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Abstract

1: For invasive species management, the trade-off between monitoring and control has high stakes,

and existing decision-making methods are limited in this area. In particular, most current approaches

are limited to a specific case study, or ignore the uncertainty and interaction between monitoring and

control in the system. Hence, the field is missing an effective and general framework.

2: We propose a partially observable Markov decision process (POMDP) framework to help

decision makers understand effective monitoring and control policy making. POMDPs can deal with

uncertainty in both the model and state of the system, but are more challenging to solve due to

the continuous and high-dimensional state space. We reduce the dimensionality of the state space

by restricting the belief state to a parametrised family of probability distributions, aligning the

mathematical representation of the problem with quantities of the physical process linked to human

decision making.
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3: The result of our model is a sequence of actions which minimises the expected cost incurred

in managing the invasive species, where the recommendation depends on an estimate of the species’

abundance, and the uncertainty in this estimate. We demonstrate the effectiveness of our proposed

framework in two generic case studies of varying complexity. Furthermore, we investigate sensitivity

of the results to the choices of control cost and efficacy, and monitoring cost and error.

4: The framework proposed by this paper makes the powerful machinery of POMDPs available

to environmental managers. It computes the optimal course of action to manage a growing popula-

tion of an invasive species, incorporating a varying time horizon and multiple control interventions.

We sidestep the computational difficulties of general POMDPs to provide a clear, visual overview of

decision-making recommendations, and how these decisions change in new situations. Initial results

and scenario based analysis show promising results, and the framework could be extended to the

related field of disease management.

Keywords: invasive species, decision making, partially observable Markov decision processes, un-

certainty

1. Introduction

An uncontrolled invasive species can have a major impact on the economy and environment (Hoffmann

and Broadhurst, 2016; Alvarez and Solís, 2018). However, perfect information of the severity of the

scenario is rarely available, and so effective policy involves a challenging combination of both monitoring

(information gathering) and control efforts. In particular, two main challenges arise with invasive species

management. First, monitoring and control efforts have an influence on one another and can therefore,

not easily be determined separately. And second, full knowledge of the system and the dynamics of its

evolution is often unknown or unavailable (Büyüktahtakın and Haight, 2018).

In order to tackle this problem, different modeling methods and approaches have been taken: e.g.,

mathematical programming (Epanchin-Niell et al., 2012), analysing optimality conditions and optimal

control (Rout et al., 2014; Mehta et al., 2007; Hauser and McCarthy, 2009; Mbah and Gilligan, 2010)

and heuristics such as genetic algorithms (Carrasco et al., 2010).

All these modeling methods have their own strengths and weaknesses. Heuristics offer quick solutions,

but which often fail to be optimal and/or robust. Optimal control methods, on the other hand, will find
∗Corresponding author. E-mail address: author4@email.com
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the optimal solution, but are more complex to solve. Furthermore, in all of these methods, models

struggle to deal with the uncertainty in the system.

An alternative, promising method is to model the problem as a Markov Decision Process (MDP),

which is a logical result of acknowledging the fact that the underlying spreading process is inherently

stochastic. Stochastic Dynamic Programming (SDP) is often successfully applied to solve MDPs for

stochastic systems, and its main advantage is that it can deal with and include uncertainty (Marescot

et al., 2013; Hyytiäinen et al., 2013; Polasky, 2010; Rout et al., 2011; Moore et al., 2010). Its main

shortcoming, however, lies in the fact that MDPs assume perfect knowledge of the state of the system.

Therefore, if we replace perfect knowledge of the state of the system by observations that are

linked probabilistically to the underlying state, we obtain a partially observable Markov decision pro-

cess (POMDP) (Monahan, 1982; Littman, 2009). POMPDPs are, however, far more difficult to solve

than MDPs. First approaches are presented by Haight and Polasky (2010); Regan et al. (2011); Chadès

et al. (2011); Rout et al. (2014), where Chadès et al. (2011) use a POMDP method to compute node prior-

ity for investment in small networks of pests, diseases and endangered species. On the other hand, Haight

and Polasky (2010); Regan et al. (2011); Rout et al. (2014) tackle invasive species management using a

discretized, short horizon POMPDP. To make the problem computationally tractable, these models have

few management options and levels of infestation, and make major assumptions regarding eradication

efficacy. All these papers offer specific recommendations based on limited scenario analysis and therefore,

have different conclusions regarding the optimality of surveillance and intervention.

Furthermore, while literature on each of surveillance and control is well advanced, research into the

combination of them is limited (Büyüktahtakın and Haight, 2018). Studies that have looked into the

relationship between monitoring and control reach varying and different conclusions regarding optimal

management based on specific species studied and assumptions made, such as efficacy and cost of detection

and control: see for example Rout et al. (2011, 2014); Carrasco et al. (2010); Mbah and Gilligan (2010);

Moore et al. (2010); Polasky (2010); Hyytiäinen et al. (2013). That is, there is no general framework

which addresses the wide variety of problems which face environmental managers making monitoring and

control decisions for invasive species.

In this paper, we propose a POMDP framework which provides a general and interpretable method

applicable to a wide range of circumstances and management options, and which is specifically built to

deal with uncertainty. And although some parameter sensitivity is investigated in the literature, to the

best of our knowledge there is no research looking into the boundary areas when the optimal decision
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switches from monitoring to control. Therefore, with an effective visual tool, we demonstrate where the

cut-off lies to inform effective management policies.

Our approach is related to that of Moore et al. (2017), who obtained a general solution to the case

where managers are choosing between two control actions, the benefits of which are uncertain. The

current paper differs in that the abundance of the species in question is the uncertain variable, and the

decision is between some set of control actions, whose efficacies are known, a monitoring action, or doing

nothing.

2. Materials and Methods

2.1. Problem statement

We consider a control and surveillance, (i.e., monitoring) problem of invasive species management

with some unknown abundance, and which is growing at a (possibly) uncertain rate. In response a

decision maker or manager has some control actions available, each of which eliminates some fraction of

the species, at some cost. Alternatively, the manager may opt to monitor the species, that is, to spend

some resources to receive some estimate of the species’ abundance.

We state this problem as a Partially Observable Markov Decision Process (POMDP) (Åström, 1965;

Monahan, 1982). A POMDP is specified by sets of states, actions and observations, an objective func-

tion to be minimised (or maximised), and the probabilities which govern the state transitions and the

observations.

The case at hand runs roughly as follows. The state at time t is the abundance Nt of the species, and

we assume each unit of abundance incurs one unit of cost (that is, cost is measured in units of species

abundance). The transitions are governed by a model for the growth of the species. For simplicity, we

restrict ourselves to the case of exponential growth, so that

Nt+1 = ert ·Nt,

where the growth rate rt may vary in time. To model an uncertain estimate of the value r, we draw each

rt from a normal distribution with mean r and variance ∆r2 (Keeling and Rohani, 2008, Section 6.2).

The actions available to the manager fall into two categories: control and surveillance, i.e., monitoring.

Control actions, which we denote as ai for i = 1, 2, . . . , reduce the subsequent abundance by some fraction

ρi, incurring some cost ci. That is, if action ai is taken at time t, the immediate cost is Nt + ci, and the
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next-step abundance is

Nt+1 = (1− ρi)e
rt ·Nt. (1)

In this case, the manager receives no observation of the state. In the absence of any uncertainty, the

decision is between doing nothing (if the abundance Nt is small) and controlling the species (if Nt is

large). The threshold abundance where the decision changes is determined by the cost and efficacy of

control actions, and how quickly the species’ population is growing — this calculation is carried out at

the beginning of section 2.3.2.

Monitoring actions, denoted Ai, allow the manager to observe the state at some cost Ci. We model

this as a draw from a lognormal distribution around the true value, with some standard error ei. In a

fully general circumstance, monitoring actions might also have some control effects.

2.2. Belief Markov Decision Process

The conventional approach to solving a POMDP is to consider it as a conventional MDP, where each

state is a probability distribution over the original states of the system Åström (1965). Therefore, the

new ‘belief state’ space has one dimension for each original state, representing the probability that the

system is in the given state, given the past history of actions and observations. Since higher dimensions

are computationally more difficult, the belief state approch is forced to work with a small number of

states (Chadès et al., 2021; Rout et al., 2014; Chadès et al., 2008), and certainly to avoid an unbounded

state space.

Beyond the limits imposed by computational concerns, the results of the conventional belief state

MDP can be difficult to interpret and communicate. For example, in a model which allows for low,

medium and high abundance, the following unlikely belief is a point in the considered state space:

P (N = low) = 0.5

P (N = medium) = 0

P (N = high) = 0.5.

This belief is not one which corresponds to a real-world situation, and as such it complicates the interpre-

tation of the model. In (Rout et al., 2014), for example, this problem is avoided by only giving scenarios

for distributions where P (N = high) = 0, at the cost of a loss in generality. The interpretability problem

is exacerbated by the difficulty of representing the value of a given action or state in more than three
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dimensions, as discussed in (Chadès et al., 2021, Section 5.2).

It is clear, then, that it is valuable from a computational point of view to reduce the dimensionality

of our state space. Furthermore, these dimensions should reflect quantities that have real-world meaning,

in order to better reflect the actual ‘belief state’ of a manager.

2.3. Proposed solution

We propose that the ‘belief state’ of a manager should be restricted to a parametrised family of

probability distributions. Reflecting the goals stated above, we choose as parameters the abundance

of the controlled species, and the uncertainty in this value. More specifically, we choose a lognormal

distribution, parametrised by n,∆n such that logN follows a normal distribution with mean n and

standard deviation ∆n. This choice is made for convenience: exponential growth and multiplicative

control correspond to translations of the distribution. Such a simplification fulfills the desiderata of the

previous section, as demonstrated in Section 3. In short, given an estimate with error of logN our model

computes the optimum policy amongst options of monitoring or control.

2.3.1. Problem setup

We now re-state our decision problem with our suggested simplification. If the state is n,∆n, then

the cost is, as above, the expected abundance. For a lognormal distribution, this is

E[N ] = exp(n+ (∆n)2/2).

Following the original model of (1), growth of the invasive population translates the estimate nt of logN ,

so that under a control action ai, we have nt+1 = nt + r + log(1− ρi). Accounting for uncertainty in r,

we have ∆nt+1 = ∆nt +∆r.

Again following our above model, under a monitoring action, we draw nt+1 from Norm(n+ r,∆n). If

the monitoring error is e, then the new error estimate is given by

∆nt+1 =
∆n · e
∆n+ e

+∆r. (2)

2.3.2. Solution: action value functions

Following a standard method for solving Markov Decision Problems (Bellman, 2003), we aim to

calculate the action-value function QT (n,∆n | a), defined as the minimal (expected) cost of taking
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action a in state (n,∆n), over some finite time horizon T . To do so, we follow Bellman’s principle of

optimality, which reads:

QT (n,∆n | a) = cost(n,∆n, a) + γ · E
[
min
a′

QT−1(n
′,∆n′ | a′)

]
. (3)

Here, the expectation is over the subsequent state n′,∆n′, which (depending on the action a) may be

uncertain, and γ is a discount factor, which de-emphasises costs incurred further in the future. (Note that

the subsequent state has subscript T −1, being one step closer to the chosen horizon.) Having calculated

this value for each actions, the best action in any given state is simply the one with the smallest cost

function.

For T = 0 the second term in (3) is zero, so that Q0(n,∆n | a) = exp(n + (∆n)2/2) + cost(a). For

T > 0, we begin by evaluating the expected cost incurred if only control actions are taken, so that all

randomness disappears. Then, to avoid the “min” in (3), we can compute the value of a sequence a of

actions, with length T , by the same process (noting that the optimal action with T = 0 will always be

to do nothing). We claim that, in this case, the expected cost is always a linear function of N = exp(n),

with coefficients (i.e., slope and intercept) depending on ∆n. This proceeds by induction on T , the length

of the action sequence a. If T = 0, then as above

Q0(n,∆n | −) = exp(n+ (∆n)2/2) = e(∆n)2/2N.

Then, suppose that we have computed the slope A and intercept B associated to δn and some sequence

of actions a, viz:

QT (n,∆n | a) = A(∆n,a) ·N +B(a).

To extend this expression to length T + 1, we add an extra action ai and substitute into (3) to obtain

QT+1(n,∆n | aia) = exp(n+ (∆n)2/2) + ci + γQT (n+ r + log(1− ρi),∆n+∆r | a)

=
[
e(∆n)2/2 + γ(1− ρi)e

rAT (∆n+∆r,a)
]
·N + [ci + γBT (a)].

For a fixed ∆n, T and list of M possible actions, the full library of these coefficients can be calculated

recursively in O(MT ) time. For fixed ∆n and T , the state-value function VT (n,∆n) = mina QT (n,∆n | a)

is piecewise-linear and convex (in N), making it again straightforward to compute recursively.
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To add in monitoring actions, we make one further simplifying assumption: that in any sequence

of actions, monitoring only occurs once. That is, the error e in monitoring and rate ∆r at which

uncertainty grows are small enough that monitoring once ensures it is not necessary again. This ensures

that the term inside the expectation of (3) is a piecewise linear function of en, which makes it analytically

calculable. Since n = logN is normally distributed, if φn,∆n(x) is the probability distribution function

for x ∼ Norm(n,∆n), then the relevant integrals are (Jawitz, 2004, Section 2.2)

∫ u

l

φn,∆n(x)dx =
1

2

(
erf

(
u− n

∆n
√
2

)
− erf

(
l − n

∆n
√
2

))

and ∫ u

l

exφn,∆n(x)dx =
exp(n+∆n2/2)

2

(
erf

(
u− n−∆n2

∆n
√
2

)
− erf

(
l − n−∆n2

∆n
√
2

))
.

These permit the calculation of the value of monitoring (noting that we can no longer predict what future

actions will be, since the outcome of monitoring is stochastic):

QT (n,∆n | monitor) = exp(n+ (∆n)2/2) + cost(monitor) + γ

∫ ∞

−∞
VT−1(x+ r,∆n′)φn,∆n(x)dx,

where ∆n′ is given by (2). For (control) actions before a monitoring step, the process of backwards

induction works in the same way.

2.4. Model Parameters

The parameters specifying the model are collected in Table 1. Fixing these based on the scenario

in question, the optimum action depends on the abundance of the species, and the uncertainty in that

value. If we denote the abundance by N , then given an estimate n of logN with approximate error ∆n,

our model computes the optimum action.

3. Results

To illustrate our results, we plot the optimum sequence of actions for pairs (∆n,N) of uncertainty

and expected abundance. For the following examples, we take r = 1.2 ± 0.05 and γ = 0.9. Control is

assumed to cost ce = 4 units with effectiveness ρ = 0.6, and monitoring costs cm = 1 unit, with error

e = 0.1.

The simplest interesting case is over T = 2 time steps: at the first step a decision must be made
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Notation Variable name in code Definition
r r Disease growth rate
∆r dr Uncertainty in growth rate
ρi rho Control efficacy
ci ce Control cost
— interventions A dictionary containing pairs (ce,rho) of cost & efficacy
cm cm Cost of monitoring
e err_mon Error in monitoring
— mon_dict A dictionary of triples (cm,err_mon,rho_mon) of cost, error &

control efficacy
T num_steps Decision horizon
γ gamma Discount factor

Table 1: Model parameters.

between supressing the outbreak (a control intervention), collecting information to inform the second

decision (a monitoring intervention), or doing nothing. The outcome of this analysis is given in fig. 1.

Qualitatively, the displayed results match intuition. For small values of the uncertainty (in this case

∆n < 0.5), monitoring is never optimal, as enough is known about the problem already. In this case,

the decision between control and doing nothing is made based on the expected future abundance of the

species. As uncertainty increases (rightwards on the graph), monitoring actions become more valuable,

and as such optimal over a larger range of parameter values, matching the orange region on the right of

the graph. Furthermore, the marginal benefit of monitoring is greater when the decision is less “obvious”

— that is, when the estimated abundance is not very high or very low. In these extreme cases, even

with a large “factual uncertainty” in the prevalence of the species, the “decision uncertainty” is small, so

monitoring interventions are not worthwhile.

The simple case of fig. 1 illustrates the qualitative success of our proposed method. For practical

applications, however, it could be useful to implement more complexity. In fig. 2 we illustrate some of

the ways this is possible. To clarify the entries in the legend of fig. 2a, that is, the actions available to

the manager, we include a tree representation of the same, in fig. 2b.

Figure 2 has distinct regions corresponding to ‘monitor’ and ‘control, monitor’, which arise as we

have added one extra time step (T = 3). This is informed by the fact that uncertainty increases over

time1, but also by the benefits of suppressing an exponentially growing outbreak earlier rather than later.

In addition, in fig. 2 we have added a second control action. Specifically, this is modeled as the same

intervention performed twice, with independent results, with a cost of 2ce and an efficacy of 1− (1− ρ)2.

As the abundance increases (upwards on the plot), these more intense control actions become optimal.
1Note that, with different parameter values, the action ignore,monitor appears on the plot.
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Figure 1: Optimal management actions for a sequence of T = 2 time steps for given uncertainty and
abundance. Management options consist of ‘ignore’, ‘monitor’ or ‘control’.

(a) Optimal management actions over three time steps
(b) A tree, representing the choices
available to the manager.

Figure 2: Optimal management actions for further complexity, here T = 3, illustrating the quantitative
power of our model.
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(a) Optimal actions, for varying ce. (b) Optimal actions, for varying ρ.

Figure 3: Parameter sensitivity analysis for control parameters (the cost of controlling ce and control
efficacy ρ) with no initial uncertainty (∆n = 0), for varying abundance N for T = 3. Apart from ce (left)
and ρ (right), parameters are kept the same to the example in fig. 2.

In fig. 3, we test the effect that variation of the parameters ce and ρ has on the optimal control

actions — ignoring for the moment any uncertainty, and therefore any monitoring actions. For the cost

parameter, fig. 3a demonstrates that as the cost increases (moving rightwards on the graph), the species

must be more abundant to justify a given control action. Figure 3b analyses the efficacy parameter ρ

in an analogous way. For a small ρ, the abundance must be very high to justify any control action.

As ρ increases, it becomes worthwhile to control the species at smaller abundances. For ρ close to 1,

controlling once tends to be sufficient — as such, the regions corresponding to more expensive control

actions (yellow and gold) become smaller.

To examine the effect of varying parameters related to monitoring, we can plot the border of the

region where monitoring is optimal, as abundance and uncertainty vary. This corresponds, for example,

to the edge of the orange region in fig. 2. Figure 4 plots these frontiers for varying monitoring cost cm

and error e. As either of these parameters increase, monitoring becomes less worthwhile, and as such

needs more uncertainty to justify it. This is demonstrated by the fact that the frontiers corresponding

to larger cost and error (colored yellow) are further to the right.

4. Discussion

In this paper, we have presented a partially observable Markov decision process (POMDP) framework

for informed invasive species management. In particular, we developed an intuitive, visual tool that can

help to decide between when to monitor and when to control given an estimate (with uncertainty) of the
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(a) Monitoring frontiers, for varying cm. (b) Monitoring frontiers, for varying e.

Figure 4: Parameter sensitivity analysis for monitoring parameters (the cost of monitoring cm and the
monitoring error e) showing the frontier where monitoring becomes optimal, plotted on the same axes as
figs. 1 and 2. Other parameters are kept at the values used in the example in fig. 2.

species abundance. It is natural to parametrise an ecological problem, such as an invasive species, by its

growth rate and the relative costs of control or monitoring compared to doing nothing at all. As such,

our framework provides a very general and broadly applicable starting point for decision making in the

presence of uncertainty about the state of the system being managed.

Importantly, we model abundance and uncertainty in a more general way than previous work. Previous

POMDP approaches have simplified the ecological system dynamics to make the problem computational

tractable Haight and Polasky (2010); Regan et al. (2011); Chadès et al. (2011); Rout et al. (2014). Instead,

we simplify the computational problem by assuming a parametric distribution for the population size.

Therefore, a major advantage of our POMDP approach is that it can deal with uncertainty in the state of

the system, allowing analysis of the complex tradeoff between investment in monitoring and investment

in control. Our model provides easily interpretable results without the restrictions of a specific scenario.

Similar problems and discussions can be found in the related field of disease management, where an

analogous trade-off exists between monitoring, i.e. testing members of the population to gauge the spread

of disease, and control, say by deploying medication, vaccination or implementing quarantine strategies.

Although a variety of strategies have been proposed, POMDP solutions are still limited (Nowzari et al.,

2016; Zino and Cao, 2021). Diseases whose management involves both surveillance (i.e. testing) and

control (vaccination, medications and other control strategies) elements, such as HIV and COVID, could

be particularly suitable for our method. One initial interesting proposal in this field is due to Hauskrecht

and Fraser (2000), who apply a POMDP framework for diagnosis and treatment of ischemic heart disease.
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Our framework is currently mainly limited by the assumptions of our model — for example, we

assume that the population of the species grows exponentially, and ignore interactions with the rest of

the environment. Our model could be extended to more general models of species infestation. However,

we only solve our model over 3 time-steps, at the most, and, over such time-frames, exponential growth

may be generally applicable.

Our model also contains the assumption that certain parameters, such as the control efficacy ρ, are

known exactly, which could be relaxed with further work. One way include parameter uncertainty would

be to link our work to an adaptive management framework, such as described by Moore et al. (2017). In

such an ‘adaptive management’ framework, r or ρ would be added as dimensions to the model, so that

the belief state of the manager includes a distribution over possible values of the parameters (Chadès

et al., 2021, Section 4.3). In this situation, monitoring actions have the additional benefit of reducing

parameter uncertainty, such as about the efficacy of management.

In this paper, we formulate a POMDP model which is applicable to a wide range of invasive species

scenarios. In contrast with traditional POMDP approaches, we limit our model to dimensions of abun-

dance and its uncertainty, retaining sufficient complexity to model the trade-off between monitoring and

control, while remaining analytically solvable. This idea is not limited to the field of invasive species man-

agement, and has the potential to be applied to the ‘reverse’ problem of endangered species conservation,

and to management of disease. POMDP approaches to the conservation of Sumatran tigers are proposed

in Chadès et al. (2008); McDonald-Madden et al. (2011), with the similar limitations to the model of the

underlying system. Hence, the framework proposed in this paper could be altered to investigate these

scenarios in a more general way.
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