
Computationally reproducing results from
meta-analyses in Ecology and Evolutionary
Biology using shared code and data
Steven Kambouris

 

 1,2,*, David P. Wilkinson
 

 1,2, Eden T. Smith
 

 1,3, Fiona Fidler
 

 1,2,3
1MetaMelb Research Initiative, The University of Melbourne
2School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne
3School of Historical and Philosophical Studies, The University of Melbourne
*Correspondence: steven.kambouris@unimelb.edu.au

ABSTRACT

Many journals in ecology and evolutionary biology encourage or require authors to make their data1

and code available alongside articles. In this study we investigated how often this data and code could2

be used together, when both were available, to computationally reproduce results published in ar-3

ticles. We surveyed the data and code sharing practices of 177 meta-analyses published in ecology4

and evolutionary biology journals published between 2015–17: 60% of articles shared data only, 1%5

shared code only, and 15% shared both data and code. In each of the articles which had shared both6

(n = 26), we selected a target result and attempted to reproduce it. Using the shared data and code7

files, we successfully reproduced the targeted results in 27–73% of the 26 articles, depending on the8

stringency of the criteria applied for a successful reproduction. The results from this sample of meta-9

analyses in the 2015–17 literature can provide a benchmark for future meta-research studies gauging10

the computational reproducibility of published research in ecology and evolutionary biology.11
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1 INTRODUCTION12

Over the past decade, meta-research (or metascience) has emerged as the term for the rigorous evaluation13

of research (1). The emergence of meta-research is related to discussions of replication and reproducibility14

across multiple disciplines, notably psychology (2), and including ecology and evolutionary biology (3–6).15

Replication is one focus of meta-research studies in ecology and evolutionary biology (7; 8), but the remit16

ofmeta-research encompasses topics such as the extent of selective reporting and publication bias in ecology17

(9; 10), the prevalence of questionable research practices amongst ecologists (11), and analytic flexibility18

(12). Closely related to meta-research studies identifying such problems are works and initiatives proposing19

solutions, based on principles of openness and transparency. Initiatives in the field include the Tools for20

Transparency in Ecology and Evolution (13), which was followed by the formation of the Society for Open,21

Reliable, and Transparent Ecology and Evolutionary Biology (SORTEE) for ecologists and biologists with22

an interest in transparency and open science (14).23

This study contributes to the meta-research within ecology and evolutionary biology by focusing on com-24

putational reproducibility. Computational reproducibility is defined as “obtaining consistent results using25

the same input data; computational steps, methods, and code; and conditions of analysis” (15, p.46). By26

this definition, availability of both the data and code underpinning an article is a necessary prerequisite for27

computational reproducibility. Thus, our study of computational reproducibility is also a study of data28

and code availability. (Note that if data but not code were available, recalculation of results could still be29

attempted using the written description of statistical analysis methods to write fresh analysis code. Such an30

approach has been called “analytical reproducibility” and has been studied separately (16–18). Although31

analytical reproducibility and computational reproducibility are related concepts, in this study we focused32

on computational reproducibility.)33

If we have the shared data and code for an article, then ideally we should be able to use both to recalculate re-34

sults thatmatch the published results. The technical difficulty of achieving this in practice iswell-recognised,35

even for researchers returning to their own computer code years later (19). Thus, there have been a number36

of studies across different disciplines gauging how often results in the published literature can actually be37

computationally reproduced from data and code. Stodden et al. (20) evaluated the effectiveness of the data38

and code sharing policy implemented in the journal Science in 2011, by attempting to obtain data and code39

for 204 articles published after the policy change in order to computationally reproduce their results. They40

obtained data and code for 44% of articles in the sample and were able to successfully reproduce results for41

26% of the sample. Wood et al. (21) assessed the computational reproducibility of 109 articles published42
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in 2014 from journals in development, economics, and public health. Their study, described as a “research43

audit exercise” found that a lack of available data and codemeant that reproduction could not be attempted44

for 71% of articles in the sample. They were able to reproduce results identical to or within rounding of the45

original results for 27 articles, and found only minor differences in another 5 articles. In psychology, Obels46

et al. (22) considered a set of 62RegisteredReports published over 2014–18, and found 36 (58%) had shared47

data and code, making them suitable candidates for attempting computational reproducibility. They suc-48

cessfully reproduced the main results of 21 of these 36 articles, which was 58% of the attempts made. More49

recently, Crüwell et al. (23) audited 14 articles published in a 2019 issue of Psychological Science, all of which50

had been awarded anOpenData Badge (https://www.cos.io/initiatives/badges) signifying that51

the article authors had shared the data for reproducing their results. Crüwell et al. (23) found that while all52

14 articles did share data, only 6 shared code. Their attempts to computationally reproduce results from this53

issue found that one article was exactly reproducible, and three were reproducible with only minor differ-54

ences. In ecology and evolutionary biology, ArchMiller et al. (24) attempted to computationally reproduce55

a sample of 80 studies published in the The Journal ofWildlifeManagement andWildlife Society Bulletin.56

They were able to obtain data and code for 19 of the studies, and mostly or fully reproduce the results for57

13 of them.58

Such results reinforce the centrality of data and code sharing to computational reproducibility. Data shar-59

ing is a well-established topic in ecology and evolutionary biology, with numerous efforts to facilitate and60

improve data sharing, coming from both individual researchers and institutions such as journals. Journals61

have recognised and stressed the importance of data archiving (25–27). Researchers have created guides and62

compiled advice for how to best approach data archiving and sharing (5; 28; 29). There have also been ef-63

forts to review the effectiveness of data archiving policies and assess how the field is doing (30–32). Code64

availability in ecology and evolutionary biology has also been studied: Mislan et al. (33) surveyed 96 ecology65

journals in 2015, and found that only a small minority (14%) required code to be made available alongside66

published articles (in contrast to 38% of journals requiring data be made available alongside published arti-67

cles). Culina et al. (34) repeated this survey in 2020 and found that of the same 96 journals, 75% mandated68

or encouraged making code available. However, despite this now common journal policy, Culina et al. (34)69

also found that only 27% of a sample of 346 ecology articles published 2015–19 actually shared code.70

Aims and scope71

We conducted computational reproducibility attempts on a sample of meta-analyses published in ecology72

and evolution journals over 2015–17 (the restriction to meta-analyses is explained in Section S1 of the Ap-73
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pendix). Our focus was on using shared data and code files to reproduce specific results. The primary out-74

come of the reproducibility attempts is the calculation of an overall computational reproducibility “success75

rate”, similar to Stodden et al. (20).76

This study commenced in late 2017 following rising interest inmeta-research within ecology and evolution-77

ary biology, including interest in data- and code-sharing specifically (32; 33). While the results of this study78

are not a reflection of what the rate of computational reproducibility in more recent ecology and evolution-79

ary biology literature might be, they do provide a benchmark of the state of computational reproducibility80

during the period 2015–17, and provide a point of comparison for other evaluations of computational re-81

producibility over earlier or more recent periods.82

We surveyed the data- and code-sharing rates of the applicable meta-analysis literature. We only counted83

as “shared” data/code that was reported as already available, rather than data/code that was (potentially)84

available upon request. It is possible that some authors of the meta-analyses included in this study may85

have shared their data and code in response to a request. However, a request for data or code requires an86

interaction between the requesting party and the article authors, and there is a possibility that the request87

will not be successful, for a variety of reasons (e.g., the authors are no longer contactable via the contact88

details provided in the article, the authors do not respond in a timely manner, the authors respond but89

refuse for some reason, or the authors respond but can no longer find the data and code). We decided not90

to request data or code from article authors in this study, because requesting data/code would introduce a91

element of the study that may not be reproducible by others: the success or failure of any requests would92

rely on factors such as timing, existing connections (of lack thereof) with authors, and the purpose behind93

the request.94

2 METHODS95

Our studyhad four stages: first, weobtained a sample of publishedmeta-analyses fromecology and evolution96

journals; second, we assessed each meta-analysis for data- and code-sharing; third, we selected results to be97

reproduced using the shared data and code; and finally, we attempted to reproduce the selected results.98

We curated a set ofmeta-analyses to survey by conducting a Scopus abstract and citation database search (see99

details in Section S2 of the Appendix). The search query, conducted on 20thDecember 2017, searched arti-100

cle titles, abstracts, and keywords for the string “meta-anal*”, subject to two constraints. The first constraint101

restricted results to articles published between 2015 and 2017, inclusive. The second constraint restricted102

results to articles published in one of 21 ecology and evolution journal titles (identified by ISSN), which are103
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Figure 1: PRISMA-style flow diagram depicting the article selection process.

the same journal titles as used for the survey of meta-analyses conducted in Nakagawa and Santos (35).104

The search yielded 229 results. One irrelevant result was found to have been included in the results due to a105

Scopus database error and was immediately excluded, leaving 228 results.106

The search results were coded to retain only those articles which were actual meta-analysis studies, details107

of the coding scheme used are in Section S2 of the Appendix. The final set of ecology and evolutionary108

biology meta-analyses, the basis of the rest of this study, was a set of 177 articles coded as reporting to be109

meta-analyses. Figure 1 shows a PRISMA-style flow diagram for this study.110

Recording code and data sharing in each article111

Each meta-analysis article in the set of 177 was assessed for data and code sharing using the coding scheme112

detailed in Section S4 of the Appendix. It was expected that “data” (curated, formatted information—both113

numeric and text-based—that was the “raw material” for reported calculations and analyses) would be pre-114

sented in one or more formatted computer files (e.g., in comma separated values format), possibly accom-115
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panied by additional computer documents containing metadata or explanations of the data files’ contents.116

FollowingMislan et al. (33) andCulina et al. (34), we regarded “code” as referring to computer code, specif-117

ically analysis code, designed to do tasks such as importing and manipulating data and performing statisti-118

cal calculations based on data (e.g., calculating summary statistics or fitting models). Code may have been119

written in a programming language (e.g., R or Python) or it may have been syntax designed to be run by a120

dedicated statistical analysis software package such as SPSS, SAS, or STATA.121

“Sharing” meant that the authors of the article had made data and code files available alongside the publica-122

tion of the article. For journals which were not Open Access, data and code files provided as supplementary123

materials on publishers’ websites were typically hidden behind subscriber paywalls along with the articles124

and were not available to everyone. We made the decision that data and code provided in this way counted125

as having been shared for the purposes of this study. It is for this reason that we have chosen to refer to126

“shared” data and code rather than “open” data and code, since “open” carries with it connotations about127

availability and accessibility that may not apply to data and code files provided as supplementary material128

behind a publisher’s paywall.129

We also reviewed the methods section of each article for references to the use of software. If an article did130

not report any details of software used, we reviewed supplementary documentation if supplied. The review131

process is detailed in Section S5 of the Appendix.132

Selecting target results for computational reproduction133

For each article in the subset of meta-analysis articles with both shared data and code, we identified a nu-134

meric “target” result that would be the basis of the computational reproduction attempt. Selecting a single135

result from an article involved subjective judgment, and could potentially be manipulated to increase or de-136

crease the chance of success of reproducing each result. To mitigate this risk, we used the following process137

to identify a target result: our target result would be the first meta-analytic summary effect (consisting of138

the point estimate, the sample size, and the measure of uncertainty such as a confidence interval) reported139

in the results section of each article. The reasoning for this strategy is as follows: (i) in general, summary140

effects are commonly reported in meta-analyses, and so this would identify like results across articles; and141

(ii) identifying the first reported result is a consistent method of selection across articles that minimises (but142

does not eliminate) the need for interpretation and therefore reduces the risk of bias. A procedure which143

allowed for results to be deliberately chosen for computational reproduction could potentially be selected144

on the basis of perceived ease of reproduction.145

In practice, identifying and extracting the first reported meta-analysis summary effect was complicated by146
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two factors. First, articles presented results in different ways: some articles reported results in the body of147

the text while others referred to a table or figure. We extracted numerical values directly from in-text results148

and from results presented in tables. For results presented graphically in figures, we extracted numerical149

results using the software package WebPlotDigitizer version 4.4 for the Windows platform. We rounded150

all values extracted from figures to two decimal places. Figures required additional interpretation if they151

plotted multiple summary effects. In these cases, we prioritised extracting the “overall” summary effect if it152

existed, and otherwise selected the “first” plotted result, according to the layout of the figure (e.g., either the153

leftmost or topmost result). Frequently, a result was reported in-text and also expressed in a figure/table; we154

prioritised extracting in-text results over results reported in figures/tables. The second factor was that not all155

meta-analysis articles actually reported a summary effect result. In these cases, we extracted numerical values156

for the first-reported result of any kind associated with the meta-analysis.157

Reproducing results and results comparison158

For each article, we assessed the shared data and code for its relevance to the identified target result using the159

following strategy: (i) where available, we consulted documentation accompanying the data and code files;160

(ii) we examined any comments made within the code syntax files; (iii) where available, we examined the161

metadata of data files; (iv) we examined the contents of data files directly, looking for clues in variable names162

and data formats; (v) we examined the syntax of code files directly, looking for clues in function names and163

the kinds of calculations made. This approach was sufficient to discern with confidence whether the data164

and code files were applicable to the re-calculation of the target result. We went ahead with attempting to165

reproduce the target result for each article where both the shared data and code were found to be relevant.166

In cases where the code and/or data was not relevant to the identified target result, we stopped attempting167

to reproduce those particular target results. Rather than do nothing further with these cases, we returned168

to the article and identified an alternative target result that was relevant to the shared data and code and169

reported the results of these reproduction attempts separately.170

Each reproduction attempt was packaged as a reproducible document written in RMarkdown contained171

within a controlled computational environment using Docker (details are in Section S9 of the Appendix).172

Where code couldbe successfully run, reproduced target resultswere comparedwith the originally published173

values. For each target result (which consisted of a set of numbers e.g., summary effect estimate, confidence174

interval bounds, and sample size), we followed the method used in Hardwicke et al. (17) and quantified175

the difference between the original published value and reproduced value by calculating the relative error,176

expressed as a percentage: δ = 100 × |xR − xO |/|xO |, where xO is the original reported result value and xR177
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is the reproduced result value. Note that the relative error is undefined when the original value is zero, and178

can have a large value when |xR − xO | is greater than |xO |. FollowingHardwicke et al. (17), we distinguished179

between three categories of error, exact matches (δ = 0%), minor numerical discrepancies (0% < δ < 10%)180

andmajor numerical discrepancies (δ ≥ 10%). Althoughwe calculated the relative error for all target values,181

for reporting purposes we introduced a category of matches to the rounding precision of the original result:182

if an original result value was 1.51 (reported to two decimal places), we considered reproduced values of 1.50183

and 1.52 (±0.01) to be matched to rounding precision.184

3 RESULTS185

The 177 meta-analyses were located within the 21 journals as shown in Table 1. The table also shows the186

total number of articles from each journal returned by the literature search. Note that neither Evolutionary187

Ecology or The Quarterly Review of Biology were found to have published any articles which reported to be188

meta-analyses over 2015–17 (the literature search did not return any results at all from the journal Evolu-189

tionary Ecology). The journal found to have the most meta-analyses during 2015–17 was Biological Reviews,190

followed byOikos. The meta-analyses in the sample were fairly evenly spread across the three years searched,191

as shown in Table 2. Note that six articles have a publication year of 2018; these articles had all been pub-192

lished online during 2017 (and so were picked up in the literature search), but at the time of the literature193

search had not yet been assigned to a journal issue. These six were subsequently published in journal issues194

dated in 2018. We kept these six journal articles and regarded them as published in 2017.195

Rates of data and code sharing196

When articles were reviewed for data sharing (as per the coding scheme described in Section S4 of the Ap-197

pendix), a clear majority of 78% or 138 meta-analyses indicated that data had been shared in some manner.198

Despite the positive indication, in five cases data files could not actually be obtained. This meant that the199

effective data sharing rate among this sample of meta-analysis articles was 75% (133 out of 177).200

The rates of code sharing were much lower in comparison to data sharing: we were able to obtain code files201

for 16% of meta-analysis articles (28 out of 177). This was one less than the number of articles which had202

indicated code was available. Of the 28 articles with code, 26 had shared data too, meaning that 15% of203

articles (26 of 177) in this sample shared both data and code. Section S6 of the Appendix breaks down data204

and code sharing rates by journal.205
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Meta-analysis Other Total
Journal Title N % N % N %
Biological Reviews 24 13.6 5 9.8 29 12.7
Oikos 22 12.4 2 3.9 24 10.5
Ecology Letters 19 10.7 1 2.0 20 8.8
New Phytologist 18 10.2 5 9.8 23 10.1
Ecology 13 7.3 9 17.6 22 9.6
Journal of Applied Ecology 10 5.6 2 3.9 12 5.3
Molecular Ecology 10 5.6 5 9.8 15 6.6
Oecologia 10 5.6 1 2.0 11 4.8
Functional Ecology 9 5.1 1 2.0 10 4.4
Journal of Ecology 7 4.0 0 0.0 7 3.1
Journal of Animal Ecology 6 3.4 3 5.9 9 3.9
Ecological Monographs 5 2.8 0 0.0 5 2.2
Behavioral Ecology 4 2.3 3 5.9 7 3.1
Evolution 4 2.3 0 0.0 4 1.8
Journal of Evolutionary Biology 4 2.3 10 19.6 14 6.1
Animal Behaviour 3 1.7 2 3.9 5 2.2
Behavioral Ecology and Sociobiology 3 1.7 0 0.0 3 1.3
Ecological Applications 3 1.7 0 0.0 3 1.3
The American Naturalist 3 1.7 1 2.0 4 1.8
The Quarterly Review of Biology 0 0.0 1 2.0 1 0.4
Evolutionary Ecology 0 0.0 0 0.0 0 0.0
Total 177 100.0 51 100.0 228 100.0

Table 1: Breakdown of the 177 identified meta-analysis articles by journal title.

Publication Year N %
2015 56 31.6
2016 61 34.5
2017 60 33.9
Total 177 100.0

Table 2: Breakdown of the 177 identified meta-analysis articles by publication year. Articles with publication
year 2017 includes six articles which were first published online in 2017 before being assigned to a journal issue
dated in 2018.

Characteristics of shared data and code206

Figure 2 lists the locations of the shared data files for the 133 articles. Themajority of articles that shared data207

did so on the journal publisher’s website (58%, n = 77): in these cases, the data file(s) had been uploaded208

as supplementary material to the article. The Dryad Digital Repository (36) was the next most common209

location to share data (35% or 46 articles), followed by the Figshare (8%, n = 11) and Zenodo (1.5%, n = 2)210

repositories. One article was judged to have shared the data for its meta-analyses in tables presented within211

the published article itself: the article mentioned that the effect sizes and other details for all the individual212

studies included in the meta-analysis calculations were provided across two tables.213

Figure 3 shows the types (formats) of data files shared by the 133 articles. The most common format for214
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Figure 2: Breakdown of the locations where articles shared data online. Note that some articles shared data files
in more than one location; both locations were counted, so the percentages indicated add up to more than 100%.

data files was a Microsoft Excel spreadsheet (44%, n = 59); this included both the binary XLS format and215

the Open XML XLSX format. The next most common format was the comma separated values (CSV)216

format (25%, n = 33). Data in a variety of plain text formats was shared by 15% of articles (n = 20): this217

included files containing phylogenetic data in NEXUS or Newick tree format. A substantial minority of218

articles shared tabular data in document formats likeMicrosoftWordDocument formatsDOCandDOCX219

(17%, n = 22), Portable Document Format PDF (14%, n = 19), HypertextMarkup Language HTML (2%,220

n = 3), and one article shared data in Rich Text Format RTF (1%). Two articles shared data files with a221

binary format: one article shared a data file in RData format, a binary file used by the R language, and one222

article shared multiple data files in a proprietary binary format associated with data logging equipment.223

Table 3 breaks down the type (i.e., language or compatible software environment) of code shared by the 28224

meta-analysis articles which shared code. The majority of articles shared R code (26 out of 28, 93%): 25225

shared only R code, and one article shared R code and C++ code, which were designed to work together.226

The remaining two articles shared FORTRAN code and Python code respectively.227

Software mentioned in articles228

Overall, 171meta-analysis articles (97%)mentioned at least one specific software package that was used dur-229

ing the study, whether mentioned in the article text or in supplementary material. The R software environ-230
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Figure 3: Breakdown of the types of file format shared by each article. Some articles shared data files of more
than one type, and both types of file were counted (multiple files of the same file format only counted as one).
This means that the percentages will add up to more than 100%.

Type of code shared N %
FORTRAN 1 3.6
Python 1 3.6
R 25 89.3
R and C++ 1 3.6
Total 28 100.0

Table 3: The 28 code-sharing meta-analysis articles broken down by type of code shared.

ment was the most commonly mentioned software package with nearly 80% of articles mentioning R. The231

next most commonly mentioned piece of software was MetaWin; 11% of articles mentioned using it. The232

specialised meta-analysis software package CMA was mentioned by two articles, or 1% of the sample. The233

full list of all software packages mentioned is in Section S7 of the Appendix. Due to the popularity of R in234

this sample, and the specifics of its package system, R and R packages were summarised separately from the235

non-R software packages.236

There were 144 mentions of software packages that were not the R software environment or an R package.237

Themajority of thesementionswere accompanied by a reference: 83 (58%) included a complete citation that238

appeared in the article’s reference section, and 39 (27%) included a short in-text reference. The short in-text239

references included simple mentions of the software publisher or author, and/or a URL to the software’s240

website. Only 15% of these software package mentions had no citation of any kind. A majority of these241
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software package mentions (95, or 66%) also specified which version of the software package was used.242

Nearly 80% (141) of meta-analysis articles mentioned using the R software environment. The majority of243

these mentions of R included a citation: 86 (61%) included the citation in the reference section and 21244

(15%) included a short in-text reference. The version of R used was mentioned in 88 (62%) articles (see245

Table S9 in Section S7 of the Appendix). In total, there were 257 mentions of specific R packages: 220246

(86%) included a full citation and 3 (1%) a short in-text reference. Themost commonR packagementioned247

was themetafor package (37), mentioned by 75 articles (53% of the articles which mentioned R). Package248

versions were mentioned in 58 (23%) cases. A table listing all R packages mentioned in articles is provided249

in Table S8 in Section S7 of the Appendix.250

Reproducing target results251

We used the subset of 26 articles with both shared data and shared code for the reproduction attempts. For252

each article we selected a target result; in 22 cases, we were able to identify what we termed a “summary253

effect” result: a mean, correlation, or model parameter such as slope derived from the data collected for the254

meta-analysis. These target results are detailed in Table 4. In the other 4 cases, the articles did not report255

such a result, but instead a variety of different results from an eclectic set of analyses. These other results are256

specified by article in Tables S10-S15 in Section S8 of the Appendix.257
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ID Study Result source Effect size type N Estimate Uncertainty
MA016 (38) in text (p.1100) Pearson’s r 49 -0.83 < 0.001 (p-value)
MA060 (39) in text (p.674) Fisher z-transformation 37 0.044 (-0.174, 0.289) (95%HPDI)
MA062 (40) in text (p.1115) Hedges’ d 37 -0.205 (-0.444, 0.035) (95% CI)
MA065 (41) in text (p.80) Hedges’ g 703 -8.42 (-10.73, -6.63) (95% CI)
MA067 (42) in text (p.306) Hedges’ g 52 -0.21 0.07 (SE), -2.7 (z-score),

0.006 (p-value)
MA068 (43) in text (p.14) odds ratio 75 1.82 (1.37, 2.41) (95%HPDI)
MA071 (44) Figure 3A (p.538) response ratio 50 -0.26 (-1.02, 0.51) (95% CI)
MA074 (45) in text

(pp.2795-2796)
Pearson’s r 43 0.183 (0.089, 0.274) (95% CI)

MA081 (46) in text (p.5351) slope parameter 1296 1.30 (0.95, 1.66) (95% CI)
MA091 (47) in text (p.2556) Cohen’s d 65 0.56 (0.42, 0.69) (95% CI)
MA095 (48) Figure 3A

(pp.1495-1496)
Fisher z-transformation 25 0.76 (0.61, 0.91) (95% CI)

MA126 (49) in text (p.83) log odds ratio n.s. -1.11 0.49 (SE), -2.28 (z-score),
0.023 (p-value),
(-2.06, -0.15) (95% CI)

MA145 (50) in text (p.366) Fisher z-transformation 118 -0.08 (-0.22, 0.03) (95%HPDI),
38 (Nstudies), 25 (Nspecies)

MA147 (51) in text (p.66-69) percentage 49 0.13 0.030 (SE),
(0.074, 0.19) (95% CI)

MA155 (52) in text (p.565) Pearson’s r n.s. 0.51 0.01 (p-value)
MA188 (53) in text (p.653) log response ratio 818 -0.363 (-0.408, -0.318) (95% CI)
MA191 (54) in text (p.92) slope parameter 553 0.86 (0.77, 0.94) (95% CI)
MA198 (55) in text (p.4595) Fisher z-transformation 79 -0.41 (-0.55, -0.27) (95% CI)
MA202 (56) in text

(pp.1072-1073)
Hedges’ d 329 -0.330 (-0.503, -0.156) (95% CI)

MA211 (57) Figure 2 (p.374) log response ratio 3298 0.24 (0.23, 0.25) (95% CI)
MA213 (58) in text (p.2004) difference in means 654 -0.07 0.362 (p-value)
MA229 (59) Figure 3 (p.256) log response ratio 57 0.40 (0.24, 0.53) (95% CI)

Table 4: Details of the 22 summary effect target results selected for reproduction attempts. In the table, the following abbreviations are used: CI – confidence interval; HPDI –
highest posterior density interval; SE – standard error; n.s. – not stated
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There were 173 separate values across the 26 target results from the articles with both data and code, with an258

average of 6.7 valuesmaking up each target result. This included summary effect estimate values, sample size259

values, measures of uncertainty such as lower and upper bounds of confidence intervals described inTable 4,260

and other values described in Tables S10-S15 in Section S9 of the Appendix.261

Table 5 summarises the relevance of the articles’ shared code to the target results: Of the 22 articles with262

summary effect target results, 19 had relevant code and one had partially relevant code. Of the 4 articles263

with other target results, one had relevant code and two had partially relevant code. The remaining cases264

did not have relevant code. “Not relevant” meant that the shared code performed calculations or analyses265

that were unrelated to the calculation of the target result selected for reproduction or any meta-analysis266

results (the code conducted simulations or analysed experimental data instead.) “Partially relevant” code267

performed calculations or analyses that related to meta-analysis results, but not the target result selected for268

reproduction. The “not relevant” and “partially relevant” code could not be used to reproduce the target269

result.270

We judged 20 out of 26 articles with shared data and code (77%) to have code relevant to the target result271

and attempted to reproduce those 20 results.272

We attempted to reproduce the 108 target results associated with the 20 articles with relevant code. The273

reproduction attempt for each article was fully documented in a report; refer to Section S9 of the Appendix274

for details. We regarded the 65 target results associated with the six articles with irrelevant/partially relevant275

code as failed attempts (we return to these articles in the next section). Table 6 summarises the results of the276

reproduction attempts of the target results.277

Table 6 shows that just under 50% of target results could either be reproduced either exactly or differed278

only by the rounding precision of the original value (rounding or floating point errors could explain these279

discrepancies). Of the remaining target results, thirteen differed from the original value by less than 10%,280

three reproduced values differed from the original value by 10% or more, and there were six target results281

from three articles that could not be reproduced at all; the circumstances of these six failures are described282

in Table 7.283

The summary of the reproduction attempts in Table 6 counts every target result value separately, whether284

an effect size point estimate, a lower or upper bound of a confidence interval, or a sample size. Calculating285

a reproducibility success rate over the total number of values in this way does not consider that the sets of286

values from each article are inter-dependent, and so the success or failure in reproducing one value from an287

article may not be considered to be independent of the success or failure in reproducing another value from288
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ID Study Result type Code relevance
MA016 (38) summary effect not relevant
MA060 (39) summary effect relevant
MA062 (40) summary effect relevant
MA065 (41) summary effect relevant
MA067 (42) summary effect relevant
MA068 (43) summary effect partially relevant
MA071 (44) summary effect relevant
MA074 (45) summary effect relevant
MA081 (46) summary effect relevant
MA091 (47) summary effect relevant
MA092 (60) other result not relevant
MA094 (61) other result partially relevant
MA095 (48) summary effect relevant
MA126 (49) summary effect relevant
MA129 (62) other result relevant
MA145 (50) summary effect relevant
MA147 (51) summary effect relevant
MA155 (52) summary effect not relevant
MA188 (53) summary effect relevant
MA191 (54) summary effect relevant
MA198 (55) summary effect relevant
MA202 (56) summary effect relevant
MA211 (57) summary effect relevant
MA212 (63) other result partially relevant
MA213 (58) summary effect relevant
MA229 (59) summary effect relevant

Table 5: Summary of reviews to gauge the relevance of shared code to each target result.
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Outcome of target result reproduction attempt N %
Original and reproduced values match exactly 75 43.4
Original and reproduced values differ by rounding precision 11 6.4
Original and reproduced values differ by less than 10% 13 7.5
Original and reproduced values differ by 10% or more 3 1.7
Failed, could not calculate any value for target result 6 3.5
Failed, code not relevant to target result 65 37.6
Total 173 100.0

Table 6: Breakdown of the reproduction attempt outcomes for the 173 target results.

the same article. The possibility of dependency of reproduction success between the different target values289

within an article is examined in Section S9 of the Appendix.290

ID Study Target result(s) Description
MA081 (46) 2 values (upper and

lower confidence
interval limits)

The code uses bootstrapping to
calculate the reported confidence
interval, but we encountered an
error: the bootstrapping procedure
as coded creates random data from
which the bootstrapped value cannot
be calculated, making it impossible to
complete the bootstrap calculation.

MA211 (57) 4 values (summary
effect estimate, upper
and lower confidence
interval limits, sample
size)

There is a mismatch between the
supplied data and code: the code that
would clearly calculate the target re-
sults attempts to subset the supplied
data using a variable that does not
appear anywhere in any shared data
files.

Table 7: Descriptions of the failures to reproduce target results.

The original and reproduced values for the summary effect size target results are compared in Table 8. Apart291

from one failure to reproduce a summary effect size (MA211), the reproduced values were close to the orig-292

inally reported values. All reproduced summary effect sizes were in the same direction as the original. There293

were nine exact matches between original and reproduced values. Of those that were not exact matches, six294

(MA060, MA062, MA071, MA191, MA198, MA229) differed by the rounding precision of the original295

values, and so were off by ±0.001 (where reported to 3 decimals places) or ±0.01 (where reported to 2 deci-296

mal places). Also, five cases with discrepancies (MA060,MA062,MA065,MA198,MA202) usedmethods297

which relied on random number generation (Markov chain Monte Carlo and multiple imputation). The298

code for these articles did not include information about setting a random seed, and so it was not possible299

to recover the precise target result value as originally calculated by the code.300
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ID Study Effect size type Original Reproduced Percent error (%)
MA060 (39) Fisher z-transformation 0.044 0.043 2.27*
MA062 (40) Hedges’ d -0.205 -0.204 0.49*
MA065 (41) Hedges’ g -8.42 -8.87 5.34
MA067 (42) Hedges’ g -0.21 -0.21 0.00
MA071 (44) response ratio -0.26 -0.27 3.85*
MA074 (45) Pearson’s r 0.183 0.185 1.09
MA081 (46) slope parameter 1.30 1.30 0.00
MA091 (47) Cohen’s d 0.56 0.56 0.00
MA095 (48) Fisher z-transformation 0.76 0.76 0.00
MA126 (49) log odds ratio -1.11 -1.11 0.00
MA145 (50) Fisher z-transformation -0.08 -0.08 0.00
MA147 (51) percentage 0.13 0.13 0.00
MA188 (53) Log response ratio -0.363 -0.363 0.00
MA191 (54) allometric slope parameter 0.86 0.85 1.16*
MA198 (55) Fisher z-transformation -0.41 -0.42 2.44*
MA202 (56) Hedges’ d -0.330 -0.340 3.03
MA211 (57) log response ratio 0.24
MA213 (58) difference in means -0.07 -0.07 0.00
MA229 (59) log response ratio 0.40 0.39 2.50*

Table 8: Original and reproduced values of target summary effect sizes, for articles with relevant code. Percent errors marked with * indicate that these results differed only by the
rounding precision of the original values.

18



A full table showing comparisons of original and reproduced values for all target results is provided in Ta-301

ble S16 in Section S9 of the Appendix.302

Reproducing target results when code not relevant303

The previous section identified six cases where the code shared with the article was only partially relevant or304

not relevant to the article’smeta-analysis results. Therewere three caseswith shared code judged partially rel-305

evant, and three cases with shared code judged not relevant (these cases are described in detail in Section S10306

of the Appendix).307

As described earlier, the target results for these articles were regarded as failed reproduction attempts. How-308

ever, we reviewed the code and data for these articles again, with the following in mind: (i) where the shared309

code was at least partially relevant to the meta-analysis in the article, could the code that had been shared310

be used to reproduce an alternative meta-analysis target result, and (ii) where the shared code was clearly311

not relevant to the meta-analysis, was the shared data and meta-analysis methods description in the article312

enough to allow us to write code to successfully reproduce the selected target result. The results of assessing313

two articles fitting scenario (i) are described in Section S10 of the Appendix; one article’s code despite be-314

ing partially relevant was judged unworkable and so was treated as part of scenario (ii) along with the three315

articles with code not relevant.316

Table 9 breaks down the outcomes of the analytical reproduction attempts when writing new R code: we317

were able to calculate a value to compare to the original for all target results from the four articles considered.318

There were 44 exact matches between original and reproduced values (75%), and of the non-exact matches,319

one differed by the rounding precision of the original value, ten (17%) reproduced values were within 10%320

of the original values, and three (5%) reproduced values were more than 10% from the original values. The321

was also one case of a non-numeric text string not matching the original text string.322

Outcome of target result reproduction attempt N %
Original and reproduced values match exactly 44 74.6
Original and reproduced values differ by rounding precision 1 1.7
Original and reproduced values differ by less than 10% 10 16.9
Original and reproduced values differ by 10% or more 3 5.1
Original and reproduced values differ (non-numeric target result) 1 1.7
Total 59 100.0

Table 9: Breakdown of reproduction attempt outcomes for 59 target results from articles with irrelevant code.
The irrelevant code shared by four articles (MA016, MA092, MA155, andMA212) required the writing of
entirely new code to attempt to reproduce their target results. In this table, “N” refers to the number of
reproduction attempts falling into each outcome category, and “%” expresses this as percentage out of all 59 of
these attempts.
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As these results show, the reproduction attempts using newly-written R code were largely accurate, even323

though they did not constitute a computational reproducibility attempt evaluating both the shared data324

and code of the articles, as was the case for the results in the previous section.325

Computational reproduction success rates326

The overall computational reproducibility success rate for this study depends on how it is defined. Different327

definitions lead to different values for the numerator and denominator in the calculation. We considered328

the success rate in terms of the number of meta-analysis articles with successful reproductions of the target329

results. Sincemultiple target result valueswere identified in each of the 26 articles with shared data and code,330

the reproduction success on each individual target result value needed to be collapsed into a single result at331

the article level. There were different approaches to this, with varying levels of strictness.332

Table 10 reports the overall computational reproducibility success rates for different collapsing approaches333

across two scenarios: (i) when all six code-irrelevant cases were considered failures by default (and thus only334

the 20 articles with target result-relevant code could be potential successes), and (ii) when the reproduction335

attempts from both the 20 articles with target result-relevant code and the four articles where we wrote new336

R code were included in the success calculations (the two articles where alternative target results were se-337

lected in order to evaluate the shared code were still considered failures by default). In addition, for each338

scenario, two success rates were calculated: one which expressed the number of successful article reproduc-339

tion attempts as a percentage of all 177 meta-analysis articles in the sample, and the other which expressed340

the number of successful article reproduction attempts as a percentage of the subset of 26 meta-analysis341

articles which shared code and data.342

Depending on the level of stringency applied to count as a success, the success rate for the code-relevant cases343

onlywas in the range of 4.0–10.7%of all articles in the sample (or 26.9–73.1%of articleswith code and data).344

Including the cases where new code was written for the code-irrelevant cases raised the success rate, with a345

range of 5.1–13.0% of all articles in the sample (or 34.6–88.5% of the articles with code and data).346

4 DISCUSSION347

In their study of the availability of code in ecology, Culina et al. (34) estimated the proportion of the ecol-348

ogy literature surveyed that was potentially computationally reproducible. The threshold for articles to be349

potentially reproducible was that (seemingly) all the code and data required to reproduce results was shared,350

with the assumption that in practice shared code aswell as datawas required for reproducibility. They found351

that 20% of literature published in 2015–16 and 21% published in 2018–19 was potentially reproducible.352
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All code-irrelevant cases
considered failures

Including attempts where
new code was written
for code-irrelevant cases

Result for article N Success
rate (%), all

Success
rate (%),
subset

N Success
rate (%), all

Success
rate (%),
subset

All target result values match
original exactly

7 4.0 26.9 9 5.1 34.6

At least 50% of target result
values match original exactly

13 7.3 50.0 16 9.0 61.5

All target result values match
original exactly or to rounding
precision

9 5.1 34.6 11 6.2 42.3

At least 50% of target result
values match original exactly or
to rounding precision

17 9.6 65.4 21 11.9 80.8

All target result values within
10% of original

15 8.5 57.7 17 9.6 65.4

At least 50% of target result
values within 10% of original

19 10.7 73.1 23 13.0 88.5

Table 10: Reproducibility success rates at the article level for different collapsing criteria. In this table,N is the
number of articles meeting each collapsing criterion, “success rate (%), all” expressesN as a percentage of all 177
meta-analysis articles in the sample, and “success rate (%), subset” expressesN as a percentage of the subset of 26
articles with shared data and code. In the first three columns of this table, the articles with data and code judged
irrelevant to the target results were considered failures by default. In the last three columns, reproduction
attempts where we wrote new code to reproduce the target results were included in success calculations.

In this study, we found that 14.7% of articles in our 2015–17 sample (26/177) shared both code and data.353

Thus, under a definition of computational reproducibility that requires both data and code (used in both354

Culina et al. (34) and here) we found that 15% of articles had the potential to have results computationally355

reproduced.356

Comparing this result to the results in Culina et al. (34) is not entirely like for like, since different sets357

of journals and time periods were surveyed and this study was restricted to meta-analyses exclusively while358

Culina et al. (34) was not. Nevertheless, both studies generally agree that the potential for ecology literature359

to be computationally reproducible was low during the period 2015–17, using the reasonable threshold of360

20% as a “low” occurrence rate.361

Of course, this study went further than Culina et al. (34) and actually attempted to computationally repro-362

duce results. As seen inTable 10, failures to reproduce results and the discovery that some codewas irrelevant363

resulted in an actual computational reproducibility rate of 4.0–10.7% (depending on the criterion for suc-364

cess applied). This actual success rate(s) can be compared with the success rate observed in ArchMiller et365

al. (24): 8 out of the 74 suitable articles (published 2016–18) reviewed were found to be fully reproducible,366

and a further 5 out of 74 articles partially computationally reproducible, for a success rate of 11% (fully re-367
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producible only) or 18% (fully and partially reproducible). (Although 74 out of an original 80 articles were368

reviewed in total, the researchers could only obtain data and code and thus make a reproducibility attempt369

for 19 of those articles.) The difference in methods for reporting reproducibility success differed between370

ArchMiller et al. (24) and this study, making a direct comparison difficult to interpret: ArchMiller et al.371

(24) rated the computational reproducibility of articles on a five-point scale which required some qualita-372

tive judgment by the researchers, while this study has reported multiple success rates according to different373

sets of quantitative criteria for success. In addition, in theArchMiller et al. (24) study, authors of the original374

articles were contacted to request data and code, which might have contributed towards the higher success375

rate observed.376

In Culina et al. (34), ArchMiller et al. (24), and this study, the low rates of reproducibility (potential or377

actual) were driven by the low rates of ecology and evolutionary biology articles with both shared data and378

code. While presenting results in the context of all articles surveyed is clearly warranted, calculating com-379

putational reproducibility success rates in this way masks the extent to which data and code, once obtained,380

can be used to successfully reproduce results. As seen in Table 10, among the subset of articles where com-381

putational reproduction was actually attempted, the success rates are much higher as the denominator has382

been reduced from 177 to 26. Thus, when both data and code were available for an article, all target results383

could bematched exactly in 27% of cases. Relaxing the threshold required to rounding precision rather than384

strictly exact, all target results could be matched in 35% of cases. Although it is still interesting to investigate385

precisely why the shared data and code do not produce the exact same results more often than this, these re-386

sults are heartening: the availability of data and code did allow for the exact or close reproduction of results387

in a substantial fraction of cases. Andwhile this study has included strict criteria forwhat counts as a success,388

the level of stringency researchers place on the accuracy and precision of reproduced results will depend on389

their specific purposes. In a hypothetical circumstance where reproducing all results to within 10% of the390

original values were acceptable, the clear majority (58%) of articles with data and code in this study would391

meet this criterion.392

The results mentioned above do not include the cases where we wrote new code for those articles where the393

shared code turned out to be irrelevant to the target result. If these attempts were included in the success394

rate calculations, the results would improve as shown in Table 10. However, the inclusion of these results as395

“computational reproducibility” attempts does not fit with our initial definition of computational repro-396

ducibility, which posits both data and code be used to recalculate a result. We regarded writing new analysis397

code from a description of the methods to be a different category of task (“analytic reproducibility”). Con-398
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ducting analytic reproducibility attempts (based on a sample of the meta-analysis articles which shared data399

only, for example) in addition to the four attempts in this study was beyond the scope of this study.400

Although our canonical computational reproducibility attempts made use of existing code that had been401

shared to re-run an analysis, we still needed to write bespoke code in order to facilitate the attempt. All at-402

tempts required custom code for minor matters like specifying input file locations and re-directing analysis403

output. Occasionally, custom code was required for more substantial tasks such as processing the shared404

data files before they could be analysed by the shared code. This frequent need for such additional effort405

by the researcher conducting the computational reproduction is well recognised in other studies of compu-406

tational reproducibility. The reproducibility project described in Wood et al. (21) had an expectation that407

replication code and data received would be “ready-to-run”; they used the term “push button replication”408

to describe computational reproducibility attempts, which suggests an ideal scenario where an independent409

researcher can simply “push the button and reproduce the published results” (21, p.2). However, this was410

rarely attainable in practice, and to get code working, researchers sometimes had to escalate from minor411

code troubleshooting (e.g., installing required libraries, or changing the version of a software package used)412

to “[changing] commands in Stata to allow the code to run, updating commands to the current version of413

the software, and even correcting typos in an attempt to reproduce the original results” (21, p.7). This was414

recognised separately in Stodden et al. (20), who classified the different levels of effort required when at-415

tempting to reproduce results from 22 articles. The classification captured the escalation of effort required416

fromminor difficulties or tweaks (such as installing required software libraries, or adjusting code to work on417

a different computational system) to major, tedious difficulties (such as needing to write code to re-format418

data or fill in missing steps) (20, Table 4). We encountered similar difficulties to those described in Stodden419

et al. (20) and Wood et al. (21), and although we have sought to make a clear distinction between compu-420

tational reproducibility and analytic reproducibility by contrasting “running existing code” with “writing421

new code”, we acknowledge that in practice this distinction may become blurred in cases of computational422

reproducibility attempts requiring new code to be written. Further scrutiny of the definition of “computa-423

tional reproducibility” in the light of the results of this study is included in Section S11 of the Appendix.424

Limitations425

A limitation of this study is that the observed rate(s) of computational reproducibility were possibly under-426

estimated. By design, this study did not attempt to contact article authors seeking access to data and code.427

Although other studies (20; 24) report mixed success with receiving data and code from authors, it is still428

the case that assistance from original authors could have lifted the rate of obtained data and code for articles,429
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and in turn potentially the overall reproducibility rate(s).430

We did not record the time spent on each reproduction attempt, despite some attempts takingmuch longer431

than others. Given that researcher time, effort, and opportunity cost are important considerations, this is432

perhaps a lost chance to have provided additional information about the activity of reproduction.433

Although the strategy of selecting only a single target result to reproduce per article made it feasible to at-434

tempt to reproduce results from more articles, it did not provide a measurement of the reproducibility of435

entire articles. Thus, on the basis of these investigationswe cannot claim that any of these articles are entirely436

“reproducible”. Despite this limitation this strategy can be considered in the context of a “triage” approach:437

a hypothetical article identified as failing such a relatively simple reproducibility check likely has issues with438

the data, code, or the reliability of published results that must be addressed before further time/effort is439

expended, or before any results are taken to be accurate for particular purposes.440

5 CONCLUSION441

This study, like Wood et al. (21) and Crüwell et al. (23), is an example of an audit of the computational442

reproducibility of the literature that ought to be a regular, ongoing part of the broader project of meta-443

research to bolster the credibility of results within disciplines. Such checks are an effective gauge the efficacy444

of data- and code-sharing practices and policies, as well as providing assurance on the accuracy of published445

results. Ourmethods for conducting the reproduction attempts can be used as a template for computational446

reproducibility projects, and which can be expanded upon as required. Our results can be a benchmark and447

point of comparison for the success rates of other computational reproducibility attempts, at other times448

and for different types of studies.449

Wereported the success rate of computational reproducibility of one type of study (meta-analysis) published450

during 2015–17. The low rate of code sharing among articles published during this period was the princi-451

pal limitation on the number of possible reproduction attempts. From this, improvement in computational452

reproducibility would then depend on researchers sharing their code alongside their data when publishing.453

Journal and funder policies mandating code sharing are clearly one key element of achieving higher rates of454

code sharing; another would be to equip researchers with the knowledge they need to produce (re-)usable455

code that can be shared with confidence. On this point, there are a number of resources specifically for456

ecology and evolutionary biology researchers. The guide to reproducible code published by the British Eco-457

logical Society (64) provides a overviewofworking reproducibly at all stages of a researchproject, from initial458

organisation and structuring of code files to the archiving of a completed project. For the actual writing of459

24



code, the introduction to writing “clean code” by Filazzola and Lortie (65) emphasises the formatting and460

organisation of code to facilitate clear communication of code’s purpose and function. There is also an ef-461

fort to alert researchers to tools that canmake reproducible work easier: Braga et al. (66) have compiled a list462

of 12ways researchers in ecology and evolutionary biology can use online code repository GitHub, from the463

straightforward archiving of code and data files to using it to coordinating code development across a team464

of collaborators.465

Whilewidespread availability of codewouldundoubtedly assist audit studies investigating computational re-466

producibility post-publication, the success rate of such studieswould be further improved (perhaps substan-467

tially so) if code was reviewed before publication, perhaps as part of peer review as discussed by Fernández-468

Juricic (67). Ivimey-Cook et al. (68) provide a comprehensive primer of code review at all stages of a research469

project, outlining a workflow for conducting effective reviews. Implementing code review into the research470

process (whether as part of formal peer review or not) would require a change in current research practices471

and the allocation of resources; the costs of this would need to be compared against the advantages of en-472

hancing the reproducibility of reported results.473

Given the initiatives to improve researchers’ code, in concert with journal policies mandating data and code474

sharing, and the growing awareness of a role for code review, there is reason to be optimistic that future475

studies of computational reproducibility in ecology and evolutionary biology will not only find higher rates476

of success, but will be easier for meta-researchers to conduct.477
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S1 META-ANALYSIS IN ECOLOGY AND EVOLUTIONARY BIOLOGY478

Any study reporting numerical results (i.e., not just meta-analyses) can potentially be the subject of an at-479

tempt to computationally reproduce results, so why focusing on meta-analyses? First, there is a practical480

imperative here: narrowing the scope of this study makes it tractable. The ecology and evolution literature481

is vast and varied, and although the literature at large could be sampled to arrive at a manageable subset482

of articles to assess, the screening process to identify suitable candidate articles and exclude irrelevant ones483

would be arduous without some sort of guiding principle. In that sense, “meta-analysis” is just one of many484

potential ways to winnow down the literature, in that it is a quantitative method that produces numerical485

results that can (in principle) be subject to a computational reproducibility attempt. But still, why narrow486

the scope to meta-analyses in particular? To contextualise our answer to this, we start with a brief review of487

meta-analysis in ecology and evolutionary biology.488

Meta-analysis in ecology and evolutionary biology489

Meta-analysis, a set of statistical methods for combining the results of multiple studies, is a widely-used tool490

for research synthesis inmedicine, the social sciences, and natural sciences (69). Meta-analysis has been used491

for decades in disciplines such as psychology, education, and especially medicine, where it has become a492

core tool for assessing the evidence of treatments, in particular via Cochrane systematic reviews (70; 71). In493

addition to an enormous literature onmethods of meta-analysis, guidelines such as the Preferred Reporting494

Items for Systematic Reviews andMeta-Analyses (PRISMA) have been developed to standardise howmeta-495

analyses are performed and reported (72; 73). PRISMA has been extended to be relevant to meta-analyses496

in ecology and evolutionary biology specifically (74).497

Compared to some other disciplines, meta-analysis was adopted by ecology and evolutionary biology rela-498

tively recently, but has grown substantially, from a handful of meta-analyses published in the early 1990s499

to over 500 meta-analyses published in 2010 (69). In addition to meta-analyses themselves, there have been500

numerous methodological papers and handbooks covering how meta-analytical methods can be applied in501

circumstances specific to ecology/evolutionary biology (e.g., 75–78). Most relevantly for this paper, there502

have also been reviews of how meta-analyses have been conducted within the fields of ecology and evolu-503

tionary biology.504

An early review of methods in meta-analysis (79) reviewed 29 meta-analyses published between 1991 and505

1998, and is a useful baseline to track howmethodology has progressed since the early years of meta-analysis506

in ecology. Overall, it was observed that techniques used in themedicalmeta-analysis literature had not been507
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adopted in ecology, in particularmethods of assessing publicationbias (only 34%ofmeta-analyses accounted508

for publication bias, and all calculated a Rosenthal fail-safe number; none used superior alternatives such as509

funnel plots, regression or the “trim and fill” method—refer to (35) for summaries of these methods). 76%510

of meta-analyses used the Q statistic to explore heterogeneity in effect sizes, and 17% included a sensitivity511

analysis of some kind. 28% of meta-analysis provided no information on how the primary studies were512

located. In terms of the effect sizes used by the meta-analyses, 55% used standardised mean differences, 31%513

used the Pearson correlation coefficient, and 7% used response ratios.514

(35) conducted a survey of 100 “biological” meta-analyses (i.e., meta-analyses in ecology and evolutionary515

biology) published over 2009–2011. They found that only 17% controlled for phylogenetic relatedness be-516

tween species, and 49% usedmethods to identify and/or assess the impact of publication bias (specifically, to517

identify publication bias, about 40% of thesemeta-analyses used funnel plots, about 10% used a correlation-518

based method, less than 10% used a quantile plot-based method, and about 5% used a regression-based519

method. For assessing the impact of publication bias, about 30% calculated Rosenthal fail-safe numbers520

and less than 10% used the “trim and fill” method). In terms of the effect sizes used by meta-analyses, about521

60% used standardised mean differences, about 20% used correlation coefficients and the remainder used522

other measures.523

(80) specifically addressed the point about a need for the term “meta-analysis” to be well-defined in the ecol-524

ogy and conservation biology literature. They examined 133 nominalmeta-analyses, and applied a two-stage525

rating system based on the technical requirements for ameta-analysis according to themedical meta-analysis526

literature. They found that only 45% of the meta-analyses satisfied all requirements in the first stage of rat-527

ing, and 25% of the meta-analyses satisfied none. In the second stage of rating which involved only 83 of528

the meta-analyses which had scored sufficiently highly in the first stage, only a single meta-analysis satisfied529

all second stage requirements, and 22% of the second stage meta-analyses satisfied none. The authors rec-530

ommended that going forward, “meta-analyses” in ecology journals ought to include the seven technical531

requirements outlined in their review.532

(81) performed a similar review to both (35) and (80), but focused on meta-analyses in plant ecology. They533

developed a 16-item rubric to assess the quality ofmeta-analyticmethods, based onprevious reviews ofmeta-534

analytic methods with some additions and refinements. Each item in the rubric listed meta-analyses that535

were exemplars of relevant method(s). They used a 14 of these items to assess the methods used in a sample536

of 322 meta-analyses in plant ecology. The results were mixed: although meta-analyses in plant ecology537

were highly likely to list all primary studies included in the analysis (87% of meta-analyses in the sample) or538
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explore caused of heterogeneity in results (89%), only 32% reported the full details of their literature searches,539

only 31% considered publication bias, and only 25% conducted a sensitivity analysis. 5% of meta-analyses540

considered changes in study effect sizes over time, and 11% took phylogenetic relatedness into account.541

(82) used a 17-item rubric very similar to (81) to evaluate the methods used by 18 meta-analyses published542

in the journalMolecular Ecology. The goal of this paper was to formalise the definition of meta-analysis for543

editors, authors, reviewers, and readers of the journal. They found that only 22% of studiesmet the standard544

expected for an effectivemeta-analysis, which required satisfying at least 15 of the 17 items, and 56%ofmeta-545

analyses satisfied 9 or fewer of the 17 items. The adherence to the differentmethods wasmixed: While 100%546

of themeta-analyses provided a list of the primary studies included and documented themeta-data extracted547

fromeach, and94%mentioned the inclusion/exclusion criteria used for selected studies, 50% includeddetails548

of the literature search terms used and only 22% provided details of both the databases searched and dates549

the searches were conducted. Only 33% ofmeta-analyses took publication bias into account, 22%quantified550

the heterogeneity between effect sizes, and only 33% explicitly reportedwhether theywere using a fixed effect551

or random effects model.552

The common theme of heterogeneity in the methods labelled as “meta-analysis” in the ecology literature553

has led to the emergence of what might be called the “formal” (80; 81) or “narrow” (83) definition of meta-554

analysis: (81) define meta-analysis “a set of statistical methods for combining outcomes (effect sizes) across555

different data sets addressing the same researchquestion to examinepatterns of response across these data sets556

and sources of heterogeneity in outcomes”, although they do also note that there is no single agreed-upon557

checklist for assessing whether a given meta-analysis is using the correct methods for this purpose. What558

does seem clear is that themethods and procedures of the formal/narrowmeta-analysis are those mentioned559

in the checklists/rubrics/rating systems of (80), (81), and (82).560

Focusing on meta-analysis in this study561

The first and primary reason for choosing to focus on meta-analysis is this: despite the findings outlined562

in the previous section, meta-analyses are (relatively) uniform in their statistical methods and data, and so563

restricting the study to meta-analyses allows for the assessment of “like” studies. This has a few different564

dimensions that speak to the tractability of the study:565

• The great variety in quantitative and statisticalmethods employed across the entire ecology and evolu-566

tion literature (with the accompanying variety in computational resource requirements) means that567

failure to computationally reproduce one study but not another could be a result of radically differ-568
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ent scales of computational requirements, which is a confounding factor we’d like to avoid as much569

as possible, due to limited resources. Potential ways of dealing with this (e.g., screening articles to pre-570

clude studies with “too high” computational resource requirements) seem too subjective and difficult571

to operationalise. Choosing a single type of study, meta-analysis, acts to reduce the likely variation in572

computational resource requirements.573

• In general, meta-analytic models are fitted using relatively small data sets (in the order of tens or hun-574

dreds, perhaps thousands, of data points as opposed to “big data” with millions of data points) and575

require modest computational resources (i.e., can be easily run on a desktop or laptop computer with576

no high performance computing resources required).577

• Meta-analyses in particular benefit from the existence of standards for reporting, e.g., PRISMA. Rel-578

evantly for this study, this includes standards around the reporting/sharing of data. While a given579

meta-analysis may not be obliged to strictly adhere to all PRIMSA reporting guidelines, the existence580

of such guidelines makes it more likely that different studies can be assessed on a like basis than if no581

such guidelines or standards existed.582

The second reason is, as mentioned earlier, meta-analysis has become an important part of the fields of ecol-583

ogy and evolution. To the extent that meta-analyses become regarded (for better or worse) as a higher stan-584

dard of evidence, it commensurately raises the stakes of meta-analytic results. In that context, being able to585

assure the results of meta-analyses through computational reproduction has some value.586

S2 LITERATURE SEARCH587

We set about curating a set of meta-analyses to survey by conducting a Scopus abstract and citation database588

search (we accessed the Scopus database via the University ofMelbourne library’s subscription). The search589

query, conducted on 20th December 2017, searched article titles, abstracts, and keywords for the string590

“meta-anal*”, subject to two constraints. The first constraint restricted results to articles published between591

2015 and 2017, inclusive. The second constraint restricted results to articles published in one of 21 ecol-592

ogy and evolution journal titles (identified by ISSN). The journal titles included are as follows: The Amer-593

ican Naturalist, Animal Behaviour, Behavioral Ecology, Behavioral Ecology and Sociobiology, Biological Re-594

views, Ecological Applications, Ecological Monographs, Ecology, Ecology Letters, Evolution, Evolutionary Ecol-595

ogy, Functional Ecology, Journal of Animal Ecology, Journal of Applied Ecology, Journal of Ecology, Journal of596

Evolutionary Biology,Molecular Ecology,New Phytologist,Oecologia,Oikos,Quarterly Review of Biology.597

The Scopus search string used was as follows:598
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TITLE-ABS-KEY ( meta-anal* ) AND ( PUBYEAR = 2015599

OR PUBYEAR = 2016 OR PUBYEAR = 2017 )600

AND ISSN ( 0003-0147 OR 0003-3472 OR 1045-2249 OR 0340-5443601

OR 1464-7931 OR 1051-0761 OR 0012-9615 OR 0012-9658602

OR 1461-023x OR 0014-3820 OR 0269-7653 OR 0269-8463603

OR 0021-8790 OR 0021-8901 OR 0022-0477 OR 1010-061x604

OR 0962-1083 OR 0028-646x OR 0029-8549 OR 0030-1299605

OR 0033-5770 )606

This list of ecology and evolution journal titles is the same as used for the survey of meta-analyses conducted607

in (35). This choice was made to (i) be assured of searching journals that actively published meta-analyses,608

and (ii) keep the study tractable: (35) yielded 390 studies from their three-year (2009–11) search of these609

journal titles and kept the 100 most recent meta-analyses, so that gave an indication of the approximate610

number of meta-analysis studies we would need to review. It is unclear if this set of journal titles can be611

considered a “representative” sample of all ecology and evolutionary biology journals; one obvious factor is612

that not all journals would necessarily consider meta-analyses to be within their scope. However, it seems613

clear that the list of journals used for this study is notparticularly aberrant, at least: for example, (33) reviewed614

the data and code release policies of 96 “ecology” journals indexed by Web of Science, and the list of 96615

journals reviewed includes 17 of the 21 titles surveyed by (35).616

Identifying meta-analyses617

The search results returned articles which contained the string “meta-anal*” somewhere in the article’s title,618

abstract, or list of keywords. However, not all such articles will necessarily be meta-analyses. The next step619

was to screen the articles to obtain a sample of “meta-analyses”. As the review of the ecological meta-analysis620

methodology literature foreshadowed, this was not straightforward.621

The articles were screened using a two-step process: first, some types of articles were checked for and when622

found, put aside. These article types were (i) errata or corrigenda notices, and (ii) letters or comments in623

reply to a previously published article. Since errata and comments rely heavily on the context provided by624

the article they are in reference to (which may or may not be a meta-analysis, and which may or may not625

be in scope of the literature search), they were considered not suitable to include as “meta-analyses”. We626

considered these article types to be straightforward to identify (due to clear cues in their title, and other627

contextual clues such as being included in a comments/letters section of a journal issue), and so removed628

them from consideration without a formal review of their contents.629
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The second step involved evaluating the remaining articles in the following way: rather than checking they630

meet a particular set of methodological requirements, meta-analyses were identified by confirming that an631

article merely includes a claim that it is a meta-analysis (or that a meta-analysis was conducted, or words to632

that effect) or not. This approach to identifying meta-analyses was intended to be as generous as possible633

and methodologically agnostic.634

Identifying a claim that an article is/conducts ameta-analysis still requires judgment and interpretation, and635

is subjective. To make the claim identification process transparent, we constructed and employed a simple636

coding schemewith eight items to summarise the “evidence” in support of each article claiming to be ameta-637

analysis. The coding scheme is outlined inTable S1. This scheme records the use of the term “meta-analysis”638

in crucial places in the article (title, abstract, keywords if the article includes them), as well as the quoted text639

of any actual claim found within the body of the article text.640

For items 1–4 and 7, the value “Y” indicates an unambiguous “yes” to the question/contention posed in the641

column “Description” of Table S1, and the value “N” indicates an unambiguous “no”. For items 1–4, the642

value “U” was available to indicate situations where the mention of “meta-analysis” was somehow unclear.643

For item 3 only, the value “N/A” was used to indicate that an article did not include any keywords.644

Items 5 and 6 record the most substantive piece of evidence: text, directly quoted from the article, which645

contains the claim to be a meta-analysis (if the claim can be found). Item 7 contains the final judgment of646

whether the article can be considered to include a claim or not (either yes “Y” or no “N”), and item 8 records647

any additional notes about the judgment.648

All articles remaining after the first step were coded using this scheme. In practice, this meant searching the649

text of each article for the string “meta” (this word fragment was chosen to avoid issues with the matching650

of the hyphen in “meta-analysis”), and reviewing all matches in order to answer the coding scheme items.651

Articleswere considered as claiming to be ameta-analysis if the value of item7 (Claim in article) in the coding652

scheme was “Y” . Articles found not to include such a claim (a value of “N” for item 7) were put aside.653

The final set of ecology and evolutionary biology meta-analyses, to be the basis of the rest of this study, is654

simply the set of 177 articles coded as containing claims to be meta-analyses. The bibliographic details of all655

177 meta-analysis articles are listed in Table S2.656
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Index Field Values Description
1 Claim in title Y, N, U Does the article include the term “meta-

analysis” in its title?
2 Claim in abstract Y, N, U Does the article include the term “meta-

analysis” in its abstract?
3 Claim in keywords Y, N, U, N/A If applicable, is “meta-analysis” one of the

article’s keywords?
4 Claim in body text Y, N, U Does the article body text contain a claim

to be a meta-analysis?
5 Quote of claim open text The actual text of the claim as it appears in

the article.
6 Quote page number open text Page number(s) the quote appears on.
7 Claim in article Y, N An overall judgment of whether or not the

article claims to be a meta-analysis.
8 Notes open text Any additional notes about the article’s

meta-analysis claim status.

Table S1: The eight item coding scheme used for determining whether an article claims to be a meta-analysis. In
the Values column, “Y” indicates “yes”, “N” indicates “no”, “U” indicates “unclear”, and “N/A” indicates “not
applicable”.

Table S2: References for all 177 meta-analysis articles in the data set used in this study.

ID Study

MA001 Bowles TM, Jackson LE, Loeher M, Cavagnaro TR. Ecological intensification and arbuscular mycor-

rhizas: a meta-analysis of tillage and cover crop effects. Journal of Applied Ecology. 2017;54(6):1785–1793.

doi:10.1111/1365-2664.12815

MA003 Mori AS, Tatsumi S, Gustafsson L. Landscape properties affect biodiversity response to retention approaches

in forestry. Journal of Applied Ecology. 2017;54(6):1627–1637. doi:10.1111/1365-2664.12888

MA005 Charlebois JA, Sargent RD. No consistent pollinator-mediated impacts of alien plants on natives. Ecology

Letters. 2017;20(11):1479–1490. doi:10.1111/ele.12831

MA006 Martin-StPaul N, Delzon S, Cochard H. Plant resistance to drought depends on timely stomatal closure.

Ecology Letters. 2017;20(11):1437–1447. doi:10.1111/ele.12851

MA009 Romano A, Saino N, Møller AP. Viability and expression of sexual ornaments in the barn swallow Hirundo

rustica: a meta-analysis. Journal of Evolutionary Biology. 2017;30(10):1929–1935. doi:10.1111/jeb.13151

MA010 Davidson KE, Fowler MS, Skov MW, Doerr SH, Beaumont N, Griffin JN. Livestock grazing alters

multiple ecosystem properties and services in salt marshes: a meta-analysis. Journal of Applied Ecology.

2017;54(5):1395–1405. doi:10.1111/1365-2664.12892

MA011 Grant JWA, Weir LK, Steingrímsson SÓ. Territory size decreases minimally with increasing food abundance

in stream salmonids: Implications for population regulation. Journal of Animal Ecology. 2017;86(6):1308–

1316. doi:10.1111/1365-2656.12737

MA013 Horswill C, O’Brien SH, Robinson RA. Density dependence and marine bird populations: are wind

farm assessments precautionary? Journal of Applied Ecology. 2017;54(5):1406–1414. doi:10.1111/1365-

2664.12841
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MA014 Auer SK, Killen SS, Rezende EL. Resting vs. active: a meta-analysis of the intra- and inter-specific asso-

ciations between minimum, sustained, and maximum metabolic rates in vertebrates. Functional Ecology.

2017;31(9):1728–1738. doi:10.1111/1365-2435.12879

MA015 Buchanan AL, Hermann SL, Lund M, Szendrei Z. A meta-analysis of non-consumptive predator effects in

arthropods: the influence of organismal and environmental characteristics. Oikos. 2017;126(9):1233–1240.

doi:10.1111/oik.04384

MA016 XuX,Medvigy D, JosephWright S, Kitajima K,Wu J, Albert LP, et al. Variations of leaf longevity in tropical

moist forests predicted by a trait-driven carbon optimality model. Ecology Letters. 2017;20(9):1097–1106.

doi:10.1111/ele.12804

MA017 Soria M, Leigh C, Datry T, Bini LM, Bonada N. Biodiversity in perennial and intermittent rivers: a meta-

analysis. Oikos. 2017;126(8):1078–1089. doi:10.1111/oik.04118

MA018 Delavaux CS, Smith-Ramesh LM, Kuebbing SE. Beyond nutrients: a meta-analysis of the diverse effects of

arbuscular mycorrhizal fungi on plants and soils. Ecology. 2017;98(8):2111–2119. doi:10.1002/ecy.1892

MA019 LaManna JA, Martin TE. Logging impacts on avian species richness and composition differ across

latitudes and foraging and breeding habitat preferences. Biological Reviews. 2017;92(3):1657–1674.

doi:10.1111/brv.12300

MA020 Leal LC, Peixoto PEC. Decreasing water availability across the globe improves the effectiveness of protective

ant–plant mutualisms: a meta-analysis. Biological Reviews. 2017;92(3):1785–1794. doi:10.1111/brv.12307

MA021 RomanoA,CostanzoA,RuboliniD, SainoN,MøllerAP. Geographical and seasonal variation in the intensity

of sexual selection in the barn swallowHirundo rustica: ameta-analysis. BiologicalReviews. 2017;92(3):1582–

1600. doi:10.1111/brv.12297

MA022 Anthelme F, Meneses RI, Valero NNH, Pozo P, Dangles O. Fine nurse variations explain discrepancies in the

stress-interaction relationship in alpine regions. Oikos. 2017;126(8):1173–1183. doi:10.1111/oik.04248

MA023 Hindrikson M, Remm J, Pilot M, Godinho R, Stronen AV, Baltrūnaité L, et al. Wolf population genetics

in Europe: a systematic review, meta-analysis and suggestions for conservation and management. Biological

Reviews. 2017;92(3):1601–1629. doi:10.1111/brv.12298

MA024 Knapp JL, Bartlett LJ, Osborne JL. Re-evaluating strategies for pollinator-dependent crops: How useful is

parthenocarpy? Journal of Applied Ecology. 2017;54(4):1171–1179. doi:10.1111/1365-2664.12813

MA025 Gázquez A, Beemster GTS. What determines organ size differences between species? A meta-analysis of the

cellular basis. New Phytologist. 2017;215(1):299–308. doi:10.1111/nph.14573

MA026 Hendershot JN, Read QD, Henning JA, Sanders NJ, Classen AT. Consistently inconsistent drivers

of microbial diversity and abundance at macroecological scales. Ecology. 2017;98(7):1757–1763.

doi:10.1002/ecy.1829

MA027 Farji-BrenerAG,WerenkrautV. The effects of ant nests on soil fertility and plant performance: ameta-analysis.

Journal of Animal Ecology. 2017;86(4):866–877. doi:10.1111/1365-2656.12672
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MA028 Hitchcock DJ, Varpe Ø, Andersen T, Borgå K. Effects of reproductive strategies on pollutant concentrations

in pinnipeds: a meta-analysis. Oikos. 2017;126(6):772–781. doi:10.1111/oik.03955

MA029 Miller SE, BarruetoM, Schluter D. A comparative analysis of experimental selection on the stickleback pelvis.

Journal of Evolutionary Biology. 2017;30(6):1165–1176. doi:10.1111/jeb.13085

MA031 Rowiński PK, Rogell B. Environmental stress correlates with increases in both genetic and residual variances:

A meta-analysis of animal studies. Evolution. 2017;71(5):1339–1351. doi:10.1111/evo.13201

MA033 Yue K, Fornara DA, Yang W, Peng Y, Peng C, Liu Z, et al. Influence of multiple global change

drivers on terrestrial carbon storage: additive effects are common. Ecology Letters. 2017;20(5):663–672.

doi:10.1111/ele.12767

MA035 Wood KA, Ponting J, D’Costa N, Newth JL, Rose PE, Glazov P, et al. Understanding intrinsic and extrinsic

drivers of aggressive behaviour in waterbird assemblages: a meta-analysis. Animal Behaviour. 2017;126:209–

216. doi:10.1016/j.anbehav.2017.02.008

MA036 Greenwood S, Ruiz-Benito P,Martínez-Vilalta J, Lloret F, Kitzberger T, Allen CD, et al. Tree mortality across
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S3 REVIEWOF JOURNAL POLICIES ON DATA AND CODE SHARING657

The availability of data and code for individual articles needs to be evaluated in the context of the publishing658

journals’ policies about making data and code available at the time of publication. Due to the retrospective659

nature of this study, information about the journals’ data and code policies contemporaneous with the arti-660

cles published 2015–17 was not available. The journals’ policies on data and code were inferred from other661

sources, including previous studies of journal policies and initiatives such as the Joint Data Archiving Policy662

(JDAP).663
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Data policies664

JDAP was adopted by a number of journals in the fields of ecology and evolutionary biology in 2011 (235).665

JDAP introduced data archiving as a requirement for publication: the data that underlie the results of the666

article must be deposited in a public data repository, such as the Dryad Digital Repository (36). Four of667

the journals in this study adopted JDAP in 2011: Evolution (236), Journal of Evolutionary Biology (25),668

Molecular Ecology (237), and The American Naturalist (26). Functional Ecology adopted a slight variation669

of JDAP in 2014 (238), along with other journals published by the British Ecological Society: Journal of670

Animal Ecology, Journal of Applied Ecology, and Journal of Ecology (239). Therefore, assuming the journals’671

adoption of JDAP (or slight variation thereof) has persisted, we expected that these eight journals would672

have mandated data archiving for all studies published through 2015–17.673

(33) investigated both the data and code policies for 17 of the 21 journal titles in this study. The policies674

checked were as of 1st June 2015, which is within the 2015–17 time period. Specifically, regarding data,675

(33) recorded whether journals’ policies required data to be released as a condition of publication—that676

is, beyond mere encouragement to make data available. We regarded the findings in (33) as representing677

journals’ policies on data and code at the start of 2015 (it is possible that some meta-analyses published in678

the first five months of 2015 were published under a different journal policy that then changed to the policy679

found by (33), but for simplicity we discounted this possibility). The four journals that were not reviewed680

in (33) are Animal Behaviour, Biological Reviews, New Phytologist, and Quarterly Review of Biology. We681

examined other sources to get an indication of their data and code policies.682

The data policy of the journal Animal Behaviour was surveyed in January 2014 by (30). This survey found683

that the journal encouraged authors tomake data available, but did notmake itmandatory. In the absence of684

other information (whichwas searched for in e.g., editorials or news releases, but not found), we assume that685

this was the data policy of the journal during 2015–17. (When checked again in 2021, the journal was found686

tohave the samepolicy of encouragingdata sharing, so it seems safe to assume thepolicyhas been consistently687

in place since 2014.) When checked in 2021, the journal Biological Reviews “encourages” authors to make688

data available, but does not require authors to do so, or to include data availability statements (240). In689

the absence of other information, we assume that this was the data policy of the journal during 2015–17.690

The data policy of the journal New Phytologist was surveyed in August/September 2013 by (241). This691

survey classified the policy of New Phytologist as weak, meaning that data sharing was encouraged but not692

required. In the absence of other information, we assume that this was the data policy of the journal during693

2015–17. When checked in 2021, the instructions to authors webpage for the journal Quarterly Review of694
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Biology1 makes no mention of data sharing, archiving, or availability. Similarly, an archived snapshot of the695

instructions to authors webpage as it was on 28th May 20162 made no mention of any data policy. In the696

absence of other information, we assume that not requiring data sharing was the effective data policy of the697

journal during 2015–17. A summary of the data-sharing policies of the journals in this study is given in698

Table S3.699

Journal JDAP
member

Data
sharing
required?

Source

Animal Behaviour N N (30)
Behavioral Ecology N N (33)
Behavioral Ecology and
Sociobiology

N N (33)

Biological Reviews N N Journal website
Ecological Applications N Y (33)
Ecological Monographs N Y (33)
Ecology N Y (33)
Ecology Letters N Y (33)
Evolution Y Y (33)
Evolutionary Ecology N N (33)
Functional Ecology Y Y (33)
Journal of Animal Ecology Y Y (33)
Journal of Applied Ecology Y Y (33)
Journal of Ecology Y Y (33)
Journal of Evolutionary
Biology

Y Y (33)

Molecular Ecology Y Y (33)
New Phytologist N N (241)
Oecologia N N (33)
Oikos N Y (33)
The American Naturalist Y Y (33)
The Quarterly Review
of Biology

N N Journal website

Table S3: Summary of whether data sharing was found to be required for each journal surveyed in this study,
along with JDAPmember status and source of the information. In the columns “JDAPmember” and “Data
sharing required?”, “Y” indicates “yes” and “N” indicates “no”.

Code policies700

The principal source for information about journals’ code policies came from (33). (34) updated the infor-701

mation about journals’ code policies in 2020. Both studies recorded information about the code policies702

of 17 of the journals included in this present study. (33) recorded whether journals required the release of703

code as a requirement for publication as a binary yes/no variable (the sameway as how journals’ data policies704

were recorded). The updated survey in (34) distinguished between policies where code sharing was “encour-705

1https://www.journals.uchicago.edu/journals/qrb/instruct
2https://web.archive.org/web/20160528051141/http://www.journals.uchicago.edu/journals/qrb/instruct
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aged” and policies where code sharing was “mandatory” (the authors note that some journal policies were706

ambiguously worded such that it could not be determinedwhether code sharingwasmerely encouraged or a707

mandatory requirement; they designated such policies “encouraged/mandatory”). For the four journals not708

covered in (33), we found that Animal Behaviour had a policy of encouraging code sharing, but we could709

not findmention of polic(ies) about code in the online information for Biological Reviews,New Phytologist,710

and The Quarterly Review of Biology. For the purposes of this study, we shall regard these four journals as711

not having had a policy requiring code sharing during 2015–17.712

Journal
2015
survey

2020
survey

2021
check

Animal Behaviour - - E
Behavioral Ecology N N -
Behavioral Ecology and Sociobiology N N -
Biological Reviews - - N.F.
Ecological Applications Y M -
Ecological Monographs Y M -
Ecology Y M -
Ecology Letters N E/M -
Evolution N M -
Evolutionary Ecology N E -
Functional Ecology Y E/M -
Journal of Animal Ecology Y E/M -
Journal of Applied Ecology Y E/M -
Journal of Ecology Y E/M -
Journal of Evolutionary Biology N M -
Molecular Ecology Y E -
New Phytologist - - N.F.
Oecologia N N -
Oikos N N -
The American Naturalist Y E -
The Quarterly Review of Biology - - N.F.

Table S4: Summary of the code sharing policies found for each journal. The column “2015 survey” refers to
(33), the column “2020 survey” refers to (34), and the column “2021 check” refers to our own checks made in
2021. Within the table columns, “Y” indicates “yes”, “N” indicates “no”, “E” indicates “encouraged”, “M”
indicates “mandatory”, and “N.F.” indicates “not found”.

S4 CODING SCHEME FOR CODE ANDDATA SHARING713

The assessment process for each article for shared data and code was as follows: first, we inspected the end714

sections of each article for any mention of supplemental material, and for the existence of a data/code avail-715

ability statementof anykind. In caseswithout an explicit data availability statement, orwheredata/codewere716

not listed as supplements, we reviewed the methods and results sections for any possible in-text mention of717

data/code availability, first by performing a keyword search for “data”. Regardless of what wasmentioned in718

the article, we also inspected the journal webpage for each article (accessed via TheUniversity ofMelbourne719
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library) for indications and details of supplemental materials, shared data and shared code. We attempted to720

download and briefly inspect all files at the journal webpage that we found. Where supplemental material,721

data and/or code were reported as existing at other web links (e.g., an online data archive), we followed the722

web links and attempted to download and inspect all fileswe found. The coding scheme inTable S5 captures723

the results of this process.724

This coding scheme assumes that if data and/or code were shared, there would be some positive indication725

of this fact somewhere in the article itself, or on the journal publisher’s web page for the article (either as726

supplementalmaterial, or as a link to an independent resource). An absence of any such indicationwas taken727

tomean that data/code was not shared. This approach does not account for the possibility that authors may728

have in fact shared the data and code associated with their article (say, by publishing it in a data repository729

such as Dryad) but not included any indication either in the article itself, or on the journal web page for the730

article. (One possible reason this might occur is when authors decide to share the data/code after the article731

had been published.) We decided not to attempt to check for such possibilities when assessment of an article732

and its journal web page found no indications of shared data or code.733

In this coding scheme, items 1–4 concern supplemental material in general, items 5–12 concern shared data734

in particular, and items 13–20 concern shared code in particular (item 21 was used to record any additional735

notes). The items recording the existence (or not) of shared supplementalmaterials, data, and code are items736

1, 5–6, and 13–14. For the data and code sharing, we separated out the nominal sharing of these from the737

actual sharing of these (in retrospect, we should have done the same for supplemental materials too). In738

this context, data and code were recorded as having been actually shared only if we were personally able to739

successfully download (via The University of Melbourne library) and inspect the relevant file(s).740

The numbers of files shared (items 2, 7, and 15) were recorded to help keep track of downloaded files. These741

values were recorded only if the respective preceding items indicated that such files existed. This did lead to742

some anomalies: the number of files was recorded as 0 in cases where the article stated that all relevant data743

was made available within tables of the article itself (and not as a separate data file).744

S5 RECORDINGMENTIONS OF SOFTWARE USED745

The reviewprocess formentionsof software in an article consistedof checking the text of each article/supplementary746

document for the following keywords (using a case-insensitive search):747

• “CMA”, referring to the software package ComprehensiveMeta-Analysis (242);748

• “MetaWin”, referring to the software packageMetaWin (243);749
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Index Field Values Description
1 Supplements included Y, N Does the article include supplementary in-

formation?
2 No. supplement files 0-99 Number of discrete files or documents in-

cluded as supplementary information
3 Supplements mentioned Y, N Does the article mention the existence of

the supplementary information?
4 Supplements detailed Y, N Does the article provide details of the con-

tents of supplementary information?
5 Datasets nominally included Y, N Does the article indicate that data has been

shared, included?
6 Datasets included Y, N Was the data actually included (shared) and

obtainable?
7 No. data files 0-99 Number of discrete data files included
8 Dataset sources open text Location of the datasets (e.g., repository

name)
9 Dataset URL open text Link to data as applicable
10 Dataset info in article Y, N Is the availability of data referred to in the

article?
11 Dataset info on website Y, N Is the availability of data referred to on the

journal web page for the article?
12 Data format open text File format(s) of data files
13 Code nominally included Y, N Does the article indicate that code has been

shared, included?
14 Code included Y, N Was the code actually included (shared)

and obtainable?
15 No. code files 0-99 Number of discrete code files included
16 Code sources open text Location of the code (e.g., repository

name)
17 Code URL open text Link to code as applicable
18 Code info in article Y, N Is the availability of code referred to in the

article?
19 Code info on website Y, N Is the availability of code referred to on the

journal web page for the article?
20 Code type open text Language or software package the code is

associated with
21 Notes open text Any additional notes about the article’s

data and code sharing.

Table S5: The twenty-one item coding scheme used for recording data and code sharing in meta-analysis
articles. In the Values column, “Y” indicates “yes” and “N” indicates “no”.
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• “metafor”, referring to the R packagemetafor (37);750

• “mcmcglmm”, referring to the R packagemcmcglmm (244).751

In the absence of these keywords being found, themethods section/supplementary documentwasmanually752

scanned for statements along the lines of “analyses were performed using [software package]”.753

For eachmention of software used (allowing formultiplementions per article), the details were recorded us-754

ing a ten-item coding scheme outlined in Table S6. The coding scheme was designed around an expectation755

of the frequent mention of R and R packages.756

Items 1 and 2 record the name of the software package/platform as reported in the article and the page757

number of the mention respectively.758

Items 3 and 4 record whether a specific version of the software was reported. Items 5, 6, and 7 are specific to759

the R software environment.760

Item 5 is a flag indicating whether the mentioned software package was an R package or not. This required761

judgment beyond what was reported in the article: For most software mentioned, we were able to code762

this item based on our own knowledge of R and its packages; where we were not already familiar with the763

software package, we used contextual clues in the article (e.g., mentions of the function of the software or764

details from the citation if provided) and online searches of the software name to determine whether or not765

it was an R package.766

Item 6 was only applicable to software identified as an R package: this recorded the location where the767

R package was hosted. We anticipated that there would be few discrete categories here: “base” referring768

to packages which are part of the base R installation; “Bioconductor” referring to R packages released as769

components of the Bioconductor project; “CRAN” referring to the Comprehensive RArchive Network, a770

repository for R packages; and “other” for all remaining cases.771

Item 7 is applicable only to mentions of the R software environment at large: this records whether in addi-772

tion to the mention of R, specific R packages mentioned as well.773

Items 8 and 9 record whether and how the article cited/provided a reference for the software mentioned.774

Item 8 was initially “Y”/“N” (yes/no), during the coding process we decided to introduce an addition code775

“T” which was for instances of an “in text” reference for the software (e.g., the website for the software776

package in parentheses immediately following the software name) but with no corresponding details in the777

“References” section of the article. As a result, a value of “Y” indicates that the article includes a full reference778
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to the software in theReferences section. The full reference (or in-text only citation) as reported in the article779

is recorded in Item 9.780

Finally, Item10was used to record additional notes/context about themention of the software as applicable.781

Index Field Values Description
1 Software details open text The nameof the software as reported in the

article.
2 Page reference open text Specify the page number of the mention.
3 Version specified Y, N Does the article specify the version of the

software?
4 Version details open text The version details as reported in the arti-

cle.
5 Is R package Y, N Is the software mentioned an R package?
6 R package location base, Bio-

conductor,
CRAN, other,
N/A

If the software mentioned is an R package,
where is the package located/hosted?

7 R packages mentioned Y, N, N/A If the software mentioned is R, are pack-
ages mentioned elsewhere in the article?

8 Software cited Y, N, T Does the article include a citation for the
software package?

9 Citation details open text The full reference to the software as re-
ported in the article.

10 Notes open text Any additional notes about thismentionof
software.

Table S6: The ten item coding scheme used for recording software mentions. In the Values column, “Y”
indicates “yes”, “N” indicates “no”, “T” indicates “in-text only”, and “N/A” indicates “not applicable”.
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S6 DATA AND CODE SHARING782

For the 133 articleswith data, wehad found somekindof indication about data availability somewhere in the783

article itself or in the supplementary documentation for all but one article (in this one case, the information784

indicating that data was available was on the journal’s web page for the article instead). This took the form785

of either an explicit data availability statement in the article, or a mention in the body of the article, as part786

of an in-article statement about the content of supplemental/supporting information, or in the supplemen-787

tal/supporting information itself. For example, Evolution articles included a data availability statement in a788

dedicated section titled “Data Archiving” located at the end of the article, just before the references section.789

Failures to obtain data and code790

We failed to obtain data for five articles for three reasons: for the first three cases, a supplemental document791

indicated that data files were included as part of the supplemental material. However, the files referred to792

could not be found as part of the online supplement; it is possible that while the documentation for the data793

was uploaded, the actual files themselveswere not. In the fourth case, the data availability statement said that794

data would be uploaded to Dryad upon acceptance of the article, however no link or details of how to find795

the datawere provided (failing to update the data availability statementmay have been an oversightwhen the796

article was being finalised for publication). In the final case, the article stated that data had been deposited in797

a research institute’s database, but failed to provide any details apart from a link to the institute’s main web798

page. The institute maintains a number of databases, and there was no clear way to identify which data in799

which database was relevant to the meta-analysis.800

The one case where we could not obtain code is the one of the articles discussed above in reference to data801

availability, where files listed as being part of the supplement could not be found.802

Data and Code Sharing by Journal803

Figure S1 shows the rate of data sharing within each journal title. Figure S2 compares the observed rate of804

data sharing amongst JPAP journals to that of non-JDAP journals. Figure S3 compares the observed rate805

of data sharing between all journals requiring data sharing (JDAP or not) against those journals without a806

data sharing requirement. These figures show that in this sample, journal policies did increase the likelihood807

that a meta-analysis article would include accessible data, and although clearly a common practice among808

researchers submitting to these journals, adherence to the data sharing policy was not 100%.809

Figure S4 shows the rate of code sharing within each journal title. Figure S5 compares the sharing rates810

for code across three categories: code required, code not required, and policy not known. This figure re-811
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Figure S1: Comparison of data sharing rates in articles by journal.

emphasises that code sharing during this periodwas low, despite some journals’ policies requiring code (these812

journals did have the highest rate of code sharing, but it was still less than 25% of articles published). During813

this period, code sharing lagged well behind data sharing (which was common practice in comparison).814

63



85/124

48/53

Non−JDAP Journals

JDAP Journals

0 25 50 75 100
Percentage of articles in sample which shared data (%)

Figure S2: Comparison of data sharing rates in articles by journal JDAPmembership status.
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Figure S3: Comparison of data sharing rates in articles by journal data policy 2015–17.
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Figure S4: Comparison of code sharing rates in articles by journal.

66



8/45

14/66

6/66

Policy
not known

Code required

Code not required

0 25 50 75 100
Percentage of articles in sample which shared code (%)

Figure S5: Comparison of code sharing rates in articles by journal code policy according to (33).
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S7 SOFTWAREMENTIONED IN ARTICLES815

Figure S6 shows the distribution of the number of different software packages mentioned in each article816

(or in its supplementary material). Here, R packages have been treated as special cases: articles mentioning817

multiple R packages have been treated as just mentioning the R software environment. For example, an818

article which mentioned the R software environment and four R packages was regarded as mentioning one819

software package (the R software environment) rather than five software packages.820
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Figure S6: Distribution of the number of different software packages mentioned in each article (or its
supplementary material).

Figure S7 is a version of Figure S6which shows the distribution of the number of different software packages821

mentioned in each article (or in its supplementarymaterial), includingmentions ofRpackages. For example,822

an article which mentioned the R software environment and four R packages was regarded as mentioning823

five software packages rather than one software package (i.e., the R software in general).824

Table S7 lists all software packages mentioned in the 177 meta-analysis articles. This table includes all men-825

tions of the R software environment, but specifically excludes mentions of R packages, which are listed in826

the following table.827
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Figure S7: Distribution of the number of different software packages mentioned in each article (or its
supplementary material), including mentions of R packages.

Table S7: All software packages mentioned in the 177 meta-analysis articles. Note that this table does not list
individual R packages.

Name of software package N %

R 141 79.7

MetaWin 20 11.3

WebPlotDigitizer 10 5.6

DataThief III 9 5.1

SAS 9 5.1

ImageJ 7 4.0

GraphClick 6 3.4

PlotDigitizer 5 2.8

GetData Graph Digitizer 4 2.3

JMP 4 2.3

RStudio 4 2.3

SPSS/PASW 4 2.3

Minitab 3 1.7
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Name of software package N %

Phylocom 3 1.7

Phylomatic 3 1.7

RAxML 3 1.7

ArcGIS 2 1.1

ArcMap 2 1.1

CMA 2 1.1

Engauge Digitizer 2 1.1

GENALEX 2 1.1

MAFFT 2 1.1

Python 2 1.1

Stan 2 1.1

AbstrackR 1 0.6

ADZE 1 0.6

AMOS 1 0.6

ARLSUMSTAT 1 0.6

ASReml-R 1 0.6

Bowtie2 1 0.6

Cervus 1 0.6

Circuitscape 1 0.6

Cytoscape 1 0.6

Digitize It 2010 1 0.6

Ecopath 1 0.6

ED2 (FORTRAN) 1 0.6

Excel 1 0.6

FigTree 1 0.6

GenClone 1 0.6

GrabIt! XP 1 0.6

GRASS GIS 1 0.6

Image Pro Plus 1 0.6

JAGS 1 0.6
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Name of software package N %

LocARNA 1 0.6

MEGA 4 1 0.6

Mesquite 1 0.6

Modeltest 1 0.6

MrBayes 1 0.6

OpenBUGS 1 0.6

OriginPro 1 0.6

Perl 1 0.6

Photoshop 1 0.6

phyloMeta 1 0.6

PRIMER 1 0.6

QGIS 1 0.6

SigmaPlot 1 0.6

Techdig 1 0.6

xyscan 1 0.6

In total, there were 398 mentions of R and R packages across the articles: 141 mentions of the R software828

environment, and 257 mentions of specific R packages. Figure S8 shows the distribution of the number of829

packagesmentioned by eachR-using article. As the figure shows, it wasmost common forR-using articles to830

mentiononly oneor twopackages (68%); only 6%ofR-using articlesmentionedmore than threeRpackages.831

Table S8 lists all R packages mentioned in the 141 meta-analysis articles that mentioned using R. The table832

includes the location of eachR package (whether CRAN, Bioconductor, a base R package, or from another833

source). Note: At the time of checking (2ndAugust 2022), four packages (empiricalFDR.DESeq2, foodweb,834

MAc, and VIF ) have been removed from CRAN3. The vast majority (74, or 92%) of the mentioned R835

packages were from the Comprehensive RArchive Network (CRAN), with 3 (4%) from the Bioconductor836

project and 2 from other websites. One article mentioned the package stats, which is part of the “base” set837

of R packages that are an integral part of the R software.838

3Package empiricalFDR.DESeq2 was archived 13th June 2022 (https://cran.r-project.org/package=
empiricalFDR.DESeq2); package foodweb was archived 21st June 2022 (https://cran.r-project.org/package=
foodweb); package MAc was archived 4th March 2022 (https://cran.r-project.org/package=MAc); package VIF
was archived 9thMay 2022 (https://cran.r-project.org/package=VIF).
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Figure S8: Distribution of the number of different R packages mentioned in each article which mentioned
using R.

Table S8: All R packages mentioned in the sample of 141 meta-analysis articles which mentioned using R.

Name of R package Package source N %

metafor CRAN 75 53.2

MCMCglmm CRAN 26 18.4

lme4 CRAN 20 14.2

ape CRAN 13 9.2

MuMIn CRAN 8 5.7

vegan CRAN 7 5.0

nlme CRAN 6 4.3

ggplot2 CRAN 5 3.5

phytools CRAN 5 3.5

compute.es CRAN 4 2.8

glmulti CRAN 4 2.8

multcomp CRAN 3 2.1

raster CRAN 3 2.1

ade4 CRAN 2 1.4
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Name of R package Package source N %

boot CRAN 2 1.4

lmerTest CRAN 2 1.4

meta CRAN 2 1.4

mgcv CRAN 2 1.4

mice CRAN 2 1.4

party CRAN 2 1.4

picante CRAN 2 1.4

randomForest CRAN 2 1.4

rjags CRAN 2 1.4

rmeta CRAN 2 1.4

A3 CRAN 1 0.7

abc CRAN 1 0.7

adegenet CRAN 1 0.7

AICcmodavg CRAN 1 0.7

arrayQualityMetrics BioConductor 1 0.7

betareg CRAN 1 0.7

caper CRAN 1 0.7

coda CRAN 1 0.7

coin CRAN 1 0.7

DESeq2 BioConductor 1 0.7

dismo CRAN 1 0.7

ecodist CRAN 1 0.7

effects CRAN 1 0.7

empiricalFDR.DESeq2 CRAN 1 0.7

foodweb CRAN 1 0.7

gbm CRAN 1 0.7

GENHET other 1 0.7

Hmisc CRAN 1 0.7

ICC CRAN 1 0.7

igraph CRAN 1 0.7
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Name of R package Package source N %

inext CRAN 1 0.7

Kendall CRAN 1 0.7

KOGMWU CRAN 1 0.7

languageR CRAN 1 0.7

leaps CRAN 1 0.7

lmodel2 CRAN 1 0.7

lsmeans CRAN 1 0.7

MAc CRAN 1 0.7

maps CRAN 1 0.7

maptools CRAN 1 0.7

MASS CRAN 1 0.7

merTools CRAN 1 0.7

metahdep BioConductor 1 0.7

MODISTools CRAN 1 0.7

pez CRAN 1 0.7

pheatmap CRAN 1 0.7

plotmcmc CRAN 1 0.7

plyr CRAN 1 0.7

PVR CRAN 1 0.7

R2WinBUGS CRAN 1 0.7

rfPermute CRAN 1 0.7

rgdal CRAN 1 0.7

RInSp CRAN 1 0.7

rms CRAN 1 0.7

rotl CRAN 1 0.7

rstan CRAN 1 0.7

rvest CRAN 1 0.7

segmented CRAN 1 0.7

shape CRAN 1 0.7

smatr CRAN 1 0.7
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Name of R package Package source N %

STANDARICH other 1 0.7

stats base 1 0.7

vif CRAN 1 0.7

visreg CRAN 1 0.7

weights CRAN 1 0.7

zoo CRAN 1 0.7

Table S9 shows all R versions mentioned in the articles, as they originally appeared in the articles. This839

includes one article where the authors mention using two different versions of R for their study (v2.14.1840

and v3.0.0), a study which included the R version twice, first in the body of the text and second as part of841

the citation in the references section, but where the versions differed (v3.1.0 and v3.0.1, whichmight be due842

to a typing error), and six articles where the version information provided was not complete (v2.12, v2.13,843

v2.14, v2.15, v3.1, v3.2). In the case of the six incompleteR version statements, it is possible that the authors844

were intending to refer to the “0” versions, i.e., 2.12.0, 2.13.0, etc.845

75



R version N %
2.12 1 0.7
2.13 1 0.7
2.14 1 0.7
2.14.1 4 2.8
2.15 1 0.7
2.15.2 3 2.1
3.0.0/2.14.1 1 0.7
3.0.1 8 5.7
3.0.2 14 9.9
3.0.3 3 2.1
3.1 2 1.4
3.1.0 2 1.4
3.1.0/3.0.1 1 0.7
3.1.1 4 2.8
3.1.2 12 8.5
3.1.3 3 2.1
3.2 1 0.7
3.2.0 1 0.7
3.2.1 6 4.3
3.2.2 6 4.3
3.2.3 6 4.3
3.2.4 1 0.7
3.3.0 2 1.4
3.3.1 1 0.7
3.3.2 1 0.7
3.4.0 1 0.7
3.4.1 1 0.7
(No version mentioned) 53 37.6

Table S9: All R versions as originally mentioned in the sample of 141 meta-analysis articles which mentioned
using R.
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S8 TARGET RESULTS846

Variable Value
ID MA092
Study (60)
Result source in text and from Table 1 (pp.84-85)
Result type Regression model results for all data
Regression result TLP = −4.67 + 0.725 × log(SLA) − 0.937 × log(WD)
N 68
R2
adj 0.32 (p-value < 0.001)

RMSE 0.55

Table S10: Details of the target result for article MA092, (60). For context, TLP – turgor loss point, SLA –
specific leaf area, WD – wood density, RMSE – root mean square error.

Variable Value
ID MA094
Study (61)
Result source in text (p.1227)
Result type Ordination analysis result
N n.s.
R2 0.494 (p < 0.0001)

Table S11: Details of the target result for article MA094, (61). n.s. – not stated.

Variable Value
ID MA129
Study (62)
Result source Table 1 (A) (p.444)
Result type Comparison of models by AICc
Result values See Table S13

Table S12: Summary of the target result for article MA129, (62).
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Buffer Δi wi R2

Null 0.00 0.20
50 0.96 0.12
25 0.98 0.12
75 1.17 0.11
200 1.34 0.10
150 1.56 0.09
10 1.56 0.09
100 1.61 0.09
5 1.70 0.08

Table S13: Details of the target result for article MA129, (62). The table headings and values are taken directly
from Table 1 (A), p.444. Note that blank/missing values in theR2 column are as per the original table. Here,
Buffer is radius in km, Δi is AICci −minimumAICc (where AICc is the corrected Akaike information
criterion), wi is Akaike weight,R2 is coefficient of determination, omitted in this table.
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Variable Value
ID MA212
Study (63)
Result source Table 2 (p.38)
Result type Counts of matches
Result values See Table S15

Table S14: Summary of the target result for article MA212, (63).
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KS index Match impact Match biomass No match Overall match
KS1 91 10 0 match impact
KS2 5 81 15 match biomass
KS3 50 28 23
KS4 25 54 22 match biomass
KS5 86 12 3 match impact
KS6 0 94 7 match biomass
KS7 32 35 34
KS8 11 70 20 match biomass
KS9 91 10 0 match impact
KS10 25 54 22 match biomass
KS11 71 20 10 match impact
KS12 46 39 16

Table S15: Details of the target result for article MA212, (63). The table headings and values are taken directly
from Table 2, p.38. Note that blank/missing values in rows 3, 7, and 12 of column “Overall match” are as per
the original table.
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S9 REPRODUCIBILITY REPORTS847

Reproducibility report design848

We decided to record all the steps of each reproduction attempt in a document integrating the running of849

analysis codewith explanatory prose to contextualise the attempt and its outcome. This an attempt to follow850

the literate programming approach (245), which emphasises that computer programs ought to be human-851

readable and understandable. It’s been recognised that this integration of analysis code andword processing852

facilitates reproducibility (246; 247), especially when the document is packaged with the data files required853

for the analysis into a compendium (248). As will be described in section 3 of the results, nearly all code854

that was shared was code for the R language (249). We mention this here because this fact determined the855

specifics of our technical approach to constructing the reproducibility reports.856

Wewrote a reproducibility report template using RMarkdown, a format for reproducible documents in the857

R language. An RMarkdown file can be compiled to produce a formatted, human-readable output docu-858

ment (such as anHTML or PDF document), which reports the results of running all includedR code. The859

R source code in the RMarkdown document is re-run each time the document is compiled. We structured860

the template similarly to the RMarkdown reproducibility reports used in (17) to reproduce results from861

articles published in Psychological Science. Each report was structured as follows:862

• A reference to the article and numerical details of the target result to be reproduced;863

• Details of the shared data and code files;864

• As assessment of the applicability of the shared data and code files;865

• Set up of the R environment as required for the analyses;866

• Importing and cleaning of data;867

• Running the analysis code to reproduce the target result;868

• Comparison of the original and reproduced target result value(s);869

• A summary of information about the R computational environment used.870

Within the RMarkdown source file, each report section consists of a combination of text marked up for871

appropriate formatting and “chunks” of R code which, when executed, perform in order the relevant tasks872

for the analysis (e.g., importing data from a file).873
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We set up each reproducibility report to run within its own Docker container. A container is a structured874

package of software designed to run aparticular application in a virtual computing environment. The advan-875

tage of this approach is that applications can run on different computers without users needing to deal with876

software or systemdependencies or settings. Docker is a tool for creating and running containers (250; 251).877

In particular, Docker allows users to build upon existing containers in an easy way. We created a container878

for each reproducibility report by starting with a pre-built container running R maintained by the Rocker879

project (252). The Rocker container already included all elements required to run an R session in an iso-880

lated computational environment. On top of this pre-built “layer” we built containers which installed all881

additional R packages required for the analyses in the reproducibility reports, including custom functions882

written by us to facilitate comparison of the original and reproduced values. We controlled the versions of883

bothR and allRpackages: theRocker projectmaintainsmultiple containerswith different versions ofR;we884

selected version 3.5.0. We installed R packages from a snapshot of the Comprehensive R Archive Network885

(CRAN) frozen at 2 July 2018, to ensure compatibility with R 3.5.04 The final layer of the container for886

each reproducibility report incorporated the specific data and code files required for data analysis. The result887

of this work was a small, self-contained application with everything required to compile the reproducibility888

report for each of the articles with shared data and code. This is a variation on the “research compendium”889

(253): a research compendium is usually envisioned as being created by the original authors of a research890

project, to facilitate the reproducibility of their own results, rather than being created by a third party after891

the fact.892

Running code893

The core of each reproducibility report was the sectionwhich conducted the data analysis and calculated the894

target result. Because each reproducibility report is fundamentally an assessment of the shareddata and code,895

we envisioned that each report would by default only execute lines of code taken directly from the shared896

code file(s) except where unavoidable. Importing data files was the principle situation where we anticipated897

we would need to modify lines of code and/or write new code.5 In order to differentiate original lines of898

code from additional lines of code written by us, we wrote a function to specify which particular lines of an899

external code file to execute. This way, the original shared code could be run by a call to a function, rather900

than needing to be manually inserted into the source of the RMarkdown report. All additional, custom901

4The date 2 July 2018 is the last day before the release of the succeeding version ofR.We used theMicrosoftmirror ofCRAN:
https://cran.microsoft.com/snapshot/2018-07-02/.

5We anticipated that most if not all shared code concerning operations involving external files would require modification.
This was due to the fact that at the very least, file paths to data files, etc. would need to be changed to match the file system
structure set up within each Docker container.
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code would be written directly into the RMarkdown source file. Running individual lines of code from the902

original files in this way also had the advantage that only the code that was required to calculate the target903

result could be run, rather than the entire code file. For analyses that involved random number generation,904

we set an arbitrary random seed so that the specific set of numbers calculated would be reproduced over905

successive compilations of the report.906
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Table S16: The original and reproduced values of all target results.

ID Study Result type Effect size type Target result Value type Original Reproduced Percent

error (%)

Status

MA016 (38) correlation Pearson’s r point est. N -0.83 -0.83 0.00 E

MA016 (38) correlation Pearson’s r p-value N < 0.001 < 0.001 E

MA016 (38) correlation Pearson’s r N N 49 49 0.00 E

MA060 (39) mean Fisher

z-transformation

point est. N 0.044 0.043 2.27 R

MA060 (39) mean Fisher

z-transformation

HPDI lower N -0.174 -0.194 11.49 10%+

MA060 (39) mean Fisher

z-transformation

HPDI upper N 0.289 0.268 7.27 < 10%

MA060 (39) mean Fisher

z-transformation

N N 37 37 0.00 E

MA062 (40) mean Hedges’ d point est. N -0.205 -0.204 0.49 R

MA062 (40) mean Hedges’ d CI lower N -0.444 -0.446 0.45 < 10%

MA062 (40) mean Hedges’ d CI upper N 0.035 0.039 11.43 10%+

MA062 (40) mean Hedges’ d N N 37 37 0.00 E

MA065 (41) mean Hedges’ g point est. N -8.42 -8.87 5.34 < 10%

MA065 (41) mean Hedges’ g CI lower N -10.73 -10.85 1.12 < 10%

MA065 (41) mean Hedges’ g CI upper N -6.63 -6.68 0.75 < 10%

MA065 (41) mean Hedges’ g N N 703 703 0.00 E

MA067 (42) mean Hedges’ g point est. N -0.21 -0.21 0.00 E

84



ID Study Result type Effect size type Target result Value type Original Reproduced Percent

error (%)

Status

MA067 (42) mean Hedges’ g SE N 0.07 0.07 0.00 E

MA067 (42) mean Hedges’ g z-score N -2.7 -2.8 3.70 R

MA067 (42) mean Hedges’ g p-value N 0.006 0.005 16.67 R

MA067 (42) mean Hedges’ g N N 52 52 0.00 E

MA068 (43) mean odds ratio point est. N 1.82 F

MA068 (43) mean odds ratio HPDI lower N 1.37 F

MA068 (43) mean odds ratio HPDI upper N 2.41 F

MA068 (43) mean odds ratio N N 75 F

MA071 (44) mean response ratio point est. N -0.26 -0.27 3.85 R

MA071 (44) mean response ratio CI lower N -1.02 -1.03 0.98 R

MA071 (44) mean response ratio CI upper N 0.51 0.49 3.92 < 10%

MA071 (44) mean response ratio N N 50 50 0.00 E

MA074 (45) correlation Pearson’s r point est. N 0.183 0.185 1.09 < 10%

MA074 (45) correlation Pearson’s r CI lower N 0.089 0.089 0.00 E

MA074 (45) correlation Pearson’s r CI upper N 0.274 0.281 2.55 < 10%

MA074 (45) correlation Pearson’s r N N 43 43 0.00 E

MA081 (46) mean slope parameter point est. N 1.30 1.30 0.00 E

MA081 (46) mean slope parameter CI lower N 0.95 F

MA081 (46) mean slope parameter CI upper N 1.66 F

MA081 (46) mean slope parameter N N 1296 1296 0.00 E

MA091 (47) mean Cohen’s d point est. N 0.56 0.56 0.00 E

MA091 (47) mean Cohen’s d CI lower N 0.42 0.42 0.00 E
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ID Study Result type Effect size type Target result Value type Original Reproduced Percent

error (%)

Status

MA091 (47) mean Cohen’s d CI upper N 0.69 0.69 0.00 E

MA091 (47) mean Cohen’s d N N 65 65 0.00 E

MA092 (60) model output n.a. R2
adj N 0.32 0.33 3.13 R

MA092 (60) model output n.a. RMSE N 0.55 0.55 0.00 E

MA092 (60) model output n.a. intercept N -4.67 -4.18 10.49 10%+

MA092 (60) model output n.a. log(SLA) coeff. N 0.725 0.730 0.69 < 10%

MA092 (60) model output n.a. log(WD) coeff. N -0.937 -0.980 4.59 < 10%

MA092 (60) model output n.a. N N 68 68 0.00 E

MA094 (61) model output n.a. R2 N 0.494 F

MA094 (61) model output n.a. p-value N < 0.0001 F

MA095 (48) mean Fisher

z-transformation

point est. N 0.76 0.76 0.00 E

MA095 (48) mean Fisher

z-transformation

CI lower N 0.61 0.61 0.00 E

MA095 (48) mean Fisher

z-transformation

CI upper N 0.91 0.91 0.00 E

MA095 (48) mean Fisher

z-transformation

N N 25 25 0.00 E

MA126 (49) mean log odds ratio point est. N -1.11 -1.11 0.00 E

MA126 (49) mean log odds ratio SE N 0.49 0.49 0.00 E

MA126 (49) mean log odds ratio CI lower N -2.06 -2.06 0.00 E

MA126 (49) mean log odds ratio CI upper N -0.15 -0.15 0.00 E
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ID Study Result type Effect size type Target result Value type Original Reproduced Percent

error (%)

Status

MA126 (49) mean log odds ratio z-score N -2.28 -2.28 0.00 E

MA126 (49) mean log odds ratio p-value N 0.023 0.023 0.00 E

MA129 (62) Table 1A, rank1 n.a. Δi N 0.00 0.00 E

MA129 (62) Table 1A, rank1 n.a. wi N 0.20 0.20 0.00 E

MA129 (62) Table 1A, rank1 n.a. buffer (km

radius)

C Null Null E

MA129 (62) Table 1A, rank2 n.a. Δi N 0.96 0.96 0.00 E

MA129 (62) Table 1A, rank2 n.a. wi N 0.12 0.12 0.00 E

MA129 (62) Table 1A, rank2 n.a. buffer (km

radius)

C 50 50 E

MA129 (62) Table 1A, rank3 n.a. Δi N 0.98 0.98 0.00 E

MA129 (62) Table 1A, rank3 n.a. wi N 0.12 0.12 0.00 E

MA129 (62) Table 1A, rank3 n.a. buffer (km

radius)

C 25 25 E

MA129 (62) Table 1A, rank4 n.a. Δi N 1.17 1.17 0.00 E

MA129 (62) Table 1A, rank4 n.a. wi N 0.11 0.11 0.00 E

MA129 (62) Table 1A, rank4 n.a. buffer (km

radius)

C 75 75 E

MA129 (62) Table 1A, rank5 n.a. Δi N 1.34 1.34 0.00 E

MA129 (62) Table 1A, rank5 n.a. wi N 0.10 0.10 0.00 E

MA129 (62) Table 1A, rank5 n.a. buffer (km

radius)

C 200 200 E
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ID Study Result type Effect size type Target result Value type Original Reproduced Percent

error (%)

Status

MA129 (62) Table 1A, rank6 n.a. Δi N 1.56 1.56 0.00 E

MA129 (62) Table 1A, rank6 n.a. wi N 0.09 0.09 0.00 E

MA129 (62) Table 1A, rank6 n.a. buffer (km

radius)

C 150 150 E

MA129 (62) Table 1A, rank7 n.a. Δi N 1.56 1.56 0.00 E

MA129 (62) Table 1A, rank7 n.a. wi N 0.09 0.09 0.00 E

MA129 (62) Table 1A, rank7 n.a. buffer (km

radius)

C 10 10 E

MA129 (62) Table 1A, rank8 n.a. Δi N 1.61 1.61 0.00 E

MA129 (62) Table 1A, rank8 n.a. wi N 0.09 0.09 0.00 E

MA129 (62) Table 1A, rank8 n.a. buffer (km

radius)

C 100 100 E

MA129 (62) Table 1A, rank9 n.a. Δi N 1.70 1.70 0.00 E

MA129 (62) Table 1A, rank9 n.a. wi N 0.08 0.08 0.00 E

MA129 (62) Table 1A, rank9 n.a. buffer (km

radius)

C 5 5 E

MA145 (50) mean Fisher

z-transformation

point est. N -0.08 -0.08 0.00 E

MA145 (50) mean Fisher

z-transformation

HPDI lower N -0.22 -0.21 4.55 R

MA145 (50) mean Fisher

z-transformation

HPDI upper N 0.03 0.05 66.67 10%+
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ID Study Result type Effect size type Target result Value type Original Reproduced Percent

error (%)

Status

MA145 (50) mean Fisher

z-transformation

N N 118 118 0.00 E

MA145 (50) mean Fisher

z-transformation

Nstudies N 38 38 0.00 E

MA145 (50) mean Fisher

z-transformation

Nspecies N 25 25 0.00 E

MA147 (51) mean percentage point est. N 0.13 0.13 0.00 E

MA147 (51) mean percentage SE N 0.03 0.03 0.00 E

MA147 (51) mean percentage CI lower N 0.074 0.074 0.00 E

MA147 (51) mean percentage CI upper N 0.19 0.19 0.00 E

MA147 (51) mean percentage N N 49 49 0.00 E

MA155 (52) correlation Pearson’s r point est. N 0.51 0.51 0.00 E

MA155 (52) correlation Pearson’s r p-value N 0.01 0.01 0.00 E

MA188 (53) mean Log response ratio point est. N -0.363 -0.363 0.00 E

MA188 (53) mean Log response ratio CI lower N -0.408 -0.408 0.00 E

MA188 (53) mean Log response ratio CI upper N -0.318 -0.318 0.00 E

MA188 (53) mean Log response ratio N N 818 818 0.00 E

MA191 (54) mean allometric slope pa-

rameter

point est. N 0.86 0.85 1.16 R

MA191 (54) mean allometric slope pa-

rameter

CI lower N 0.77 0.77 0.00 E
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ID Study Result type Effect size type Target result Value type Original Reproduced Percent

error (%)

Status

MA191 (54) mean allometric slope pa-

rameter

CI upper N 0.94 0.94 0.00 E

MA191 (54) mean allometric slope pa-

rameter

N N 553 553 0.00 E

MA198 (55) mean Fisher

z-transformation

point est. N -0.41 -0.42 2.44 R

MA198 (55) mean Fisher

z-transformation

CI lower N -0.55 -0.55 0.00 E

MA198 (55) mean Fisher

z-transformation

CI upper N -0.27 -0.28 3.70 R

MA198 (55) mean Fisher

z-transformation

N N 79 80 1.27 < 10%

MA202 (56) mean Hedges’ d point est. N -0.330 -0.340 3.03 < 10%

MA202 (56) mean Hedges’ d CI lower N -0.503 -0.521 3.58 < 10%

MA202 (56) mean Hedges’ d CI upper N -0.156 -0.159 1.92 < 10%

MA202 (56) mean Hedges’ d N N 329 329 0.00 E

MA211 (57) mean log response ratio point est. N 0.24 F

MA211 (57) mean log response ratio CI lower N 0.23 F

MA211 (57) mean log response ratio CI upper N 0.25 F

MA211 (57) mean log response ratio N N 3298 F

MA212 (63) Table 2, Match

biomass

n.a. KS1 N 10 10 0.00 E
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ID Study Result type Effect size type Target result Value type Original Reproduced Percent

error (%)

Status

MA212 (63) Table 2, Match

biomass

n.a. KS2 N 81 81 0.00 E

MA212 (63) Table 2, Match

biomass

n.a. KS3 N 28 28 0.00 E

MA212 (63) Table 2, Match

biomass

n.a. KS4 N 54 54 0.00 E

MA212 (63) Table 2, Match

biomass

n.a. KS5 N 12 12 0.00 E

MA212 (63) Table 2, Match

biomass

n.a. KS6 N 94 94 0.00 E

MA212 (63) Table 2, Match

biomass

n.a. KS7 N 35 35 0.00 E

MA212 (63) Table 2, Match

biomass

n.a. KS8 N 70 70 0.00 E

MA212 (63) Table 2, Match

biomass

n.a. KS9 N 10 10 0.00 E

MA212 (63) Table 2, Match

biomass

n.a. KS10 N 54 54 0.00 E

MA212 (63) Table 2, Match

biomass

n.a. KS11 N 20 20 0.00 E

MA212 (63) Table 2, Match

biomass

n.a. KS12 N 39 39 0.00 E
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ID Study Result type Effect size type Target result Value type Original Reproduced Percent

error (%)

Status

MA212 (63) Table 2, Match

impact

n.a. KS1 N 91 91 0.00 E

MA212 (63) Table 2, Match

impact

n.a. KS2 N 5 5 0.00 E

MA212 (63) Table 2, Match

impact

n.a. KS3 N 50 51 2.00 < 10%

MA212 (63) Table 2, Match

impact

n.a. KS4 N 25 25 0.00 E

MA212 (63) Table 2, Match

impact

n.a. KS5 N 86 87 1.16 < 10%

MA212 (63) Table 2, Match

impact

n.a. KS6 N 0 0 E

MA212 (63) Table 2, Match

impact

n.a. KS7 N 32 33 3.12 < 10%

MA212 (63) Table 2, Match

impact

n.a. KS8 N 11 11 0.00 E

MA212 (63) Table 2, Match

impact

n.a. KS9 N 91 91 0.00 E

MA212 (63) Table 2, Match

impact

n.a. KS10 N 25 25 0.00 E

MA212 (63) Table 2, Match

impact

n.a. KS11 N 71 72 1.41 < 10%
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ID Study Result type Effect size type Target result Value type Original Reproduced Percent

error (%)

Status

MA212 (63) Table 2, Match

impact

n.a. KS12 N 46 47 2.17 < 10%

MA212 (63) Table 2, No match n.a. KS1 N 0 0 E

MA212 (63) Table 2, No match n.a. KS2 N 15 15 0.00 E

MA212 (63) Table 2, No match n.a. KS3 N 23 22 4.35 < 10%

MA212 (63) Table 2, No match n.a. KS4 N 22 22 0.00 E

MA212 (63) Table 2, No match n.a. KS5 N 3 2 33.33 10%+

MA212 (63) Table 2, No match n.a. KS6 N 7 7 0.00 E

MA212 (63) Table 2, No match n.a. KS7 N 34 33 2.94 < 10%

MA212 (63) Table 2, No match n.a. KS8 N 20 20 0.00 E

MA212 (63) Table 2, No match n.a. KS9 N 0 0 E

MA212 (63) Table 2, No match n.a. KS10 N 22 22 0.00 E

MA212 (63) Table 2, No match n.a. KS11 N 10 9 10.00 10%+

MA212 (63) Table 2, No match n.a. KS12 N 16 15 6.25 < 10%

MA212 (63) Table 2, Overall

match

n.a. KS1 C match

impact

match impact E

MA212 (63) Table 2, Overall

match

n.a. KS2 C match

biomass

match

biomass

E

MA212 (63) Table 2, Overall

match

n.a. KS3 C (none) match impact NC

MA212 (63) Table 2, Overall

match

n.a. KS4 C match

biomass

match

biomass

E
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ID Study Result type Effect size type Target result Value type Original Reproduced Percent

error (%)

Status

MA212 (63) Table 2, Overall

match

n.a. KS5 C match

impact

match impact E

MA212 (63) Table 2, Overall

match

n.a. KS6 C match

biomass

match

biomass

E

MA212 (63) Table 2, Overall

match

n.a. KS7 C (none) (none) E

MA212 (63) Table 2, Overall

match

n.a. KS8 C match

biomass

match

biomass

E

MA212 (63) Table 2, Overall

match

n.a. KS9 C match

impact

match impact E

MA212 (63) Table 2, Overall

match

n.a. KS10 C match

biomass

match

biomass

E

MA212 (63) Table 2, Overall

match

n.a. KS11 C match

impact

match impact E

MA212 (63) Table 2, Overall

match

n.a. KS12 C (none) (none) E

MA213 (58) mean difference in means point est. N -0.07 -0.07 0.00 E

MA213 (58) mean difference in means p-value N 0.362 0.362 0.00 E

MA213 (58) mean difference in means N N 654 654 0.00 E

MA229 (59) mean log response ratio point est. N 0.40 0.39 2.50 R

MA229 (59) mean log response ratio CI lower N 0.24 0.26 8.33 < 10%

MA229 (59) mean log response ratio CI upper N 0.53 0.53 0.00 E
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ID Study Result type Effect size type Target result Value type Original Reproduced Percent

error (%)

Status

MA229 (59) mean log response ratio N N 57 57 0.00 E
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Examining dependency between reproduced values within articles907

Table 5 lists 19 articles where (i) the result type is a summary effect and (ii) the code is relevant. For these908

19 articles, the set of target result values are broadly similar in type: there is a point estimate, a sample size,909

and some kind of measure of uncertainty (e.g., the upper and lower bounds of a confidence interval). To910

gauge the level of dependency between the reproductions of these different types of values within articles,911

Table S17 breaks down the results for each article by target value type, specifying how closely the target912

result value was reproduced (using the same categories reported in Table 6). For this summary, measures of913

uncertainty other than confidence interval bounds (e.g., standard errors) were ignored.914

ID N Point est. CI lower CI upper
MA091 Exact Exact Exact Exact
MA095 Exact Exact Exact Exact
MA147 Exact Exact Exact Exact
MA188 Exact Exact Exact Exact
MA145 Exact Exact Rounding At Least 10%
MA081 Exact Exact Failure Failure
MA067 Exact Exact n.a. n.a.
MA213 Exact Exact n.a. n.a.
MA191 Exact Rounding Exact Exact
MA071 Exact Rounding Rounding Within 10%
MA229 Exact Rounding Within 10% Exact
MA062 Exact Rounding Within 10% At Least 10%
MA060 Exact Rounding At Least 10% Within 10%
MA074 Exact Within 10% Exact Within 10%
MA065 Exact Within 10% Within 10% Within 10%
MA202 Exact Within 10% Within 10% Within 10%
MA198 Within 10% Rounding Exact Rounding
MA211 Failure Failure Failure Failure
MA126 n.a. Exact Exact Exact

Table S17: A breakdown of how closely target result values were reproduced for each article with relevant code
and a summary effect result type. The target result value types are sample sizeN, point estimate, and confidence
interval bounds (CI lower and CI upper). Values of “n.a.” indicate that that particular target result value type
was not reported for that article.

Table S17 considers how closely the sample size, point estimate, lower confidence interval bound, and upper915

confidence interval bound could be reproduced for each article. The closeness of the reproduced values916

were considered progressively, from left to right. The table shows that most values of sample size could be917

reproduced exactly, but the closeness of the reproduced values dropped off considerably after that for the918

point estimate, etc. There are two identifiable clusters: a cluster of four articles (MA091, MA095, MA147,919

MA188)where all target values could be reproduced exactly, and a cluster of three articles (MA065,MA071,920

MA202) where the sample size was reproduced exactly, and the remaining values were within 10%. This921
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clustering may indicate that there is some dependency between values from the same article regarding how922

closely they will be reproduced. However, the sample is small and the categories of reproduction closeness923

are relatively coarse.924

S10 REPRODUCING TARGET RESULTSWHEN CODE NOT RELEVANT925

Table S18 details the circumstances of the six caseswhere shared codewas judgednot relevant to reproducing926

the target result.927

ID Study Code lan-
guage

Description

MA016 (38) Python Not relevant. The code shared is for simulations of leaf
longevity, reported separately from the meta-analysis.

MA068 (43) R Partially relevant. The code shared regards the extraction of
effect sizes from primary studies used in the meta-analysis.
The code does not conduct the meta-analysis itself.

MA092 (60) Fortran Not relevant. The code shared is the source code for a modi-
fied version of the EcosystemDemographyBiosphereModel,
ED2 (254). Simulations using this model were reported sep-
arately from the meta-analysis.

MA094 (61) R Partially relevant. The code shared is for generating null food
webmodels. Although necessary, the code is not sufficient to
reproduce the chosen result. Further, there was a “missing”
code file: in the Oikos online appendix, one listed code file
was actually missing (hierarchy_measure.R), while the
other listed code file (null_models.R) was duplicated, re-
sulting in two code files in the appendix with the same con-
tents.

MA155 (52) R Not relevant. The code shared is for conducting Gene On-
tology analyses, and for producing article Figure 1D. These
are separate results from the meta-analysis.

MA212 (63) R Partially relevant. The code shared runs Spearman rank cor-
relation tests, relevant to meta-analysis results presented in
Table 3 of article. The code is not relevant to the selected
meta-analysis result.

Table S18: The articles with shared code which was either not relevant or only partially relevant to reproducing
the chosen meta-analysis results.

In the cases of MA016, MA092, and MA155, the shared code had nothing to do with the reported meta-928

analysis results. In the case of MA212, the shared code was partially relevant, but was practically unusable929

for the purposes of reproducing the specific results in the article. (Specifically, the shared code for MA212,930

written to calculate Spearman’s rank correlation coefficient formultiple sets of data and summarise the corre-931

sponding p-values, seemed to be an extract from a larger code base; the code assumed a specific data structure932

that was not defined anywhere in the shared materials, nor did the data structure implied by the code corre-933

spond to any of the shared data files. Lacking contextual information on the setup required for the code to934

work, we decided that the code as provided forMA212 was unusable.) For these four cases we attempted to935

reproduce the originally selected target results detailed in Tables 4 and S10 by writing entirely new R code.936
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There were 59 target result values across MA016, MA092, MA155, and MA212. This set of target result937

values included 12 non-numeric values: these were entries from the table in article MA212, see Table S15.938

Percent error was not applicable to these non-numeric values, and so the reproduced values were assessed939

as being either exact text string matches with the original or non-matches. The details of the individual940

reproduction attempts for all these values are reported in Table S16.941

In the cases ofMA068 andMA094, the codewas relevant to other parts of themeta-analysis described in the942

articles. We selected alternative target results from these articles thatwere directly relevant to the shared code.943

For MA068, the shared code performed simulations of logistic regression slopes and standard errors; these944

simulationswere performed to supplement under-reported results from two primary studies included in the945

meta-analysis. The target resultswere the values of the simulations as reported in the article. ForMA094, the946

shared code simulated species richness in food webs using different food webmodels; the simulation results947

were compared with the results from a sample of published food webs in a figure. The target results were948

the widths of bars in that figure, which represented the average proportion of species richness at different949

trophic levels for the published and simulated food webs. There were 3 target result values for MA068, and950

21 target result values for MA094. The details of the alternative target results are reported in Tables S19-951

S21, and the results of comparing the reproduced values with the original values of these target results are in952

Table S22.953

Variable Value
ID MA068
Study (43)
Result source Table 1 (pp.7-8)
Result type Simulated slope parameters and stan-

dard errors to supplement incom-
pletely reported primary study results

Standard error 1 0.001
Mean slope parameter 2 -0.001
Standard error 2 0.113

Table S19: Detail of the alternative target results selected for article MA068, (43). These alternative target
results were selected due to being relevant to the shared code. Standard error 1 is simulated to supplement a
result from (255), mean slope parameter 2 and standard error 2 are simulated to supplement a result from (256).

We used the shared code for these two articles to successfully calculate values for all 24 alternative target val-954

ues. This perfect success rate is perhaps to be expected, since the alternative target results were specifically955

selected on the basis of being relevant to the shared code. Seven values out of the 24 (29%) were reproduced956

exactly (to the same precision as reported), another seven reproduced values (29%) were within 10% of the957

original value, and the remaining ten (42%) reproduced values were 10% ormore from the original value. All958
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Variable Value
ID MA094
Study (61)
Result source in text (p.1227)
Result type Descriptive statistics of species

richness (i.e.,Nspecies) in a sam-
ple of published food webs

Nfood webs 72
Mean 90.21
Standard deviation 31.27
Minimum 50
Maximum 209

Table S20: Detail of the first set of alternative target results selected for article MA094, (61). These alternative
target results were selected due to being relevant to the shared code.

ten reproduced values with substantial percent errors (10% or more) compared to the original were target959

results from simulations, which use pseudo-random number generation, and neither R script set a random960

seedwhichwould have facilitated the exact reproduction of the simulations. For one target result inMA068,961

the mean slope parameter for a logistic regression, the reproduced value was 0.001, compared with an orig-962

inal value of −0.001. This is the only case in this study of a reproduced target result not being in the same963

direction as the original target result value. However, by using different random seeds, repeated simulations964

of this target result could yield different results, which might more closely agree with the original value.965
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Variable Value
ID MA094
Study (61)
Result source Figure 1 (p.1227)
Result type Bar widths (in pixels) represent-

ing average proportions of species
richness at different trophic lev-
els for different food web types

Published food webs, top trophic
level

215

Published food webs, intermediate
trophic level

475

Published food webs, herbivore
trophic level

430

Published food webs, basal trophic
level

549

Random food webs, top trophic
level

589

Random food webs, intermediate
trophic level

521

Random food webs, herbivore
trophic level

51

Random food webs, basal trophic
level

108

Cascade food webs, top trophic
level

79

Cascade food webs, intermediate
trophic level

934

Cascade food webs, herbivore
trophic level

158

Cascade food webs, basal trophic
level

221

Niche food webs, top trophic level 441
Niche food webs, intermediate
trophic level

408

Niche food webs, herbivore
trophic level

102

Niche food webs, basal trophic
level

385

Table S21: Detail of the second set of alternative target results selected for article MA094, (61). These
alternative target results were selected due to being relevant to the shared code.
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Table S22: The original and reproduced values of all alternative target results for MA068 andMA094. All target result values are numeric.

ID Study Result type Effect size

type

Target result Original Reproduced Percent

error (%)

Status

MA068 (43) logistic regression model

(Rödel)

slope pa-

rameter

SE 0.001 0.001 0.00 E

MA068 (43) logistic regression model

(Barber-Meyer)

slope pa-

rameter

point est. -0.001 0.001 200.00 10%+

MA068 (43) logistic regression model

(Barber-Meyer)

slope pa-

rameter

SE 0.113 0.113 0.00 E

MA094 (61) mean species

richness

point est. 90.21 90.21 0.00 E

MA094 (61) mean species

richness

SD 31.27 31.27 0.00 E

MA094 (61) mean species

richness

minimum 50 50 0.00 E

MA094 (61) mean species

richness

maximum 209 209 0.00 E

MA094 (61) mean species

richness

N 72 72 0.00 E

MA094 (61) average proportion of

species present

pixel width published food webs, top

trophic level

215 212 1.40 < 10%

MA094 (61) average proportion of

species present

pixel width published food webs, inter-

mediate trophic level

475 476 0.21 < 10%
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ID Study Result type Effect size

type

Target result Original Reproduced Percent

error (%)

Status

MA094 (61) average proportion of

species present

pixel width published food webs, herbi-

vore trophic level

430 434 0.93 < 10%

MA094 (61) average proportion of

species present

pixel width published food webs, basal

trophic level

549 550 0.18 < 10%

MA094 (61) average proportion of

species present

pixel width random food webs, top

trophic level

589 96 83.70 10%+

MA094 (61) average proportion of

species present

pixel width random food webs, interme-

diate trophic level

521 1078 106.91 10%+

MA094 (61) average proportion of

species present

pixel width random food webs, herbivore

trophic level

51 27 47.06 10%+

MA094 (61) average proportion of

species present

pixel width random food webs, basal

trophic level

108 64 40.74 10%+

MA094 (61) average proportion of

species present

pixel width cascade food webs, top

trophic level

79 252 218.99 10%+

MA094 (61) average proportion of

species present

pixel width cascade food webs, intermedi-

ate trophic level

934 759 18.74 10%+

MA094 (61) average proportion of

species present

pixel width cascade food webs, herbivore

trophic level

158 160 1.27 < 10%

MA094 (61) average proportion of

species present

pixel width cascade food webs, basal

trophic level

221 227 2.71 < 10%

MA094 (61) average proportion of

species present

pixel width niche food webs, top trophic

level

441 359 18.59 10%+
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ID Study Result type Effect size

type

Target result Original Reproduced Percent

error (%)

Status

MA094 (61) average proportion of

species present

pixel width niche food webs, intermedi-

ate trophic level

408 441 8.09 < 10%

MA094 (61) average proportion of

species present

pixel width niche food webs, herbivore

trophic level

102 129 26.47 10%+

MA094 (61) average proportion of

species present

pixel width niche food webs, basal

trophic level

385 439 14.03 10%+
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S11 REVISITING THE DEFINITION OF REPRODUCIBILITY966

In this section, we return to the definition of reproducibility provided in the introduction, “reproducibil-967

ity is obtaining consistent results using the same input data; computational steps, methods, and code; and968

conditions of analysis” (15, p.43) and consider each component of this definition in turn, in the context of969

the results of this study.970

Consistent As is noted in the NAS report, there can be different standards for what is considered “con-971

sistent”. In some scenarios, bitwise consistency may be required. In others, obtaining results in the same972

direction as the original might be considered good enough. The reproduced results in this study were com-973

pared to their original counterparts by looking at the percentage error. Looking at Table 6, relaxing stan-974

dards for consistency from exact matches only tomatches differing only by rounding precision andmatches975

within 10% of the original increased the percentage of target results considered “consistent” from 43% to976

57%. In the context of meta-analysis, what might be considered sufficient consistency will likely depend977

on the purposes that the results are put to use, and the sensitivity of those purposes to variation in the in-978

puts. Meta-analysis in particular is an interesting case because meta-analyses can be updated with additional979

primary studies, and is complicated by differences of judgment over which primary studies ought to be in-980

cluded and excluded, etc. Given this, there may be an expectation that meta-analytic summary effects are981

already subject to variation beyond formal statistical error. In this context, there may be a tolerance for a982

certain amount of inconsistency in any asserted summary effect, such that small discrepancies of up to 10%983

in value when reproduced are not fatal (albeit perhaps still worthy of rigorous checking).984

Results In the context of reproducing a numerical result, “results” are those numbers printed in the pub-985

lished article. Ordinarily, we take them as they are presented. However, in this study, we have the example986

of a result reported in article MA062 (40) which contains a typo (a missing minus sign). Here, the code987

and data produce the “correct” result, with a value less than zero. Here, interpretation and judgement is988

required: a reader can see that there is supposed to be a minus sign in front of the reported effect size, since989

that would then agree with the stated confidence interval. This example is particularly straightforward and990

obvious.991

This is important to note because a lot of the challenge of evaluating computational reproducibility of re-992

sults is in getting the data and code to “work”; understandably, that’s where a lot of the focus is. But this993

perhaps takes for granted that the target value in the published article that is being reproduced is valid, and994
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has not been corrupted during rounds of revision, copy editing, type setting, etc. (This is of course the chief995

motivation behind reproducible reports/documents, where analysis and text are contained within the one996

document, and so issues such as transcription error, etc. are mitigated.)997

Another issue is the coverage/completeness of results. Do all “results” (e.g., all numerical values reported998

in text, all tables and figures) in an article need to be reproducible? For tractability, this study selected a999

single target result for reproduction across a number of articles, with the goal of selecting the firstmentioned1000

summary effect where possible. Even though this “bare minimum” attempt for each article covered only a1001

tiny proportion of all results reported, the successes and failures were still informative.1002

Same input data Data sharing policies and advocacy perhaps may take for granted that the data file(s)1003

that get shared are the same as the data file(s) that were actually used for the calculations reported in the1004

article. But, this may not necessarily be the case: (i) Authors may “clean up” their data files in preparation1005

for them to be shared. This may involve recoding of data values, or renaming of variables to make them1006

more explicable to outside readers. This could introduce changes to how the data needs to be pre-processed1007

or recoded for analysis. (ii) Some data files may be updated or edited over time, especially if used in projects1008

which spanmore than a single article. It may become a non-trivial task to identify a single version of the data1009

file(s) that applies to all results reported in an article.1010

In onemeta-analysis (57), the data file sharedwas not the data file usedwith the provided code, and according1011

to the content of the article itself, could not have been the data file used to calculate all results reported. This1012

was due to a missing variable in the data set.1013

There is one meta-analysis where the authors explicitly provide two different versions of their data: the first1014

which is the one actually used in the meta-analysis (and so is the one to be used to “reproduce” the results1015

in the article), and the second which is a corrected version of the first, and which the authors recommend1016

be used for further analysis. This example is particularly striking because of the transparency of the authors1017

and the delineation they provide between “original” results and what might be called “correct” results.1018

The point of this is to say that when we say “the same data”, we might not necessarily mean or intend to1019

refer to “the specific original file(s) used by the authors in the calculation of the results”. What we mean is1020

a set of data that has the same substantive content as the original data, regardless of whether that version of1021

the data was used by the authors to calculate the results or not.1022
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Same computational steps, methods, and code This hasmultiple components: first, the sharing of code1023

files has the same issues as the sharing of data files, as detailed above. Code files may be “cleaned up” for1024

public release, or comments may be added, or code might be passed through a tool to format the code for1025

easier reading. The point of this is to say that when we say “the same code”, we may not necessarily mean1026

the “specific original file(s) used by the authors”.1027

The “same computational steps” also requires some nuance: for example, it’s taken as given in studies evalu-1028

ating reproducibility that things like the file systempaths of input files do not really count asmeaningful bar-1029

riers to computational reproducibility. It does not seem “fair” to declare a result as unable to be reproduced1030

purely because the code as written assumes a different file folder structure than exists on the reproducer’s1031

computer system.1032

The above example of file paths seems unambiguous enough (and is very common), but “alterations to the1033

code as supplied” exists on a spectrum: if we agree that altering the computational steps to enable files to1034

be read is at the end of “insubstantial changes”, at what point do changes to the code as supplied become1035

substantial, and we agree that we are no longer taking the same computational steps?1036

Examples from this study include typos in code that once corrected produce matching results. Correcting1037

the (perhaps obvious) typo is making an act of interpretation: we’re intuiting what the original authors1038

intended, even though it is not literally what they have written in code.1039

This particular example also feeds back to the “same code” issue: if an analysis script contains a typo/syntax1040

error that does not produce the results reported in the paper, can it be “the same” code run by the authors?1041

If it was, they would have obtained an error message instead of a result, and so could not have reported that1042

result in the paper. This makes it clear that the shared code file is not literally the code that was run to obtain1043

the original results.1044

Beneath all this, there is some notion that when we refer to computational steps, we are referring to the1045

computational steps that “really matter” to the calculation of the result.1046

Same conditions of analysis Should we take this to mean the same computing and software environ-1047

ment? In the context of this study and its results, it seems that the conditions of analysis mostly concerns1048

software packages andperhaps their versions—the fact thatmeta-analysis resultswere typically only reported1049

to the third decimal place at most, as well as the observed success rate at the target result level indicates that1050

information about computer hardware (e.g., architecture, processors) is wholly unnecessary, as is informa-1051

tion about operating and file systems. This would not be universal across research disciplines, but it seems1052
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reasonable for meta-analysis.1053

As found in this study, study authors often reported the software tools they used for analysis, even when1054

code was not shared. Not all mentions of software were accompanied by information about versions, but1055

this study shows that a lack of version informationwas not fatal to reproduction attempts, although software1056

version differences may be contributing to the discrepancies between original and reproduced values.1057

One condition of analysis that clearly stood out as an issue was the lack of specification of random seeds for1058

procedures which involved pseudo-random number generation. Without random seeds, such procedures1059

become an inescapable source of discrepancy between original and reproduced values. Specifying a random1060

seed can nullify this problem, however.1061
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