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Abstract 17 

Background: Spatial information about the location and suitability of areas for native plant and animal 18 

species under different climate futures is an important input to land use and conservation planning and 19 

management. Australia, renowned for its abundant species diversity and endemism, often relies on 20 

modelled data to assess species distributions due to the country's vast size and the challenges associated 21 

with conducting on-ground surveys on such a large scale. Modelled habitat suitability maps use 22 

information about known occurrences of species and predict suitable areas for species using climate, soil 23 

and landscape information. Results: Using MaxEnt, we produced Australia-wide habitat suitability maps 24 

under RCP2.6-SSP1, RCP4.5-SSP2, RCP7.0-SSP3 and RCP8.5-SSP5 climate futures for 1,382 terrestrial 25 

vertebrates and 9,251 vascular plants at 5km2 for open access. This represents 60% of all Australian 26 

mammal species, 77% of amphibian species, 50% of reptile species, 71% of bird species and 44% of 27 

vascular plant species. We also include tabular data which includes summaries of total quality-weighted 28 

habitat area of species under different climate scenarios and time periods. Conclusions: These habitat 29 

suitability maps can be used as input data for landscape and conservation planning or species 30 

management, particularly under different climate change scenarios in Australia. 31 
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Data Description 37 

Introduction 38 

Rich spatial and temporal information about the effect of climatic and environmental change on species 39 

distributions is necessary to ensure robust species management and conservation policy more broadly 40 

(Bryan et al., 2014; Hanson et al., 2019; Leclère et al., 2020; Summers et al., 2012). Identifying areas 41 

where species occur now, as well as areas which may be suitable in the future, is a crucial aspect of 42 

decision making under uncertainty (Summers et al., 2012). The availability of resources for conservation, 43 

including financial, staffing and land availability, is limited and exacerbates the challenge of conservation 44 

planning during climate change (Hanson et al., 2019). These constraints have sparked the need for more 45 

strategic landscape and conservation planning methods, such as spatial prioritisation, to identify the most 46 

effective conservation solutions (Tulloch et al., 2015). Spatial information on where species are now and 47 

where suitable areas may be in the future is the foundation of efficient planning for conservation action, 48 

particularly in areas where local conditions are more sensitive to climate change (Summers et al., 2012). 49 

 50 

Australia is a hyper-diverse country with high levels of species endemism (Chapman, 2009; Coleman, 51 

2016). Unfortunately, Australia also has some of the highest recorded numbers of contemporary 52 

extinctions worldwide and more than 1900 species and ecological communities are even now under threat 53 

(Woinarski et al., 2019; Australian Government Department of Agriculture and the Environment, 2021). 54 

Given the extensive and severe range and population declines of many threatened species (Bergstrom et 55 



al., 2021; Kearney et al., 2018; Woinarski et al., 2019), many more species are also predicted to have a 56 

high risk of extinction in the future (Garnett et al., 2022). To ensure the conservation of Australia’s 57 

unique biodiversity, identifying and protecting important areas for species such as climate refugia is key 58 

to planning for resilience and adaptive capacity (Reside et al., 2014). To fulfill this task, underlying data 59 

on species location and the habitat suitability of areas for species under different climate futures is 60 

required.  61 

 62 

There are many ways to assess suitable areas for species, and one popular approach is to use the 63 

maximum entropy method (henceforth, MaxEnt). MaxEnt is a niche-based general-purpose machine 64 

learning method with a simple and precise mathematical formulation which is particularly well-suited for 65 

species distribution modelling with presence-only data (Phillips et al., 2006). Generating MaxEnt models 66 

for individual species at continental scales presents challenges around the processing and storage of large 67 

volumes of data. Graham et al. (2019) developed a comprehensive spatial dataset of 1,872 terrestrial and 68 

freshwater vertebrate species distributions using the Intergovernmental Panel on Climate Change’s 69 

(IPCC) AR4 Coupled Model Intercomparison Project 3 (CMIP3) future climate projections (Meehl et al., 70 

2007) and made them freely available through a web-based portal known as ‘CliMAS’. Although the 71 

CliMAS models led to many applied outcomes (Maxwell et al., 2019; Ward et al., 2022), the website was 72 

retired in 2020, in recognition of the fact that there have been two major updates by the IPCC and the 73 

current projections are based on CMIP6. For conservation planning to progress, an improved and enlarged 74 

suite of freely available spatial data, based on up-to-date climate projections and extended for a much 75 

broader range of species including vascular plants, is needed. 76 

 77 

We developed habitat suitability maps for Australian flora and fauna under different climate futures using 78 

a MaxEnt approach. We produced freely accessible Australia-wide habitat suitability maps for 1,441 79 

terrestrial vertebrates and 9,251 vascular plants. This represents 60% of all Australian mammal species, 80 

77% of amphibian species, 50% of reptile species, 71% of bird species and 44% of vascular plant species. 81 



We fit these models using 7 bioclimatic variables and 11 soil and landscape variables under 4 climate 82 

scenarios, 8 GCMs and 1 ensemble average, and 5 time periods. These habitat suitability maps are best 83 

used as input data to represent species or biodiversity values for conservation planning, particularly under 84 

different climate change scenarios in Australia.  85 

Methods 86 

The workflow for this study was adapted from the CliMAS project (Graham et al., 2019) (Figure 1). The 87 

first step involved compiling and collecting the input data which consisted of occurrence point data as 88 

well as climate, soil and landscape variables. We then used MaxEnt to fit models of habitat suitability 89 

using climate, soil and landscape variables. We conducted a variable selection procedure which 90 

considered the statistical and ecological importance of variables to refine the predictor variables as well as 91 

validating the models. We then used the lambda files produced in the model fitting step to project species 92 

habitat suitability under future climate scenarios and time periods.  93 

 94 

Figure 1 Workflow of the MaxEnt modelling procedure. Input data is represented as green, variable selection procedure is 95 

represented as purple, MaxEnt modelling procedure is represented as grey and the output files are represented as orange. 96 



Input data 97 

Species occurrence points 98 

Species occurrence records which were used to fit the historical climate models were sourced from the 99 

Australian Atlas of Living Australia (ALA) (Atlas of Living Australia, 2012), the Queensland Museum, 100 

and CSIRO. Vascular plant occurrence point data were acquired through from the Queensland Museum. 101 

Vertebrate species occurrence were records acquired through ALA went through an additional data 102 

cleaning process prior to modelling (see Graham et al., 2019). We used the points originally applied in the 103 

CliMAS project as of 2012 for vertebrates, and the vascular plant point compiled but never modelled with 104 

for the CliMAS project. Throughout these sources we obtained occurrence point data for 197 mammals 105 

(60% coverage), 523 birds (71% coverage), 530 reptiles (50%), 191 amphibians (77%) and 9,251 vascular 106 

plants (44% coverage). MaxEnt uses background sample points as pseudoabsences and recommends the 107 

use of target groups in sample selection (Philips et al. 2009). Each background file contained between 108 

60,000 to 250,000 points depending on the taxonomic group, in which MaxEnt takes a subsample of 109 

10,000 points. 110 

Environmental variables 111 

We used a combination of bioclimatic, soil and landscape variables as predictors to fit the MaxEnt 112 

models. For the climate variables, we downloaded spatial data at a 5km2 resolution on historical and 113 

future CMIP6 modelled bioclimatic variables through the WorldClim database (www.worldclim.org, 114 

accessed on September 2020). Bioclimatic variables summarise monthly temperature and rainfall values 115 

into 19 more biologically meaningful variables. Bioclimatic variables were downloaded for eight global 116 

climate models (GCMs): BCC-CSM2-MR, CNRM-CM6-1, CNRM-ESM2-1, CanESM5, GFDL-ESM4, 117 

IPSL-CM6A-LR, MIROC-ES2L, MIROC6, MRI-ESM2-0, for four shared socioeconomic (SSP) and 118 

representative concentration pathway (RCP) combinations: RCP2.6-SSP1, RCP4.5-SSP2, RCP7.0-SSP3 119 

and RCP8.5-SSP5 and 5 time-periods (1990, 2030, 2050, 2070 and 2090). As we did not have access to 120 



the following two files: IPSL-CM6A-LR SSP2-4.5 2030 and MRI-ESM2-0 SSP5-8.5 2030, we linearly 121 

interpolated values. All climate scenarios, bioclimatic variables were clipped to the extent of Australia 122 

prior to modelling. 123 

 124 

We downloaded 15 environmental variables from the Soil and Landscape Grid of Australia database 125 

(https://www.csiro.au/en/research/natural-environment/land/soil-and-landscape-grid-of-australia, accessed 126 

on Sep 2021) to use as environmental predictors of habitat suitability. Additionally, we downloaded the 127 

Interim Biogeographic Regionalisation for Australia (IBRA) as an indication of the inherent spatial 128 

differences in biome across Australia. Soil and landscape variables were clipped and masked to the extent 129 

of Australia and scaled to the same resolution as the bioclimatic data.  130 

MaxEnt modelling procedure  131 

Model fitting 132 

All habitat suitability models were fit in MaxEnt Version 3.4.1. Maxent models were first run with 10 133 

replicates validated using a cross validation method to train the model and to compute model validation 134 

statistics. At this stage, habitat suitability values are calculated as values between 0 and 1 with no 135 

threshold applied and were later converted to values between 0 and 100. Important outputs of the MaxEnt 136 

modelling procedure include a .csv file containing statistical information to inform variable selection and 137 

model validation as well as the ‘lambdas file’, which is a text file containing the regression coefficients, 138 

or lambdas, fit by MaxEnt during modelling. 139 

Variable selection 140 

The variables included in the final MaxEnt model runs were informed by analysing the variable 141 

contributions and importance percentages calculated using a full MaxEnt model run, information about 142 

variable complexity (Low et al., 2021), as well as ecological knowledge based on several published 143 

models of terrestrial vertebrate and vascular plant climate and habitat suitability. The goal of variable 144 



selection was to reduce the number of predictor variables from the initial 35 variables chosen as potential 145 

environmental predictors to avoid overfitting. Although Maxent is considered to be robust to 146 

multicollinearity among variables (Feng et al., 2019), including excessive numbers of predictors can 147 

affect the model’s ability to make inferences outside of the training data.  148 

 149 

We reviewed variables included within several Australian biodiversity modelling efforts of terrestrial 150 

vertebrates (Graham et al., 2019), and vascular plants (Butt et al., 2013; Gallagher et al., 2019). We then 151 

performed a full MaxEnt model run which included the 35 variables described in the above section, for 152 

each species. We reviewed the importance of variables based on the average percent contribution and 153 

percent importance values across all species. The percent contribution is a measure of the contribution of 154 

each variable towards model fit after each iteration of the MaxEnt model, while the percent importance is 155 

a measure of the importance of each variable towards model fit for the final MaxEnt model. We also 156 

categorised bioclimatic variables based on complexity and favoured simple variables as they tended to be 157 

less correlated with one another (Low et al., 2021).  158 

 159 

This combined approach to variable selection resulted in 18 variables which moved through to the model 160 

fitting stage (Table 1): 7 bioclimatic variables and 11 soil and landscape variables. All bioclimatic 161 

variables selected for this study were included in CliMAS models (Graham et al., 2019) and similar 162 

modelling efforts for Australian plants (Gallagher et al., 2019), and all bioclimatic variables with the 163 

exception of BIO15 were considered to be simple climate variables (Low et al., 2021) (Table 1). All 164 

bioclimatic variables except for BIO05 had high or moderate importance values in the full model. 165 

Similarly, we included additional soil and landscape variables (Hageer et al., 2017) based on their use in 166 

recent biodiversity models (Gallagher et al., 2019), and we favored soil and landscape variables that were 167 

simpler.   168 



Table 1 Summary of the bioclimatic, soil and landscape variable selected in the final MaxEnt model.  169 

Code Variable Name Contribution1 Importance2 Ecological Rationale 
Bioclimatic variables 

BIO1 Annual Mean Temperature 8.72 18.21 Influences thermal tolerances of species. 

BIO5 Max Temperature of 
Warmest Month 

6.33 9.92 
Influences upper thermal tolerances of species through extreme temperatures. 

BIO6 Min Temperature of Coldest 
Month 

4.30 8.66 Influences lower thermal tolerances of species through extreme temperatures.  

BIO12 Annual Precipitation 8.60 10.81 Average annual rainfall which influences water availability. 

BIO13 Precipitation of Wettest 
Month 

17.67 7.77 Maximum rainfall in the wettest month which influences maximum water 
availability. 

BIO14 Precipitation of Driest Month 14.93 8.45 Minimum rainfall in the driest month which influences minimum water availability. 

BIO15 Precipitation Seasonality 12.13 13.20 Standard deviation of rainfall in the annually which influences the variation in 
water availability. 

Soil and landscape variables 
AWC Available Water Capacity 0.94 0.68 The amount of water held by the soil for future use.  

BDW Bulk Density (Whole Earth) 0.89 1.17 Soil's ability to function for structural support, water and nutrient and microbial life 
movement, and soil aeration. 

CLY Clay 1.04 0.95 Promotes water retention and reduces air circulation in soil.  

DES Depth of Soil 2.00 1.29 Defines the root space and volume of soils available.  

ECE Electroconductivity 3.39 5.21 Movement of nutrients within the soil which influences the availability of soil 
nutrients. 

elev Elevation 2.37 1.57 Elevation influences soil properties and air pressure. 
pHc pH 5.43 4.30 Affects the amount of nutrients that are water soluble in soil. 

slope Slope Relief 1.81 1.00 Influences soil properties and creates varying microclimates. 

SLT Silt 2.63 2.10 Promotes water retention and creates relatively porous soil conditions.  

SND Sand 1.60 1.60 Promotes water drainage and air circulation in soil.  

SOC Organic Carbon 5.17 3.05 Promotes soil structure by providing a food source for micro-organisms.  
1 Average (mean) percent contribution in the final models for each environmental variable across all species. A measure of the contribution of each variable towards model fit 170 
after each iteration of the MaxEnt model.  171 
2 Average (mean) percent importance in the final models for each environmental variable across all species. A measure of the importance of each variable measure depends the 172 
resulting decrease in training AUC on the final MaxEnt model.  173 



Model validation  174 

Once variables were selected, models were re-run, and 175 

model performance was assessed based on the area under 176 

the curve (AUC) value, with AUC values of 0.7 or below 177 

indicating poor performance. This process resulted in 33 178 

birds, 4 vascular plants, 1 mammal, 0 reptiles and 0 179 

amphibians with AUC valus less than 0.7. The median 180 

AUC across all models was 0.9714. Prior to using species 181 

data, please ensure you check the AUC value which is 182 

contained withing the maxentResults.csv file.  183 

Model projections  184 

Using the best model selected in the model fitting procedure we projected species-level MaxEnt models 185 

under the future climate scenarios RCP2.6-SSP1, RCP4.5-SSP2, RCP7.0-SSP3 and RCP8.5-SSP5, 8 186 

GCMs, for 1 historical time-period (1990) and 4 future time-periods (2030, 2050, 2070, 2090) using the 187 

lambda files produced in the model fitting step. Using the predicted habitat suitability data, we then 188 

calculated an ensemble average (mean), minimum and maximum habitat suitability (to capture model 189 

variance) across 8 GCMs for each species, climate scenario and time-period.  190 

Geospatial calculations 191 

To describe the patterns of habitat suitability across time in an accessible tabular format we calculated the 192 

total quality-weighted sum of habitat suitability for each species under different climate scenarios at each 193 

time period (Equation 1). We first adjusted the resolution of the rasters to 1km2, therefore the quality-194 

weighted habitat area (qwHA) sum corresponds to the ‘habitat area’ in km2. For example, if the probable 195 

habitat suitability in a cell is equal to 1, the cell is equivalent to 1km2, whereas if the probable habitat 196 

Figure 2 Distribution of AUC values for species 
models. 

 



suitability in a cell is equal to 0.3, the cell is equivalent to 0.3km2. Noting that the quality-weighted 197 

habitat area is not equivalent to the realised area available for a species given ecological or land use 198 

constraints which can both influence habitat availability and suitability for species. The probability of 199 

habitat suitability (p) was summed across raster cells (xy), for each species (j), year (y) and climate 200 

scenario (c): 201 

𝑞𝑤𝐻𝐴!"# =&𝑝!"#,%"

&

'()

 202 

(Equation 1) 203 

To describe how the patterns of habitat suitability may have changed across space under different climate 204 

scenarios or years, we summarised raster data for each species in multiple ways. For each species (t) we 205 

calculated changes in habitat suitability (s) by subtracting future time periods and climate scenarios (yc) 206 

by historical climate niche (𝑝	+). Where positive values indicate areas that increase in suitability in the 207 

future and negative values indicate areas that decrease in climate suitability in the future. We provide 208 

visual representation of this information in Figure 6, and included the absolute and proportional change in 209 

habitat area in the tabular summaries provided for species:  210 

𝑠,
"#
	 = 	𝑝,+	 − 𝑝,

"#	
	 211 

(Equation 2) 212 

To spatially identify important areas of climate refugia which was done for Figure 5, we multiplied the 213 

historical habitat suitability matrix by the habitat suitability in each future climate scenario and year 214 

combination. For each the cell, the probability of habitat suitability values per cell (p), for each species 215 

(t), year (y) and climate scenario (c) were multiplied by the future habitat suitability. Cell values were 216 

then divided by 100, and the resulting cell value represents climate refugia (r) between 0 to 100.  217 

𝑟,
"#
	 = 	(𝑝,+	 ∗ 𝑝,

"#	)/100	 218 

(Equation 3) 219 



Re-use potential  220 

Code availability 221 

For each species, MaxEnt models were run directly from the terminal using java and bash syntax and 222 

were ultimately executed using SLURM on a high-performance Linux-based computer cluster. Additional 223 

modelling and geospatial analyses were processed using a shell file executed using SLURM on the 224 

computer cluster. Data and geospatial analyses were conducted in R version 4.0.1 (R Core Team., 2020), 225 

key libraries include the ‘tidyverse’ (Wickham et al., 2019), ‘sf’ (Pebesma, 2018) and ‘raster’ (Hijmans, 226 

2021). We used Python version 3.8.3 as well as the Geospatial Data Abstraction Library (GDAL). The 227 

scripts used in to generate this data is available in the GitHub repository, (see, 228 

https://github.com/CarlaBirdy/MaxEnt-habitat-models).  229 

Dataset 230 

Individual species’ maps for historical and future minimum, mean and maximum ensembled habitat 231 

suitability, as well as the MaxEnt lambda file and summary reports produced in this study are publicly 232 

accessible for download on the open-access companion GigaDB database (which upholds the FAIR 233 

principles, Wilkinson et al., 2016). This dataset includes species-level historical (1970-2000 centered on 234 

1990) and the future minimum, mean and maximum habitat suitability projections for 1,382 terrestrial 235 

vertebrates (182 amphibians, 487 birds, 178 mammals and 535 reptiles) and 9,251 vascular plants under 4 236 

climate scenarios and 5 time periods, this data equates to 521,017 rasters that are compressed using 237 

Lempel–Ziv–Welch (lzw) compression. Additionally, for each species we have included a .csv file which 238 

contains the total quality-weighted habitat areas (in km2) for each species under each different climate 239 

scenario and time period. We have also consolidated these tables across all species and included this 240 

tabular data. A complete list of the species for which habitat suitability maps were produced can be found 241 

in the companion GigaDB database. 242 



Spatial resolution of data 243 

This data is presented at 5km2 resolution which is aligned with the climate data used as key inputs to the 244 

MaxEnt model. The data can be subsequently downscaled to finer resolutions, however assumptions will 245 

have to be made about how habitat suitability is distributed across cells. The current resolution of this data 246 

is best utilised to understand general trends across space and time. To demonstrate the resolution, we 247 

present the southern cassowary (Casuarius casuarius) which is known to occur in the Wet Tropics region 248 

of Queensland, Australia. Current suitable areas for the southern cassowary are predicted to occur 249 

between Townsville to Cooktown, with an isolated area around the Iron Range (Figure 3). Taking the 250 

most severe climate change scenario (RCP8.5 - SSP5), the environmental space for the southern 251 

cassowary is predicted to reduce over time around its central habitat in the Atherton Tablelands. The 252 

maps for the southern cassowary can be compared with (Graham et al., 2019) for reference.    253 

 254 

Figure 3 This habitat suitability distribution is for the Southern cassowary (Casuarius casuarius) and presents its historical 255 

suitability projection. This zoomed in location map highlights the resolution of the data, and how the habitat suitability 256 

distribution for the Southern cassowary is modeled over time under the RCP8.5 - SSP5 scenario.  257 



Species-level data summary 258 

The dataset includes suitability maps for species under different climate scenarios and time periods using 259 

an ensemble average approach. Through the process of ensemble averaging, the minimum and maximum 260 

suitability maps were also produced. These maps can be compared to understand the bounds of how 261 

climate change may generally impact habitat suitability in the future. The importance of incorporating 262 

multiple GCM projections can be seen by the variation among the minimum, mean, and maximum 263 

suitability maps (Figure 4). For the common wallaroo (Macropus robustus), the differences between the 264 

minimum, mean, and maximum suitability maps are most apparent under worsening climate scenarios. 265 

Areas across the southern parts of Australia remain suitable across all three suitability maps, compared to 266 

areas in the central and northern parts of their range becoming progressively less suitable. These trends 267 

are consistent with other macropod modelling studies that also suggest suitability for the common 268 

wallaroo will track south as climate scenarios worsen (Ritchie & Bolitho, 2008). The maps for the 269 

common wallaroo can also be compared with (Graham et al., 2019) for reference.    270 

 271 



Figure 4 Minimum, mean, and maximum suitability value across GCMs. These habitat suitability distributions are for the 272 

common wallaroo (Macropus robustus) for four future emission scenarios in the year 2090. 273 

Spatial changes over time  274 

Taking this a step further, geospatial calculations can also be applied to determine the differences between 275 

years or climate scenarios. This can be conducted to identify areas of refugia (Equation 3), or the location 276 

and magnitude of change between different time periods (Equation 2). To calculate refugia, historical and 277 

future suitability maps can be multiplied together to accentuate areas in space that are suitable in both 278 

time periods. To calculate changes in habitat suitability, historical and future suitability maps can be 279 

subtracted from one another to accentuate areas in space that have changed in suitability across time 280 

periods. Using the snow gum (Eucalyptus pauciflora) as an example, we find refugia in the alpine region 281 

of Australia is predicted to decline for the snow gum under worsening climate scenarios, with declines 282 

being most severe in the year 2090 (Figure 5, top). Across all climate scenarios habitat suitability is 283 

declining from all areas of the snow gum’s range, and we did not identify areas of increases (Figure 5, 284 

bottom). 285 



 286 

Figure 5 These refugia and habitat suitability change maps are for the snow gum (Eucalyptus pauciflora). The Top Panel present 287 

climate change refugia for four future emission scenarios in the years 2030 and 2050. Darker blue on the refugia maps represent 288 

areas that have high predictive suitability historically as well in future time periods. The Bottom Panel present changes in habitat 289 

suitability for four future emission scenarios in the years 2030 and 2050. Darker orange areas indicate places that decrease in 290 

suitability compared to the previous time period, and white areas indicate no change in suitability. 291 

Changes in quality-weighted habitat area 292 

The dataset also includes a tabular summary of quality-weighted habitat area in km2 for each species 293 

under different climate scenarios and time periods (Equation 1 and Equation 2). The quality-weighted 294 



habitat area values can be analysed and plotted to understand the how climate change may impact habitat 295 

area for single species or groups of species in the future (Figure 6). When this data is summarised across 296 

all species, we can show that in 2030 the distribution of change in habitat area are similar across the four 297 

climate scenarios. However, in 2090 the distribution of change in habitat area follows a different pattern 298 

across climate scenarios with progressively more species loosing progressively more habitat area as 299 

climate scenario worsens (Figure 6). 300 

 301 

Figure 6 Histogram of the number of species and their relative change in quality weighted habitat area between 1990 and each 302 

future time period (2030, 2050, 2070, 2090). 303 

Discussion 304 

Spatial data on the suitability of areas for species is an important input to guide conservation planning, 305 

policy and management. The objective of this paper was to develop habitat suitability maps for Australian 306 



flora and fauna under different climate futures using a MaxEnt approach. This data has been developed in 307 

a way that is consistent across species and enables users to analyse how different climate futures may 308 

impact the habitat suitability for biodiversity more generally across Australia. This data can also be used 309 

for species-level analysis and can be a starting point for additional analyses which utilise either geospatial 310 

information or tabular information that could take into consideration additional information like land use, 311 

conservation actions or species ecology.  312 

  313 

This spatial and tabular dataset is ideal for users that would like to understand how the habitat suitability 314 

of areas for species is predicted to change over time or under different climate scenarios. Due to its 5km2 315 

spatial resolution, the data is best for understanding broader spatial trends that can be integrated into 316 

spatial planning (Maxwell et al., 2019), rather than more local management such as identifying specific 317 

sites for translocation (Eyre et al., 2022). For example, as presented above, these maps can be combined 318 

to evaluate how habitat suitability changes over time (Figure 6) or over space and time (Figure 5), which 319 

can then be considered into conservation or monitoring plans in areas which are predicted to lose or gain 320 

suitable areas for the species. These analyses can be conducted at a species or a taxonomic group level to 321 

support conservation actions for species of interest (e.g., threatened species) or for biodiversity values 322 

more generally. Spatial information about species could be directly utilised to develop management or 323 

monitoring plans that consider how climate change may impact the species habitat area.  324 

 325 

When using and interpreting the data contained in this data set it is important to consider the following 326 

limitations and considerations. This dataset presents the habitat suitability of areas for species under 327 

different climate scenarios and time periods. These maps are not distribution maps, rather they present 328 

habitat suitability based on climate, soil and landscape characteristics. These maps have not been 329 

thresholded nor do they consider dispersal (Graham et al., 2019), land use (Kapitza et al., 2021), 330 

biophysical capacity (Briscoe et al., 2023), or attributes that may be important for species of interest (e.g., 331 

fire or vegetation structure e.g., Eyre et al., 2022). The occurrence points used for this analysis were those 332 



originally used for the CliMAS work, and the ALA data were passed through an additional rigorous 333 

cleaning process. This process helped reduce the spatial bias and noise in the occurrence points (Phillips 334 

et al., 2009); however, more broadly there are sampling biases that influence the distribution of 335 

occurrence points, such as land tenure. To improve on the models, an integrated pathway to ALA into the 336 

modelling procedure would be ideal as this would ensure up-to-date input data. However, this can also 337 

come with challenges as occurrence data is required to have the same temporal resolution to the historical 338 

or current climate data (i.e., 1990 in this study). MaxEnt models are prone to overfit but are also less 339 

influenced by collinearity than statistical models, we tried mitigating the impacts of overfitting the 340 

MaxEnt models by conducting variable selection. There are a multitude of other methods to model 341 

suitability and species distributions that have their own use cases and limitations (Elith & Graham, 2009).  342 

 343 

To spatially target conservation actions, spatial information about the location and suitability of areas for 344 

species is needed. This study provides a comprehensive data set of predicted habitat suitability under 4 345 

climate futures, while also incorporating the uncertainty across GCMs. We are providing a spatial and 346 

tabular data product at the Australian scale and at 5km2 resolution that can be used to inform research and 347 

decision making at local, regional and national scales. This data can be applied within strategic 348 

conservation planning approaches and can be used to identify important areas for species consecration 349 

(Tulloch et al., 2015). Spatial information about current and future suitable areas for species is a key 350 

component of conservation planning, particularly as the impact of climate change on species and 351 

biodiversity is uncertain. 352 

 353 

Data availability 354 

All spatial and tabular data are freely accessible in the companion GigaDB repository. 355 
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