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ABSTRACT

The rates at which journal articles in ecology and evolutionary biology make data and code available1

have been studied previously. This study examines how often this data and code, when available, can2

be used to computationally reproduce results published in articles. This study surveys the data and3

code sharing practices of 177 meta-analyses published in ecology and evolutionary biology journals4

published over 2015-17. 26 articles (15%) were found to have obtainable data and code files. Results5

from these articles were targeted for computational reproduction using the data and code files ob-6

tained. Overall, from the sample of 177 articles, 4-13% of articles could be successfully reproduced,7

depending on the stringency of the criteria applied for a successful reproduction. The low overall8

success rate was primarily driven by the low rate of code sharing.9
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1 INTRODUCTION10

Concerns about the replicability and reproducibility of research, perhaps most prominently discussed in11

psychology (Collaboration, 2015), are also being raised and addressed in the fields of ecology and evolution-12

ary biology. The role of replication in ecology has been discussed and debated in the literature (Ihle et al.,13

2017; Nakagawa and Parker, 2015; Schnitzer and Carson, 2016; Shavit and Ellison, 2017), and there has14

been interest and activity in conducting meta-research/meta-science studies in ecology and evolutionary bi-15

ology (Fidler et al., 2017). For example, Fraser et al. (2018) surveyed ecologists to estimate the prevalence16

of questionable research practices in ecology and evolutionary biology. Fraser et al. (2020) surveyed ecolo-17

gists about their opinions about replication studies. Open Science initiatives in the field include the Tools18

for Transparency in Ecology and Evolution, TTEE (Parker et al., 2016), which was followed by the forma-19

tion of the Society for Open, Reliable, and Transparent Ecology and Evolutionary biology (SORTEE) for20

ecologists and biologists with an interest in transparency and open science (O’Dea et al., 2021b).21

Closely related to this is the archiving and public availability of data. This is a well-established topic in ecol-22

ogy and evolutionary biology, with numerous efforts to facilitate and improve data sharing, coming from23

both individual researchers and institutions such as journals. Journals have recognised and stressed the im-24

portance of data archiving (Moore et al., 2010; Simmons, 2016; Whitlock et al., 2010). Researchers have25

created guides and compiled advice for how to best approach data archiving and sharing (Culina et al., 2018;26

Ihle et al., 2017; Whitlock, 2011). There have also been efforts to review the effectiveness of data archiving27

policies and assess how the field is doing (Caetano and Aisenberg, 2014; Miller et al., 2021; Roche et al.,28

2015).29

In addition to data availability, the issue of code availability has also been raised. Here, “code” specifically30

refers to computer code or syntax which is written to perform the data analyses, simulations, and other31

calculations that are presented as results in articles. Mislan et al. (2016) surveyed 96 ecology journals in 2015,32

and found that only a small minority (14%) required code to be made available alongside published articles33

(in contrast to 38% of journals requiring data be made available alongside published articles). Culina et al.34

(2020) repeated this survey in 2020 and found that of the same 96 journals, 75% mandated or encouraged35

making code available. However, despite this now common journal policy, Culina et al. (2020) also found36

that only 27% of a sample of 346 ecology articles published 2015–19 actually shared code.37

Computational reproducibility is defined as “obtaining consistent results using the same input data; compu-38

tational steps,methods, and code; and conditions of analysis” (NationalAcademies of Sciences, Engineering,39
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andMedicine, 2019, p.46). Thus, availability of the data and code underpinning an article is a necessary pre-40

requisite for computational reproducibility. Given available data and code, in theory we should be able to41

use both to recalculate results thatmatch the published results. Directly evaluating the computational repro-42

ducibility of the published literature has been attempted in other fields, especially psychology (Hardwicke43

et al., 2018, 2021; Minocher et al., 2021; Obels et al., 2020; Stodden et al., 2018), but less often in ecology44

and evolutionary biology. In their assessment of code availability in ecology articles, Culina et al. (2020) did45

not attempt to run the code to reproduce results. Archmiller et al. (2020) did attempt to computationally46

reproduce a sample of 80 studies published in theThe Journal ofWildlifeManagement andWildlife Society47

Bulletin. They were able to obtain data and code for 19 studies, and mostly or fully reproduce the results48

for 13 of them.49

Aims and scope50

This exploratory study aims to assess computational reproducibility when using shared data and code by51

directly attempting the recalculation of specific results from meta-analyses published in ecology and evo-52

lution journals (the focus on meta-analyses in particular is explained in section S1 of the Supplementary53

Information). The primary outcome of this aim is the calculation of an overall computational reproducibil-54

ity “success rate”, similar to Stodden et al. (2018) and Hardwicke et al. (2021).55

For this study, we only counted data/code that was reported as already available, rather than data/code that56

was (potentially) available upon request, as having been “shared” (see Figure 2). It is entirely possible that57

some authors of themeta-analyses included in this studymay have in fact privately shared their data and code58

in response to requests fromother researchers, and so technically have “shared” their data/code. Investigating59

whether such sharing might have taken place is not part of this study.60

That the data and code are publicly available, and notmerely available upon request, is important. A request61

for data requires an interaction between the requesting party and the article authors, and there is a possibility62

that the request will not be successful, for a variety of reasons (e.g., the authors are no longer contactable63

via the contact details provided in the article, the authors do not respond in a timely manner, the authors64

respond but refuse for some reason, the authors respond but can no longer find the data and code). We65

decided not to request data from article authors in this study: requesting data would introduce a element of66

the study that may not be reproducible by others: that is, the success or failure of any requests, which rely67

on a number of factors such as timing, existing connections (of lack thereof) with authors, and the purpose68

behind the request (i.e., the particulars of this study).69
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2 METHODS70

The structure of the study falls into four distinct domains of activity that we undertook: obtain a sample of71

meta-analyses from ecology and evolution; assess eachmeta-analysis for data- and code-sharing; select results72

to be reproduced using shared data and code; embark on attempts to reproduce the selected results.73

We curated a set ofmeta-analyses to survey by conducting a Scopus abstract and citation database search (see74

details in Supplementary Information S2). The search query, conducted on 20th December 2017, searched75

article titles, abstracts, and keywords for the string “meta-anal*”, subject to two constraints. The first con-76

straint restricted results to articles published between 2015 and 2017, inclusive. The second constraint re-77

stricted results to articles published in one of 21 ecology and evolution journal titles (identified by ISSN),78

which are the same journal titles as used for the survey of meta-analyses conducted in Nakagawa and Santos79

(2012).80

The search yielded 229 results. One irrelevant result (an article from a non-ecology journal that had not81

been included in the search) was found to have been included in the results due to a Scopus database error82

and was immediately excluded, leaving 228 results.83

The search results were coded to retain only those articles which were actual meta-analysis studies, details of84

the coding schemeused are in the Supplementary Information (S2). Thefinal set of ecology and evolutionary85

biology meta-analyses, to be the basis of the rest of this study, is the set of 177 articles coded as containing86

claims to be meta-analyses. Figure 1 shows a PRISMA-style flow diagram for this study.87

Recording code and data sharing in each article88

With the meta-analyses identified, the next task was to ascertain whether data and/or code had been shared89

alongside each article. These terms are defined in the context of this study in Figure 2.90

The availability of data and code for individual articles needs to be evaluated in the context of the publishing91

journals’ policies about making data and code available at the time of publication, especially given that for92

this study, authorswere not contacted regarding code anddata availability. A reviewof the surveyed journals’93

code and data sharing policies are in the Supplementary Information (S3).94

Each meta-analysis article in the set of 177 was assessed for data and code sharing using the coding scheme95

detailed in the Supplementary Information (S4). We also reviewed the methods section of each article for96

any and all references to the use of software. If an article did not report any details of software used, we97

reviewed supplementary documentation, if supplied. The review process is detailed in the Supplementary98

Information (S5).99
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Records identified from:
Databases (n = 229)

Records removed
before screening:

Records removed for
other reasons (n = 1)

Records screened:
(n = 228)

Records excluded:
Errata (n = 3)
Replies (n = 10)

Records assessed for eligibility:
(n = 215)

Records excluded:
Primary studies (n = 12)
Theory/method (n = 17)
Other review (n = 9)

Records included in study:
(n = 177)
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Figure 1: PRISMA-style diagram showing how the final set of meta-analyses was arrived at.
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Definitions of data, code, and sharing

Data
“Data” in this context refers to curated, formatted information (both numeric and text-based) that can
be considered the “raw material” for calculations and analyses that get presented as results in meta-
analysis articles. It’s expected that data would be presented in one or more formatted computer files
(e.g., in comma separated values format), and perhaps accompanied by additional computer documents
containingmetadata or some other explanation of the data files’ contents. There’s a general expectation
that the data would be relevant to (at least some of) the results presented in the article it appears along-
side.
Code
FollowingMislan et al. (2016) andCulina et al. (2020), “code” refers to computer code, specifically anal-
ysis code. Analysis code is designed to do tasks such as importing and manipulating data, performing
statistical calculations based on data (e.g., calculating summary statistics or fittingmodels), or conduct-
ing simulations. Analysis codemay be written in a programming language (e.g., R or Python) or it may
be syntax to be run by a dedicated statistical analysis software package such as SPSS, SAS, or STATA.
In the context of this study, the code is assumed to be relevant to the calculation of (at least some of)
the results reported in the article it appears alongside. It’s expected that code would be made available
in plain text computer file(s) with the file extensions indicating the language/application, but this may
not necessarily be the case.
Sharing
“Sharing” in this context means that the authors of the article have made data and code files available
somehow alongside the publication of the article. The use of the term “available” is used here in a
specific sense: publishers’ websites for journals include provision for supplementarymaterial associated
with each published article. For journals which are not Open Access, data and code files provided as
supplementarymaterials on publishers’ websites are typically hidden behind subscriber paywalls (much
like the articles themselves) and are not available to everyone. We made the decision that data and code
provided in this way ought to count as having been shared for the purposes of this study. It is for this
reason that we have chosen to refer to “shared” data and code rather than “open” data and code, since
“open” carries with it connotations about availability and accessibility that may not apply to data and
code files provided as supplementary material behind a publisher’s paywall.
Additionally, for this study, we only counted data/code that was reported as already available, rather
than data/code that was (potentially) available upon request, as having been “shared”. It is entirely
possible that some authors of the meta-analyses included in this study may have in fact privately shared
their data and code in response to requests fromother researchers, and so technically have “shared” their
data/code. Investigating whether such sharing might have taken place is not part of this study.

Figure 2: The operational definitions of “data”, “code”, and “sharing” used for this study.
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Selecting target results for computational reproduction100

For each article in the subset of meta-analysis articles with both shared data and code, we identified a nu-101

meric “target” result that would be the basis of the computational reproduction attempt. Selecting a single102

result from an article involves subjective judgment, and can potentially be manipulated to increase or de-103

crease the chance of success of reproducing each result. To mitigate this risk, we used the following process104

to identify a target result: our target result would be the first meta-analytic summary effect (consisting of105

the point estimate, the sample size, and the measure of uncertainty such as a confidence interval) reported106

in the results section of each article. The reasoning for this strategy is as follows: (i) in general, summary107

effects are very commonly reported in meta-analyses, and so this would identify like1 results across articles;108

and (ii) identifying the first reported result is a consistent method of selection across articles that minimises109

(but does not eliminate entirely) the need for interpretation and therefore reduces the risk of bias. A proce-110

dure which allowed for results to be deliberately chosen for computational reproduction could potentially111

be selected on the basis of perceived ease of reproduction (even if only unconsciously). Even though first-112

reported summary effects might have something in common across articles (e.g., they may tend to be overall113

mean effects), it seems unlikely that such similarities would be directly correlated with ease of reproduction.114

In practice, identifying and extracting the first reported meta-analysis summary effect was complicated by115

two factors. First, articles presented results in different ways: some articles reported results in the body of116

the text while others referred to a table or figure. We were able to extract the numerical values directly from117

in-text results and from results presented in tables. For results presented graphically in figures2, we extracted118

numerical results using the software package WebPlotDigitizer version 4.4 for the Windows platform. We119

rounded all values extracted from figures to two decimal places. Frequently, a result was reported in-text and120

also expressed in a figure/table; we prioritised extracting in-text results over results reported in figures/tables.121

The second factor was that not all meta-analysis articles actually reported a summary effect result. In these122

cases, we extractednumerical values for the first-reported result of any kind associatedwith themeta-analysis.123

Reproducing results and results comparison124

For each article, we assessed the shared data and code for its relevance to the identified target result using125

the following general strategy: (i) Consult documentation accompanying data and code files (if it exists); (ii)126

Examine commentsmadewithin the code syntax files (if such comments exist); (iii) Examine themetadata of127

1Here, “like” means that results have similar goals (to summarise multiple effect sizes from the literature) and are the result of
approximately similar methods (from a family of linear models used in meta-analysis).

2Figures required additional interpretation, as they typically plotted multiple summary effects. In these cases, we prioritised
extracting the “overall” summary effect if it existed, and otherwise selected the “first” plotted result, according to the layout of the
figure (e.g., either the leftmost or topmost result).
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data files (if it exists); (iv) Examine the contents of data files directly, looking for clues in variable names and128

data formats; (v) Examine the syntax of code files directly, looking for clues in the names of functions called129

and the kinds of calculations made. This approach was sufficient to discern with confidence whether the130

data and code files were applicable to the re-calculation of the target result. We went ahead with attempting131

to reproduce the target result for each article where both the shared data and codewere found to be relevant.132

In cases where we found that the code and/or data were not relevant to the identified target result, our at-133

tempt to reproduce those particular target results ended at this point. Rather than do nothing further with134

these cases, we decided to return to the article and identify an alternative target result that was relevant to135

the shared data and code, and report the results of these reproduction attempts separately.136

Each reproduction attempt was packaged as a reproducible document written in RMarkdown contained137

with in a controlled computational environment using Docker (details are in the Supplementary Informa-138

tion Section S9). Where code could be successfully run, reproduced target results were compared with the139

originally published values with the difference expressed as the percent error from the original. For each tar-140

get result (which consisted of a set of numbers, e.g., summary effect estimate, confidence interval bounds,141

and sample size), we followed the method used in Hardwicke et al. (2021) and quantified the difference142

between the original published value and reproduced value by calculating the relative error, expressed as a143

percentage: δ = 100 × |xR − xO |/|xO |, where xO is the original reported result value and xR is the repro-144

duced result value. Note that the relative error is undefined when the original value is zero. Again following145

Hardwicke et al. (2021), we distinguished between three magnitudes of error: exact matches (δ = 0), minor146

numerical discrepancies (0 < δ < 10) and major numerical discrepancies (δ ≥ 10).147

3 RESULTS148

The 177 meta-analyses were located among the 21 journals as shown in Table 1. The table also shows the149

total number of articles from each journal returned by the literature search. Note that neither Evolutionary150

Ecology or The Quarterly Review of Biology were found to have published any articles which claimed to be151

meta-analyses over 2015–17 (the literature search did not return any results at all from the journalEvolution-152

ary Ecology). The journal which was found to have the most meta-analyses during 2015–17 was Biological153

Reviews, followed byOikos. The meta-analyses in the sample were fairly evenly spread across the three years154

searched, as shown in Table 2. Note that six articles have a publication year of 2018; these articles had all155

been published online during 2017 (and so were picked up in the literature search), but at the time of the156

literature search had not yet been assigned to a specific journal issue. These six were subsequently published157

in journal issues dated in 2018. We decided to keep these six journal articles and regard them as articles158
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published in 2017.159

Meta-analysis Other Total
Journal Title N % N % N %
Biological Reviews 24 13.6 5 9.8 29 12.7
Oikos 22 12.4 2 3.9 24 10.5
Ecology Letters 19 10.7 1 2.0 20 8.8
New Phytologist 18 10.2 5 9.8 23 10.1
Ecology 13 7.3 9 17.6 22 9.6
Journal of Applied Ecology 10 5.6 2 3.9 12 5.3
Molecular Ecology 10 5.6 5 9.8 15 6.6
Oecologia 10 5.6 1 2.0 11 4.8
Functional Ecology 9 5.1 1 2.0 10 4.4
Journal of Ecology 7 4.0 0 0.0 7 3.1
Journal of Animal Ecology 6 3.4 3 5.9 9 3.9
Ecological Monographs 5 2.8 0 0.0 5 2.2
Behavioral Ecology 4 2.3 3 5.9 7 3.1
Evolution 4 2.3 0 0.0 4 1.8
Journal of Evolutionary Biology 4 2.3 10 19.6 14 6.1
Animal Behaviour 3 1.7 2 3.9 5 2.2
Behavioral Ecology and Sociobiology 3 1.7 0 0.0 3 1.3
Ecological Applications 3 1.7 0 0.0 3 1.3
The American Naturalist 3 1.7 1 2.0 4 1.8
The Quarterly Review of Biology 0 0.0 1 2.0 1 0.4
Evolutionary Ecology 0 0.0 0 0.0 0 0.0
Total 177 100.0 51 100.0 228 100.0

Table 1: Breakdown of the 177 identified meta-analysis articles by journal title.

Publication Year N %
2015 56 31.6
2016 61 34.5
2017 54 30.5
2018 6 3.4
Total 177 100.0

Table 2: Breakdown of the 177 identified meta-analysis articles by publication year. Articles with publication
year 2018 were all first published online in 2017 before being assigned to a journal issue dated in 2018.

Rates of data and code sharing160

The practice of including some kind of supplemental information alongside a published article was very161

common in this sample. The vast majority (168/177, or 95%) of meta-analysis articles included some kind162

of supplementary or supporting document (regardless of whether or not they also shared data or code).163

When articles were reviewed for data sharing (as per the coding scheme summarised in Table S5), a clear164

majority of 78% or 138 meta-analyses indicated that data had been shared in some manner. Despite the165

positive indication, in five cases data files could not actually be obtained. This meant that the effective data166

sharing rate among this sample of meta-analysis articles was 75% (133 out of 177).167
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The rates of code sharingweremuch lower in comparison to data sharing: wewere able to obtain shared code168

files for 16% of meta-analysis articles (28 out of 177). This was one less than the number of articles which169

had indicated code was available. Of the 28 articles with code, 26 had shared data too, meaning that 15% of170

articles (26 of 177) in this sample shared both data and code. Section S6 of the Supplementary Information171

breaks down data and code sharing rates by journal.172

Characteristics of shared data and code173

Figure 3 shows the online locations where the data files shared by the 133 articles. The majority of data-174

sharing articles shared some or all of the data files on the journal publisher’s website (58%, n = 77): in175

these cases, the data file(s) had been uploaded as supplementary material to the article. The Dryad Digital176

Repository (Dryad, 2021) was the next most common location to share data (35% or 46 articles), followed177

by the Figshare (8%, n = 11) and Zenodo (1.5%, n = 2) repositories. One article was judged to have shared178

the data for its meta-analyses in tables presented within the published article itself: the article mentioned179

that the effect sizes and other details for all the individual studies included in the meta-analysis calculations180

were provided across two tables.181

DANS

OSF

Table(s) in article

Zenodo

Figshare

Dryad

Journal website

0 25 50 75 100
Percentage of meta−analyses (%)

Figure 3: Breakdown of the locations where articles shared data online. Note that some articles shared data files
in more than one location; both locations were counted, so the percentages indicated add up to more than 100%.

Figure 4 shows the types (formats) of data files shared by the 133 articles. The most common format for182

data files was the Microsoft Excel spreadsheet (44%, n = 59); this included both the binary XLS format183

and the Open XMLXLSX format. The next most common format was the comma separated values (CSV)184
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format (25%, n = 33). Data in a variety of plain text formats was shared by 15% of articles (n = 20): this185

included files containing phylogenetic data in NEXUS or Newick tree format. A substantial minority of186

articles shared tabular data in document formats likeMicrosoftWordDocument formatsDOCandDOCX187

(17%, n = 22), Portable Document Format PDF (14%, n = 19), HypertextMarkup Language HTML (2%,188

n = 3), and one article shared data in Rich Text Format RTF (1%). Two articles shared data files with a189

binary format: one article shared a data file in RData format, a binary file used by the R language, and one190

article shared multiple data files in a proprietary binary format associated with data logging equipment.191

Other binary formats

RData format

Rich Text Format (RTF)

Hypertext Markup Language (HTML)

Portable Document Format (PDF)

Plain text formats

Microsoft Word document

Comma−separated values (CSV)

Microsoft Excel spreadsheet

0 25 50 75 100
Percentage of meta−analyses (%)

Figure 4: Breakdown of the types of file format shared by each article. Some articles shared data files of more
than one type, and both types of file were counted (multiple files of the same file format only counted as one).
This means that the percentages will add up to more than 100%.

Table 3 breaks down the type (i.e., language or compatible software environment) of code shared by the 28192

meta-analysis articles which shared code. The overwhelming majority of articles shared R code (26 out of193

28, 93%): 25 shared onlyR code, and one article sharedR code andC++ code, whichwere designed towork194

together. The other two articles shared FORTRAN code and Python code.195

Type of code shared N %
FORTRAN 1 3.6
Python 1 3.6
R 25 89.3
R and C++ 1 3.6
Total 28 100.0

Table 3: The 28 code-sharing meta-analysis articles broken down by the type of code shared.
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Software mentioned in articles196

Overall, 171meta-analysis articles (97%)mentioned at least one specific software package that was used dur-197

ing the study, whether mentioned in the article text or in supplementary material. The R software environ-198

ment was by far the most commonly mentioned software package with nearly 80% of articles mentioning199

R. The next most commonly mentioned piece of software was MetaWin; 11% of articles mentioned using200

it. The specialised meta-analysis software package CMA was mentioned by two articles, or 1% of the sam-201

ple. The full list of all software packages mentioned is in the Supplementary Information (S7). Due to the202

popularity of R in this sample, and the specifics of its package system, R and R packages are summarised203

separately from the non-R software packages.204

There were 144 mentions of software packages that weren’t the R software environment or an R package.205

Themajority of thesementions were accompanied by some kind of reference: 83 (58%) included a complete206

citation that appeared in the article’s reference section, and 39 (27%) included a short in-text reference3.207

Only 15% of these software package mentions had no citation of any kind. A majority of these software208

package mentions (95, or 66%) also specified which version of the software package was used.209

Asmentioned above, 141 meta-analysis articles (nearly 80%) mentioned using the R software environment.210

The majority of these mentions of R included a citation: 86 (61%) included the citation in the reference211

section and 21 (15%) included a short in-text reference. The version of R used was mentioned in 88 (62%)212

articles (see Table S9 in the Supplementary Information). In total, there were 257 mentions of specific R213

packages: 220 (86%) included a full citation and 3 (1%) a short in-text reference. The most common R214

packagementioned was themetafor package (Viechtbauer, 2010), mentioned by 75 articles (53% of the arti-215

cles which mentioned R). Package versions were mentioned in 58 (23%) cases. A table listing all R packages216

mentioned in articles is provided in the Supplementary Information (Table S8).217

Reproducing target results218

The subset of 26 articles with both shared data and shared code was the focus of the reproduction attempts.219

For each article we selected a target result; in 22 cases, we were able to identify what we termed a “summary220

effect” result: a mean, correlation, or model parameter such as slope derived from the data collected for the221

meta-analysis. These target results are detailed in Table 4. In the other 4 cases, the articles did not report222

such a result, but instead a variety of different results from an eclectic set of analyses. These other results are223

specified individually for each article in the Supplementary Information (Tables S10-S15).224

3These short in-text references included simple mentions of the software publisher or author, and/or a URL to the software’s
website.
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ID Study Result source Effect size type N Estimate Uncertainty
MA016 Xu et al. (2017) in text (p.1100) Pearson’s r 49 -0.83 < 0.001 (p-value)
MA060 Winternitz et al. (2017) in text (p.674) Fisher z-transformation 37 0.044 (-0.174, 0.289) (95%HPDI)
MA062 Grueber et al. (2018) in text (p.1115) Hedges’ d 37 -0.205 (-0.444, 0.035) (95% CI)
MA065 Noble et al. (2018) in text (p.80) Hedges’ g 703 -8.42 (-10.73, -6.63) (95% CI)
MA067 Risely et al. (2017) in text (p.306) Hedges’ g 52 -0.21 0.07 (SE), -2.7 (z-score),

0.006 (p-value)
MA068 Ronget et al. (2017) in text (p.14) odds ratio 75 1.82 (1.37, 2.41) (95%HPDI)
MA071 Sievers et al. (2017) Figure 3A (p.538) response ratio 50 -0.26 (-1.02, 0.51) (95% CI)
MA074 Harts et al. (2016) in text

(pp.2795-2796)
Pearson’s r 43 0.183 (0.089, 0.274) (95% CI)

MA081 Jaffé et al. (2016) in text (p.5351) slope parameter 1296 1.30 (0.95, 1.66) (95% CI)
MA091 Lemoine et al. (2016) in text (p.2556) Cohen’s d 65 0.56 (0.42, 0.69) (95% CI)
MA095 Gibert et al. (2016) Figure 3A

(pp.1495-1496)
Fisher z-transformation 25 0.76 (0.61, 0.91) (95% CI)

MA126 Anderson (2016) in text (p.83) log odds ratio n.s. -1.11 0.49 (SE), -2.28 (z-score),
0.023 (p-value),
(-2.06, -0.15) (95% CI)

MA145 Moore et al. (2016a) in text (p.366) Fisher z-transformation 118 -0.08 (-0.22, 0.03) (95%HPDI),
38 (Nstudies), 25 (Nspecies)

MA147 Holman (2016) in text (p.66-69) percentage 49 0.13 0.030 (SE),
(0.074, 0.19) (95% CI)

MA155 Strader et al. (2016) in text (p.565) Pearson’s r n.s. 0.51 0.01 (p-value)
MA188 Senior et al. (2015) in text (p.653) log response ratio 818 -0.363 (-0.408, -0.318) (95% CI)
MA191 Voje (2015) in text (p.92) slope parameter 553 0.86 (0.77, 0.94) (95% CI)
MA198 Paz‐Vinas et al. (2015) in text (p.4595) Fisher z-transformation 79 -0.41 (-0.55, -0.27) (95% CI)
MA202 Mehrabi and Tuck (2015) in text

(pp.1072-1073)
Hedges’ d 329 -0.330 (-0.503, -0.156) (95% CI)

MA211 Yuan and Chen (2015) Figure 2 (p.374) log response ratio 3298 0.24 (0.23, 0.25) (95% CI)
MA213 Colautti and Lau (2015) in text (p.2004) difference in means 654 -0.07 0.362 (p-value)
MA229 Gamfeldt et al. (2015) Figure 3 (p.256) log response ratio 57 0.40 (0.24, 0.53) (95% CI)

Table 4: Details of the 22 summary effect target results selected for reproduction attempts. In the table, the following abbreviations are used: CI – confidence interval; HPDI –
highest posterior density interval; SE – standard error; n.s. – not stated
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Across the 26 articles with data and code, there was a total of 173 separate target result values. This in-225

cludes all summary effect estimate values, sample size values, measures of uncertainty such as lower and226

upper bounds of confidence intervals described in Table 4 and other values described in Tables S10-S15.227

Table 5 summarises our reviews of the articles’ shared code for relevance to the target results: Of the 22 ar-228

ticles with summary effect target results, 19 had relevant code, and one had partially relevant code. Of the 4229

articles with other target results, one had relevant code, and two had partially relevant code. The remaining230

cases had code which was not relevant. “Not relevant” means that the shared code performed calculations231

or analyses that were unrelated to the calculation of the meta-analysis results writ large, let alone the spe-232

cific meta-analysis target result selected for reproduction. (Such code might instead conduct simulations or233

analyse experimental data.) Shared code deemed “partially relevant” was code that performed calculations234

or analyses that related to a subset of the elements that make up the meta-analysis results in total, but not235

the entirety (and in particular, not the meta-analysis target result selected for reproduction). In the “not236

relevant” and “partially relevant” cases, the code could not be used to reproduce the target result for each237

article.238

Overall, we judged 20 out of 26 articles with shared data and code (77%) to have code fully relevant to the239

target result, and therefore we could straightforwardly attempt to reproduce these 20 results.240

We attempted to reproduce the 108 target results associated with the 20 articles with relevant code. The241

reproduction attempt for each article was fully documented in a report, refer to the Supplementary In-242

formation (S9) for details. We will regard the 65 target results associated with the six articles with irrele-243

vant/partially relevant code as having failed to be reproduced by default. (We will return to these articles in244

the next section.) Table 6 summarises the results of the reproduction attempts of the target results.245

Table 6 shows that 57% of target results could be reproduced either exactly (to the precision reported in the246

original article) or within 10% of the original value. Only four reproduced values differed from the original247

value by 10% or more, and there were six target results from three articles that could not be reproduced at248

all; the circumstances of these six failures are described in Table 7.249

The summary of the reproduction attempts in Table 6 counts every target result value separately, whether250

an effect size point estimate, a lower or upper bound of a confidence interval, or a sample size. Calculating251

a reproducibility success rate over the total number of values in this way does not consider that the sets of252

values from each article are inter-dependent, and so the success or failure in reproducing one value from an253

article may not be considered to be independent of the success or failure in reproducing another value from254

the same article. The possibility of dependency of reproduction success between the different target values255
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ID Study Result type Code relevance
MA016 Xu et al. (2017) summary effect not relevant
MA060 Winternitz et al. (2017) summary effect relevant
MA062 Grueber et al. (2018) summary effect relevant
MA065 Noble et al. (2018) summary effect relevant
MA067 Risely et al. (2017) summary effect relevant
MA068 Ronget et al. (2017) summary effect partially relevant
MA071 Sievers et al. (2017) summary effect relevant
MA074 Harts et al. (2016) summary effect relevant
MA081 Jaffé et al. (2016) summary effect relevant
MA091 Lemoine et al. (2016) summary effect relevant
MA092 Xu et al. (2016) other result not relevant
MA094 Turney and Buddle (2016) other result partially relevant
MA095 Gibert et al. (2016) summary effect relevant
MA126 Anderson (2016) summary effect relevant
MA129 Crouzeilles and Curran (2016) other result relevant
MA145 Moore et al. (2016a) summary effect relevant
MA147 Holman (2016) summary effect relevant
MA155 Strader et al. (2016) summary effect not relevant
MA188 Senior et al. (2015) summary effect relevant
MA191 Voje (2015) summary effect relevant
MA198 Paz‐Vinas et al. (2015) summary effect relevant
MA202 Mehrabi and Tuck (2015) summary effect relevant
MA211 Yuan and Chen (2015) summary effect relevant
MA212 Valls et al. (2015) other result partially relevant
MA213 Colautti and Lau (2015) summary effect relevant
MA229 Gamfeldt et al. (2015) summary effect relevant

Table 5: Summary of the shared code review of articles to gauge the relevance of code to the target result.
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Outcome of target result reproduction attempt N %
Original and reproduced values match exactly 75 43.4
Original and reproduced values differ by less than 10% 23 13.3
Original and reproduced values differ by 10% or more 4 2.3
Failed, could not calculate any value for target result 6 3.5
Failed, code not relevant to target result 65 37.6
Total 173 100.0

Table 6: Breakdown of target result reproduction attempts.

within an article is examined in the Supplementary Information (S9).256

ID Study Target result(s) Description
MA081 Jaffé et al. (2016) 2 values (upper and

lower confidence
interval limits)

The code uses bootstrapping to
calculate the reported confidence
interval, but we encountered an
error: the bootstrapping procedure
as coded creates random data from
which the bootstrapped value can’t
be calculated, making it impossible to
complete the bootstrap calculation.

MA211 Yuan and Chen (2015) 4 values (summary
effect estimate, upper
and lower confidence
interval limits, sample
size)

There is a mismatch between the
supplied data and code: the code that
would clearly calculate the target re-
sults attempts to subset the supplied
data using a variable that does not
appear anywhere in any shared data
files.

Table 7: Descriptions of the failures to reproduce target results.

The original and reproduced values for the summary effect size target results are compared in Table 8. Over-257

all, apart from one failure to reproduce a summary effect size (MA211), the reproduced values were very258

close to the originally reported values. Note that for this set of results, all reproduced summary effect sizes259

are in the same direction as the original. Therewere nine exactmatches between original and reproduced val-260

ues. Of those that were not exact matches, six (MA060, MA062, MA071, MA191, MA198, MA229) were261

off by±0.001 (where reported to 3 decimals places) or±0.01 (where reported to 2 decimal places); rounding262

could potentially explain these discrepancies. Also, five cases with discrepancies (MA060,MA062,MA065,263

MA198, MA202) used methods which relied on random number generation (Markov chain Monte Carlo264

and multiple imputation). The code for these articles did not include information about setting a random265

seed, and so it was not practically possible to recover the precise target result value as originally calculated by266

the code.267
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ID Study Effect size type Original Reproduced Percent error (%)
MA060 Winternitz et al. (2017) Fisher z-transformation 0.044 0.043 2.27
MA062 Grueber et al. (2018) Hedges’ d -0.205 -0.204 0.49
MA065 Noble et al. (2018) Hedges’ g -8.42 -8.87 5.34
MA067 Risely et al. (2017) Hedges’ g -0.21 -0.21 0.00
MA071 Sievers et al. (2017) response ratio -0.26 -0.27 3.85
MA074 Harts et al. (2016) Pearson’s r 0.183 0.185 1.09
MA081 Jaffé et al. (2016) slope parameter 1.30 1.30 0.00
MA091 Lemoine et al. (2016) Cohen’s d 0.56 0.56 0.00
MA095 Gibert et al. (2016) Fisher z-transformation 0.76 0.76 0.00
MA126 Anderson (2016) log odds ratio -1.11 -1.11 0.00
MA145 Moore et al. (2016a) Fisher z-transformation -0.08 -0.08 0.00
MA147 Holman (2016) percentage 0.13 0.13 0.00
MA188 Senior et al. (2015) Log response ratio -0.363 -0.363 0.00
MA191 Voje (2015) allometric slope parameter 0.86 0.85 1.16
MA198 Paz‐Vinas et al. (2015) Fisher z-transformation -0.41 -0.42 2.44
MA202 Mehrabi and Tuck (2015) Hedges’ d -0.330 -0.340 3.03
MA211 Yuan and Chen (2015) log response ratio 0.24
MA213 Colautti and Lau (2015) difference in means -0.07 -0.07 0.00
MA229 Gamfeldt et al. (2015) log response ratio 0.40 0.39 2.50

Table 8: The original and reproduced values of the target summary effect sizes, for articles with relevant code.
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A full table showing comparisons of original and reproduced values for all target results is provided in the268

Supplementary Information (Table S16).269

Reproducing target results when code not relevant270

The previous section identified six cases where the code shared with an article was only partially relevant271

or not relevant to the article’s meta-analysis results. There were three cases with shared code judged par-272

tially relevant, and three cases with shared code judged not relevant (these cases are described in detail in the273

Supplementary Information, Section S10).274

As described earlier, the target results for these articles were deemed to have failed their reproduction at-275

tempts. However, we reviewed the code and data for these articles again, with the following in mind: (i)276

where the shared code was at least partially relevant to the meta-analysis in the article, could the code that277

hadbeen sharedbeused to reproduce an alternativemeta-analysis target result, and (ii)where the shared code278

was clearly not relevant to the meta-analysis, was the shared data and meta-analysis methods description in279

the article enough to allowus towrite code to successfully reproduce the selected target result. The results of280

assessing two articles fitting scenario (i) are described in the Supplementary Information (Section S10); one281

article’s code despite being partially relevant was judged unworkable and so was treated as part of scenario282

(ii) along with the three articles with code not relevant.283

Table 9 breaks down the outcome of the reproduction attempts when writing new R code: we were able to284

calculate a value to compare to the original for all target results from the four articles considered. There were285

44 exactmatches between original and reproduced values (75%), and of the non-exactmatches, eleven (19%)286

reproduced values were within 10% of the original values, and three (5%) reproduced values were more than287

10% from the original values. The was also one case of a non-numeric text string not matching the original288

text string.289

Outcome of target result reproduction attempt N %
Original and reproduced values match exactly 44 74.6
Original and reproduced values differ by less than 10% 11 18.6
Original and reproduced values differ by 10% or more 3 5.1
Original and reproduced values differ (non-numeric target result) 1 1.7
Total 59 100.0

Table 9: Breakdown of the target result value reproduction attempts for the four articles with irrelevant code
(MA016,MA092,MA155, andMA212). The reproduction attempts required the writing of entirely new code.

As these results show, the reproduction attempts using newly-written R code were largely accurate, even290

though they do not constitute a computational reproducibility attempt evaluating both the shared data and291

code of the articles, as was the case for the results in the previous section.292
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Computational reproduction success rates293

Theoverall computational reproducibility success rate for this studydepends onhow it is defined4. Different294

definitions lead to different values for the numerator and denominator in the calculation. We will consider295

the success rate in terms of the number of meta-analysis articles with successful reproductions of the target296

results. Sincemultiple target result valueswere identified in each of the 26 articles with shared data and code,297

the reproduction success on each individual target result value needs to be collapsed into a single result at298

the article level. There are different approaches to this, with varying levels of strictness.299

Table 10 reports the overall computational reproducibility success rates for different collapsing approaches300

across two scenarios: (i) when all six code-irrelevant cases are considered failures by default (and thus only301

the 20 articles with target result-relevant code can be potential successes), and (ii) when the reproduction302

attempts from both the 20 articles with target result-relevant code and the four articles where we wrote new303

R code are included in the success calculations (the two articles where alternative target results were selected304

in order to evaluate the shared code are still considered failures bydefault here). In addition, for each scenario,305

two success rates are calculated: one which expresses the number of successful article reproduction attempts306

as a percentage of all 177 meta-analysis articles in the sample, and the other which expresses the number307

of successful article reproduction attempts as a percentage of the subset of 26 meta-analysis articles which308

shared code and data.309

Depending on the level of stringency applied to count as a success, the success rate for the code-relevant cases310

only is in the range of 4.0–10.7% of all articles in the sample (or 26.9–73.1% of articles with code and data).311

Including the cases where new code was written for the code-irrelevant cases raises the success rate slightly,312

with a range of 5.1–13.0% of all articles in the sample (or 34.6–88.5% of articles with code and data).313

4 DISCUSSION314

In this study, we found that 14.7% of articles in the sample (26/177) shared both code and data, and so315

slightly less than 15%of articles had the potential to have results computationally reproduced. This finding is316

less than the estimate fromCulina et al. (2020) that 21% of the published ecology literature has the potential317

to be computationally reproducible. The success rates actually achieved in this study as a percentage of318

the entire sample (4.0–10.7% depending onwhat is counted as a success, or 5.1–13.0%when including cases319

requiring new code to bewritten) are lower compared to the success rate observed inArchmiller et al. (2020):320

in that study, 13 out of 80 articles surveyed were found to be fully or at least somewhat computationally321

4Section S11 of the Supplemental Information provides a thorough breakdown of the definition of “computational repro-
ducibility” in the light of the results of this study.
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All code-irrelevant cases
considered failures

Including attempts where
new code was written
for code-irrelevant cases

Result for article N Success
rate (%), all

Success
rate (%),
subset

N Success
rate (%), all

Success
rate (%),
subset

All target result values match
original exactly

7 4.0 26.9 9 5.1 34.6

At least 50% of target result
values match original exactly

13 7.3 50.0 16 9.0 61.5

All target result values within
10% of original

14 7.9 53.8 16 9.0 61.5

At least 50% of target result
values within 10% of original

19 10.7 73.1 23 13.0 88.5

Table 10: Reproducibility success rates at the article level, for different collapsing criteria. In this table,N is the
number of articles meeting each collapsing criterion, “success rate (%), all” expressesN as a percentage of all 177
meta-analysis articles in the sample, and “success rate (%), subset” expressesN as a percentage of the subset of 26
articles with shared data and code. In the first three columns of this table, the articles with data and code judged
irrelevant to the target results are considered failures by default. In the last three columns, reproduction
attempts where we wrote new code to reproduce the target results are included in success calculations.

reproducible, for a success rate of 16%. (In that study, authors of the original articles were contacted to322

request data and code, which might contribute towards the higher success rate observed.)323

The results in Table 10 show that the success rate across all articles changes depending on the definitions for324

what counts as a success. As indicated earlier, the success rate for this study is effectively capped at amaximum325

of 14.7% (26/177) since reproduction attempts were never made for articles without both shared data and326

code. (If we had selected target results in all 177 articles and written code, etc. as necessary to attempt to327

reproduce all target results, the success rate could potentially have been higher.) Since this study is focused328

specifically on reusing shared code and data, it is worth recasting the success rate question as “when both code329

and data are shared, what is the computational reproduction success rate?” This changes the denominator330

in the success rate calculation to 26 for this study, and the resulting success rates become much higher as331

shown in Table 10.332

Although it is obvious that reducing the denominator will inflate the success rate, the success rate range333

of 27-89% among articles with both shared data and code (again, depending on definitions of success) is334

still illuminating: these results show that even with data and code, expectations that we might reproduce335

published results down to the last decimal place are rarely met in practice. However, depending on how336

stringent our requirements for reproduced results, we can achieve high levels of computational reproduction337

success. The level of stringency we place on the accuracy of reproduced results will depend on our specific338

purposes; there may be applications where reproducing most results to within 10% of the original values is339
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acceptable, which this study suggests may be achievable, at least for meta-analyses in ecology and evolution.340

The widespread use of R in ecology and evolution for meta-analysis341

Anoteworthy observation from this study is the popularity ofR among ecologists to performmeta-analyses,342

and inparticular, the popularity of themetafor andMCMCglmmpackages. Rwas the software of choice for343

a large majority of meta-analyses in the sample. For comparison, Nakagawa and Santos (2012) reported that344

42% of meta-analyses included in their survey used theMetaWin software package (Rosenberg et al., 1997),345

and a total of 19 different meta-analysis software packages across the 100 articles surveyed (18 articles did346

not report which software package(s) were used for their study). The articles in this sample were published347

a few years on from the articles surveyed in Nakagawa and Santos (2012), but from articles published over348

2015-17, the use of MetaWin had dropped to 11% of articles.349

The observed popularity of R agrees with what we already knew about the use of R in ecology: in 2017,350

around 58% of articles (not just meta-analyses) published across a large sample of ecology journals were re-351

porting that they used R (Lai et al., 2019).352

This result bodes well for reproducibility: first, it means that in principle, article authors very likely have R353

script(s) that could have been shared. Second,R is open source and freely available,making itmore accessible354

for studies like this.355

Limitations356

A limitation of this study is that the observed rate(s) of computational reproducibility are possibly under-357

estimated. By design, this study did not attempt to contact article authors seeking access to data and code.358

Although other similar studies (Archmiller et al., 2020; Stodden et al., 2018) report mixed success with re-359

ceiving data and code from authors, it is still the case that assistance from original authors could have lifted360

the rate of obtained data and code for articles, and in turn potentially the overall reproducibility rate(s).361

Other studies similar to this one have measured the time spent on each reproduction attempt; we did not362

record this, despite some attempts takingmuch longer than others. Given that discussions of computational363

reproducibility have been taking place in contexts where researcher time, effort, and opportunity cost are364

important considerations, this is perhaps a lost chance to have provided additional information about the365

activity of reproduction.366

Another limitation is the strategy of selecting only a single target result to reproduce per paper. Although367

this makes it feasible to attempt to reproduce results frommore articles, it does not provide a full picture of368

the reproducibility of the entire articles, and so on the basis of these investigations, we can’t claim that any of369
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these articles are in toto “reproducible”. However, despite this limitation this strategy needs to be considered370

in the context of a “triage” approach: articles identified as failing on this relatively simple task raise issues371

with the data, code, or reliability of published results that must be addressed before further time/work is372

expended, or before any results are taken to be accurate for particular purposes.373

5 CONCLUSION374

This studyhas found thatwhile data sharing is relatively common formeta-analyses in ecology and evolution,375

with 75% of articles surveyed sharing data, code sharing is much less common (16% of articles). The low rate376

of code sharing is in broad agreement with other investigations of the levels of code sharing in the discipline377

(Culina et al., 2020; Mislan et al., 2016).378

Assessing the computational reproducibility of the articles with code and data revealed the complexities de-379

scribed. Depending on the strictness of the definition of success and whether cases where new code needed380

to be written were included, between 4% and 13% of articles in the sample had results that could be success-381

fully reproduced. The low success rate is largely due to the nonavailability of code preventing any attempt382

from happening in the first place. However, when considering the success rate in terms of the attempts383

made using data and code, the success rate is much higher, although subject to wide variation depending384

on the strictness of the criteria for success (27-89%). However, this second interpretation of the success rate385

is cause for optimism: when code and data are shared, it is possible to use them to reproduce many results386

accurately. This means that by simply sharing code, the reproducibility of meta-analyses can be expected to387

be high. The observed widespread adoption of R by researchers in ecology and evolution for meta-analysis388

suggests that the technical barriers to sharing code that can be used in a reproducible way are relatively low389

across the discipline.390
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S1 META-ANALYSIS IN ECOLOGY AND EVOLUTIONARY BIOLOGY391

Any study reporting numerical results (i.e., not just meta-analyses) can potentially be the subject of an at-392

tempt to computationally reproduce results, so why focusing on meta-analyses? First, there is a practical393

imperative here: narrowing the scope of this study makes it tractable. The ecology and evolution literature394

is vast and varied, and although the literature at large could be sampled to arrive at a manageable subset395

of articles to assess, the screening process to identify suitable candidate articles and exclude irrelevant ones396

would be arduous without some sort of guiding principle. In that sense, “meta-analysis” is just one of many397

potential ways to winnow down the literature, in that it is a quantitative method that produces numerical398

results that can (in principle) be subject to a computational reproducibility attempt. But still, why narrow399

the scope to meta-analyses in particular? To contextualise our answer to this, we start with a brief review of400

meta-analysis in ecology and evolutionary biology.401

Meta-analysis in ecology and evolutionary biology402

Meta-analysis, a set of statistical methods for combining the results of multiple studies, is a widely-used tool403

for research synthesis in medicine, the social sciences, and natural sciences (Lau et al., 2013). Meta-analysis404

has been used for decades in disciplines such as psychology, education, and especially medicine, where it405

has become a core tool for assessing the evidence of treatments, in particular via Cochrane systematic re-406

views (Borenstein et al., 2009; Green et al., 2008). In addition to an enormous literature on methods of407

meta-analysis, guidelines such as the Preferred Reporting Items for Systematic Reviews andMeta-Analyses408

(PRISMA)have been developed to standardise howmeta-analyses are performed and reported (Moher et al.,409

2009; Page et al., 2021). PRISMA has been extended to be relevant to meta-analyses in ecology and evolu-410

tionary biology specifically (O’Dea et al., 2021a).411

Compared to some other disciplines, meta-analysis was adopted by ecology and evolutionary biology rela-412

tively recently, but has grown substantially, from a handful of meta-analyses published in the early 1990s to413

over 500 meta-analyses published in 2010 (Lau et al., 2013). In addition to meta-analyses themselves, there414

have been numerous methodological papers and handbooks covering how meta-analytical methods can be415

applied in circumstances specific to ecology/evolutionary biology (e.g., Arnqvist and Wooster, 1995; Gure-416

vitch and Hedges, 1999, 2001; Koricheva et al., 2013). Most relevantly for this paper, there have also been417

reviews of howmeta-analyses have been conducted within the fields of ecology and evolutionary biology.418

An early review of methods in meta-analysis (Gates, 2002) reviewed 29 meta-analyses published between419

1991 and 1998, and is a useful baseline to track how methodology has progressed since the early years of420
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meta-analysis in ecology. Overall, it was observed that techniques used in the medical meta-analysis liter-421

ature had not been adopted in ecology, in particular methods of assessing publication bias (only 34% of422

meta-analyses accounted for publication bias, and all calculated a Rosenthal fail-safe number; none used423

superior alternatives such as funnel plots, regression or the “trim and fill” method—refer to Nakagawa and424

Santos (2012) for summaries of these methods). 76% of meta-analyses used theQ statistic to explore hetero-425

geneity in effect sizes, and 17% included a sensitivity analysis of some kind. 28%ofmeta-analysis provided no426

information on how the primary studies were located. In terms of the effect sizes used by the meta-analyses,427

55% used standardisedmean differences, 31% used the Pearson correlation coefficient, and 7% used response428

ratios.429

Nakagawa and Santos (2012) conducted a survey of 100 “biological” meta-analyses (i.e., meta-analyses in430

ecology and evolutionary biology) published over 2009–2011. They found that only 17% controlled for431

phylogenetic relatedness between species, and 49%usedmethods to identify and/or assess the impact of pub-432

lication bias (specifically, to identify publication bias, about 40% of these meta-analyses used funnel plots,433

about 10% used a correlation-basedmethod, less than 10%used a quantile plot-basedmethod, and about 5%434

used a regression-based method. For assessing the impact of publication bias, about 30% calculated Rosen-435

thal fail-safe numbers and less than 10% used the “trim and fill” method). In terms of the effect sizes used by436

meta-analyses, about 60% used standardised mean differences, about 20% used correlation coefficients and437

the remainder used other measures.438

Vetter et al. (2013) specifically addressed the point about a need for the term “meta-analysis” to be well-439

defined in the ecology and conservation biology literature. They examined 133 nominal meta-analyses, and440

applied a two-stage rating system based on the technical requirements for a meta-analysis according to the441

medical meta-analysis literature. They found that only 45% of the meta-analyses satisfied all requirements442

in the first stage of rating, ans 25% of the meta-analyses satisfied none. In the second stage of rating which443

involved only 83 of the meta-analyses which had scored sufficiently highly in the first stage, only a single444

meta-analysis satisfied all second stage requirements, and 22% of the second stage meta-analyses satisfied445

none. The authors recommended that going forward, “meta-analyses” in ecology journals ought to include446

the seven technical requirements outlined in their review.447

Koricheva andGurevitch (2014) performed a similar review to bothNakagawa and Santos (2012) andVetter448

et al. (2013), but focused on meta-analyses in plant ecology. They developed a 16-item rubric to assess the449

quality of meta-analytic methods, based on previous reviews of meta-analytic methods with some additions450

and refinements. Each item in the rubric listed meta-analyses that were exemplars of relevant method(s).451
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They used a 14 of these items to assess the methods used in a sample of 322 meta-analyses in plant ecology.452

The results were mixed: althoughmeta-analyses in plant ecology were highly likely to list all primary studies453

included in the analysis (87% of meta-analyses in the sample) or explore caused of heterogeneity in results454

(89%), only 32% reported the full details of their literature searches, only 31% considered publication bias,455

and only 25% conducted a sensitivity analysis. 5% of meta-analyses considered changes in study effect sizes456

over time, and 11% took phylogenetic relatedness into account.457

ArchMiller et al. (2015) used a 17-item rubric very similar to Koricheva and Gurevitch (2014) to evaluate458

the methods used by 18 meta-analyses published in the journalMolecular Ecology. The goal of this paper459

was to formalise the definition of meta-analysis for editors, authors, reviewers, and readers of the journal.460

They found that only 22% of studies met the standard expected for an effective meta-analysis, which re-461

quired satisfying at least 15 of the 17 items, and 56% of meta-analyses satisfied 9 or fewer of the 17 items.462

The adherence to the different methods was mixed: While 100% of the meta-analyses provided a list of the463

primary studies included and documented the meta-data extracted from each, and 94% mentioned the in-464

clusion/exclusion criteria used for selected studies, 50% included details of the literature search terms used465

and only 22% provided details of both the databases searched and dates the searches were conducted. Only466

33% of meta-analyses took publication bias into account, 22% quantified the heterogeneity between effect467

sizes, and only 33% explicitly reported whether they were using a fixed effect or random effects model.468

The common theme of heterogeneity in themethods labelled as “meta-analysis” in the ecology literature has469

led to the emergence of what might be called the “formal” (Koricheva and Gurevitch, 2014; Vetter et al.,470

2013) or “narrow” (Nakagawa et al., 2017) definition of meta-analysis: Koricheva and Gurevitch (2014)471

define meta-analysis “a set of statistical methods for combining outcomes (effect sizes) across different data472

sets addressing the same research question to examine patterns of response across these data sets and sources473

of heterogeneity in outcomes”, although they do also note that there is no single agreed-upon checklist for474

assessing whether a given meta-analysis is using the correct methods for this purpose. What does seem clear475

is that the methods and procedures of the formal/narrow meta-analysis are those mentioned in the check-476

lists/rubrics/rating systems of Vetter et al. (2013), Koricheva and Gurevitch (2014), and ArchMiller et al.477

(2015).478

Focusing on meta-analysis in this study479

The first and primary reason for choosing to focus on meta-analysis is this: despite the findings outlined480

in the previous section, meta-analyses are (relatively) uniform in their statistical methods and data, and so481

restricting the study to meta-analyses allows for the assessment of “like” studies. This has a few different482
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dimensions that speak to the tractability of the study:483

• The great variety in quantitative and statisticalmethods employed across the entire ecology and evolu-484

tion literature (with the accompanying variety in computational resource requirements) means that485

failure to computationally reproduce one study but not another could be a result of radically differ-486

ent scales of computational requirements, which is a confounding factor we’d like to avoid as much487

as possible, due to limited resources. Potential ways of dealing with this (e.g., screening articles to pre-488

clude studies with “too high” computational resource requirements) seem too subjective and difficult489

to operationalise. Choosing a single type of study, meta-analysis, acts to reduce the likely variation in490

computational resource requirements.491

• In general, meta-analytic models are fitted using relatively small data sets (in the order of tens or hun-492

dreds, perhaps thousands, of data points as opposed to “big data” with millions of data points) and493

require modest computational resources (i.e., can be easily run on a desktop or laptop computer with494

no high performance computing resources required).495

• Meta-analyses in particular benefit from the existence of standards for reporting, e.g., PRISMA. Rel-496

evantly for this study, this includes standards around the reporting/sharing of data. While a given497

meta-analysis may not be obliged to strictly adhere to all PRIMSA reporting guidelines, the existence498

of such guidelines makes it more likely that different studies can be assessed on a like basis than if no499

such guidelines or standards existed.500

The second reason is, as mentioned earlier, meta-analysis has become an important part of the fields of ecol-501

ogy and evolution. To the extent that meta-analyses become regarded (for better or worse) as a higher stan-502

dard of evidence, it commensurately raises the stakes of meta-analytic results. In that context, being able to503

assure the results of meta-analyses through computational reproduction has some value.504

S2 LITERATURE SEARCH505

We set about curating a set of meta-analyses to survey by conducting a Scopus abstract and citation database506

search (we accessed the Scopus database via the University ofMelbourne library’s subscription). The search507

query, conducted on 20th December 2017, searched article titles, abstracts, and keywords for the string508

“meta-anal*”, subject to two constraints. The first constraint restricted results to articles published between509

2015 and 2017, inclusive. The second constraint restricted results to articles published in one of 21 ecol-510

ogy and evolution journal titles (identified by ISSN). The journal titles included are as follows: The Amer-511
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ican Naturalist, Animal Behaviour, Behavioral Ecology, Behavioral Ecology and Sociobiology, Biological Re-512

views, Ecological Applications, Ecological Monographs, Ecology, Ecology Letters, Evolution, Evolutionary Ecol-513

ogy, Functional Ecology, Journal of Animal Ecology, Journal of Applied Ecology, Journal of Ecology, Journal of514

Evolutionary Biology,Molecular Ecology,New Phytologist,Oecologia,Oikos,Quarterly Review of Biology.515

The Scopus search string used was as follows:516

TITLE-ABS-KEY ( meta-anal* ) AND ( PUBYEAR = 2015517

OR PUBYEAR = 2016 OR PUBYEAR = 2017 )518

AND ISSN ( 0003-0147 OR 0003-3472 OR 1045-2249 OR 0340-5443519

OR 1464-7931 OR 1051-0761 OR 0012-9615 OR 0012-9658520

OR 1461-023x OR 0014-3820 OR 0269-7653 OR 0269-8463521

OR 0021-8790 OR 0021-8901 OR 0022-0477 OR 1010-061x522

OR 0962-1083 OR 0028-646x OR 0029-8549 OR 0030-1299523

OR 0033-5770 )524

This list of ecology and evolution journal titles is the same as used for the survey of meta-analyses conducted525

in Nakagawa and Santos (2012). This choice was made to (i) be assured of searching journals that actively526

published meta-analyses, and (ii) keep the study tractable: Nakagawa and Santos (2012) yielded 390 studies527

from their three-year (2009–11) search of these journal titles and kept the 100most recent meta-analyses, so528

that gave an indication of the approximate number of meta-analysis studies we would need to review. It is529

unclear if this set of journal titles can be considered a “representative” sample of all ecology and evolutionary530

biology journals; one obvious factor is that not all journals would necessarily consider meta-analyses to be531

within their scope. However, it seems clear that the list of journals used for this study is not particularly532

aberrant, at least: for example,Mislan et al. (2016) reviewed the data and code release policies of 96 “ecology”533

journals indexed byWeb of Science, and the list of 96 journals reviewed includes 17 of the 21 titles surveyed534

by Nakagawa and Santos (2012).535

Identifying meta-analyses536

The search results returned articles which contained the string “meta-anal*” somewhere in the article’s title,537

abstract, or list of keywords. However, not all such articles will necessarily be meta-analyses. The next step538

was to screen the articles to obtain a sample of “meta-analyses”. As the review of the ecological meta-analysis539

methodology literature foreshadowed, this was not straightforward.540

The articles were screened using a two-step process: first, some types of articles were checked for and when541
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found, put aside. These article types were (i) errata or corrigenda notices, and (ii) letters or comments in542

reply to a previously published article. Since errata and comments rely heavily on the context provided by543

the article they are in reference to (which may or may not be a meta-analysis, and which may or may not544

be in scope of the literature search), they were considered not suitable to include as “meta-analyses”. We545

considered these article types to be straightforward to identify (due to clear cues in their title, and other546

contextual clues such as being included in a comments/letters section of a journal issue), and so removed547

them from consideration without a formal review of their contents.548

The second step involved evaluating the remaining articles in the following way: rather than checking they549

meet a particular set of methodological requirements, meta-analyses were identified by confirming that an550

article merely includes a claim that it is a meta-analysis (or that a meta-analysis was conducted, or words to551

that effect) or not. This approach to identifying meta-analyses was intended to be as generous as possible552

and methodologically agnostic.553

Identifying a claim that an article is/conducts ameta-analysis still requires judgment and interpretation, and554

is subjective. To make the claim identification process transparent, we constructed and employed a simple555

coding schemewith eight items to summarise the “evidence” in support of each article claiming to be ameta-556

analysis. The coding scheme is outlined inTable S1. This scheme records the use of the term “meta-analysis”557

in crucial places in the article (title, abstract, keywords if the article includes them), as well as the quoted text558

of any actual claim found within the body of the article text.559

For items 1–4 and 7, the value “Y” indicates an unambiguous “yes” to the question/contention posed in the560

column “Description” of Table S1, and the value “N” indicates an unambiguous “no”. For items 1–4, the561

value “U” was available to indicate situations where the mention of “meta-analysis” was somehow unclear.562

For item 3 only, the value “N/A” was used to indicate that an article did not include any keywords.563

Items 5 and 6 record the most substantive piece of evidence: text, directly quoted from the article, which564

contains the claim to be a meta-analysis (if the claim can be found). Item 7 contains the final judgment of565

whether the article can be considered to include a claim or not (either yes “Y” or no “N”), and item 8 records566

any additional notes about the judgment.567

All articles remaining after the first step were coded using this scheme. In practice, this meant searching the568

text of each article for the string “meta” (this word fragment was chosen to avoid issues with the matching569

of the hyphen in “meta-analysis”), and reviewing all matches in order to answer the coding scheme items.570

Articleswere considered as claiming to be ameta-analysis if the value of item7 (Claim in article) in the coding571

scheme was “Y” . Articles found not to include such a claim (a value of “N” for item 7) were put aside.572

39



Index Field Values Description
1 Claim in title Y, N, U Does the article include the term “meta-

analysis” in its title?
2 Claim in abstract Y, N, U Does the article include the term “meta-

analysis” in its abstract?
3 Claim in keywords Y, N, U, N/A If applicable, is “meta-analysis” one of the

article’s keywords?
4 Claim in body text Y, N, U Does the article body text contain a claim

to be a meta-analysis?
5 Quote of claim open text The actual text of the claim as it appears in

the article.
6 Quote page number open text Page number(s) the quote appears on.
7 Claim in article Y, N An overall judgment of whether or not the

article claims to be a meta-analysis.
8 Notes open text Any additional notes about the article’s

meta-analysis claim status.

Table S1: The eight item coding scheme used for determining whether an article claims to be a meta-analysis. In
the Values column, “Y” indicates “yes”, “N” indicates “no”, “U” indicates “unclear”, and “N/A” indicates “not
applicable”.

The final set of ecology and evolutionary biology meta-analyses, to be the basis of the rest of this study, is573

simply the set of 177 articles coded as containing claims to be meta-analyses. The bibliographic details of all574

177 meta-analysis articles are listed in Table S2.575

Table S2: References for all 177 meta-analysis articles in the data set used in this study.

ID Study

MA001 T. M. Bowles, L. E. Jackson, M. Loeher, and T. R. Cavagnaro. Ecological intensification and arbuscular my-

corrhizas: a meta-analysis of tillage and cover crop effects. Journal of Applied Ecology, 54(6):1785–1793, dec

2017. doi: 10.1111/1365-2664.12815

MA003 A. S. Mori, S. Tatsumi, and L. Gustafsson. Landscape properties affect biodiversity response to retention

approaches in forestry. Journal of Applied Ecology, 54(6):1627–1637, dec 2017. doi: 10.1111/1365-2664.

12888

MA005 J. A. Charlebois and R. D. Sargent. No consistent pollinator-mediated impacts of alien plants on natives.

Ecology Letters, 20(11):1479–1490, nov 2017. doi: 10.1111/ele.12831

MA006 N.Martin-StPaul, S.Delzon, andH.Cochard. Plant resistance to drought depends on timely stomatal closure.

Ecology Letters, 20(11):1437–1447, nov 2017. doi: 10.1111/ele.12851

MA009 A. Romano, N. Saino, and A. P. Møller. Viability and expression of sexual ornaments in the barn swallow

hirundo rustica: a meta-analysis. Journal of Evolutionary Biology, 30(10):1929–1935, oct 2017b. doi: 10.

1111/jeb.13151
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S3 REVIEWOF JOURNAL POLICIES ON DATA AND CODE SHARING576

The availability of data and code for individual articles needs to be evaluated in the context of the publishing577

journals’ policies about making data and code available at the time of publication. Due to the retrospective578

nature of this study, we could not collect information about the journals’ data and code policies contem-579

poraneous with the articles published 2015–17. Despite this, the journals’ policies on data and code can be580

inferred from other sources, including previous studies of journal policies and initiatives such as the Joint581

Data Archiving Policy (JDAP). We deal with data policies and then code policies in turn.582

Data policies583

JDAPwas adopted by a number of journals in the fields of ecology and evolutionary biology in 2011 (Dryad,584

2020). JDAP introduced data archiving as a requirement for publication: the data that underlie the results585

of the article must be deposited in a public data repository, such as the Dryad Digital Repository (Dryad,586

2021). Four of the journals in this study adopted JDAP in 2011: Evolution (Rausher et al., 2010), Journal587

of Evolutionary Biology (Moore et al., 2010),Molecular Ecology (Rieseberg et al., 2010), and The American588

Naturalist (Whitlock et al., 2010). Functional Ecology adopted a slight variation of JDAP in 2014 (Fox et al.,589

2014), along with other journals published by the British Ecological Society: Journal of Animal Ecology,590

Journal of Applied Ecology, and Journal of Ecology (Sandhu and Baker, 2014). Therefore, assuming the jour-591

nals’ adoption of JDAP (or slight variation thereof) has persisted, we expect that these eight journals would592

have mandated data archiving for all studies published through 2015–17.593

Mislan et al. (2016) investigated both the data and code policies for 17 of the 21 journal titles in this study.594

The policies checkedwere as of 1st June 2015, which is within the 2015–17 time period. Specifically, regard-595

ing data, Mislan et al. (2016) recorded whether journals’ policies required data to be released as a condition596
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of publication—that is, beyond mere encouragement to make data available. We shall regard the findings597

in Mislan et al. (2016) as representing journals’ policies on data and code at the start of 2015 (it is possible598

that some meta-analyses published in the first five months of 2015 were published under a different journal599

policy that then changed to the policy found byMislan et al. (2016), but for simplicity we will discount this600

possibility).601

The four journals that were not reviewed in Mislan et al. (2016) are Animal Behaviour, Biological Reviews,602

New Phytologist, and Quarterly Review of Biology. We examined other sources to get an indication of their603

data and code policies. The data policy of the journal Animal Behaviour was surveyed in January 2014 by604

Caetano and Aisenberg (2014). This survey found that the journal encouraged authors to make data avail-605

able, but did not make it mandatory. In the absence of other information (which was searched for in e.g.,606

editorials or news releases, but not found), we assume that this was the data policy of the journal during607

2015–17. (When checked again in 2021, the journal was found to have the same policy of encouraging data608

sharing, so it seems safe to assume the policy has been consistently in place since 2014.) When checked in609

2021, the journal Biological Reviews “encourages” authors to make data available, but does not require au-610

thors to do so, or to include data availability statements (JohnWiley & Sons, 2021). In the absence of other611

information, we assume that this was the data policy of the journal during 2015–17. The data policy of612

the journal New Phytologist was surveyed in August/September 2013 by Magee et al. (2014). This survey613

classified the policy ofNew Phytologist asweak, meaning that data sharing was encouraged but not required.614

In the absence of other information, we assume that this was the data policy of the journal during 2015–17.615

When checked in 2021, the instructions to authors webpage for the journal Quarterly Review of Biology5616

makes no mention of data sharing, archiving, or availability. Similarly, an archived snapshot of the instruc-617

tions to authors webpage as it was on 28th May 20166 made no mention of any data policy. In the absence618

of other information, we assume that not requiring data sharing was the effective data policy of the journal619

during 2015–17. A summary of the data-sharing policies of the journals in this study is given in Table S3.620

Code policies621

The principal source for information about journals’ code policies comes from the survey conducted in622

Mislan et al. (2016). This survey was followed up and repeated in Culina et al. (2020), which updated the623

status of journals’ code policies in 2020. Both surveys have recorded information about the code policies of624

17 of the journals included in this present study. Mislan et al. (2016) recorded whether journals required625

5https://www.journals.uchicago.edu/journals/qrb/instruct
6https://web.archive.org/web/20160528051141/http://www.journals.uchicago.edu/journals/qrb/instruct
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Journal JDAP
member

Data
sharing
required?

Source

Animal Behaviour N N Caetano and
Aisenberg (2014)

Behavioral Ecology N N Mislan et al. (2016)
Behavioral Ecology and
Sociobiology

N N Mislan et al. (2016)

Biological Reviews N N Journal website
Ecological Applications N Y Mislan et al. (2016)
Ecological Monographs N Y Mislan et al. (2016)
Ecology N Y Mislan et al. (2016)
Ecology Letters N Y Mislan et al. (2016)
Evolution Y Y Mislan et al. (2016)
Evolutionary Ecology N N Mislan et al. (2016)
Functional Ecology Y Y Mislan et al. (2016)
Journal of Animal Ecology Y Y Mislan et al. (2016)
Journal of Applied Ecology Y Y Mislan et al. (2016)
Journal of Ecology Y Y Mislan et al. (2016)
Journal of Evolutionary
Biology

Y Y Mislan et al. (2016)

Molecular Ecology Y Y Mislan et al. (2016)
New Phytologist N N Magee et al. (2014)
Oecologia N N Mislan et al. (2016)
Oikos N Y Mislan et al. (2016)
The American Naturalist Y Y Mislan et al. (2016)
The Quarterly Review
of Biology

N N Journal website

Table S3: Summary of whether data sharing was found to be required for each journal surveyed in this study,
along with JDAPmember status and source of the information. In the columns “JDAPmember” and “Data
sharing required?”, “Y” indicates “yes” and “N” indicates “no”.
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the release of code as a requirement for publication as a binary yes/no variable (the same way as how jour-626

nals’ data policies were recorded). The updated survey in Culina et al. (2020) distinguished between poli-627

cies where code sharing was “encouraged” and policies where code sharing was “mandatory” (the authors628

note that some journal policies were ambiguously worded such that it could not be determined whether629

code sharing was merely encouraged or a mandatory requirement; they designated such policies “encour-630

aged/mandatory”). For the four journals not covered in the Mislan et al. (2016) survey, we could not find631

contemporary assessments of their code policies over the period 2015–17. The best we could do was to in-632

spect the current (as of 2021) journal policy information for these four journals. We found that Animal633

Behaviour had a policy of encouraging code sharing, but we could not findmention of polic(ies) about code634

in the online information for Biological Reviews,New Phytologist, and The Quarterly Review of Biology. For635

the purposes of this study, we shall regard these four journals as not having had a policy requiring code636

sharing during 2015–17. A summary of the code policies of the journals in this study is given in Table S4.637

Journal
2015
survey

2020
survey

2021
check

Animal Behaviour - - E
Behavioral Ecology N N -
Behavioral Ecology and Sociobiology N N -
Biological Reviews - - N.F.
Ecological Applications Y M -
Ecological Monographs Y M -
Ecology Y M -
Ecology Letters N E/M -
Evolution N M -
Evolutionary Ecology N E -
Functional Ecology Y E/M -
Journal of Animal Ecology Y E/M -
Journal of Applied Ecology Y E/M -
Journal of Ecology Y E/M -
Journal of Evolutionary Biology N M -
Molecular Ecology Y E -
New Phytologist - - N.F.
Oecologia N N -
Oikos N N -
The American Naturalist Y E -
The Quarterly Review of Biology - - N.F.

Table S4: Summary of the code sharing policies found for each journal. The column “2015 survey” refers to
Mislan et al. (2016), the column “2020 survey” refers to Culina et al. (2020), and the column “2021 check”
refers to our own checks made in 2021. Within the table columns, “Y” indicates “yes”, “N” indicates “no”, “E”
indicates “encouraged”, “M” indicates “mandatory”, and “N.F.” indicates “not found”.
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S4 CODING SCHEME FOR CODE ANDDATA SHARING638

The assessment process for each article for shared data and code was as follows: first, we inspected the end639

sections of each article for any mention of supplemental material, and for the existence of a data/code avail-640

ability statementof anykind. In caseswithout an explicit data availability statement, orwheredata/codewere641

not listed as supplements, we reviewed the methods and results sections for any possible in-text mention of642

data/code availability, first by performing a keyword search for “data”. Regardless of what wasmentioned in643

the article, we also inspected the journal webpage for each article (accessed via TheUniversity ofMelbourne644

library) for indications and details of supplemental materials, shared data and shared code. We attempted to645

download and briefly inspect all files at the journal webpage that we found. Where supplemental material,646

data and/or code were reported as existing at other web links (e.g., an online data archive), we followed the647

web links and attempted to download and inspect all fileswe found. The coding scheme inTable S5 captures648

the results of this process.649

This coding scheme assumes that if data and/or code were shared, there would be some positive indication650

of this fact somewhere in the article itself, or on the journal publisher’s web page for the article (either as651

supplementalmaterial, or as a link to an independent resource). An absence of any such indicationwas taken652

tomean that data/code was not shared. This approach does not account for the possibility that authors may653

have in fact shared the data and code associated with their article (say, by publishing it in a data repository654

such as Dryad) but not included any indication either in the article itself, or on the journal web page for the655

article. (One possible reason this might occur is when authors decide to share the data/code after the article656

had been published.) We decided not to attempt to check for such possibilities when assessment of an article657

and its journal web page found no indications of shared data or code.658

In this coding scheme, items 1–4 concern supplemental material in general, items 5–12 concern shared data659

in particular, and items 13–20 concern shared code in particular (item 21 was used to record any additional660

notes). The items recording the existence (or not) of shared supplementalmaterials, data, and code are items661

1, 5–6, and 13–14. For the data and code sharing, we separated out the nominal sharing of these from the662

actual sharing of these (in retrospect, we should have done the same for supplemental materials too). In663

this context, data and code were recorded as having been actually shared only if we were personally able to664

successfully download (via The University of Melbourne library) and inspect the relevant file(s).665

The numbers of files shared (items 2, 7, and 15) were recorded to help keep track of downloaded files. These666

values were recorded only if the respective preceding items indicated that such files existed. This did lead to667
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some anomalies: the number of files was recorded as 0 in cases where the article stated that all relevant data668

was made available within tables of the article itself (and not as a separate data file).669

S5 RECORDINGMENTIONS OF SOFTWARE USED670

The reviewprocess formentionsof software in an article consistedof checking the text of each article/supplementary671

document for the following keywords (using a case-insensitive search):672

• “CMA”, referring to the software package ComprehensiveMeta-Analysis (Borenstein et al., 2013);673

• “MetaWin”, referring to the software packageMetaWin (Rosenberg et al., 1997);674

• “metafor”, referring to the R packagemetafor (Viechtbauer, 2010);675

• “mcmcglmm”, referring to the R packagemcmcglmm (Hadfield, 2010).676

In the absence of these keywords being found, themethods section/supplementary documentwasmanually677

scanned for statements along the lines of “analyses were performed using [software package]”.678

For eachmention of software used (allowing formultiplementions per article), the details were recorded us-679

ing a ten-item coding scheme outlined in Table S6. The coding scheme was designed around an expectation680

of the frequent mention of R and R packages.681

Items 1 and 2 record the name of the software package/platform as reported in the article and the page682

number of the mention respectively.683

Items 3 and 4 record whether a specific version of the software was reported. Items 5, 6, and 7 are specific to684

the R software environment.685

Item 5 is a flag indicating whether the mentioned software package was an R package or not. This required686

judgment beyond what was reported in the article: For most software mentioned, we were able to code687

this item based on our own knowledge of R and its packages; where we were not already familiar with the688

software package, we used contextual clues in the article (e.g., mentions of the function of the software or689

details from the citation if provided) and online searches of the software name to determine whether or not690

it was an R package.691

Item 6 was only applicable to software identified as an R package: this recorded the location where the692

R package was hosted. We anticipated that there would be few discrete categories here: “base” referring693

to packages which are part of the base R installation; “Bioconductor” referring to R packages released as694
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Index Field Values Description
1 Supplements included Y, N Does the article include supplementary in-

formation?
2 No. supplement files 0-99 Number of discrete files or documents in-

cluded as supplementary information
3 Supplements mentioned Y, N Does the article mention the existence of

the supplementary information?
4 Supplements detailed Y, N Does the article provide details of the con-

tents of supplementary information?
5 Datasets nominally included Y, N Does the article indicate that data has been

shared, included?
6 Datasets included Y, N Was the data actually included (shared) and

obtainable?
7 No. data files 0-99 Number of discrete data files included
8 Dataset sources open text Location of the datasets (e.g., repository

name)
9 Dataset URL open text Link to data as applicable
10 Dataset info in article Y, N Is the availability of data referred to in the

article?
11 Dataset info on website Y, N Is the availability of data referred to on the

journal web page for the article?
12 Data format open text File format(s) of data files
13 Code nominally included Y, N Does the article indicate that code has been

shared, included?
14 Code included Y, N Was the code actually included (shared)

and obtainable?
15 No. code files 0-99 Number of discrete code files included
16 Code sources open text Location of the code (e.g., repository

name)
17 Code URL open text Link to code as applicable
18 Code info in article Y, N Is the availability of code referred to in the

article?
19 Code info on website Y, N Is the availability of code referred to on the

journal web page for the article?
20 Code type open text Language or software package the code is

associated with
21 Notes open text Any additional notes about the article’s

data and code sharing.

Table S5: The twenty-one item coding scheme used for recording data and code sharing in meta-analysis
articles. In the Values column, “Y” indicates “yes” and “N” indicates “no”.
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components of the Bioconductor project; “CRAN” referring to the Comprehensive RArchive Network, a695

repository for R packages; and “other” for all remaining cases.696

Item 7 is applicable only to mentions of the R software environment at large: this records whether in addi-697

tion to the mention of R, specific R packages mentioned as well.698

Items 8 and 9 record whether and how the article cited/provided a reference for the software mentioned.699

Item 8 was initially “Y”/“N” (yes/no), during the coding process we decided to introduce an addition code700

“T” which was for instances of an “in text” reference for the software (e.g., the website for the software701

package in parentheses immediately following the software name) but with no corresponding details in the702

“References” section of the article. As a result, a value of “Y” indicates that the article includes a full reference703

to the software in theReferences section. The full reference (or in-text only citation) as reported in the article704

is recorded in Item 9.705

Finally, Item10was used to record additional notes/context about themention of the software as applicable.706

Index Field Values Description
1 Software details open text The nameof the software as reported in the

article.
2 Page reference open text Specify the page number of the mention.
3 Version specified Y, N Does the article specify the version of the

software?
4 Version details open text The version details as reported in the arti-

cle.
5 Is R package Y, N Is the software mentioned an R package?
6 R package location base, Bio-

conductor,
CRAN, other,
N/A

If the software mentioned is an R package,
where is the package located/hosted?

7 R packages mentioned Y, N, N/A If the software mentioned is R, are pack-
ages mentioned elsewhere in the article?

8 Software cited Y, N, T Does the article include a citation for the
software package?

9 Citation details open text The full reference to the software as re-
ported in the article.

10 Notes open text Any additional notes about thismentionof
software.

Table S6: The ten item coding scheme used for recording software mentions. In the Values column, “Y”
indicates “yes”, “N” indicates “no”, “T” indicates “in-text only”, and “N/A” indicates “not applicable”.
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S6 DATA AND CODE SHARING707

For the 133 articleswith data, wehad found somekindof indication about data availability somewhere in the708

article itself or in the supplementary documentation for all but one article (in this one case, the information709

indicating that data was available was on the journal’s web page for the article instead). This took the form710

of either an explicit data availability statement in the article, or a mention in the body of the article, as part711

of an in-article statement about the content of supplemental/supporting information, or in the supplemen-712

tal/supporting information itself. For example, Evolution articles included a data availability statement in a713

dedicated section titled “Data Archiving” located at the end of the article, just before the references section.714

Failures to obtain data and code715

We failed to obtain data for five articles for three reasons: for the first three cases, a supplemental document716

indicated that data files were included as part of the supplemental material. However, the files referred to717

could not be found as part of the online supplement; it is possible that while the documentation for the data718

was uploaded, the actual files themselveswere not. In the fourth case, the data availability statement said that719

data would be uploaded to Dryad upon acceptance of the article, however no link or details of how to find720

the datawere provided (failing to update the data availability statementmay have been an oversightwhen the721

article was being finalised for publication). In the final case, the article stated that data had been deposited in722

a research institute’s database, but failed to provide any details apart from a link to the institute’s main web723

page. The institute maintains a number of databases, and there was no clear way to identify which data in724

which database was relevant to the meta-analysis.725

The one case where we could not obtain code is the one of the articles discussed above in reference to data726

availability, where files listed as being part of the supplement could not be found.727

Data and Code Sharing by Journal728
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Figure S1: Comparison of data sharing rates in articles by journal.
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Figure S2: Comparison of code sharing rates in articles by journal.

64



85/124

48/53

Non−JDAP Journals

JDAP Journals

0 25 50 75 100
Percentage of articles in sample which shared data (%)

Figure S3: Comparison of data sharing rates in articles by journal JDAPmembership status.
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Figure S4: Comparison of data sharing rates in articles by journal data policy 2015–17.
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Figure S5: Comparison of code sharing rates in articles by journal code policy according toMislan et al. (2016).
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S7 SOFTWAREMENTIONED IN ARTICLES729

Figure S6 shows the distribution of the number of different software packages mentioned in each article730

(or in its supplementary material). Here, R packages have been treated as special cases: articles mentioning731

multiple R packages have been treated as just mentioning the R software environment. For example, an732

article which mentioned the R software environment and four R packages was regarded as mentioning one733

software package (the R software environment) rather than five software packages.734
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Figure S6: Distribution of the number of different software packages mentioned in each article (or its
supplementary material).

Figure S7 is a version of Figure S6which shows the distribution of the number of different software packages735

mentioned in each article (or in its supplementarymaterial), includingmentions ofRpackages. For example,736

an article which mentioned the R software environment and four R packages was regarded as mentioning737

five software packages rather than one software package (i.e., the R software in general).738

Table S7 lists all software packages mentioned in the 177 meta-analysis articles. This table includes all men-739

tions of the R software environment, but specifically excludes mentions of R packages, which are listed in740

the following table.741
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Figure S7: Distribution of the number of different software packages mentioned in each article (or its
supplementary material), including mentions of R packages.

Table S7: All software packages mentioned in the 177 meta-analysis articles. Note that this table does not list
individual R packages.

Name of software package N %

R 141 79.7

MetaWin 20 11.3

WebPlotDigitizer 10 5.6

DataThief III 9 5.1

SAS 9 5.1

ImageJ 7 4.0

GraphClick 6 3.4

PlotDigitizer 5 2.8

GetData Graph Digitizer 4 2.3

JMP 4 2.3

RStudio 4 2.3

SPSS/PASW 4 2.3

Minitab 3 1.7
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Name of software package N %

Phylocom 3 1.7

Phylomatic 3 1.7

RAxML 3 1.7

ArcGIS 2 1.1

ArcMap 2 1.1

CMA 2 1.1

Engauge Digitizer 2 1.1

GENALEX 2 1.1

MAFFT 2 1.1

Python 2 1.1

Stan 2 1.1

AbstrackR 1 0.6

ADZE 1 0.6

AMOS 1 0.6

ARLSUMSTAT 1 0.6

ASReml-R 1 0.6

Bowtie2 1 0.6

Cervus 1 0.6

Circuitscape 1 0.6

Cytoscape 1 0.6

Digitize It 2010 1 0.6

Ecopath 1 0.6

ED2 (FORTRAN) 1 0.6

Excel 1 0.6

FigTree 1 0.6

GenClone 1 0.6

GrabIt! XP 1 0.6

GRASS GIS 1 0.6

Image Pro Plus 1 0.6

JAGS 1 0.6
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Name of software package N %

LocARNA 1 0.6

MEGA 4 1 0.6

Mesquite 1 0.6

Modeltest 1 0.6

MrBayes 1 0.6

OpenBUGS 1 0.6

OriginPro 1 0.6

Perl 1 0.6

Photoshop 1 0.6

phyloMeta 1 0.6

PRIMER 1 0.6

QGIS 1 0.6

SigmaPlot 1 0.6

Techdig 1 0.6

xyscan 1 0.6

In total, there were 398 mentions of R and R packages across the articles: 141 mentions of the R software742

environment, and 257 mentions of specific R packages. Figure S8 shows the distribution of the number of743

packagesmentioned by eachR-using article. As the figure shows, it wasmost common forR-using articles to744

mentiononly oneor twopackages (68%); only 6%ofR-using articlesmentionedmore than threeRpackages.745

Table S8 lists all R packages mentioned in the 141 meta-analysis articles that mentioned using R. The table746

includes the location of eachR package (whether CRAN, Bioconductor, a base R package, or from another747

source). Note: At the time of checking (2ndAugust 2022), four packages (empiricalFDR.DESeq2, foodweb,748

MAc, and VIF ) have been removed from CRAN7. The vast majority (74, or 92%) of the mentioned R749

packages were from the Comprehensive RArchive Network (CRAN), with 3 (4%) from the Bioconductor750

project and 2 from other websites. One article mentioned the package stats, which is part of the “base” set751

of R packages that are an integral part of the R software.752

7Package empiricalFDR.DESeq2 was archived 13th June 2022 (https://cran.r-project.org/package=
empiricalFDR.DESeq2); package foodweb was archived 21st June 2022 (https://cran.r-project.org/package=
foodweb); package MAc was archived 4th March 2022 (https://cran.r-project.org/package=MAc); package VIF
was archived 9thMay 2022 (https://cran.r-project.org/package=VIF).
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Figure S8: Distribution of the number of different R packages mentioned in each article which mentioned
using R.

Table S8: All R packages mentioned in the sample of 141 meta-analysis articles which mentioned using R.

Name of R package Package source N %

metafor CRAN 75 53.2

MCMCglmm CRAN 26 18.4

lme4 CRAN 20 14.2

ape CRAN 13 9.2

MuMIn CRAN 8 5.7

vegan CRAN 7 5.0

nlme CRAN 6 4.3

ggplot2 CRAN 5 3.5

phytools CRAN 5 3.5

compute.es CRAN 4 2.8

glmulti CRAN 4 2.8

multcomp CRAN 3 2.1

raster CRAN 3 2.1

ade4 CRAN 2 1.4
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Name of R package Package source N %

boot CRAN 2 1.4

lmerTest CRAN 2 1.4

meta CRAN 2 1.4

mgcv CRAN 2 1.4

mice CRAN 2 1.4

party CRAN 2 1.4

picante CRAN 2 1.4

randomForest CRAN 2 1.4

rjags CRAN 2 1.4

rmeta CRAN 2 1.4

A3 CRAN 1 0.7

abc CRAN 1 0.7

adegenet CRAN 1 0.7

AICcmodavg CRAN 1 0.7

arrayQualityMetrics BioConductor 1 0.7

betareg CRAN 1 0.7

caper CRAN 1 0.7

coda CRAN 1 0.7

coin CRAN 1 0.7

DESeq2 BioConductor 1 0.7

dismo CRAN 1 0.7

ecodist CRAN 1 0.7

effects CRAN 1 0.7

empiricalFDR.DESeq2 CRAN 1 0.7

foodweb CRAN 1 0.7

gbm CRAN 1 0.7

GENHET other 1 0.7

Hmisc CRAN 1 0.7

ICC CRAN 1 0.7

igraph CRAN 1 0.7
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Name of R package Package source N %

inext CRAN 1 0.7

Kendall CRAN 1 0.7

KOGMWU CRAN 1 0.7

languageR CRAN 1 0.7

leaps CRAN 1 0.7

lmodel2 CRAN 1 0.7

lsmeans CRAN 1 0.7

MAc CRAN 1 0.7

maps CRAN 1 0.7

maptools CRAN 1 0.7

MASS CRAN 1 0.7

merTools CRAN 1 0.7

metahdep BioConductor 1 0.7

MODISTools CRAN 1 0.7

pez CRAN 1 0.7

pheatmap CRAN 1 0.7

plotmcmc CRAN 1 0.7

plyr CRAN 1 0.7

PVR CRAN 1 0.7

R2WinBUGS CRAN 1 0.7

rfPermute CRAN 1 0.7

rgdal CRAN 1 0.7

RInSp CRAN 1 0.7

rms CRAN 1 0.7

rotl CRAN 1 0.7

rstan CRAN 1 0.7

rvest CRAN 1 0.7

segmented CRAN 1 0.7

shape CRAN 1 0.7

smatr CRAN 1 0.7
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Name of R package Package source N %

STANDARICH other 1 0.7

stats base 1 0.7

vif CRAN 1 0.7

visreg CRAN 1 0.7

weights CRAN 1 0.7

zoo CRAN 1 0.7

Table S9 shows all R versions mentioned in the articles, as they originally appeared in the articles. This753

includes one article where the authors mention using two different versions of R for their study (v2.14.1754

and v3.0.0), a study which included the R version twice, first in the body of the text and second as part of755

the citation in the references section, but where the versions differed (v3.1.0 and v3.0.1, whichmight be due756

to a typing error), and six articles where the version information provided was not complete (v2.12, v2.13,757

v2.14, v2.15, v3.1, v3.2). In the case of the six incompleteR version statements, it is possible that the authors758

were intending to refer to the “0” versions, i.e., 2.12.0, 2.13.0, etc.759
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R version N %
2.12 1 0.7
2.13 1 0.7
2.14 1 0.7
2.14.1 4 2.8
2.15 1 0.7
2.15.2 3 2.1
3.0.0/2.14.1 1 0.7
3.0.1 8 5.7
3.0.2 14 9.9
3.0.3 3 2.1
3.1 2 1.4
3.1.0 2 1.4
3.1.0/3.0.1 1 0.7
3.1.1 4 2.8
3.1.2 12 8.5
3.1.3 3 2.1
3.2 1 0.7
3.2.0 1 0.7
3.2.1 6 4.3
3.2.2 6 4.3
3.2.3 6 4.3
3.2.4 1 0.7
3.3.0 2 1.4
3.3.1 1 0.7
3.3.2 1 0.7
3.4.0 1 0.7
3.4.1 1 0.7
(No version mentioned) 53 37.6

Table S9: All R versions as originally mentioned in the sample of 141 meta-analysis articles which mentioned
using R.
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S8 TARGET RESULTS760

Variable Value
ID MA092
Study Xu et al. (2016)
Result source in text and from Table 1 (pp.84-85)
Result type Regression model results for all data
Regression result TLP = −4.67 + 0.725 × log(SLA) − 0.937 × log(WD)
N 68
R2
adj 0.32 (p-value < 0.001)

RMSE 0.55

Table S10: Details of the target result for article MA092, Xu et al. (2016). For context, TLP – turgor loss point,
SLA – specific leaf area, WD – wood density, RMSE – root mean square error.

Variable Value
ID MA094
Study Turney and Buddle (2016)
Result source in text (p.1227)
Result type Ordination analysis result
N n.s.
R2 0.494 (p < 0.0001)

Table S11: Details of the target result for article MA094, Turney and Buddle (2016). n.s. – not stated.

Variable Value
ID MA129
Study Crouzeilles and Curran (2016)
Result source Table 1 (A) (p.444)
Result type Comparison of models by AICc
Result values See Table S13

Table S12: Summary of the target result for article MA129, Crouzeilles and Curran (2016).
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Buffer Δi wi R2

Null 0.00 0.20
50 0.96 0.12
25 0.98 0.12
75 1.17 0.11
200 1.34 0.10
150 1.56 0.09
10 1.56 0.09
100 1.61 0.09
5 1.70 0.08

Table S13: Details of the target result for article MA129, Crouzeilles and Curran (2016). The table headings
and values are taken directly from Table 1 (A), p.444. Note that blank/missing values in theR2 column are as
per the original table. Here, Buffer is radius in km, Δi is AICci −minimumAICc (where AICc is the corrected
Akaike information criterion), wi is Akaike weight,R2 is coefficient of determination, omitted in this table.
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Variable Value
ID MA212
Study Valls et al. (2015)
Result source Table 2 (p.38)
Result type Counts of matches
Result values See Table S15

Table S14: Summary of the target result for article MA212, Valls et al. (2015).
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KS index Match impact Match biomass No match Overall match
KS1 91 10 0 match impact
KS2 5 81 15 match biomass
KS3 50 28 23
KS4 25 54 22 match biomass
KS5 86 12 3 match impact
KS6 0 94 7 match biomass
KS7 32 35 34
KS8 11 70 20 match biomass
KS9 91 10 0 match impact
KS10 25 54 22 match biomass
KS11 71 20 10 match impact
KS12 46 39 16

Table S15: Details of the target result for article MA212, Valls et al. (2015). The table headings and values are
taken directly from Table 2, p.38. Note that blank/missing values in rows 3, 7, and 12 of column “Overall
match” are as per the original table.
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S9 REPRODUCIBILITY REPORTS761

Reproducibility report design762

We decided to record all the steps of each reproduction attempt in a document integrating the running763

of analysis code with explanatory prose to contextualise the attempt and its outcome. This an attempt to764

follow the literate programming approach (Knuth, 1984), which emphasises that computer programs ought765

to be human-readable and understandable. It’s been recognised that this integration of analysis code and766

wordprocessing facilitates reproducibility (Buckheit andDonoho, 1995;Claerbout andKarrenbach, 1992),767

especially when the document is packaged with the data files required for the analysis into a compendium768

(Gentleman andTemple Lang, 2007). As will be described in section 3 of the results, nearly all code that was769

sharedwas code for theR language (RCoreTeam, 2022). Wemention this here because this fact determined770

the specifics of our technical approach to constructing the reproducibility reports.771

Wewrote a reproducibility report template using RMarkdown, a format for reproducible documents in the772

R language. An RMarkdown file can be compiled to produce a formatted, human-readable output doc-773

ument (such as an HTML or PDF document), which reports the results of running all included R code.774

The R source code in the RMarkdown document is re-run each time the document is compiled. We struc-775

tured the template similarly to the RMarkdown reproducibility reports used in Hardwicke et al. (2021) to776

reproduce results from articles published in Psychological Science. Each report was structured as follows:777

• A reference to the article and numerical details of the target result to be reproduced;778

• Details of the shared data and code files;779

• As assessment of the applicability of the shared data and code files;780

• Set up of the R environment as required for the analyses;781

• Importing and cleaning of data;782

• Running the analysis code to reproduce the target result;783

• Comparison of the original and reproduced target result value(s);784

• A summary of information about the R computational environment used.785

Within the RMarkdown source file, each report section consists of a combination of text marked up for786

appropriate formatting and “chunks” of R code which, when executed, perform in order the relevant tasks787

for the analysis (e.g., importing data from a file).788
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We set up each reproducibility report to run within its own Docker container. A container is a structured789

package of software designed to run a particular application in a virtual computing environment. The ad-790

vantage of this approach is that applications can run on different computers without users needing to deal791

with software or systemdependencies or settings. Docker is a tool for creating and running containers (Boet-792

tiger, 2015;Nüst et al., 2020). In particular, Docker allows users to build upon existing containers in an easy793

way. We created a container for each reproducibility report by starting with a pre-built container running794

Rmaintained by the Rocker project (Boettiger and Eddelbuettel, 2017). The Rocker container already in-795

cluded all elements required to run an R session in an isolated computational environment. On top of this796

pre-built “layer” we built containers which installed all additional R packages required for the analyses in797

the reproducibility reports, including custom functions written by us to facilitate comparison of the orig-798

inal and reproduced values. We controlled the versions of both R and all R packages: the Rocker project799

maintains multiple containers with different versions of R; we selected version 3.5.0. We installed R pack-800

ages from a snapshot of the Comprehensive R Archive Network (CRAN) frozen at 2 July 2018, to ensure801

compatibility with R 3.5.08 The final layer of the container for each reproducibility report incorporated the802

specific data and code files required for data analysis. The result of this work was a small, self-contained ap-803

plication with everything required to compile the reproducibility report for each of the articles with shared804

data and code. This is a variation on the “research compendium” (Marwick et al., 2018): a research com-805

pendium is usually envisioned as being created by the original authors of a research project, to facilitate the806

reproducibility of their own results, rather than being created by a third party after the fact.807

Running code808

The core of each reproducibility report was the sectionwhich conducted the data analysis and calculated the809

target result. Because each reproducibility report is fundamentally an assessment of the shareddata and code,810

we envisioned that each report would by default only execute lines of code taken directly from the shared811

code file(s) except where unavoidable. Importing data files was the principle situation where we anticipated812

we would need to modify lines of code and/or write new code.9 In order to differentiate original lines of813

code from additional lines of code written by us, we wrote a function to specify which particular lines of an814

external code file to execute. This way, the original shared code could be run by a call to a function, rather815

than needing to be manually inserted into the source of the RMarkdown report. All additional, custom816

8The date 2 July 2018 is the last day before the release of the succeeding version ofR.We used theMicrosoftmirror ofCRAN:
https://cran.microsoft.com/snapshot/2018-07-02/.

9We anticipated that most if not all shared code concerning operations involving external files would require modification.
This was due to the fact that at the very least, file paths to data files, etc. would need to be changed to match the file system
structure set up within each Docker container.
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code would be written directly into the RMarkdown source file. Running individual lines of code from the817

original files in this way also had the advantage that only the code that was required to calculate the target818

result could be run, rather than the entire code file. For analyses that involved random number generation,819

we set an arbitrary random seed so that the specific set of numbers calculated would be reproduced over820

successive compilations of the report.821
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Table S16: The original and reproduced values of all target results.

ID Study Result type Effect size type Target result Value type Original Reproduced Percent

error (%)

Status

MA016 Xu et al. (2017) correlation Pearson’s r point est. N -0.83 -0.83 0.00 E

MA016 Xu et al. (2017) correlation Pearson’s r p-value N < 0.001 < 0.001 E

MA016 Xu et al. (2017) correlation Pearson’s r N N 49 49 0.00 E

MA060 Winternitz et al.

(2017)

mean Fisher

z-transformation

point est. N 0.044 0.043 2.27 < 10%

MA060 Winternitz et al.

(2017)

mean Fisher

z-transformation

HPDI lower N -0.174 -0.194 11.49 10%+

MA060 Winternitz et al.

(2017)

mean Fisher

z-transformation

HPDI upper N 0.289 0.268 7.27 < 10%

MA060 Winternitz et al.

(2017)

mean Fisher

z-transformation

N N 37 37 0.00 E

MA062 Grueber et al. (2018) mean Hedges’ d point est. N -0.205 -0.204 0.49 < 10%

MA062 Grueber et al. (2018) mean Hedges’ d CI lower N -0.444 -0.446 0.45 < 10%

MA062 Grueber et al. (2018) mean Hedges’ d CI upper N 0.035 0.039 11.43 10%+

MA062 Grueber et al. (2018) mean Hedges’ d N N 37 37 0.00 E

MA065 Noble et al. (2018) mean Hedges’ g point est. N -8.42 -8.87 5.34 < 10%

MA065 Noble et al. (2018) mean Hedges’ g CI lower N -10.73 -10.85 1.12 < 10%

MA065 Noble et al. (2018) mean Hedges’ g CI upper N -6.63 -6.68 0.75 < 10%

MA065 Noble et al. (2018) mean Hedges’ g N N 703 703 0.00 E

MA067 Risely et al. (2017) mean Hedges’ g point est. N -0.21 -0.21 0.00 E
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ID Study Result type Effect size type Target result Value type Original Reproduced Percent

error (%)

Status

MA067 Risely et al. (2017) mean Hedges’ g SE N 0.07 0.07 0.00 E

MA067 Risely et al. (2017) mean Hedges’ g z-score N -2.7 -2.8 3.70 < 10%

MA067 Risely et al. (2017) mean Hedges’ g p-value N 0.006 0.005 16.67 10%+

MA067 Risely et al. (2017) mean Hedges’ g N N 52 52 0.00 E

MA068 Ronget et al. (2017) mean odds ratio point est. N 1.82 F

MA068 Ronget et al. (2017) mean odds ratio HPDI lower N 1.37 F

MA068 Ronget et al. (2017) mean odds ratio HPDI upper N 2.41 F

MA068 Ronget et al. (2017) mean odds ratio N N 75 F

MA071 Sievers et al. (2017) mean response ratio point est. N -0.26 -0.27 3.85 < 10%

MA071 Sievers et al. (2017) mean response ratio CI lower N -1.02 -1.03 0.98 < 10%

MA071 Sievers et al. (2017) mean response ratio CI upper N 0.51 0.49 3.92 < 10%

MA071 Sievers et al. (2017) mean response ratio N N 50 50 0.00 E

MA074 Harts et al. (2016) correlation Pearson’s r point est. N 0.183 0.185 1.09 < 10%

MA074 Harts et al. (2016) correlation Pearson’s r CI lower N 0.089 0.089 0.00 E

MA074 Harts et al. (2016) correlation Pearson’s r CI upper N 0.274 0.281 2.55 < 10%

MA074 Harts et al. (2016) correlation Pearson’s r N N 43 43 0.00 E

MA081 Jaffé et al. (2016) mean slope parameter point est. N 1.30 1.30 0.00 E

MA081 Jaffé et al. (2016) mean slope parameter CI lower N 0.95 F

MA081 Jaffé et al. (2016) mean slope parameter CI upper N 1.66 F

MA081 Jaffé et al. (2016) mean slope parameter N N 1296 1296 0.00 E

MA091 Lemoine et al. (2016) mean Cohen’s d point est. N 0.56 0.56 0.00 E

MA091 Lemoine et al. (2016) mean Cohen’s d CI lower N 0.42 0.42 0.00 E
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ID Study Result type Effect size type Target result Value type Original Reproduced Percent

error (%)

Status

MA091 Lemoine et al. (2016) mean Cohen’s d CI upper N 0.69 0.69 0.00 E

MA091 Lemoine et al. (2016) mean Cohen’s d N N 65 65 0.00 E

MA092 Xu et al. (2016) model output n.a. R2
adj N 0.32 0.33 3.13 < 10%

MA092 Xu et al. (2016) model output n.a. RMSE N 0.55 0.55 0.00 E

MA092 Xu et al. (2016) model output n.a. intercept N -4.67 -4.18 10.49 10%+

MA092 Xu et al. (2016) model output n.a. log(SLA) coeff. N 0.725 0.730 0.69 < 10%

MA092 Xu et al. (2016) model output n.a. log(WD) coeff. N -0.937 -0.980 4.59 < 10%

MA092 Xu et al. (2016) model output n.a. N N 68 68 0.00 E

MA094 Turney and Buddle

(2016)

model output n.a. R2 N 0.494 F

MA094 Turney and Buddle

(2016)

model output n.a. p-value N < 0.0001 F

MA095 Gibert et al. (2016) mean Fisher

z-transformation

point est. N 0.76 0.76 0.00 E

MA095 Gibert et al. (2016) mean Fisher

z-transformation

CI lower N 0.61 0.61 0.00 E

MA095 Gibert et al. (2016) mean Fisher

z-transformation

CI upper N 0.91 0.91 0.00 E

MA095 Gibert et al. (2016) mean Fisher

z-transformation

N N 25 25 0.00 E

MA126 Anderson (2016) mean log odds ratio point est. N -1.11 -1.11 0.00 E

MA126 Anderson (2016) mean log odds ratio SE N 0.49 0.49 0.00 E
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ID Study Result type Effect size type Target result Value type Original Reproduced Percent

error (%)

Status

MA126 Anderson (2016) mean log odds ratio CI lower N -2.06 -2.06 0.00 E

MA126 Anderson (2016) mean log odds ratio CI upper N -0.15 -0.15 0.00 E

MA126 Anderson (2016) mean log odds ratio z-score N -2.28 -2.28 0.00 E

MA126 Anderson (2016) mean log odds ratio p-value N 0.023 0.023 0.00 E

MA129 Crouzeilles and Cur-

ran (2016)

Table 1A, rank1 n.a. Δi N 0.00 0.00 E

MA129 Crouzeilles and Cur-

ran (2016)

Table 1A, rank1 n.a. wi N 0.20 0.20 0.00 E

MA129 Crouzeilles and Cur-

ran (2016)

Table 1A, rank1 n.a. buffer (km

radius)

C Null Null E

MA129 Crouzeilles and Cur-

ran (2016)

Table 1A, rank2 n.a. Δi N 0.96 0.96 0.00 E

MA129 Crouzeilles and Cur-

ran (2016)

Table 1A, rank2 n.a. wi N 0.12 0.12 0.00 E

MA129 Crouzeilles and Cur-

ran (2016)

Table 1A, rank2 n.a. buffer (km

radius)

C 50 50 E

MA129 Crouzeilles and Cur-

ran (2016)

Table 1A, rank3 n.a. Δi N 0.98 0.98 0.00 E

MA129 Crouzeilles and Cur-

ran (2016)

Table 1A, rank3 n.a. wi N 0.12 0.12 0.00 E

MA129 Crouzeilles and Cur-

ran (2016)

Table 1A, rank3 n.a. buffer (km

radius)

C 25 25 E
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ID Study Result type Effect size type Target result Value type Original Reproduced Percent

error (%)

Status

MA129 Crouzeilles and Cur-

ran (2016)

Table 1A, rank4 n.a. Δi N 1.17 1.17 0.00 E

MA129 Crouzeilles and Cur-

ran (2016)

Table 1A, rank4 n.a. wi N 0.11 0.11 0.00 E

MA129 Crouzeilles and Cur-

ran (2016)

Table 1A, rank4 n.a. buffer (km

radius)

C 75 75 E

MA129 Crouzeilles and Cur-

ran (2016)

Table 1A, rank5 n.a. Δi N 1.34 1.34 0.00 E

MA129 Crouzeilles and Cur-

ran (2016)

Table 1A, rank5 n.a. wi N 0.10 0.10 0.00 E

MA129 Crouzeilles and Cur-

ran (2016)

Table 1A, rank5 n.a. buffer (km

radius)

C 200 200 E

MA129 Crouzeilles and Cur-

ran (2016)

Table 1A, rank6 n.a. Δi N 1.56 1.56 0.00 E

MA129 Crouzeilles and Cur-

ran (2016)

Table 1A, rank6 n.a. wi N 0.09 0.09 0.00 E

MA129 Crouzeilles and Cur-

ran (2016)

Table 1A, rank6 n.a. buffer (km

radius)

C 150 150 E

MA129 Crouzeilles and Cur-

ran (2016)

Table 1A, rank7 n.a. Δi N 1.56 1.56 0.00 E

MA129 Crouzeilles and Cur-

ran (2016)

Table 1A, rank7 n.a. wi N 0.09 0.09 0.00 E
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ID Study Result type Effect size type Target result Value type Original Reproduced Percent

error (%)

Status

MA129 Crouzeilles and Cur-

ran (2016)

Table 1A, rank7 n.a. buffer (km

radius)

C 10 10 E

MA129 Crouzeilles and Cur-

ran (2016)

Table 1A, rank8 n.a. Δi N 1.61 1.61 0.00 E

MA129 Crouzeilles and Cur-

ran (2016)

Table 1A, rank8 n.a. wi N 0.09 0.09 0.00 E

MA129 Crouzeilles and Cur-

ran (2016)

Table 1A, rank8 n.a. buffer (km

radius)

C 100 100 E

MA129 Crouzeilles and Cur-

ran (2016)

Table 1A, rank9 n.a. Δi N 1.70 1.70 0.00 E

MA129 Crouzeilles and Cur-

ran (2016)

Table 1A, rank9 n.a. wi N 0.08 0.08 0.00 E

MA129 Crouzeilles and Cur-

ran (2016)

Table 1A, rank9 n.a. buffer (km

radius)

C 5 5 E

MA145 Moore et al. (2016a) mean Fisher

z-transformation

point est. N -0.08 -0.08 0.00 E

MA145 Moore et al. (2016a) mean Fisher

z-transformation

HPDI lower N -0.22 -0.21 4.55 < 10%

MA145 Moore et al. (2016a) mean Fisher

z-transformation

HPDI upper N 0.03 0.05 66.67 10%+

MA145 Moore et al. (2016a) mean Fisher

z-transformation

N N 118 118 0.00 E
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ID Study Result type Effect size type Target result Value type Original Reproduced Percent

error (%)

Status

MA145 Moore et al. (2016a) mean Fisher

z-transformation

Nstudies N 38 38 0.00 E

MA145 Moore et al. (2016a) mean Fisher

z-transformation

Nspecies N 25 25 0.00 E

MA147 Holman (2016) mean percentage point est. N 0.13 0.13 0.00 E

MA147 Holman (2016) mean percentage SE N 0.03 0.03 0.00 E

MA147 Holman (2016) mean percentage CI lower N 0.074 0.074 0.00 E

MA147 Holman (2016) mean percentage CI upper N 0.19 0.19 0.00 E

MA147 Holman (2016) mean percentage N N 49 49 0.00 E

MA155 Strader et al. (2016) correlation Pearson’s r point est. N 0.51 0.51 0.00 E

MA155 Strader et al. (2016) correlation Pearson’s r p-value N 0.01 0.01 0.00 E

MA188 Senior et al. (2015) mean Log response ratio point est. N -0.363 -0.363 0.00 E

MA188 Senior et al. (2015) mean Log response ratio CI lower N -0.408 -0.408 0.00 E

MA188 Senior et al. (2015) mean Log response ratio CI upper N -0.318 -0.318 0.00 E

MA188 Senior et al. (2015) mean Log response ratio N N 818 818 0.00 E

MA191 Voje (2015) mean allometric slope pa-

rameter

point est. N 0.86 0.85 1.16 < 10%

MA191 Voje (2015) mean allometric slope pa-

rameter

CI lower N 0.77 0.77 0.00 E

MA191 Voje (2015) mean allometric slope pa-

rameter

CI upper N 0.94 0.94 0.00 E
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ID Study Result type Effect size type Target result Value type Original Reproduced Percent

error (%)

Status

MA191 Voje (2015) mean allometric slope pa-

rameter

N N 553 553 0.00 E

MA198 Paz‐Vinas et al. (2015) mean Fisher

z-transformation

point est. N -0.41 -0.42 2.44 < 10%

MA198 Paz‐Vinas et al. (2015) mean Fisher

z-transformation

CI lower N -0.55 -0.55 0.00 E

MA198 Paz‐Vinas et al. (2015) mean Fisher

z-transformation

CI upper N -0.27 -0.28 3.70 < 10%

MA198 Paz‐Vinas et al. (2015) mean Fisher

z-transformation

N N 79 80 1.27 < 10%

MA202 Mehrabi and Tuck

(2015)

mean Hedges’ d point est. N -0.330 -0.340 3.03 < 10%

MA202 Mehrabi and Tuck

(2015)

mean Hedges’ d CI lower N -0.503 -0.521 3.58 < 10%

MA202 Mehrabi and Tuck

(2015)

mean Hedges’ d CI upper N -0.156 -0.159 1.92 < 10%

MA202 Mehrabi and Tuck

(2015)

mean Hedges’ d N N 329 329 0.00 E

MA211 Yuan and Chen

(2015)

mean log response ratio point est. N 0.24 F

MA211 Yuan and Chen

(2015)

mean log response ratio CI lower N 0.23 F
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ID Study Result type Effect size type Target result Value type Original Reproduced Percent

error (%)

Status

MA211 Yuan and Chen

(2015)

mean log response ratio CI upper N 0.25 F

MA211 Yuan and Chen

(2015)

mean log response ratio N N 3298 F

MA212 Valls et al. (2015) Table 2, Match

biomass

n.a. KS1 N 10 10 0.00 E

MA212 Valls et al. (2015) Table 2, Match

biomass

n.a. KS2 N 81 81 0.00 E

MA212 Valls et al. (2015) Table 2, Match

biomass

n.a. KS3 N 28 28 0.00 E

MA212 Valls et al. (2015) Table 2, Match

biomass

n.a. KS4 N 54 54 0.00 E

MA212 Valls et al. (2015) Table 2, Match

biomass

n.a. KS5 N 12 12 0.00 E

MA212 Valls et al. (2015) Table 2, Match

biomass

n.a. KS6 N 94 94 0.00 E

MA212 Valls et al. (2015) Table 2, Match

biomass

n.a. KS7 N 35 35 0.00 E

MA212 Valls et al. (2015) Table 2, Match

biomass

n.a. KS8 N 70 70 0.00 E

MA212 Valls et al. (2015) Table 2, Match

biomass

n.a. KS9 N 10 10 0.00 E
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ID Study Result type Effect size type Target result Value type Original Reproduced Percent

error (%)

Status

MA212 Valls et al. (2015) Table 2, Match

biomass

n.a. KS10 N 54 54 0.00 E

MA212 Valls et al. (2015) Table 2, Match

biomass

n.a. KS11 N 20 20 0.00 E

MA212 Valls et al. (2015) Table 2, Match

biomass

n.a. KS12 N 39 39 0.00 E

MA212 Valls et al. (2015) Table 2, Match

impact

n.a. KS1 N 91 91 0.00 E

MA212 Valls et al. (2015) Table 2, Match

impact

n.a. KS2 N 5 5 0.00 E

MA212 Valls et al. (2015) Table 2, Match

impact

n.a. KS3 N 50 51 2.00 < 10%

MA212 Valls et al. (2015) Table 2, Match

impact

n.a. KS4 N 25 25 0.00 E

MA212 Valls et al. (2015) Table 2, Match

impact

n.a. KS5 N 86 87 1.16 < 10%

MA212 Valls et al. (2015) Table 2, Match

impact

n.a. KS6 N 0 0 E

MA212 Valls et al. (2015) Table 2, Match

impact

n.a. KS7 N 32 33 3.12 < 10%

MA212 Valls et al. (2015) Table 2, Match

impact

n.a. KS8 N 11 11 0.00 E
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ID Study Result type Effect size type Target result Value type Original Reproduced Percent

error (%)

Status

MA212 Valls et al. (2015) Table 2, Match

impact

n.a. KS9 N 91 91 0.00 E

MA212 Valls et al. (2015) Table 2, Match

impact

n.a. KS10 N 25 25 0.00 E

MA212 Valls et al. (2015) Table 2, Match

impact

n.a. KS11 N 71 72 1.41 < 10%

MA212 Valls et al. (2015) Table 2, Match

impact

n.a. KS12 N 46 47 2.17 < 10%

MA212 Valls et al. (2015) Table 2, No match n.a. KS1 N 0 0 E

MA212 Valls et al. (2015) Table 2, No match n.a. KS2 N 15 15 0.00 E

MA212 Valls et al. (2015) Table 2, No match n.a. KS3 N 23 22 4.35 < 10%

MA212 Valls et al. (2015) Table 2, No match n.a. KS4 N 22 22 0.00 E

MA212 Valls et al. (2015) Table 2, No match n.a. KS5 N 3 2 33.33 10%+

MA212 Valls et al. (2015) Table 2, No match n.a. KS6 N 7 7 0.00 E

MA212 Valls et al. (2015) Table 2, No match n.a. KS7 N 34 33 2.94 < 10%

MA212 Valls et al. (2015) Table 2, No match n.a. KS8 N 20 20 0.00 E

MA212 Valls et al. (2015) Table 2, No match n.a. KS9 N 0 0 E

MA212 Valls et al. (2015) Table 2, No match n.a. KS10 N 22 22 0.00 E

MA212 Valls et al. (2015) Table 2, No match n.a. KS11 N 10 9 10.00 10%+

MA212 Valls et al. (2015) Table 2, No match n.a. KS12 N 16 15 6.25 < 10%

MA212 Valls et al. (2015) Table 2, Overall

match

n.a. KS1 C match

impact

match impact E
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ID Study Result type Effect size type Target result Value type Original Reproduced Percent

error (%)

Status

MA212 Valls et al. (2015) Table 2, Overall

match

n.a. KS2 C match

biomass

match

biomass

E

MA212 Valls et al. (2015) Table 2, Overall

match

n.a. KS3 C (none) match impact NC

MA212 Valls et al. (2015) Table 2, Overall

match

n.a. KS4 C match

biomass

match

biomass

E

MA212 Valls et al. (2015) Table 2, Overall

match

n.a. KS5 C match

impact

match impact E

MA212 Valls et al. (2015) Table 2, Overall

match

n.a. KS6 C match

biomass

match

biomass

E

MA212 Valls et al. (2015) Table 2, Overall

match

n.a. KS7 C (none) (none) E

MA212 Valls et al. (2015) Table 2, Overall

match

n.a. KS8 C match

biomass

match

biomass

E

MA212 Valls et al. (2015) Table 2, Overall

match

n.a. KS9 C match

impact

match impact E

MA212 Valls et al. (2015) Table 2, Overall

match

n.a. KS10 C match

biomass

match

biomass

E

MA212 Valls et al. (2015) Table 2, Overall

match

n.a. KS11 C match

impact

match impact E

MA212 Valls et al. (2015) Table 2, Overall

match

n.a. KS12 C (none) (none) E
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ID Study Result type Effect size type Target result Value type Original Reproduced Percent

error (%)

Status

MA213 Colautti and Lau

(2015)

mean difference in means point est. N -0.07 -0.07 0.00 E

MA213 Colautti and Lau

(2015)

mean difference in means p-value N 0.362 0.362 0.00 E

MA213 Colautti and Lau

(2015)

mean difference in means N N 654 654 0.00 E

MA229 Gamfeldt et al. (2015) mean log response ratio point est. N 0.40 0.39 2.50 < 10%

MA229 Gamfeldt et al. (2015) mean log response ratio CI lower N 0.24 0.26 8.33 < 10%

MA229 Gamfeldt et al. (2015) mean log response ratio CI upper N 0.53 0.53 0.00 E

MA229 Gamfeldt et al. (2015) mean log response ratio N N 57 57 0.00 E96



Examining dependency between reproduced values within articles822

Table 5 lists 19 articles where (i) the result type is a summary effect and (ii) the code is relevant. For these823

19 articles, the set of target result values are broadly similar in type: there is a point estimate, a sample size,824

and some kind of measure of uncertainty (e.g., the upper and lower bounds of a confidence interval). To825

gauge the level of dependency between the reproductions of these different types of values within articles,826

Table S17 breaks down the results for each article by target value type, specifying how closely the target827

result value was reproduced (using the same categories reported in Table 6). For this summary, measures of828

uncertainty other than confidence interval bounds (e.g., standard errors) were ignored.829

ID N Point est. CI lower CI upper
MA091 Exact Exact Exact Exact
MA095 Exact Exact Exact Exact
MA147 Exact Exact Exact Exact
MA188 Exact Exact Exact Exact
MA145 Exact Exact Within 10% At Least 10%
MA081 Exact Exact Failure Failure
MA067 Exact Exact n.a. n.a.
MA213 Exact Exact n.a. n.a.
MA191 Exact Within 10% Exact Exact
MA074 Exact Within 10% Exact Within 10%
MA229 Exact Within 10% Within 10% Exact
MA065 Exact Within 10% Within 10% Within 10%
MA071 Exact Within 10% Within 10% Within 10%
MA202 Exact Within 10% Within 10% Within 10%
MA062 Exact Within 10% Within 10% At Least 10%
MA060 Exact Within 10% At Least 10% Within 10%
MA198 Within 10% Within 10% Exact Within 10%
MA211 Failure Failure Failure Failure
MA126 n.a. Exact Exact Exact

Table S17: A breakdown of how closely target result values were reproduced for each article with relevant code
and a summary effect result type. The target result value types are sample sizeN, point estimate, and confidence
interval bounds (CI lower and CI upper). Values of “n.a.” indicate that that particular target result value type
was not reported for that article.

Table S17 considers how closely the sample size, point estimate, lower confidence interval bound, and upper830

confidence interval bound could be reproduced for each article. The closeness of the reproduced values831

were considered progressively, from left to right. The table shows that most values of sample size could be832

reproduced exactly, but the closeness of the reproduced values dropped off considerably after that for the833

point estimate, etc. There are two identifiable clusters: a cluster of four articles (MA091, MA095, MA147,834

MA188)where all target values could be reproduced exactly, and a cluster of three articles (MA065,MA071,835

MA202) where the sample size was reproduced exactly, and the remaining values were within 10%. This836

97



clustering may indicate that there is some dependency between values from the same article regarding how837

closely they will be reproduced. However, the sample is small and the categories of reproduction closeness838

are relatively coarse.839

S10 REPRODUCING TARGET RESULTSWHEN CODE NOT RELEVANT840

Table S18 details the circumstances of the six caseswhere shared codewas judgednot relevant to reproducing841

the target result.842

ID Study Code lan-
guage

Description

MA016 Xu et al. (2017) Python Not relevant. The code shared is for simulations of leaf
longevity, reported separately from the meta-analysis.

MA068 Ronget et al. (2017) R Partially relevant. The code shared regards the extraction of
effect sizes from primary studies used in the meta-analysis.
The code does not conduct the meta-analysis itself.

MA092 Xu et al. (2016) Fortran Not relevant. The code shared is the source code for a modi-
fied version of the EcosystemDemographyBiosphereModel,
ED2 (Medvigy et al., 2009). Simulations using this model
were reported separately from the meta-analysis.

MA094 Turney and Buddle
(2016)

R Partially relevant. The code shared is for generating null food
webmodels. Although necessary, the code is not sufficient to
reproduce the chosen result. Further, there was a “missing”
code file: in the Oikos online appendix, one listed code file
was actually missing (hierarchy_measure.R), while the
other listed code file (null_models.R) was duplicated, re-
sulting in two code files in the appendix with the same con-
tents.

MA155 Strader et al. (2016) R Not relevant. The code shared is for conducting Gene On-
tology analyses, and for producing article Figure 1D. These
are separate results from the meta-analysis.

MA212 Valls et al. (2015) R Partially relevant. The code shared runs Spearman rank cor-
relation tests, relevant to meta-analysis results presented in
Table 3 of article. The code is not relevant to the selected
meta-analysis result.

Table S18: The articles with shared code which was either not relevant or only partially relevant to reproducing
the chosen meta-analysis results.

In the cases of MA016, MA092, and MA155, the shared code had nothing to do with the reported meta-843

analysis results. In the case of MA212, the shared code was partially relevant, but was practically unusable844

for the purposes of reproducing the specific results in the article. (Specifically, the shared code for MA212,845

written to calculate Spearman’s rank correlation coefficient formultiple sets of data and summarise the corre-846

sponding p-values, seemed to be an extract from a larger code base; the code assumed a specific data structure847

that was not defined anywhere in the shared materials, nor did the data structure implied by the code corre-848

spond to any of the shared data files. Lacking contextual information on the setup required for the code to849

work, we decided that the code as provided forMA212 was unusable.) For these four cases we attempted to850

reproduce the originally selected target results detailed in Tables 4 and S10 by writing entirely new R code.851
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There were 59 target result values across MA016, MA092, MA155, and MA212. This set of target result852

values included 12 non-numeric values: these were entries from the table in article MA212, see Table S15.853

Percent error was not applicable to these non-numeric values, and so the reproduced values were assessed854

as being either exact text string matches with the original or non-matches. The details of the individual855

reproduction attempts for all these values are reported in Table S16.856

In the cases ofMA068 andMA094, the codewas relevant to other parts of themeta-analysis described in the857

articles. We selected alternative target results from these articles thatwere directly relevant to the shared code.858

For MA068, the shared code performed simulations of logistic regression slopes and standard errors; these859

simulationswere performed to supplement under-reported results from two primary studies included in the860

meta-analysis. The target resultswere the values of the simulations as reported in the article. ForMA094, the861

shared code simulated species richness in food webs using different food webmodels; the simulation results862

were compared with the results from a sample of published food webs in a figure. The target results were863

the widths of bars in that figure, which represented the average proportion of species richness at different864

trophic levels for the published and simulated food webs. There were 3 target result values for MA068, and865

21 target result values for MA094. The details of the alternative target results are reported in Tables S19-866

S21, and the results of comparing the reproduced values with the original values of these target results are in867

Table S22.868

Variable Value
ID MA068
Study Ronget et al. (2017)
Result source Table 1 (pp.7-8)
Result type Simulated slope parameters and stan-

dard errors to supplement incom-
pletely reported primary study results

Standard error 1 0.001
Mean slope parameter 2 -0.001
Standard error 2 0.113

Table S19: Detail of the alternative target results selected for article MA068, Ronget et al. (2017). These
alternative target results were selected due to being relevant to the shared code. Standard error 1 is simulated to
supplement a result from Rödel et al. (2004), mean slope parameter 2 and standard error 2 are simulated to
supplement a result from Barber-Meyer et al. (2008).

We used the shared code for these two articles to successfully calculate values for all 24 alternative target val-869

ues. This perfect success rate is perhaps to be expected, since the alternative target results were specifically870

selected on the basis of being relevant to the shared code. Seven values out of the 24 (29%) were reproduced871

exactly (to the same precision as reported), another seven reproduced values (29%) were within 10% of the872
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Variable Value
ID MA094
Study Turney and Buddle (2016)
Result source in text (p.1227)
Result type Descriptive statistics of species

richness (i.e.,Nspecies) in a sam-
ple of published food webs

Nfood webs 72
Mean 90.21
Standard deviation 31.27
Minimum 50
Maximum 209

Table S20: Detail of the first set of alternative target results selected for article MA094, Turney and Buddle
(2016). These alternative target results were selected due to being relevant to the shared code.

original value, and the remaining ten (42%) reproduced values were 10% ormore from the original value. All873

ten reproduced values with substantial percent errors (10% or more) compared to the original were target874

results from simulations, which use pseudo-random number generation, and neither R script set a random875

seedwhichwould have facilitated the exact reproduction of the simulations. For one target result inMA068,876

the mean slope parameter for a logistic regression, the reproduced value was 0.001, compared with an orig-877

inal value of −0.001. This is the only case in this study of a reproduced target result not being in the same878

direction as the original target result value. However, by using different random seeds, repeated simulations879

of this target result could yield different results, which might more closely agree with the original value.880

100



Variable Value
ID MA094
Study Turney and Buddle (2016)
Result source Figure 1 (p.1227)
Result type Bar widths (in pixels) represent-

ing average proportions of species
richness at different trophic lev-
els for different food web types

Published food webs, top trophic
level

215

Published food webs, intermediate
trophic level

475

Published food webs, herbivore
trophic level

430

Published food webs, basal trophic
level

549

Random food webs, top trophic
level

589

Random food webs, intermediate
trophic level

521

Random food webs, herbivore
trophic level

51

Random food webs, basal trophic
level

108

Cascade food webs, top trophic
level

79

Cascade food webs, intermediate
trophic level

934

Cascade food webs, herbivore
trophic level

158

Cascade food webs, basal trophic
level

221

Niche food webs, top trophic level 441
Niche food webs, intermediate
trophic level

408

Niche food webs, herbivore
trophic level

102

Niche food webs, basal trophic
level

385

Table S21: Detail of the second set of alternative target results selected for article MA094, Turney and Buddle
(2016). These alternative target results were selected due to being relevant to the shared code.
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Table S22: The original and reproduced values of all alternative target results for MA068 andMA094. All target result values are numeric.

ID Study Result type Effect size

type

Target result Original Reproduced Percent

error (%)

Status

MA068 Ronget et al. (2017) logistic regression model

(Rödel)

slope pa-

rameter

SE 0.001 0.001 0.00 E

MA068 Ronget et al. (2017) logistic regression model

(Barber-Meyer)

slope pa-

rameter

point est. -0.001 0.001 200.00 10%+

MA068 Ronget et al. (2017) logistic regression model

(Barber-Meyer)

slope pa-

rameter

SE 0.113 0.113 0.00 E

MA094 Turney and Buddle

(2016)

mean species

richness

point est. 90.21 90.21 0.00 E

MA094 Turney and Buddle

(2016)

mean species

richness

SD 31.27 31.27 0.00 E

MA094 Turney and Buddle

(2016)

mean species

richness

minimum 50 50 0.00 E

MA094 Turney and Buddle

(2016)

mean species

richness

maximum 209 209 0.00 E

MA094 Turney and Buddle

(2016)

mean species

richness

N 72 72 0.00 E

MA094 Turney and Buddle

(2016)

average proportion of

species present

pixel width published food webs, top

trophic level

215 212 1.40 < 10%

MA094 Turney and Buddle

(2016)

average proportion of

species present

pixel width published food webs, inter-

mediate trophic level

475 476 0.21 < 10%
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ID Study Result type Effect size

type

Target result Original Reproduced Percent

error (%)

Status

MA094 Turney and Buddle

(2016)

average proportion of

species present

pixel width published food webs, herbi-

vore trophic level

430 434 0.93 < 10%

MA094 Turney and Buddle

(2016)

average proportion of

species present

pixel width published food webs, basal

trophic level

549 550 0.18 < 10%

MA094 Turney and Buddle

(2016)

average proportion of

species present

pixel width random food webs, top

trophic level

589 96 83.70 10%+

MA094 Turney and Buddle

(2016)

average proportion of

species present

pixel width random food webs, interme-

diate trophic level

521 1078 106.91 10%+

MA094 Turney and Buddle

(2016)

average proportion of

species present

pixel width random food webs, herbivore

trophic level

51 27 47.06 10%+

MA094 Turney and Buddle

(2016)

average proportion of

species present

pixel width random food webs, basal

trophic level

108 64 40.74 10%+

MA094 Turney and Buddle

(2016)

average proportion of

species present

pixel width cascade food webs, top

trophic level

79 252 218.99 10%+

MA094 Turney and Buddle

(2016)

average proportion of

species present

pixel width cascade food webs, intermedi-

ate trophic level

934 759 18.74 10%+

MA094 Turney and Buddle

(2016)

average proportion of

species present

pixel width cascade food webs, herbivore

trophic level

158 160 1.27 < 10%

MA094 Turney and Buddle

(2016)

average proportion of

species present

pixel width cascade food webs, basal

trophic level

221 227 2.71 < 10%

MA094 Turney and Buddle

(2016)

average proportion of

species present

pixel width niche food webs, top trophic

level

441 359 18.59 10%+

103



ID Study Result type Effect size

type

Target result Original Reproduced Percent

error (%)

Status

MA094 Turney and Buddle

(2016)

average proportion of

species present

pixel width niche food webs, intermedi-

ate trophic level

408 441 8.09 < 10%

MA094 Turney and Buddle

(2016)

average proportion of

species present

pixel width niche food webs, herbivore

trophic level

102 129 26.47 10%+

MA094 Turney and Buddle

(2016)

average proportion of

species present

pixel width niche food webs, basal

trophic level

385 439 14.03 10%+

104



S11 REVISITING THE DEFINITION OF REPRODUCIBILITY881

In this section, we return to the definition of reproducibility provided in the introduction, “reproducibility882

is obtaining consistent results using the same input data; computational steps, methods, and code; and con-883

ditions of analysis” (National Academies of Sciences, Engineering, andMedicine, 2019, p.43) and consider884

each component of this definition in turn, in the context of the results of this study.885

Consistent As is noted in the NAS report, there can be different standards for what is considered “con-886

sistent”. In some scenarios, bitwise consistency may be required. In others, obtaining results in the same887

direction as the original might be considered good enough. The reproduced results in this study were com-888

pared to their original counterparts by looking at the percentage error. Looking at Tables 6 and 9, relaxing889

standards for consistency from exact matches to matches within 10% of the original boosted the percentage890

of target results considered consistent substantially, from 43% to 56% in Table 6, and from 75% to 93% in891

Table 9. In the context of meta-analysis, what might be considered sufficient consistency will likely depend892

on the purposes that the results are put to use, and the sensitivity of those purposes to variation in the in-893

puts. Meta-analysis in particular is an interesting case because meta-analyses can be updated with additional894

primary studies, and is complicated by differences of judgment over which primary studies ought to be in-895

cluded and excluded, etc. Given this, there may be an expectation that meta-analytic summary effects are896

already subject to variation beyond formal statistical error. In this context, there may be a tolerance for a897

certain amount of inconsistency in any asserted summary effect, such that small discrepancies of up to 10%898

in value when reproduced are not fatal (albeit perhaps still worthy of rigorous checking).899

Results In the context of reproducing a numerical result, “results” are those numbers printed in the pub-900

lished article. Ordinarily, we take them as they are presented. However, in this study, we have the example of901

a result reported in articleMA062 (Grueber et al., 2018)which contains a typo (amissingminus sign). Here,902

the code and data produce the “correct” result, with a value less than zero. Here, interpretation and judge-903

ment is required: a reader can see that there is supposed to be aminus sign in front of the reported effect size,904

since that would then agree with the stated confidence interval. This example is particularly straightforward905

and obvious.906

This is important to note because a lot of the challenge of evaluating computational reproducibility of re-907

sults is in getting the data and code to “work”; understandably, that’s where a lot of the focus is. But this908

perhaps takes for granted that the target value in the published article that is being reproduced is valid, and909
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has not been corrupted during rounds of revision, copy editing, type setting, etc. (This is of course the chief910

motivation behind reproducible reports/documents, where analysis and text are contained within the one911

document, and so issues such as transcription error, etc. are mitigated.)912

Another issue is the coverage/completeness of results. Do all “results” (e.g., all numerical values reported913

in text, all tables and figures) in an article need to be reproducible? For tractability, this study selected a914

single target result for reproduction across a number of articles, with the goal of selecting the firstmentioned915

summary effect where possible. Even though this “bare minimum” attempt for each article covered only a916

tiny proportion of all results reported, the successes and failures were still informative.917

Same input data Data sharing policies and advocacy perhaps may take for granted that the data file(s)918

that get shared are the same as the data file(s) that were actually used for the calculations reported in the919

article. But, this may not necessarily be the case: (i) Authors may “clean up” their data files in preparation920

for them to be shared. This may involve recoding of data values, or renaming of variables to make them921

more explicable to outside readers. This could introduce changes to how the data needs to be pre-processed922

or recoded for analysis. (ii) Some data files may be updated or edited over time, especially if used in projects923

which spanmore than a single article. It may become a non-trivial task to identify a single version of the data924

file(s) that applies to all results reported in an article.925

In onemeta-analysis (Yuan andChen, 2015), the data file sharedwas not the data file usedwith the provided926

code, and according to the content of the article itself, could not have been the data file used to calculate all927

results reported. This was due to a missing variable in the data set.928

There is one meta-analysis where the authors explicitly provide two different versions of their data: the first929

which is the one actually used in the meta-analysis (and so is the one to be used to “reproduce” the results930

in the article), and the second which is a corrected version of the first, and which the authors recommend931

be used for further analysis. This example is particularly striking because of the transparency of the authors932

and the delineation they provide between “original” results and what might be called “correct” results.933

The point of this is to say that when we say “the same data”, we might not necessarily mean or intend to934

refer to “the specific original file(s) used by the authors in the calculation of the results”. What we mean is935

a set of data that has the same substantive content as the original data, regardless of whether that version of936

the data was used by the authors to calculate the results or not.937
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Same computational steps, methods, and code This hasmultiple components: first, the sharing of code938

files has the same issues as the sharing of data files, as detailed above. Code files may be “cleaned up” for939

public release, or comments may be added, or code might be passed through a tool to format the code for940

easier reading. The point of this is to say that when we say “the same code”, we may not necessarily mean941

the “specific original file(s) used by the authors”.942

The “same computational steps” also requires some nuance: for example, it’s taken as given in studies evalu-943

ating reproducibility that things like the file system paths of input files don’t really count as meaningful bar-944

riers to computational reproducibility. It doesn’t seem “fair” to declare a result as unable to be reproduced945

purely because the code as written assumes a different file folder structure than exists on the reproducer’s946

computer system.947

The above example of file paths seems unambiguous enough (and is very common), but “alterations to the948

code as supplied” exists on a spectrum: if we agree that altering the computational steps to enable files to949

be read is at the end of “insubstantial changes”, at what point do changes to the code as supplied become950

substantial, and we agree that we are no longer taking the same computational steps?951

Examples from this study include typos in code that once corrected produce matching results. Correcting952

the (perhaps obvious) typo is making an act of interpretation: we’re intuiting what the original authors953

intended, even though it is not literally what they have written in code.954

This particular example also feeds back to the “same code” issue: if an analysis script contains a typo/syntax955

error that does not produce the results reported in the paper, can it be “the same” code run by the authors?956

If it was, they would have obtained an error message instead of a result, and so could not have reported that957

result in the paper. This makes it clear that the shared code file is not literally the code that was run to obtain958

the original results.959

Beneath all this, there is some notion that when we refer to computational steps, we are referring to the960

computational steps that “really matter” to the calculation of the result.961

Same conditions of analysis Should we take this to mean the same computing and software environ-962

ment? In the context of this study and its results, it seems that the conditions of analysis mostly concerns963

software packages andperhaps their versions—the fact thatmeta-analysis resultswere typically only reported964

to the third decimal place at most, as well as the observed success rate at the target result level indicates that965

information about computer hardware (e.g., architecture, processors) is wholly unnecessary, as is informa-966

tion about operating and file systems. This would not be universal across research disciplines, but it seems967
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reasonable for meta-analysis.968

As found in this study, study authors often reported the software tools they used for analysis, even when969

code was not shared. Not all mentions of software were accompanied by information about versions, but970

this study shows that a lack of version informationwas not fatal to reproduction attempts, although software971

version differences may be contributing to the discrepancies between original and reproduced values.972

One condition of analysis that clearly stood out as an issue was the lack of specification of random seeds for973

procedures which involved pseudo-random number generation. Without random seeds, such procedures974

become an inescapable source of discrepancy between original and reproduced values. Specifying a random975

seed can nullify this problem, however.976
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