control. The observation is ‘null’ if the action is not a monitoring action Ai,169

otherwise it is lognormally distributed around the true abundance with (log-scale) standard error ei. The170

reward function is the abundance of the species, plus the cost of any action taken, and the time horizon,171

discount factor γ, and lognormal initial belief are specified by the user. A full account of the necessary172

parameters is given in Table 1.173

To solve this POMDP, we reduce it to a parametrised belief-state MDP as follows. The states are174

(n,∆n) ∈ R × R≥0, corresponding to normally-distributed log-abundance with mean n and standard175

deviation ∆n. The initial values and time horizon are set by the user, and the reward is now cost plus176

expected abundance, given by:177

E[N ] = exp(n+ (∆n)2/2).

We define the transition function in two cases, depending on whether the manager takes a control178

or a monitoring action. Since growth and control are multiplicative (as in as in Equation (1)), under a179

control action ai the estimate n of logN is translated, viz:180

nt+1 = nt + r + log(1− ρi).

Accounting for uncertainty in r, we have ∆nt+1 = ∆nt +∆r.181

In the case of a monitoring action, the new abundance estimate nt+1 is set to the result of the182

observation made. Since the true abundance is not available, we draw the observation nt+1 from the183

belief distribution Norm(n+ r,∆n). If the monitoring error is e, then the new error estimate is given by184

a Bayesian update formula, with normal likelihood and normal prior (Gelman et al., 2013, Section 2.2),185

with a term accounting for the uncertain growth rate:186

∆nt+1 =
∆n · e
∆n+ e

+∆r. (2)
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In the case that the monitoring action has some control effect ρ, nt+1 would be drawn instead from187

Norm(n+ r + log(1− ρ),∆n).188

2.3.2. Solution: action value functions189

Following a standard method for solving Markov Decision Problems (Bellman, 2003), we aim to190

calculate the action-value function QT (n,∆n | a), defined as the minimal (expected) cost of taking191

action a in state (n,∆n), over some finite time horizon T . To do so, we follow Bellman’s principle of192

optimality, which reads:193

QT (n,∆n | a) = cost(n,∆n, a) + γ · E
[
min
a′

QT−1(n
′,∆n′ | a′)

]
. (3)

Here, the expectation is over the subsequent state n′,∆n′, which (depending on the action a) may be194

uncertain, and γ is a discount factor, which de-emphasises costs incurred further in the future. (Note that195

the subsequent state has subscript T −1, being one step closer to the chosen horizon.) Having calculated196

this value for each action, the best action in any given state is simply the one with the smallest cost197

function.198

For T = 0 the second term in Equation (3) is zero, so that Q0(n,∆n | a) = exp(n+(∆n)2/2)+cost(a).199

For T > 0, we begin by evaluating the expected cost incurred if only control actions are taken. Then,200

while the evolution of the system is still random, the manager’s belief evolves deterministically — with201

abundance growing or shrinking accordingwhich control actions are taken. As such, rather than evaluating202

the ‘min’ in Equation (3) directly, we compute the value of a sequence a of actions, with length T , by the203

same process (noting that the optimal action with T = 0 will always be to do nothing). We claim that,204

in this case, the expected cost is always a linear function of N = exp(n), with coefficients (i.e., slope and205

intercept) depending on ∆n. This proceeds by induction on T , the length of the action sequence a. If206

T = 0, then as above207

Q0(n,∆n | −) = exp(n+ (∆n)2/2) = e(∆n)2/2N.

Then, suppose that we have computed the slope A and intercept B associated to δn and some sequence208

of actions a, viz:209

QT (n,∆n | a) = AT (∆n,a) ·N +BT (a). (4)

To extend this expression to length T +1, we add an extra action ai. Then, the value QT+1(n,∆n | aia)210
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consists of the immediate reward, plus the discounted reward for the rest of the sequence, evaluated at211

the subsequent state. We compute:212

QT+1(n,∆n | aia) = exp(n+ (∆n)2/2) + ci + γQT (n+ r + log(1− ρi),∆n+∆r | a)

= exp(n+ (∆n)2/2) + ci + γ [AT (∆n+∆r,a) ·N +BT (a)]

=
[
e(∆n)2/2 + γ(1− ρi)e

rAT (∆n+∆r,a)
]
·N + [ci + γBT (a)].

For a fixed ∆n, T and list of M possible actions, the full library of these coefficients can be calculated213

recursively in O(MT ) time. For fixed ∆n and T , the state-value function VT (n,∆n) = mina QT (n,∆n | a)214

is piecewise-linear and convex (in N), making it again straightforward to compute recursively.215

To add in monitoring actions, we make one further simplifying assumption: that in any sequence of216

actions, monitoring only occurs once. That is, the error e in monitoring and rate ∆r at which uncertainty217

grows are small enough that monitoring once ensures it is not necessary again. The density projection218

method does not rely on this assumption, but the analytic solution we present does. In general, the219

analogous form of the integrals presented below could be evaluated numerically to provide similar results.220

With this assumption however, the term inside the expectation of Equation (3) is a piecewise linear221

function of en, which makes it analytically calculable.222

Substituting the state value function into Equation (3), we have:223

QT (n,∆n | monitor) = exp(n+ (∆n)2/2) + cost(monitor) + γ

∫ ∞

−∞
VT−1(x+ r,∆n′)φn,∆n(x)dx,

where φn,∆n(x) is the probability distribution function for x ∼ Norm(n,∆n). The integration interval224

splits into pieces where the minimum in the definition of VT−1 is achieved by a particular sequence a.225

For such an interval l ≤ x ≤ u, the function VT−1 takes the form of Equation (4), and as such can be226

calculated using the following identities (Jawitz, 2004, Section 2.2):227

∫ u

l

φn,∆n(x)dx =
1

2

(
erf

(
u− n

∆n
√
2

)
− erf

(
l − n

∆n
√
2

))
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Notation Variable name in code Definition
r r Disease growth rate
∆r dr Uncertainty in growth rate
ρi rho Control efficacy
ci ce Control cost
— interventions A dictionary containing pairs (ce,rho) of cost & efficacy
cm cm Cost of monitoring
e err_mon Error in monitoring
— mon_dict A dictionary of triples (cm,err_mon,rho_mon) of cost, error &

control efficacy
T num_steps Decision horizon
γ gamma Discount factor

Table 1: Model parameters.

and228 ∫ u

l

exφn,∆n(x)dx =
exp(n+∆n2/2)

2

(
erf

(
u− n−∆n2

∆n
√
2

)
− erf

(
l − n−∆n2

∆n
√
2

))
.

These permit the calculation of the value of monitoring (noting that we can no longer predict what229

future actions will be, since the outcome of monitoring is stochastic):230

QT (n,∆n | monitor) = exp(n+ (∆n)2/2) + cost(monitor) + γ

∫ ∞

−∞
VT−1(x+ r,∆n′)φn,∆n(x)dx, (5)

where ∆n′ is given by Equation (2).231

For (control) actions before a monitoring step, the expression Equation (5) is substituted into Equa-232

tion (3). For instance, the value of the sequence ai (control) then monitor is given by:233

QT+1(n,∆n | ai monitor) = exp(n+ (∆n)2/2) + ci + γQT (n+ r + log(1− ρi),∆n+∆r | monitor).

2.4. Model Parameters234

The parameters specifying the model are collected in Table 1. Fixing these based on the scenario in235

question, the optimum action depends on the abundance of the species, and the uncertainty in that value.236

If we denote the abundance by N , then given an estimate n of logN with approximate error ∆n, our237

model computes the optimum action. In fact, the model computes the expected reward for a sequence238

of actions which ends either at the time horizon T , or with some monitoring action. We provide code to239

compute these values, and a vignette explaining how to set parameters.240
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3. Results241

To illustrate our results, we plot the optimum sequence of actions for pairs (∆n,N) of uncertainty242

and expected abundance. For the following examples, we take r = 1.2 ± 0.05 and γ = 0.9. Control is243

assumed to cost ce = 4 units with effectiveness ρ = 0.6, and monitoring costs cm = 1 unit, with error244

e = 0.1.245

The simplest interesting case is over T = 2 time steps: at the first step a decision must be made246

between suppressing the outbreak (a control intervention), collecting information to inform the second247

decision (a monitoring intervention), or doing nothing. The outcome of this analysis is given in Figure 1.248

Qualitatively, the displayed results match intuition. For small values of the uncertainty (in this case249

∆n < 0.5), monitoring is never optimal, as enough is known about the problem already. In this case,250

the decision between control and doing nothing is made based on the expected future abundance of the251

species. As uncertainty increases (rightwards on the graph), monitoring actions become more valuable,252

and as such optimal over a larger range of parameter values, matching the orange region on the right of253

the graph. Furthermore, the marginal benefit of monitoring is greater when the decision is less “obvious”254

— that is, when the estimated abundance is not very high or very low. In these extreme cases, even255

with a large “factual uncertainty” in the prevalence of the species, the “decision uncertainty” is small, so256

monitoring interventions are not worthwhile.257

The simple case of Figure 1 illustrates the qualitative success of our proposed method. For practical258

applications, however, it could be useful to implement more complexity. In Figure 2 we illustrate some259

of the ways this is possible. To clarify the entries in the legend of Figure 2a, that is, the actions available260

to the manager, we include a tree representation of the same, in Figure 2b.261

Figure 2 has distinct regions corresponding to ‘monitor’ and ‘control, monitor’, which arise as we262

have added one extra time step (T = 3). This is informed by the fact that uncertainty increases over263

time, but also by the benefits of suppressing an exponentially growing outbreak earlier rather than later.264

In addition, in Figure 2 we have added a second control action. Specifically, this is modelled as265

the same intervention performed twice, with independent results, with a cost of 2ce and an efficacy of266

1−(1−ρ)2. As the abundance increases (upwards on the plot), these more intense control actions become267

optimal.268

In Figure 3, we test the effect that variation of the parameters ce and ρ has on the optimal control269

actions — ignoring for the moment any uncertainty, and therefore any monitoring actions. For the270

Note that, with different parameter values, the action ignore,monitor appears on the plot.
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Figure 1: Optimal management actions for a sequence of T = 2 time steps for given uncertainty and
abundance. Management options consist of ‘ignore’, ‘monitor’ or ‘control’.

(a) Optimal management actions over three time steps
(b) A tree, representing the choices
available to the manager.

Figure 2: Optimal management actions for further complexity, here T = 3, illustrating the quantitative
power of our model.
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(a) Optimal actions, for varying ce. (b) Optimal actions, for varying ρ.

Figure 3: Parameter sensitivity analysis for control parameters (the cost of controlling ce and control
efficacy ρ) with no initial uncertainty (∆n = 0), for varying abundance N for T = 3. Apart from ce (left)
and ρ (right), parameters are kept the same to the example in Figure 2.

cost parameter, Figure 3a demonstrates that as the cost increases (moving rightwards on the graph),271

the species must be more abundant to justify a given control action. Figure 3b analyses the efficacy272

parameter ρ in an analogous way. For a small ρ, the abundance must be very high to justify any control273

action. As ρ increases, it becomes worthwhile to control the species at smaller abundances. For ρ close to274

1, controlling once tends to be sufficient — as such, the regions corresponding to more expensive control275

actions (yellow and gold) become smaller.276

To examine the effect of varying parameters related to monitoring, we can plot the border of the277

region where monitoring is optimal, as abundance and uncertainty vary. This corresponds, for example,278

to the edge of the orange region in Figure 2. Figure 4 plots these frontiers for varying monitoring cost279

cm and error e. As either of these parameters increase, monitoring becomes less worthwhile, and as such280

needs more uncertainty to justify it. This is demonstrated by the fact that the frontiers corresponding281

to larger cost and error (coloured yellow) are further to the right.282

4. Simulation Study283

We develop a simulation model to demonstrate how our decision-framework could be used to support284

decisions. The structure of the simulation is that there is a true underlying abundance of the species,285

and that gets updated in each time step, deepening on the management decision. At each time step, the286

decision is made by choosing the optimal decision, which is calculated always assuming a set time window287

(i.e. we do not update the mapping of abundance and uncertainty to decision through time).288
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(a) Monitoring frontiers, for varying cm. (b) Monitoring frontiers, for varying e.

Figure 4: Parameter sensitivity analysis for monitoring parameters (the cost of monitoring cm and the
monitoring error e) showing the frontier where monitoring becomes optimal, plotted on the same axes as
Figures 1 and 2. Other parameters are kept at the values used in the example in Figure 2.

The simulation begins with a belief of the manager, for both abundance and uncertainty, alongside a289

hidden true abundance. At each time step, the abundance estimate and uncertainty changes depending290

on the action chosen. If the action is ‘do nothing’ or ‘monitor’ then the increase is multiplicative, drawn291

from a normal distribution with mean r and standard deviation dr. The difference between ‘do nothing’292

and ‘monitor’, is that the subsequent uncertainty estimate for ‘monitor’ is greatly reduced. If ‘control’ is293

chosen, then the abundance is reduced by a fixed percentage.294

To validate the effectiveness of our algorithm, we investigate how our solution performs across many295

such simulations and compared to a simpler ‘naive’ algorithm. The naive algorithm solves the same296

problem except that there is no option to monitor, so there is no integration between the control decisions297

and monitoring decisions. We explore the performance of the algorithms, depending on how accurate the298

initial abundance estimate (Figure 5). We find the full solution largely outperforms the naive solution.299

The only exception is if there is a large initial underestimate of the invasive species abundance, and in300

these cases both solutions perform similarly.301

To demonstrate how our method might be applied in practice, we run this simulation using parameter302

estimates for tropical fire ants (Solenopsis geminata) on Ashmore Reef, Australia. The resulting timeseries303

simulation is shown in Figure 6, and the sequence of actions alternates through ‘control’, ‘do nothing’304

and ‘monitor’. The parameters for the case study are listed in Table 2. The growth rate, its uncertainty305

and control efficacy are set following Baker et al. (2017), while parameter estimates for costs of control306

effort and monitoring are taken from Walshe (2017). The optimal solution is calculated using a discount307
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Figure 5: The average final cost for the full solution and the naive solution, depending on initial abun-
dance. The parameters are as in Figure 2, except that the time horizon is extended to five steps. For
all simulations, the estimate of the initial abundance is held constant, while the true initial abundance
is varied. Hence, initial true abundance values less than 0.5 mean that there is an overestimate of the
abundance, while if the initial true abundance is greater than 0.5, then there is an underestimate of the
true abundance. Low values of the final cost correspond to better performance, compared to high values
of final cost. The ‘bumps’ in the full solution likely correspond to an interaction between the time-window
and when monitoring is used.
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Table 2: Parameter values for the tropical fire ant cast study simulation.

Parameter Value
r 2.82
dr 0.015

control cost 31.8
control efficacy 99%
monitoring cost 6.2

Figure 6: An example time-series for the fire ant case study (left). The high estimated abundance in the
first time-step means the optimal decision is to treat and then do nothing. Then the large uncertainty
means the optimal decision is to monitor in the third year. The sequence of decisions are mapped out on
the phase plane diagram for these parameters (right).

rate of γ = 0.9 and over a 2-year time-horizon.308

5. Discussion309

In this paper, we have presented a partially observable Markov decision process (POMDP) framework310

for informed invasive species management. We believe that the density projection method that we311

advocate has the potential to make POMDP methods accessible to a broad audience in invasive species312

management, and ecology more broadly. We work through the development of a model in this framework,313

and provide an intuitive, visual tool that can help to decide between when to monitor and when to control314

given an estimate (with uncertainty) of the species abundance.315

It is natural to parametrise an ecological problem, such as an invasive species, by its growth rate and316

the relative costs of control or monitoring compared to doing nothing at all. While our assumptions of317

exponential dynamics limit the quantitative realism of our model, we believe that its simplicity and inter-318

pretability make it a broadly applicable starting point for decision making in the presence of uncertainty319

about the state of the system being managed.320
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In aiming for an intuitive and generic model of uncertain abundance, we make different simplifications321

to previous work. In the past, POMDP approaches have simplified the ecological system dynamics to322

make the problem computationally tractable (Williams and Brown, 2022; Haight and Polasky, 2010;323

Regan et al., 2011; Chadès et al., 2011; Rout et al., 2014). Instead, we simplify the computational324

problem by assuming a parametric distribution for the population size, as recommended in Section 8 of325

Williams and Brown (2022), which gives the dimensions of our model intuitive content. Therefore, a326

major advantage of our POMDP approach is that it can deal with uncertainty in the state of the system327

while providing easily interpretable results.328

Similar problems and discussions can be found in the related field of disease management, where an329

analogous trade-off exists between monitoring, i.e. testing members of the population to gauge the spread330

of disease, and control, say by deploying medication, vaccination or implementing quarantine strategies.331

Although a variety of strategies have been proposed, POMDP solutions are still limited (Nowzari et al.,332

2016; Zino and Cao, 2021). Diseases whose management involves both surveillance (i.e. testing) and333

control (vaccination, medications and other control strategies) elements, such as HIV and COVID, could334

be particularly suitable for our method. One initial interesting proposal in this field is due to Hauskrecht335

and Fraser (2000), who apply a POMDP framework for diagnosis and treatment of ischemic heart disease.336

Our framework is currently mainly limited by the assumptions of our model — for example, we337

assume that the population of the species grows exponentially, and ignore interactions with the rest of338

the environment. Our model could be extended to more general models of species infestation, possibly at339

the cost of a numerical solution. However, for small outbreaks and short time-frames exponential growth340

is often applicable — since these situations frequently coincide with high uncertainty, we believe that our341

model has value despite its simplicity.342

Our model also contains the assumption that certain parameters, such as the control efficacy ρ, are343

known exactly, which could be relaxed with further work. One way to include parameter uncertainty344

would be to link our work to an adaptive management framework, such as described by Moore et al.345

(2017). In such a framework, r or ρ would be added as dimensions to the model, so that the belief state346

of the manager includes a distribution over possible values of the parameters (Chadès et al., 2021, Section347

4.3). In this situation, monitoring actions have the additional benefit of reducing parameter uncertainty,348

such as about the efficacy of management.349

In this paper, we formulate a POMDP model which is applicable to a wide range of invasive species350

scenarios. In contrast with traditional POMDP approaches (see Williams and Brown (2022)), we limit351

17



our model to dimensions of abundance and its uncertainty, retaining sufficient complexity to model the352

trade-off between monitoring and control, while remaining analytically solvable. This idea is not limited353

to the field of invasive species management, and has the potential to be applied to the ‘reverse’ problem of354

endangered species conservation, and to management of disease. POMDP approaches to the conservation355

of Sumatran tigers are proposed by Chadès et al. (2008) and McDonald-Madden et al. (2011), who limit356

the state of the system to ‘present’ or ‘absent’. The density-projection framework proposed in this paper357

could be altered to investigate these scenarios with a more general model of abundance.358
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