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 Abstract 22 

Background: Spatial information about the location and suitability of areas for native plant and animal 23 

species under different climate futures is an important input to land use and conservation planning and 24 

management. Australia, renowned for its abundant species diversity and endemism, often relies on 25 

modelled data to assess species distributions due to the country's vast size and the challenges associated 26 

with conducting on-ground surveys on such a large scale. The objective of this paper is to develop habitat 27 

suitability maps for Australian flora and fauna under different climate futures. Results: Using MaxEnt, 28 

we produced Australia-wide habitat suitability maps under RCP2.6-SSP1, RCP4.5-SSP2, RCP7.0-SSP3 29 

and RCP8.5-SSP5 climate futures for 1,382 terrestrial vertebrates and 9,251 vascular plants vascular 30 

plants at 5km2 for open access. This represents 60% of all Australian mammal species, 77% of amphibian 31 

species, 50% of reptile species, 71% of bird species and 44% of vascular plant species. We also include 32 

tabular data which includes summaries of total quality-weighted habitat area of species under different 33 

climate scenarios and time periods. Conclusions: The spatial data supplied can help identify important 34 

and sensitive locations for species under various climate futures. Additionally, the supplied tabular data 35 

can provide insights into the impacts of climate change on biodiversity in Australia. These habitat 36 

suitability maps can be used as input data for landscape and conservation planning or species 37 

management, particularly under different climate change scenarios in Australia.  38 



Data Description 39 

Introduction 40 

Rich spatial and temporal information about the effect of climatic and environmental change on species 41 

distributions is necessary to ensure robust species management and conservation policy more broadly 42 

(Bryan et al., 2014; Hanson et al., 2019; Leclère et al., 2020; Summers et al., 2012). Identifying areas 43 

where species occur now, as well as areas which may be suitable in the future, is a crucial aspect of 44 

decision making under uncertainty (Summers et al., 2012). The availability of resources for conservation, 45 

including financial, staffing and land availability, is limited and exacerbates the challenge of conservation 46 

planning during climate change (Hanson et al., 2019). These constraints have sparked the need for more 47 

strategic landscape and conservation planning methods, such as spatial prioritization, to identify the most 48 

effective conservation solutions (Tulloch et al., 2015). Spatial information on where species are now and 49 

where suitable areas may be in the future is the foundation of efficient planning for conservation action, 50 

particularly in areas where local conditions are more sensitive to climate change (Summers et al., 2012). 51 

 52 

Australia is a hyper-diverse country with high levels of species endemism (Chapman, 2009; Coleman, 53 

2016). Unfortunately, Australia also has some of the highest recorded numbers of contemporary 54 

extinctions worldwide and more than 1900 species and ecological communities are under threat 55 

(Woinarski et al., 2019; Australian Government Department of Agriculture and the Environment, 2021). 56 

Given the extensive and severe range and population declines of many threatened species (Bergstrom et 57 

al., 2021; Kearney et al., 2018; Woinarski et al., 2019), many more species are also predicted to have a 58 

high risk of extinction in the future (Garnett et al., 2022). To ensure the conservation of Australia’s 59 

unique biodiversity, identifying and protecting important areas for species such as climate refugia is key 60 

to planning for resilience and adaptive capacity (Reside et al., 2014). To fulfill this task, underlying data 61 

on species location and the habitat suitability of areas for species under different climate futures is 62 

required.  63 



 64 

There are many ways to assess suitable areas for species, and one popular approach is to use the 65 

maximum entropy method (henceforth, MaxEnt). MaxEnt is a niche-based general-purpose machine 66 

learning method with a simple and precise mathematical formulation which is particularly well-suited for 67 

species distribution modelling with presence-only data (Elith et al., 2006; Phillips et al., 2006). 68 

Generating MaxEnt models for individual species at continental scales presents challenges around the 69 

processing and storage of large volumes of data. Graham et al. (2019) developed a comprehensive spatial 70 

dataset of 1872 terrestrial and freshwater vertebrate species distributions using the Intergovernmental 71 

Panel on Climate Change’s (IPCC) Coupled Model Intercomparison Project 3 (CMIP3) future climate 72 

projections (Meehl et al., 2007) and made them freely available through a web-based portal known as 73 

‘CliMAS’. Although the CliMAS models led to many applied outcomes (Maxwell et al., 2019; Ward et 74 

al., 2022), the website was retired in 2020, in recognition of the fact that there have been two major 75 

updates by the IPCC and the current projections are based on CMIP6. For conservation planning to 76 

progress, an improved and enlarged suite of freely available spatial data, based on up-to-date climate 77 

projections and extended for a much broader range of species including vascular plants, is needed. 78 

 79 

We developed habitat suitability maps for Australian flora and fauna under different climate futures using 80 

a MaxEnt approach. We produced freely accessible Australia-wide habitat suitability maps for 1,441 81 

terrestrial vertebrates and 9,251 vascular plants. This represents 60% of all Australian mammal species, 82 

77% of amphibian species, 50% of reptile species, 71% of bird species and 44% of vascular plant species. 83 

We fit these models using 7 bioclimatic variables and 11 soil and landscape variables under 4 climate 84 

scenarios, 8 General Circulation Models (GCMs) and 1 ensemble average, and 5 time periods. These 85 

habitat suitability maps are best used as input data to represent species or biodiversity values for 86 

conservation planning and assessment, particularly under climate change in Australia.  87 



Methods 88 

The workflow for this study was adapted from the CliMAS project (Graham et al., 2019) (Figure 1). The 89 

first step involved compiling and collecting the input data which consisted of occurrence point data and 90 

environmental variables. We then used MaxEnt to fit models of habitat suitability using climate, soil and 91 

landscape variables. We used a variable selection procedure which considered the statistical and 92 

ecological importance of variables to refine the predictor variables as well as validating the models. We 93 

then used the lambda files produced in the model fitting step to project species habitat suitability under 94 

future climate scenarios.  95 

 96 

Figure 1 Workflow of the MaxEnt modelling procedure. Input data is represented as green, variable selection procedure is 97 
represented as purple, MaxEnt modelling procedure is represented as grey and the output files are represented as orange. 98 

Input data 99 

Species occurrence points 100 

Species occurrence records which were used to fit the historical climate models were sourced from the 101 

Australian Atlas of Living Australia (ALA) (Atlas of Living Australia, 2012), the Queensland Museum, 102 

and CSIRO. Vascular plant occurrence point data were acquired through from the Queensland Museum. 103 

Vertebrate species occurrence were records acquired through ALA went through an additional data 104 



cleaning process prior to modelling (see Graham et al., 2019). We used the points originally applied in the 105 

CliMAS project as of 2012 for vertebrates, and the vascular plant points that were compiled for the 106 

CliMAS project but never modelled. Through these sources we obtained occurrence point data for 197 107 

mammals (60% coverage), 523 birds (71% coverage), 530 reptiles (50%), 191 amphibians (77%) and 108 

9,200 vascular plants (44% coverage). Across all species, the median number of occurrence points was 109 

123 and the distribution of the number of occurrence points ranged based on the following quantiles: 110 

0%=1, 25%= 43, 50%= 123, 75%= 410, 100%= 78,503 (Figure 2).  111 

 112 

 113 

Figure 2 Distribution of occurrence points (n) for species models. 114 

 115 

MaxEnt uses background sample points as pseudoabsences and recommends the use of target groups in 116 

sample selection to help overcome considered spatial biases (Barber et al., 2022; Phillips et al., 2009). To 117 

create the target group background files, we combined all occurrence points for all species within a 118 

taxonomic group and sampled the background points from this space. Each target group background file 119 

contained between 60,000 to 250,000 points depending on the taxonomic group, in which MaxEnt takes a 120 

subsample of 10,000 points. 121 



Environmental variables 122 

We used a combination of bioclimatic, soil and landscape variables as predictors to fit the MaxEnt 123 

models. For the climate variables, we downloaded spatial data at a 5km2 resolution on historical and 124 

future CMIP6 modelled bioclimatic variables through the WorldClim database (www.worldclim.org, 125 

accessed on the 1st of September 2020). Bioclimatic variables summarise monthly temperature and 126 

rainfall values into 19 more biologically meaningful variables (Table 1). Bioclimatic variables were 127 

downloaded for eight global climate models (GCMs): BCC-CSM2-MR (Wu et al., 2021), CNRM-CM6-1 128 

(Voldoire et al., 2019), CNRM-ESM2-1 (Séférian et al., 2019), CanESM5 (Swart et al., 2019), GFDL-129 

ESM4 (Krasting et al., 2018), IPSL-CM6A-LR (Boucher et al., 2020), MIROC-ES2L (Hajima et al., 130 

2020), MIROC6 (Tatebe et al., 2018), MRI-ESM2-0 (Yukimoto et al., 2019), for four shared 131 

socioeconomic (SSP) (Riahi et al., 2017) and representative concentration pathway (RCP) combinations: 132 

RCP2.6-SSP1, RCP4.5-SSP2, RCP7.0-SSP3 and RCP8.5-SSP5 and 5 time-periods (1990, 2030, 2050, 133 

2070 and 2090). As we did not have access to the following two files: IPSL-CM6A-LR SSP2-4.5 2030 134 

and MRI-ESM2-0 SSP5-8.5 2030, we linearly interpolated values. All climate scenarios, bioclimatic 135 

variables were clipped to the extent of Australia prior to modelling. 136 

We downloaded 15 environmental variables from the Soil and Landscape Grid of Australia database 137 

(https://www.csiro.au/en/research/natural-environment/land/soil-and-landscape-grid-of-australia, accessed 138 

on Sep 2021) to use as environmental predictors of habitat suitability. Additionally, we downloaded the 139 

Interim Biogeographic Regionalisation for Australia (IBRA) as an indication of the inherent spatial 140 

differences in biome across Australia. Soil and landscape variables were clipped and masked to the extent 141 

of Australia and scaled to the same resolution as the bioclimatic data (Table 1).  142 

http://www.worldclim.org/
https://www.csiro.au/en/research/natural-environment/land/soil-and-landscape-grid-of-australia


MaxEnt modelling procedure  143 

Model fitting 144 

All habitat suitability models were fit in MaxEnt Version 3.4.1 using the command line. Maxent models 145 

were first run with 10 replicates (replicates=10) validated using a cross validation method to train the 146 

model and to compute model validation statistics. At this stage, habitat suitability values are calculated as 147 

values between 0 and 1 with no threshold applied and were later converted to values between 0 and 100. 148 

An example of the full Maxent model specification can be found in the GitHub repository affiliated with 149 

this paper. Important outputs of the MaxEnt modelling procedure include a .csv file containing statistical 150 

information to inform variable selection and model validation as well as the ‘lambdas file’, which is a text 151 

file containing the regression coefficients or lambdas fit by MaxEnt during modelling. 152 

Variable selection 153 

The variables included in the final MaxEnt model runs were informed by analysing the variable 154 

contributions and importance percentages calculated using a full MaxEnt model run, information about 155 

variable complexity (Low et al., 2021), as well as ecological knowledge based on several published 156 

models of terrestrial vertebrate and vascular plant climate and habitat suitability. The goal of variable 157 

selection was to reduce the number of predictor variables from the initial 35 variables chosen as potential 158 

environmental predictors to avoid overfitting. Although Maxent is robust to multicollinearity among 159 

variables (Feng et al., 2019), including excessive numbers of predictors can affect the model’s ability to 160 

make inferences outside of the training data.  161 

 162 

We reviewed variables included within several Australian biodiversity modelling efforts of terrestrial 163 

vertebrates (Graham et al., 2019a), and vascular plants (Butt et al., 2013; Gallagher et al., 2019). We then 164 

performed a full MaxEnt model run which included the 35 variables described in the above section, for 165 

each species. We reviewed the importance of variables based on the average percent contribution and 166 



percent importance values across all species. The percent contribution is a measure of the contribution of 167 

each variable towards model fit after each iteration of the MaxEnt model, while the percent importance is 168 

a measure of the importance of each variable towards model fit for the final MaxEnt model. We also 169 

categorized bioclimatic variables based on complexity and favoured simple variables as they tended to be 170 

less correlated with one another (Low et al., 2021).  171 

 172 

This combined approach to variable selection resulted in 18 variables which moved through to the model 173 

fitting stage (Table 1): 7 bioclimatic variables and 11 soil and landscape variables. All bioclimatic 174 

variables selected for this study were included in CliMAS models (Graham et al., 2019) and similar 175 

modelling efforts for Australian plants (Gallagher et al., 2019), and all bioclimatic variables with the 176 

exception of BIO15 were considered to be simple climate variables (Low et al., 2021) (Table 1). All 177 

bioclimatic variables except for BIO05 had high or moderate importance values in the full model. 178 

Similarly, we included additional soil and landscape variables (Hageer et al., 2017) based on their use in 179 

recent biodiversity models (Gallagher et al., 2019), and we favoured soil and landscape variables that 180 

were simpler.    181 

Table 1 Summary of the bioclimatic, soil and landscape variable selected in the final MaxEnt model.  182 

Code Variable Name Contribution1 Importance2 Ecological Rationale 
Bioclimatic variables 

BIO1 Annual Mean 
Temperature 

8.72 18.21 Influences thermal tolerances of species. 

BIO5 Max Temperature of 
Warmest Month 

6.33 9.92 Influences upper thermal tolerances of 
species through extreme temperatures. 

BIO6 Min Temperature of 
Coldest Month 

4.30 8.66 Influences lower thermal tolerances of 
species through extreme temperatures.  

BIO12 Annual Precipitation 8.60 10.81 Average annual rainfall which influences 
water availability. 

BIO13 Precipitation of 
Wettest Month 

17.67 7.77 Maximum rainfall in the wettest month 
which influences maximum water 
availability. 

BIO14 Precipitation of 
Driest Month 

14.93 8.45 Minimum rainfall in the driest month which 
influences minimum water availability. 

BIO15 Precipitation 
Seasonality 

12.13 13.20 Standard deviation of rainfall in the 
annually which influences the variation in 
water availability. 

Soil and landscape variables 
AWC Available Water 

Capacity 
0.94 0.68 The amount of water held by the soil for 

future use.  



BDW Bulk Density (Whole 
Earth) 

0.89 1.17 Soil's ability to function for structural 
support, water and nutrient and microbial 
life movement, and soil aeration. 

CLY Clay 1.04 0.95 Promotes water retention and reduces air 
circulation in soil.  

DES Depth of Soil 2.00 1.29 Defines the root space and volume of 
soils available.  

ECE Electroconductivity 3.39 5.21 Movement of nutrients within the soil 
which influences the availability of soil 
nutrients. 

elev Elevation 2.37 1.57 Elevation influences soil properties and air 
pressure. 

pHc pH 5.43 4.30 Affects the amount of nutrients that are 
water soluble in soil. 

slope Slope Relief 1.81 1.00 Influences soil properties and creates 
varying microclimates. 

SLT Silt 2.63 2.10 Promotes water retention and creates 
relatively porous soil conditions.  

SND Sand 1.60 1.60 Promotes water drainage and air 
circulation in soil.  

SOC Organic Carbon 5.17 3.05 Promotes soil structure by providing a 
food source for micro-organisms.  

Model validation  183 

Once variables were selected, models were re-run, and model performance was assessed based on the area 184 

under the curve (AUC, i.e., the area under the receiver operating curve (ROC) curve) and the Boyce 185 

index. The AUC is a widely used model validation metric used within the Maxent literature (Merow et al., 186 

2013). The AUC metric measures the predictive accuracy of the model and represents the probability that 187 

a randomly selected occurrence point is ranked higher than a randomly selected background point. The 188 

Boyce Index is another method that can be used to evaluate model performance and does so assessing the 189 

magnitude in which the model predictions differ from random distribution of the observed presences 190 

across the prediction gradients (Boyce et al., 2002; Hirzel et al., 2006). The Boyce Index value is 191 

represented by the Spearman rank correlation coefficient which assesses the increase in the 192 

Orediction/Expected (P/E) plot (Jiménez & Soberón, 2020).  193 

 194 

The median AUC across all models was 0.97 and generally, AUC values of 0.7 or below indicates poor 195 

performance (Figure 3). We assess that 99.6% (n=10,566) of species have an AUC value above 0.7 AUC, 196 

and 0.4% (n=38) of species have an AUC value below the 0.7 threshold (33 birds, 4 vascular plants and 1 197 

mammal). Boyce Index values can vary from −1 to 1 and we find that the median Boyce Index across all 198 



models in this study was 0.97 (Figure 3). A Boyce Index closer to 1 indicates that suitability predictions 199 

are consistent with the occurrence point distribution, and values of 0.5 or below generally indicate poor 200 

performance (Boyce et al., 2002; Hirzel et al., 2006a). We assess that 99.3% (n=10,509) of species have a 201 

value over 0.5, 0.65% (n=69) species had a value between 0.5 and 0 and 0.05% (n=5) species had a value 202 

below 0 (1 bird and 4 vascular plants).  203 

 204 

We have also provided a scatter plot summary of AUC in relation to Boyce Index. Based on the 0.7 205 

threshold for AUC and the 0.5 threshold for the Boyce Index, we find that 98.99% of species meet both 206 

thresholds. We find that 0.69% (n= 73) meet the AUC threshold but not the Boyce Index threshold, 207 

0.32% (n= 34) species meet the Boyce Index threshold but not the AUC threshold and 1 species did not 208 

meet either threshold (Brown Falcon, Falco berigora). Prior to using species data, please ensure you 209 

check the AUC and the Boyce Index value which is contained within the species folder within the 210 

maxentResults.csv and the boyce_index_score.csv file.  211 

 212 
Figure 3 From left to right the plots are the distribution of AUC values, the distribution of Boyce Index (BI) values 213 
and a scatter plot between AUC and BI values for species models. The median AUC and Boyce Index value is 214 
represented by a dashed line. On the AUC plot the 0.7 threshold is presented using a solid vertical line. On the BI 215 



plot the 0.5 threshold is presented using a solid vertical line. These thresholds are also represented by solid lines on 216 
the scatter plot. 217 

Model projections  218 

Using the best model selected in the model fitting procedure we projected species-level MaxEnt models 219 

under the future climate scenarios RCP2.6-SSP1, RCP4.5-SSP2, RCP7.0-SSP3 and RCP8.5-SSP5, 8 220 

GCMs, for 1 historical time-period (1985) and 4 future time-periods (2030, 2050, 2070, 2090) using the 221 

lambda files produced in the model fitting step. Using the predicted habitat suitability data, we then 222 

calculated an ensemble average (mean), minimum and maximum habitat suitability (to capture model 223 

variance) across 8 GCMs for each species, climate scenario and time-period.  224 

Geospatial calculations 225 

To describe the patterns of habitat suitability across time in an accessible tabular format we calculated the 226 

total quality-weighted sum of habitat suitability for each species under different climate scenarios at each 227 

time period (Eq 1.). We first adjusted the resolution of the rasters to 1km2, therefore the quality-weighted 228 

habitat area (qwHA) sum corresponds to the ‘habitat area’ in km2. For example, if the probable habitat 229 

suitability in a cell is equal to 1, the cell is equivalent to 1km2, whereas if the probable habitat suitability 230 

in a cell is equal to 0.3, the cell is equivalent to 0.3km2. Noting that the quality-weighted habitat area is 231 

not equivalent to the realised area available for a species given ecological or land use constraints which 232 

can both influence habitat availability and suitability for species. The probability of habitat suitability (p) 233 

was summed across raster cells (xy), for each species (j), year (y) and climate scenario (c): 234 

𝑞𝑤𝐻𝐴!"# =&𝑝!"#,%"

&

'()

 235 

(Eq 1.) 236 

To describe how the patterns of habitat suitability may have changed across space under different climate 237 

scenarios or years, we summarised raster data for each species in multiple ways. For each taxonomic 238 

group (t) we calculated changes in habitat suitability (s) by subtracting future time periods and climate 239 



scenarios (yc) by historical climate niche (𝑝	+). Where positive values indicate areas that increase in 240 

suitability in the future and negative values indicate areas that decrease in climate suitability in the future. 241 

We provide visual representation of this information in Figure 6, and included the absolute and 242 

proportional change in habitat area in the tabular summaries provided for species:  243 

𝑠,
"#
	 = 	𝑝,+	 − 𝑝,

"#	
	 244 

(Eq 2.) 245 

To spatially identify important areas of climate refugia which was done for Figure 6, we multiplied the 246 

historical habitat suitability matrix by the habitat suitability in each future climate scenario and year 247 

combination. For each the cell, the probability of habitat suitability values per cell (p), for each species 248 

(t), year (y) and climate scenario (c) were multiplied by the future habitat suitability. Cell values were 249 

then divided by 100, and the resulting cell value represents climate refugia (r) between 0 to 100.  250 

𝑟,
"#
	 = 	(𝑝,+	 ∗ 𝑝,

"#	)/100	 251 

(Eq 3.) 252 

Re-use potential  253 

Code availability 254 

For each species, MaxEnt models were run directly from the terminal using java and bash syntax and 255 

were ultimately executed using Slurm Workload Manager (SLURM) on a high-performance Linux-based 256 

computer cluster. Additional modelling and geospatial analyses were processed using a shell file executed 257 

using SLURM on the computer cluster. The scripts used in to generate this data is available in the GitHub 258 

repository, (see, https://github.com/CarlaBirdy/MaxEnt-habitat-models).  259 

Dataset 260 

Individual species’ maps for historical and future minimum, mean and maximum ensembled habitat 261 

suitability, as well as the MaxEnt lambda file and summary reports produced in this study are publicly 262 

https://github.com/CarlaBirdy/MaxEnt-habitat-models


accessible for download on the open-access companion GigaDB database (Wilkinson et al., 2016). This 263 

dataset includes species-level historical (1970-2000 centered on 1990) and the future minimum, mean and 264 

maximum habitat suitability projections for 1,382 terrestrial vertebrates (182 amphibians, 487 birds, 178 265 

mammals and 535 reptiles) and 9,251 vascular plants under 4 climate scenarios and 5 time periods, this 266 

data equates to 521,017 rasters that are compressed using Lempel–Ziv–Welch (lzw) compression. 267 

Additionally, for each species we have included a .csv file which contains the total quality-weighted 268 

habitat areas (in km2) for each species under each different climate scenario and time period. We have 269 

also consolidated these tables across all species and included this tabular data. A complete list of the 270 

species for which habitat suitability maps were produced can be found in the companion GigaDB 271 

database. 272 

Spatial resolution of data 273 

This data is presented at 5km2 resolution which is aligned with the climate data used as key inputs to the 274 

MaxEnt model. The data can be subsequently downscaled to finer resolutions, however assumptions will 275 

have to be made about how habitat suitability is distributed across cells. The current resolution of this data 276 

is best utilized to understand general trends across space and time. To demonstrate the resolution, we 277 

present the southern cassowary (Casuarius casuarius) which is known to occur in the Wet Tropics region 278 

of Queensland, Australia. Current suitable areas for the southern cassowary are predicted to occur 279 

between Townsville to Cooktown, with an isolated area around the Iron Range (Figure 4). Taking the 280 

most severe climate change scenario (RCP8.5 - SSP5), the environmental space for the southern 281 

cassowary is predicted to reduce over time around its central habitat in the Atherton Tablelands. The 282 

maps for the southern cassowary can be compared with (Graham et al., 2019) for reference.    283 



 284 

Figure 4 This habitat suitability distribution is for the Southern Cassowary (Casuarius casuarius) and presents its historical 285 
suitability projection historically, in 2030 and in 2090. The graph below represents the total amount of habitat suitability (km2) 286 
available in each time period, green bars correspond to the maps presented (historical, 2030 and 2090).    287 

Species-level data summary 288 

The dataset includes suitability maps for species under different climate scenarios and time periods using 289 

an ensemble average approach. Through the process of ensemble averaging, the minimum and maximum 290 

suitability maps were also produced. These maps can be compared to understand the bounds of how 291 

climate change may generally impact habitat suitability in the future. The importance of incorporating 292 

multiple GCM projections can be seen by the variation among the minimum, mean, and maximum 293 

suitability maps (Figure 5). For the common wallaroo (Macropus robustus), the differences between the 294 

minimum, mean, and maximum suitability maps are most apparent under worsening climate scenarios. 295 

Areas across the southern parts of Australia remain suitable across all three suitability maps, compared to 296 



areas in the central and northern parts of their range becoming progressively less suitable. These trends 297 

are consistent with other macropod modelling studies that also suggest suitability for the common 298 

wallaroo will track south as climate scenarios worsen (Ritchie & Bolitho, 2008). The maps for the 299 

common wallaroo can also be compared with (Graham et al., 2019) for reference.  300 

 301 

Figure 5 These habitat suitability distributions are for the common wallaroo (Macropus robustus) for one historical projection, 302 
and four future emission scenarios in the year 2090. The habitat suitability distributions of each row of maps represent the 303 
minimum, mean, and maximum habitat suitability projections across GCMs. The line graphs represent the total habitat 304 
suitability (km2) for four future emission scenarios over time. The uncertainty band represents the minimum and maximum 305 
amount of habitat suitability across GCMs. 306 



Spatial changes over time  307 

Taking this a step further, geospatial calculations can also be applied to determine the differences between 308 

years or climate scenarios. This can be conducted to identify areas of refugia (Equation 3), or the location 309 

and magnitude of change between different time periods (Equation 2). To calculate spatial locations of 310 

refugia, historical and future suitability maps can be multiplied together to accentuate areas in space that 311 

are suitable in both time periods. To calculate spatial changes in habitat suitability through time, historical 312 

suitability maps can be subtracted from future suitability maps to spatially accentuate locations that have 313 

changed in habitat suitability (i.e., improved in suitability or declined in suitability) across time periods. 314 

Using the snow gum (Eucalyptus pauciflora) as an example, we find refugia in the alpine region of 315 

Australia is predicted to decline for the snow gum under worsening climate scenarios, with declines being 316 



most severe in the year 2090 (Figure 6, top). Across all climate scenarios habitat suitability is declining 317 

from all areas of the snow gum’s range, and we did not identify areas of increases (Figure 6, bottom).  318 

 319 

Figure 6 Refugia and habitat suitability change maps for snow gum (Eucalyptus pauciflora). The Top Panel present climate 320 
change refugia for four future emission scenarios in the years 2050 and 2950. Dark green on the refugia maps represent areas 321 
that have high predictive suitability historically as well in future time periods. The Bottom Panel present changes in habitat 322 
suitability for four future emission scenarios in the years 2050 and 2090. Orange areas indicate placed that decrease in 323 
suitability compared to the previous time period, and green areas indicate areas that improve in suitability. White areas indicate 324 
no change in suitability. 325 



Changes in quality-weighted habitat area 326 

The dataset also includes a tabular summary of quality-weighted habitat area in km2 for each species 327 

under different climate scenarios and time periods (Equation 1 and Equation 2). The quality-weighted 328 

habitat area values can be analysed and plotted to understand how climate change may impact habitat area 329 

for single species or groups of species in the future (Figure 7). When this data is summarised across all 330 

species, we can show that in 2030 the distribution of change in habitat area are similar across the four 331 

climate scenarios. However, in 2090 the distribution of change in habitat area follows a different pattern 332 

across climate scenarios with progressively more species losing progressively more habitat area as 333 

climate change worsens (Figure 7). 334 

 335 

Figure 7 Histogram of the number of species and their relative change in mean quality weighted habitat area between 1990 and 336 
each future time period (2030, 2050, 2070, 2090). 337 



Discussion 338 

Spatial data on the suitability of areas for species is an important input to guide conservation planning, 339 

policy and management. The objective of this paper was to develop habitat suitability maps for Australian 340 

flora and fauna under different climate futures using a MaxEnt approach. This data has been developed in 341 

a way that is consistent across species and enables users to analyze how different climate futures may 342 

impact the habitat suitability for biodiversity more generally across Australia. This data can also be used 343 

for species-level analysis and can be a starting point for additional analyses which utilize either geospatial 344 

information or tabular information that could take into consideration additional information like land use, 345 

conservation actions or species ecology.  346 

Applications for landscape and species conservation 347 

This spatial and tabular dataset is ideal for users that would like to understand how the habitat suitability 348 

of areas for species is predicted to change over time or under different climate scenarios. For example, at 349 

the landscape level, these habitat suitability maps can be combined into a general biodiversity layer to 350 

evaluate how habitat suitability more generally changes over time (Figure 7) or over space and time 351 

(Figures 4, 5 and 6) (Hama & Khwarahm, 2023). This data can then be utilized in applications such as 352 

spatial prioritisations using such tools as Zonation (Minin et al., 2014) or Marxan (Watts et al., 2009) to 353 

guide spatial conservation priorities in Australia (Maxwell et al., 2019; Summers et al., 2012). Therefore, 354 

using this data for subsequent analysis can be useful to inform conservation (e.g., where to establish new 355 

protected areas), restoration or monitoring plans in areas which are suitable for biodiversity, or are 356 

predicted to lose or gain suitable areas for biodiversity.  357 

At the species level, this dataset can be used to support conservation actions for species of interest (e.g., 358 

threatened species, iconic species, endemic species). The tabular data can be used to systematically 359 

identify species of interest based on the way climate change is anticipated to impact the species. Or could 360 

be used to inform processes such as threatened species listing (IUCN, 2022). Spatial information about 361 

species could also be useful to compare the long-term suitability of areas for threatened species under 362 



climate change to inform present day decision-making and species management (Harley, 2023; Hawke et 363 

al., 2020). Could be paired with other types of data to assess the impacts of climate change on species 364 

(Eyre et al., 2022). Or could inform boarder scale biodiversity conservation analyses (Engert et al., 2023).  365 

Applications in sustainability and natural capital accounting  366 

Biodiversity forms a foundation of broader sustainability ideals, therefore, to measure progress towards 367 

sustainability, conservation or corporate goals spatial data on biodiversity can serve as an important input 368 

information to the creation of metrics (Lamb et al., 2009; Watermeyer et al., 2021). Biodiversity 369 

indicators like the species richness, or more complex indicators like the Species Threat Abatement and 370 

Restoration metric (STAR) (Mair et al., 2021) or the biodiversity intactness index (BII) (Biggs & Scholes, 371 

2005) all draw from species layers as input data. Feeding the habitat suitability maps generated in this 372 

study into biodiversity layers and into broader sustainability models or assessments can improve the 373 

consideration of biodiversity against other environmental or social values. This may include initiatives 374 

such as land use planning, or land use change modelling (Connor et al., 2015; Gao & Bryan, 2017).  375 

Additionally, as many businesses are transitioning towards ‘nature positive’ the use of biodiversity to 376 

monitor business impacts and progress towards nature positive is necessary. The habitat suitability maps 377 

generated in this study can be used to represent key species or biodiversity within natural capital within 378 

frameworks such as the System of Environmental-Economic (SEEA) framework (UNEP et al., 2015), 379 

within sustainability assessments such as ‘foot printing’ to enhance the biodiversity input data (Halpern et 380 

al., 2022; Hoang et al., 2023; Irwin & Geschke, 2023), or within nature-related impact or dependency 381 

assessments which inform frameworks like the Taskforce on Nature-Related Financial Disclosures 382 

(TNFD) (TNFD, 2023).  383 

Limitations and caveats with the data 384 

When using and interpreting the data contained in this dataset it is important to consider the following 385 

limitations and considerations. This dataset presents the habitat suitability of areas for species under 386 

different climate scenarios and time periods using a correlative approach. These maps are not distribution 387 



maps, rather they present habitat suitability based on climate, soil and landscape characteristics. Due to its 388 

5km2 spatial resolution, the data is best for understanding broader spatial trends that can be integrated into 389 

spatial planning (Maxwell et al., 2019), rather than more local management such as identifying specific 390 

sites for translocation without additional finer detail (Eyre et al., 2022).These maps have not been 391 

thresholded, nor do they consider dispersal (Graham et al., 2019), land use (Kapitza et al., 2021), 392 

biophysical capacity (Briscoe et al., 2023), or attributes that may be important for species of interest (e.g., 393 

NDVI, fire or vegetation structure e.g., (Eyre et al., 2022). There are a multitude of other methods to 394 

model suitability and species distributions that have their own use cases and limitations (Briscoe et al., 395 

2016; Elith & Graham, 2009).  396 

The occurrence points used for this analysis were those originally used for the CliMAS work, and the 397 

ALA data were passed through an additional rigorous cleaning process for terrestrial vertebrates. This 398 

process helped reduce the spatial bias and noise in the occurrence points (Phillips et al., 2009); however, 399 

more broadly there are sampling biases that influence the distribution of occurrence points, such as land 400 

tenure. To improve on the models, an integrated pathway to ALA into the modelling procedure would be 401 

ideal as this would ensure up-to-date input data. However, this can also come with challenges as 402 

occurrence data is required to have the same temporal resolution to the historical or current climate data 403 

(i.e., 1990 in this study). While we did use target background files to reduce spatial biases (Barber et al., 404 

2022), there may still be limitations of this approach at the taxonomic group level, for example for small 405 

ranging species (Breiner et al., 2015). Taxonomic level grouping may still be too broad to adequately 406 

capture those species that are highly range restricted and require very specific micro-climate needs, 407 

therefore species-specific level grouping may help to overcome this. Background files that are too broad 408 

may adequately capture sampling biases or the true relationship between occurrence points and 409 

environmental predictors. 410 

MaxEnt models are also prone to overfit but are also less influenced by collinearity than statistical 411 

models, we tried mitigating the impacts of overfitting the MaxEnt models by conducting variable 412 

selection. In relation to the variables used, we were primarily guided by past efforts that model the 413 



suitability of areas across Australia for many species (Butt et al., 2013; Gallagher et al., 2019), however 414 

this approach obviously overlooks some variables that can be import to model suitability. For example, 415 

we did not consider variables such as the normalized difference vegetation index (NDVI) (Wen et al., 416 

2015), land use (Lentini & Wintle, 2015), weather (Reside et al., 2010), or detailed information about 417 

vegetation structure or extreme events like fire (Eyre et al., 2022).Thus, our recommendation is for the 418 

users of this data to consider whether the variables used to model habitat suitability in this study is 419 

compatible with the species of interest, or whether additional information is required. This will likely be 420 

the case if the user is interested in a more fine-scale application of the data, for example at the single 421 

species or local level, as this data is best suited for macro-level analyses and applications.  422 

Finally, there is much contention around the best way to assess model performance of Maxent models 423 

beyond just the AUC, to approaches like the True Skill Statistic value (TSS), the kappa score and the 424 

Boyce Index (Allouche et al., 2006; Hirzel et al., 2006; Jiménez & Soberón, 2020; Valavi et al., 2022). 425 

We present the AUC and the Boyce Index and do not consider the thresholds for these indexes prior to 426 

creating the habitat suitability projections, therefore the user can assess the model performance for their 427 

species on interest when interpreting the data. 428 

Conclusion 429 

To spatially target conservation actions, spatial information about the location and suitability of areas for 430 

species is needed. This study provides a comprehensive dataset of predicted habitat suitability under 4 431 

climate futures, while also incorporating the uncertainty across GCMs. We are providing a spatial and 432 

tabular data product at the Australian scale and at 5km2 resolution that can be used to inform research and 433 

decision making at local, regional and national scales. This data can be applied within strategic 434 

conservation planning approaches and can be used to identify important areas for species consecration 435 

(Tulloch et al., 2015). Spatial information about current and future suitable areas for species is a key 436 

component of conservation planning, particularly as the impact of climate change on species and 437 

biodiversity is uncertain. 438 



 439 
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