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Abstract 

 

The ongoing climate change is triggering plant community thermophilization. This selection 

process is ought to shift community composition toward species adapted to warmer climates 

but may also lead to biotic homogenization. The link between thermophilization and 

homogenization, and the community dynamics that drive them (colonization and extinction) 

remain unknow, but is critical for understanding community responses under rapid 

environmental change. 

We used 14,167 pairs of plots to study shifts in plant community during 10 years of rising 

temperature, in 80 forest ecoregions of France. We computed community mean thermal 

optimum (thermophilization) and Δβ-diversity (homogenization) for each ecoregion and 

partitioned these changes into extinction and colonization dynamics of cold- and warm-

adapted species.  

Forest understory communities thermophilized on average by 0.12 °C decade-1 and up to 

0.20 °C decade-1 in warm ecoregions. This rate was entirely driven by extinction dynamics. 

Extinction of cold-adapted species was a driver of homogenization, but it was compensated 

for by the colonization of rare species and the extinction of common species, resulting in 

the absence of an apparent homogenization trend.  

Here we show a dieback of present cold-adapted species rather that an adaptation of 

communities via the arrivals of warm-adapted species, with mutually cancelling effect on 

β-diversity. These results suggest that a future loss of biodiversity and delayed biotic 

homogenization should be considered. 
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1. Introduction 

The unprecedented speed of current climate warming is causing major species range 

shifts and the reshuffling of ecological communities (Franklin et al., 2016; Lenoir & 

Svenning, 2015; Svenning & Sandel, 2013). This reshuffling could lead to a major risk for 

biodiversity (Sala et al., 2000) and the services it provides (Reu et al., 2022; Wang et al., 

2021). Two major patterns of community composition have been reported as a result of 

global change, namely thermophilization and biotic homogenization. On the one hand, 

thermophilization of plant communities – the increase of the average temperature affiliation 

of species in a community over time – is  occurring as a result of climate warming (De Frenne 

et al., 2013; Martin et al., 2019; Richard et al., 2021), yet at a slower pace than climate 

change (Bertrand et al., 2011, 2016). On the other hand, evidence also suggests that biotic 

homogenization across plant communities is  taking place (Cholewińska et al., 2020; Olden 

& Rooney, 2006; Staude et al., 2022). This is shown by a decrease in β-diversity, which 

signals an increase of similarity among the communities of a region. To date, we do not 

know whether these two processes occur simultaneously, what their linkages are, and which 

community dynamics underlie them. 

 

Baseline expectations from global warming suggest that warm-adapted species may 

increasingly replace cold-adapted species in communities (De Frenne et al., 2013; Gottfried 

et al., 2012; Svenning & Sandel, 2013). At large scales, biogeographic theory  predicts 

species range shifts (Lenoir & Svenning, 2015) but lagged dynamics, controlled by the 

dispersal and establishment capacities of species that may constrain the maximum speed at 

which , species can colonize suitable climatic areas. (Boulangeat et al., 2012; Govaert et 

al., 2021; Ozinga et al., 2009). Thus, thermophilization is the product of different rates of 

colonization and/or extinction (sensu local extinction, Leibold et al., 2004) of warm- vs. 

cold-adapted species in a community. At one end, thermophilization may stem from 

colonization of warm-adapted species without any extinction of cold-adapted species 

(Fig.1). Conversely, thermophilization may exclusively stem from extinction of cold-adapted 

species, implying biotic erosion of communities rather than colonization of species adapted 

to warmer climate (Fig.1). For instance, extinction-driven thermophilization is expected in 

Mediterranean communities of Europe, where many temperate species are located at the 

warm edge of their distribution. As a result, they are subject to extirpation by drought and 

heat waves, without being replaced by warmer-adapted species as the sea may act as a 

barrier for colonization  (Bertrand et al., 2016; Pérez‐Navarro et al., 2021). 
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Thermophilization is being increasingly detected, but little is known about how it could 

affect β-diversity. Both local (α) diversity and β-diversity are increasing in mountain forests 

and on summits, where colonization of unoccupied space by new species increases the 

regional species pool (Bahn & Körner, 2003; Steinbauer et al., 2018). However, lowland 

forests are showing signs of homogenization (Cholewińska et al., 2020; Tobias & Monika, 

2012; Xu et al., 2023; Zwiener et al., 2018). By selecting species as a function of their 

thermal tolerance, thermophilization could decrease β-diversity. For example, it could 

promotes already widespread warm-adapted species, increasing redundancy between 

communities (Fig.1.b, Dietz et al., 2020; Dupouey et al., 2002; Fischer et al., 2002). As 

species rarity is linked to environmental specialization (Crisfield et al., 2023), 

thermophilization could also lower β-diversity by removing specialized cold-adapted species 

(Fig.1.b). This process is not unidirectional: an increase in temperature can also relieve cold 

constraints on rare specialized warm-adapted species and increase β-diversity. Finally, 

thermophilization can induce differentiation between communities by reducing the 

occurrence of widespread species (without causing definitive removal), as frequently 

observed at the beginning of an anthropogenic stress (Socolar et al., 2016). These multi-

faceted links between climate-change-induced thermophilization and homogenization 

highlight the need to disentangle the community dynamics at play (Baeten et al., 2012; 

Gosselin, 2016).  

 

We aimed to unveil the community dynamics (local extinction and colonization) involved 

in thermophilization and β-diversity shifts. We disentangled the β-diversity and 

thermophilization dynamics based on recent methods to separate the extinction and 

colonization processes of temporal changes in communities (Tatsumi et al., 2021). We 

analyzed temporal shifts from 2005 to 2021 in 14,167 pairs of plots (“past” and “recent” 

plots form spatially proximate (<2 km) pairs of plots) of understory forest communities 

spanning 756 plant species in 80 forest ecoregions. These ecoregions  are homogenous in 

environmental conditions and cover the French continental area (529,772 km2; 172,080 km2 

of forested area). We computed the individual contribution of each species to the changes 

in mean thermal optima (i.e. thermophilization) and β-diversity (i.e. homogenization) in 

each ecoregion (Fig1.b). We partitioned these contributions into 4 community processes: 

extinction and colonization (decline or gain in occurrences) of cold- and warm-adapted 

species (relative to the baseline mean thermal 2005-2011 optimum). 

 

In this study we aimed at understanding such community processes by responding to 

these questions: (1) Is there a recent significant thermophilization of forests, and what 
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community processes drive it? (2) Is there a significant flora homogenization of forests 

occurring, and what community processes drive it? And (3) is mean annual temperature 

significantly linked to thermophilization and homogenization and to the extinction and 

colonization processes? Our initial expectation was that i) thermophilization is a product of 

both extinction of cold-adapted species and colonization by warm-adapted species, and ii) 

homogenization is pervasive and triggered by abundant colonization by warm-adapted 

species and extinction of rare cold-adapted species. We expected faster thermophilization 

rates in Mediterranean ecoregions because more species could be located at the warm edge 

of their distribution and prone to local extinctions caused by extreme (drought) events 

(Pérez‐Navarro et al., 2021).  

 

Figure 1: Example of the coupling of thermophilization and homogenization under 

increasing temperature: a) Artificial ecoregion composed of four communities. The 

ecoregion has two cold- and two warm-adapted species depending on whether their thermal 

optimum is lower or higher than the mean thermal optimum of the ecoregion. The 

communities are heterogenous because they all have unique species composition. The 

vertical dotted line represents the weighted mean thermal optimum of every species (of 

the ecoregion); the horizontal dotted line represents the threshold differentiating rare 

from common species. b) Example of thermophilization triggered by the spread of a warm-

adapted species and the extinction of a cold-adapted species. The loss of a rare species 

that made the community unique triggers homogenization, and so does the spread of a 

common species by increasing similarity between communities (the arrow width shrinks). 

Thermophilization can also heterogenize communities by removing common cold-adapted 

species or promoting a rare or previously absent warm-adapted species (not shown). c) 

Resulting ecoregion with a higher mean thermal optimum and more similar communities.   
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2. Results & Discussion 

Extinction of species drives thermophilization  

The declines in species occurrences (15,996 lost occurrences) outweighed species 

expansion (8,822 new occurrences, nplots= 14,167 pairs of plots, 2005-2011 vs. 2015-2021, 

Fig.2). Extinction was preponderant for the relatively cold-adapted species, and 

colonization was dominant for the relatively warm-adapted species (Fig.2). As a 

consequence, 72 out of the 80 ecoregions had a positive thermophilization rate. The mean 

thermophilization rate of an ecoregion was 0.012 °C yr-1 (s.d. 0.011, Fig.3.a), entirely driven 

by extinction (Fig.3.a) – local extinction, defined as species with occurrences decreasing 

over time. Even if occurrences of species were gained (Fig.2), colonization did not 

contribute significantly to thermophilization (Fig.3.a) because the gains were lesser in 

comparison to the losses, and the gained species did not have higher thermal optima than 

the mean of the ecoregion to contribute to thermophilization. The use of proximate plots 

instead of resurveyed plots, and the sometime low number of plots within ecoregions 

resulted in high standard deviations. Our interpretation however, did not vary when 

weighting our mean values by the number of plots within an ecoregion (see Methods 

section). The thermophilization rate was consistent with previous studies on flora changes 

in temperate forest understory (Bertrand et al., 2011; Dietz et al., 2020; Govaert et al., 

2021; Martin et al., 2019; Richard et al., 2021), that reported rates of ca. 0.010 °C yr-1, 

lower than the observed warming rate of ca. 0.026°C yr-1 in our study region (Dietz et al., 

2020).  

Thermophilization is generally interpreted as the gradual replacement of cold-

adapted species by warm-adapted species, whose growth and establishment are facilitated 

by increased temperature (De Frenne et al., 2013). We only found evidence for an extinction 

dynamic (e.g. decrease in occurrence rates) driving thermophilization, with a contribution 

of 0.012 °C yr-1 (s.d. 0.009), equal to the total observed thermophilization rate. This result 

was confirmed by a null model in which the change in the occurrences of a species was 

independent of its thermal optimum. This null model displayed a contribution of extinction 

to thermophilization not significantly different from 0 (Fig.3.a, Extended Fig.1, see “Null 

models” in Methods section). As our study started in 2005, a preexisting disequilibrium 

between flora and climate may have induced a greater contribution of extinction, induced 

by the extirpation of already stressed individuals in addition to those that underwent the 

recent warming from 2005 and onward. Our method does not distinguish these two kinds of 

extirpations. However, the rates we found remain indicative of the recent effect of warming 

on communities, as extinction of already stressed species is an integral part of 
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thermophilization (Pérez‐Navarro et al., 2021). Conversely, the observed effects of 

colonization on thermophilization were not significantly different from the random rates of 

the null model (Fig.3.a). Our results and interpretation of extinction-driven 

thermophilization were consistent when using a different species thermal optimum database 

(EcoPlant, Gégout et al., 2005, Table S1). We also rejected the hypothesis of overall 

decreases of occurrences or sampling pressure (Fig.2) as explanations for the significance 

of the contribution of extinction with a rarefaction model – in which the two time frames of 

an ecoregion have an equal number of total occurrences (Table S2, see “Null models” in 

Methods section). 

Extinction has already been identified as a key driver of thermophilization in drylands 

(Pérez‐Navarro et al., 2021), via the selection of the most drought-resistant species at the 

expense of the colder-adapted species after a drought-pulse event. Our results extend this 

observation to the European temperate, Mediterranean and mountainous forest biomes 

(Extended Fig.2) over 16 years of continued warming. The Mediterranean and the warmest 

lowland ecoregions experienced the fastest thermophilization rates. We estimated that the 

contribution of extinction increased by 0.003 °C yr-1 per degree Celsius rise in mean annual 

temperature (Fig.4.a), and up 0.020 °C yr-1 in the southernmost ecoregions (Fig.4.a). This 

higher local extinction rate indicates that thermal stress under warmer climate conditions 

is sufficient to trigger the mortality of cold-adapted individuals or impair their 

establishment. This finding concurs with projections of species climatic suitability, which 

predict extinctions at the warm edge of the range of the species distribution, where their 

maximum tolerance is expected to be exceeded first (Dullinger et al., 2012; Engler et al., 

2011; Kuhn & Gégout, 2019). Our occurrence-based analysis did not account for species 

abundance or interspecific competition. However, as warm-adapted species could thrive 

under a warmer climate, their competitive abilities also increase, and this impairs the 

survival of cold-adapted species (Sanczuk et al., 2022; Staude et al., 2022).  

The thermophilization rates found in the present study do not match the climate 

warming rates over the study period (0.026 °C yr-1 on average, Dietz et al., 2020), implying 

a delay between climate change and shifts in the community dynamics. This discrepancy 

could be explained by the absence of colonizing warm-adapted species speeding up 

thermophilization. As our analysis was at the ecoregion scale, our results (Fig.4.a) are in 

line with the expected colonization debt of understory plants over large homogenous 

climate areas (Bertrand et al., 2011). The absence of colonization is likely a consequence 

of climate being only one of the many drivers of plant dispersal and establishment. The 

increase of the establishment and growth rates of warm-adapted species benefiting from 

climate change does not compensate for the limited dispersal capacities of plants 
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(depending on their life cycle, seed traits, etc.) that are not fast enough to follow isotherm 

shifts induced by climate warming in lowland ecosystems (Lenoir & Svenning, 2015; Loarie 

et al., 2009; Serra-Diaz et al., 2014). The only ecoregions where the contribution of 

colonization significantly drives thermophilization (yet by no more than a third) are the 

mountainous ecoregions (Extended Fig.2; see also Bertrand et al., 2011; Lenoir et al., 2008), 

where the distance to track shifting isotherms is shorter than in lowlands (Rolland, 2003) 

and facilitates colonization. Other explanatory factors could stem from local adaptation of 

plant populations (Franks et al., 2014; Kubisch et al., 2013; Lavergne et al., 2010) and  forest 

microclimates (De Frenne et al., 2019). Temperature buffering by the forest canopy slows 

down thermophilization by reducing the exposure of cold-adapted species to stress and 

extreme events (De Frenne et al., 2019; De Lombaerde et al., 2021; Suggitt et al., 2018; 

Zellweger et al., 2020). Denser canopy and forest succession also exclude warm- and light-

demanding species, thus slowing down thermophilization (Bergès et al., 2013; Bodin et al., 

2013). Therefore, our results are conservative in the face of increasing forest microclimatic 

buffering via canopy cover, and the exclusion of warm-adapted species by forest succession. 

We found a no significant correlation between thermophilization and basal area, and a 

significant but weak correlation (5.0% R²) between thermophilization and increment canopy 

cover (Fig.S2). These results confirm that the thermophilization signal is robust and not 

dependent on forest maturation. 

Absence of large-scale community homogenization  

We expected the ecoregion to homogenize toward warmer-adapted communities, in 

line with the strong signal of extinction-driven thermophilization (Fig.1). However, 

homogenization was not a general trend: only 37 out of the 80 ecoregions displayed a 

negative Δβ-diversity (Whittaker βw diversity – see Methods section), whereas 43 showed a 

positive one. The mean β-diversities of the ecoregions were 12.8 (s.d. 3.7, n=80) in the past 

period and 13.1 (s.d. 3.8) in the recent period. The mean Δβ-diversity across ecoregions was 

0.29 (s.d. 1.4, n=80) and was not significantly different from 0 (Fig.3.b). Whitaker β-

diversity index is a measure of homogeneity as it allows to infer γ-diversity (the number of 

species of the ecoregion) by multiplying the local diversity (α) by βw. 

 

The absence of a clear trend in homogenization did not imply a stasis of the 

community dynamics. We found significant contributions from the colonization of warm- 

and cold-adapted species relatively to the mean optimum of the ecoregion and from the 

extinction of cold-adapted species (Fig.3.b) to changes in β-diversity. These dynamics 

displayed opposite directions and cancelled each other out, resulting in an overall weak 

signal of community homogenization. The colonization dynamics contributed significantly to 
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heterogenization (mean effect 1.08, s.d. 0.97, Fig.3.b). This implies that the 

heterogenization effect of colonization by rare or new species outweighed the 

homogenization (β-diversity decrease) caused by the increase of already widespread 

species. Surprisingly, this effect was explained by colonization of cold-adapted species 

(Fig.3.b, 0.87, s.d. 0.71). As no significant increase of cold-adapted species was detected 

in the thermophilization analysis (Fig.2), this positive contribution is explained by stochastic 

colonization by rare or previously absent cold-adapted species. The unpredictability of such 

events may arise from extreme but exceptional values of the dispersal distance of some 

species (Vittoz & Engler, 2007), dormant seeds in the seedbank (Gasperini et al., 2021), but 

also from the limited number of plots in certain ecoregions. With a low number of plots, γ-

diversity (the total number of species in the ecoregion) is lower, so that the species 

partitioning methods are more sensitive to local colonization by rare species that affects γ-

diversity. 

 

Extinction of cold-adapted species – the main driver of community thermophilization 

(see above) – significantly contributed to homogenization (-0.74, s.d. 0.82, Fig.3.b). 

However, the extent of this contribution was comparable to the colonization effect. To 

better understand the contributions of extinction and colonization, we partitioned them 

into “rare” and “common” species contributions. Species present in less than 10% of the 

baseline plots were deemed rare. This further partitioning showed that the decline of rare 

cold-adapted species strongly contributed to homogenization (-1.73, Extended Fig.3) but 

was mitigated by simultaneous gains in heterogeneity caused by the decline of common 

cold-adapted species (0.99, Extended Fig.3). Although the effect of common cold-adapted 

species on Δβ-diversity was lower, it should not be overlooked because it corresponds to 

species contributing to two thirds of thermophilization (Extended Fig.3). Furthermore, the 

decline of widespread cold-adapted species offset the extinction of rare cold-adapted 

species by reducing local diversity and increasing heterogeneity between plots.  

 

Our results likely reflect transient community dynamics where a new anthropogenic 

stressor initially increases β-diversity by reducing the occurrences of widespread species but 

is not acute enough to trigger definitive species extinction (as opposed to the local 

extinctions measured here). This first increase in β-diversity could be temporary: all species 

would become rarer over time, and eventually become extinct (Socolar et al., 2016). In our 

case, the contribution of the decline of rare cold-adapted species to homogenization 

outweighed the positive effect of its colonization counterpart. That is, the number of 

declining rare species was higher than the number of colonizing rare species. In addition to 
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the thermal stress imposed by climate change, populations of rare species are likely to be 

isolated from their source population and lack the critical size for population survival 

(Leibold & Chase, 2017; Pérez‐Navarro et al., 2021). Competition with ubiquitous species 

could also play a role in the decline of rare species, but only a further analysis with 

abundance-based surveys and β-diversity estimates could disentangle the local dynamics 

driving homogenization. We used a rarefaction null model keeping α-diversity constant to 

test the sensitivity of β-diversity estimates to the sampling intensity. This model revealed 

that a decrease in sampling intensity increased β-diversity, likely because common species 

are less sampled. Therefore, our results and the potential observation of homogenization 

are robust to decreases in occurrences, whether real or resulting from the sampling 

intensity. 

 

The different contributions to homogenization depending on the relative thermal 

optima of species are indicative of the relationship between thermophilization and β-

diversity. Thermophilization is a selective process documented in the present study as a 

decline of cold-adapted species alongside an antagonistic effect on β-diversity. The 

homogenization components, e.g. thermophilization, are correlated with the mean annual 

temperature of each ecoregion (Fig.4). The higher sensitivity of Δβ-diversity to extinction 

in the southernmost Mediterranean ecoregions highlights a faster turnover of communities, 

which causes risks of homogenization if the decline of rare and common species alike 

continues.  

Implications for forest understory in a warming climate 

Thermophilization is often viewed as the process that leads to communities 

composed of species adapted to warmer conditions (De Frenne et al., 2013; Gottfried et al., 

2012), but our results show that it can also stem from local extinctions of cold-adapted 

species, with little substitution by warm-adapted species. Our study evidences a lack of 

persistence of understory plant species concurrent with rising temperature and exceeding 

the establishment and dispersal capacities of plants better adapted to warmer climates. 

The discrepancy between communities and climate is often referred to as a climatic debt 

(Devictor et al., 2012). Our study illustrates that  extinction-driven thermophilization is the 

consequence of the “repayment” of this debt (Jackson & Sax, 2010). These extinctions 

threaten the ecosystem services that the herbaceous layer and its diversity provide (Landuyt 

et al., 2019; Mori et al., 2018; Tobias & Monika, 2012; Wang et al., 2021).  

 

Further research and the use of different methods could add insights to our results. 

The presence/absence methods used here are indicative of the large-scale changes in 
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species composition, but they do not capture changes in local abundances. The use of 

abundance-based metrics could reveal ongoing homogenization through the local spread of 

warm-adapted species despite low new plot colonization or local hotspots by rare species 

that ultimately decrease the homogenization risk (Tatsumi et al., 2022). Climate-driven 

reshuffling is not the only potential source of homogenization. Processes like nitrogen 

deposition, agriculture intensification, and forest succession all introduce and favor certain 

species and could create redundancy in communities (Danneyrolles et al., 2021; Heinrichs 

& Schmidt, 2017; Merle et al., 2020; Staude et al., 2022). These processes could act in 

synergy with climate change, and need to be further analyzed in future homogenization 

studies because they can be partly confounded in our results. Our partitioning analysis 

isolated the effect of the decline of cold-adapted species – a dynamic less impacted than 

colonization by the aforementioned process and limited the risk of misinterpretation.  

 

Our consistent finding of extinction being the driver of thermophilization calls for 

increased needs to assess future biodiversity trends. In other ecosystems, where the spread 

of warm-adapted species can be faster than in forests, the effects of β-diversity should keep 

being studied and monitored (Staude et al., 2022; Xu et al., 2023). We demonstrated that 

the extinction of cold-adapted species occurs independently of their rarity, and partitioning 

detected opposed dynamics hidden behind a seeming absence of trend. The decline of rare 

species is pervasive and hard to detect without dedicated conservation studies, but 

widespread cold-adapted species could be used to bioindicate early signs of climate-induced 

extinctions. The question of whether increased thermophilization and the absence of 

homogenization are transient and respond to the current flora-climate disequilibrium will 

need further monitoring but remains critical to preserve biodiversity. Explicitly unveiling 

the community dynamics at play will strengthen our capacity to understand and predict 

community compositions under an accelerating warming rate.  
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Figure 2: Absolute changes in species occurrences according to their thermal optima.  

Changes in species occurrences between the 14,167 “past” plots (surveyed in 2005-2011) 

and 14,167 “recent” plots (surveyed in 2015-2021). The absolute occurrence change was 

computed by summing every species occurrence change between the “recent” and “past” 

plots separately for declining (i.e. extinction, less occurrences in “recent” plots) and 

spreading (i.e. colonization, more occurrences in “recent” plots) species and for each 1 °C 

thermal optimum class. The weighted (by absolute occurrence changes) means of the 

species thermal optima are also displayed. The thermal optimum of a species is estimated 

as the mean of the mean annual temperatures within the distribution range of a species 

(Vangansbeke et al., 2021).  
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Figure 3: Community dynamics partitioning of thermophilization (a) and 

homogenization (b). Each dot represents the values of one of the 80 ecoregions (n=80). 

Changes in the mean thermal optima a) of the recorded species and b) in β-diversity 

(thermophilization and Δβ-diversity, respectively) in the 80 ecoregions. The changes are 

broken up in two components – colonization and extinction – estimated from the 

contributions of species with more/less occurrences in the recent period. These 

components were subsequently divided into the contributions of relatively cold- or warm-

adapted species, defined as species with a lower or higher thermal optimum than the mean 

thermal optimum of the ecoregion in the past period. For each component, the mean value 

is displayed (°C decade-1 for thermophilization, no unit for Δβ-diversity). White dots, mean 

value of the null thermophilization model. The statistical differences between these means 

and the means of a null model, obtained with a two-sided Wilcoxon test (for 

thermophilization) or 0 (for Δβ-diversity) are also displayed; p<0.05 (*), p<0.01 (**), p<0.001 

(***). Exact P-values are available in Table S1. Boxes, 25th centile, median, and 75th centile; 

whiskers do not extend further than 1.5 times the interquartile range. One outlier 

ecoregion is not displayed in b) because a low number of plots yielded a Δβ-diversity value 

of -5.2. 
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Figure 4: Relationship between i) thermophilization (a), β-diversity changes (b) and 

their extinction and colonization components, and ii) mean annual temperature (MAT).  

One point represents one ecoregion, the map of the ecoregion with the associated value is 

displayed for each component (n=80). The color scale of the points and the mapped 

ecoregions are the same and refer to the Y axis (thermophilization or Δβ-diversity). The 

summary statistics corresponds to a linear model value ~ MAT. (***) significant MAT 

coefficient. One outlier ecoregion is not displayed in (b), because a low number of plots 

yielded a Δβ-diversity value of -5.2. The error band represents the confidence interval of 

the linear model. 

 

3. Materials and methods 

Study region and forest ecoregion 

The study area corresponded to metropolitan France (excluding Corsica island), including 

the temperate mixed forest biome, the coniferous mountain biome and the Mediterranean 

forest biome. The territory was divided into 83 forest ecoregions (called “ecoregions” 

hereafter) characterized by similar and unique combinations of climatic and soil conditions 

(IGN, 2013). We used these ecoregions to delineate sampling areas and study understory 

flora changes and diversity at a wider scale than the plot scale. As the ecoregions displayed 

distinct climate and soil characteristics, we assumed that the pool of species was similar 

within an ecoregion but differed from the pools of the other ecoregions.  
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Lowland ecoregions were characterized by mosaics of forest, meadow, and cropland, with 

a climate ranging from oceanic to semi-continental (mean annual temperature ranges from 

9.4 to 13.9 °C at the ecoregion scale and precipitation ranges from 500 to 1,800 mm yr-1). 

Mountainous and pre-mountainous ecoregions displayed a greater forest cover and a 

continental mountainous climate, except oceanic influence on the Pyrenees (mean annual 

temperature range 6.5 to 12.4 °C, precipitation range 400 to 2,000 mm yr-1). The 

southernmost ecoregions encompassed the Mediterranean border from Spain to Italy and 

displayed the warmest and driest climate of European France (mean annual temperature 

range 11.6 to 14.6 °C, precipitation range 284 to 451 mm yr-1) (IGN, 2013). 

 

Plot selection 

We extracted data from the recent protocol of the French National Forest Inventory (NFI), 

started in 2005. We selected the plots from 2005 to 2021. The systematic sampling of the 

NFI is based on 1km-by-1km grid, with one tenth of the grid nodes surveyed each year. Once 

the grid is completely surveyed, a new survey cycle starts, approximately 10 years later. 

The plots of the new cycle are not a revisit of the previous plots but a new plot proximal to 

the node. We extracted the mean annual temperature (MAT) of each plot from a climate 

model calibrated with 214 French weather stations over the 1990-2015 period (Piedallu et 

al., 2019) and elevation from a 25-m resolution digital elevation model. 

We took advantage of the spatial representativeness offered by the systematic sampling to 

study vegetation changes by creating a dataset balanced in sampling intensity and along 

environmental conditions over time. We assigned the plots from the 2005-2011 campaign to 

the “past” category and the plots from the 2015-2021 campaign to the “recent” category. 

Plots in-between these two timeframes were removed because their nearest plot 

counterpart from the new cycle (planned for 2022-2024) was not available yet. We also 

removed the plots identified as deforested at the time of the survey and the plots with less 

than five species with a known thermal optimum. Our analysis (described below) was 

performed at the ecoregion scale by pooling all the plots of an ecoregion to reduce the 

variability that geographically close (but not revisited) plots would have induced. 

Then, we paired “past” and “recent” plots based on several criteria: (1) a distance between 

two plots < 2 km, (2) a time interval of 9, 10 or 11 years between plots, (3) plots located in 

the same ecoregion, (4) a difference in the elevations of two plots < 50 m. Criterion (1) 

allowed us to select plots from two NFI cycles belonging to the same node, and compensate 

for the low precision of the coordinates of the NFI plots (± 500m) due to private property 

protection laws. Furthermore, we removed three ecoregions with low numbers (N<10) of 

pairs from the initial 83 ecoregions. 
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The selection procedure yielded 14,167 pairs of NFI plots separated on average by 9.9 years 

(Extended Fig.4), distributed in 80 ecoregions. The ecoregions had a minimum of 15 pairs 

and a maximum of 1,892 pairs (median 118). In the absence of true remeasurements of past 

surveys, the selection of geographically close plots to study vegetation changes was the best 

alternative, but could misestimate or detect non-existing changes (Chytrý et al., 2014). 

However, by conducting 80 separate flora change analyses – one per ecoregion – we 

identified consistent trends across ecoregions, and averaging the results limited the risk of 

misinterpretation. Furthermore, 33 ecoregions had less than 100 plot pairs (Extended Fig.4), 

so that the results from those ecoregions could be interpreted with caution. However, by 

weighting the means presented in Fig.3 by the number of pairs of each ecoregion, we found 

no significant difference in our interpretation. Therefore, the number of plot pairs in the 

ecoregions did not influence the results. 

 

Floristic database  

In addition to the dendrometric, canopy cover and soil measurements, the NFI includes 

floristic surveys performed in 15-m-radius circles (area = 709 m²). Based on these surveys, 

we selected vascular plants identified to the species level, and removed trees because their 

presence in the understory can result from forest management and they respond slowly to 

environmental changes (Lenoir et al., 2008). After homogenization of the taxonomy to the 

TaxRef V13 standard (Gargominy, 2022), we assigned a thermal optimum from the ClimPlant 

V1.2 database (Vangansbeke et al., 2021) to each species. The thermal optima were 

computed by averaging the mean annual temperature within the species distribution range 

obtained from European atlases. We also extracted two additional thermal optima (one 

computed in 2005 and one computed in 2019 with updated information and methods) based 

on EcoPlant (Gégout et al. 2005) to test the sensitivity of our results to the source 

information of thermal optimum estimation. The EcoPlant database compiles French 

floristic (presence-absence) surveys that allow calibrating an optimal probability of 

presence along a 1km climatic grid. Ecoplant and ClimPlant are complementary: the 

ClimPlant database captures the whole climatic gradient of a species distribution range, 

whereas the EcoPlant database is limited by the French border but is built from detailed 

surveys and a high-resolution climatic model (Piedallu et al., 2019) that enables an accurate 

estimation of thermal optima.  

We recorded 202,866 species occurrences in the past plots, and 195,692 species occurrences 

in the recent plots. Out of our initial 1,622 species, we matched 756 species with a known 

thermal optimum from ClimPlant V1.2. These occurrences represented 78% of the total 
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number of occurrences recorded in our plot pairs, showing a large taxonomic coverage of 

the thermal optimum database.  

 

Computation and partitioning of thermophilization 

To compute thermophilization, we first defined the mean thermal optimum of the species 

recorded in the “past” and “recent” plots of each ecoregion. To this end, we calculated the 

weighted mean of the thermal optima of the species using their occurrence count in the 

ecoregion, independently of their local (plot scale) abundance. Then, thermophilization was 

obtained by subtracting the “recent” from the “past” occurrence-weighted means of the 

thermal optima. As our plots were not exactly separated by 10 years, we corrected the 

thermophilization rates by the average time difference of the plots to express 

thermophilization in degree Celsius per year (°C yr-1). This method of computing 

thermophilization differs from past studies using permanent plots, where changes in the 

mean thermal optimum are computed at the plot scale over time. Our approach did not 

investigate plot-scale changes (that were blurred by the semi-permanent nature of the 

pairs) but allowed studying the changes in the occurrence rates of species at the regional 

scale under homogenous environmental conditions. 

We computed the individual contribution of each species to thermophilization (contribi), 

with the following formula:  

𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑖 =  
(𝑇𝑜𝑝𝑡𝑖−𝑇𝑜𝑝𝑡𝑒𝑐𝑜𝑟𝑒𝑔 𝑝𝑎𝑠𝑡) ∙  (𝑜𝑐𝑐𝑖 𝑟𝑒𝑐𝑒𝑛𝑡− 𝑜𝑐𝑐𝑖 𝑝𝑎𝑠𝑡 ) 

∑ 𝑜𝑐𝑐𝑟𝑒𝑐𝑒𝑛𝑡
  (1) 

Where Topti is the thermal optimum of species i, Toptecoreg past the weighted mean thermal 

optimum of the “past” occurrences, occi is the count of plots where the species was 

recorded in the “past” and “recent” periods, and Σoccrecent is the total number of 

occurrences of the “recent” period. Species with equal occurrences in the two periods 

resulted in a contribi of 0. Therefore, they did not contribute to the computation any 

further. The rationale behind this formula is that species thermal optima were assumed 

constant, and the number of “past” and “recent” plots were even, so that we did not expect 

any change in occurrences. Consequently, only changes in occurrences could alter the mean 

thermal optimum of an ecoregion. The term (Topti - Toptecoreg past) represents the extent to 

which an individual species deviated from the mean optima of the past period of the 

ecoregion. Thus it measures its relative adaptation to climate relative to every present 

species. It is then multiplied by (occi recent – occi past), the change in occurrences of the 

individual species, divided by Σoccrecent (this allows to scale contribi as the two periods will 

not have an equal number of total occurrences).  
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The sum of all contribi results in the thermophilization value of a given ecoregion (see 

supplementary equations for a derivation of the equation). As a result, we partitioned the 

sums of contribi into components that could be added to one another to obtain the 

thermophilization value. To create the extinction and colonization components, we added 

the contribi of species with declining occurrences for extinction (occi recent – occi past <0), and 

the contribi of species with increasing occurrences for colonization (occi recent – occi past >0). 

We subdivided these two components into the contributions of cold- and warm-adapted 

species to these components. The subcomponents depended on whether a species was 

locally cold-adapted (Topti - Toptecoreg past < 0) or warm-adapted (Topti - Toptecoreg past > 0) 

compared to the weighted mean thermal optimum of the ecoregion Toptecoreg past.  

The equation resulted in an easily interpretable contribi term. For example, the contribution 

of the extinction of cold-adapted species [(occi recent – occi past <0) * (Topti – Toptecoreg past < 0)] 

was always positive, i.e. it contributed to thermophilization. The contribution of extinction 

as a whole could either be positive or negative as it includes the extinction of both cold and 

warm-adapted species (eq (1)). 

 

Computation and partitioning of beta-diversity changes 

In parallel to the thermophilization analysis, we computed β-diversity using the Whittaker 

βw metric (Whittaker, 1960) for each period. The Whittaker βw was calculated as described 

in Eq (2): 

𝛽𝑤 =  
𝛾

𝛼
 (2) 

Where γ is the total number of different species recorded in the ecoregion and α is the mean 

species richness of the plots present in the ecoregion. This metric is more suited to 

investigating differences between multiple communities than metrics using the means of 

pairwise differences because it accounts for species co-occurrences and measures 

heterogeneity by directly assessing the proportionality between local diversity and 

ecoregion diversity (Baselga, 2010; Socolar et al., 2016; Tatsumi et al., 2021). We did not 

use a metric relying on abundance because abundance is estimated based on a Braun-

Blanquet scale in the NFI (Braun-blanquet, 1932) and is less reliable than presence/absence. 

Using abundance-based metrics can lead to both lower and higher estimates of β-diversity. 

Locally abundant ubiquitous species can lead to lower β-diversity estimates, whereas locally 

abundant species found in just a few plots lead to higher β-diversity estimates. Our study 

mostly documented the decline of cold-adapted species, whose local abundance was most 

probably low for these local extinctions to happen. Therefore, we did not expect 

underestimated homogenization following the decline of locally abundant cold-adapted 
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species. However, one caveat is that we cannot draw any conclusion on an increased 

abundance of warm-adapted species that could cause further homogenization and the 

removal of cold-adapted individuals.  

We tested the assumption that different ecoregions displayed different species pools by 

comparing the βw obtained in one ecoregion with the βw obtained from the plots of the 

neighboring ecoregions. When βw-diversity included several ecoregions, it increased 2-fold, 

demonstrating differences in the species pools of the ecoregions. 

We computed β-diversity changes (Δβ-diversity) at the ecoregion level by subtracting the βw 

of the “recent” plots from the βw of the “past” plots. Then, we computed the contribution 

of each species to this change in β-diversity by adapting the methods and code presented 

in Tatsumi et al. (2021). This method assigns an extinction and colonization component to 

each species; however, we added these two components to obtain a unique value of 

contribution to Δβ-diversity per species. For example, a species can decrease β-diversity 

(homogenize) by declining if it was already rare, or by colonizing if it was an already 

widespread species. Conversely, colonization by a rare species or extinction of a widespread 

species have a positive impact on Δβ-diversity (heterogenization). We summed the 

contributions to Δβ-diversity following the same procedure as described in the previous 

section to obtain the contributions of declining species (extinction) and spreading species 

(colonization) to Δβ-diversity and know whether these species were locally cold- or warm-

adapted, for a total of 4 components.  

We tagged species as initially “rare” or “common” based on their baseline occupancy. 

Species occupying less than 10% of the “past” plots of an ecoregion were labeled as initially 

rare; if they occupied more than 10%, they were labeled as initially common. This simple 

classification matched the intuitive expectation of Δβ-diversity partitioning: extinction of 

rare species contributes to homogenization, while extinction of common species contributes 

to differentiation (see Tatsumi et al., 2021 – "Multiple-site variation" – for more information, 

Extended Fig.3). This classification accounts for species that may be common in one 

ecoregion but very infrequent or belong to unique communities in another. By design, this 

definition does not represent a classification of rarity, but rather the commonness of a 

species occurrences in a given ecoregion during the baseline period.  

This common vs. rare species classification allowed testing other ecologically relevant 

processes possibly underlying an extinction or a colonization component. We further split 

the 4 contributions into “common” and “rare” species subcomponents, for a total of 8 

contributions.  

More cold-adapted than warm-adapted species were labeled “rare” across the ecoregions 

(Extended Fig.3). The lower baseline occupancy of rare cold-adapted species, rather than 
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their climate preference, could have been a confounding factor of extinction; that is, rare 

species might decline more rapidly, creating the pattern reported in the Results section 

(Fig.S1). We addressed this confounding factor by rarefying our dataset randomly so that 

the rare and common cold- and warm-adapted classification would display a balanced 

number of species and occurrences. Thus, observing the same pattern as the one reported 

in the main text indicates that increased chances of rare species extinction was not the sole 

explanation for our results (Table S4). 

In order to have a comparable set of species and components to the set of the 

thermophilization analysis, the thermophilization and Δβ-diversity partitionings were done 

with the subset of species included in the thermal optimum database ClimPlant V1.2. 

We ran the thermophilization and Δβ-diversity analyses and partitionings with the other two 

thermal optimum databases (Gégout et al., 2005) and found similar results and 

interpretations (Table S4). 

 

Null models and bootstrapping 

We created two null models to test whether changes in species occurrences were 

independent of the thermal optima, and to correct the analysis when the two periods had 

different numbers of occurrences.  

 

To test the independence of changes in species occurrences relatively to their respective 

thermal optima, we ran 200 iterations of the above-described thermophilization analysis by 

randomizing the thermal optimum of species drawn from the species pool of each ecoregion. 

The 200 iterations of this analysis were averaged to create the null model. This null model 

(hereafter called random thermal optimum model) was used to test for differences with the 

partitioning results of the original dataset. We also tested each component of this model 

against 0 with a Wilcoxon test. The absence of significant thermophilization in the random 

thermal optimum model demonstrated a link between changes in species occurrences and 

their thermal optima (Extended Fig.1, Table S1). 

 

The total number of occurrences recorded in our dataset decreased between the two periods 

although our sample had balanced numbers of “past” and “recent” plots. While this 

decrease may have been caused by true ecological factors such as climate-change-induced 

extinction, confounding methodological factors may also have been at play. In our dataset, 

more plots from the “past” period were surveyed during the growing season (53% in the 

“past” plots vs. 49% in the “recent” plot). During this period, species identification is easier, 

and more species are visible. To account for this potential bias, as well as to investigate Δβ-
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diversity in a scenario where the average species richness remains unchanged, we conducted 

both the thermophilization and the β-diversity change analysis by equalizing the occurrence 

numbers between the historical and recent periods. More specifically, for each ecoregion, 

we randomly removed occurrences of the period with the greater number of total 

occurrences to match the total occurrences of the other period. We repeated this 

resampling and the analysis 200 times, (hereafter called the rarefaction null model). With 

this stricter methodology, thermophilization was still estimated at 0.012 °C yr-1 (s.d. 0.011), 

the extinction component at 0.010 °C yr-1 (s.d. 0.07), and the colonization component at 

0.02 °C yr-1 (s.d. 0.08). The Δβ-diversity value, its extinction and colonization component 

were -0.31 (s.d. 1.5), -1.0 (s.d. 0.90), and 0.70 (s.d. 1.0), respectively (Table S2).  

 

 

Statistical testing  

We tested the significant difference from 0 (or the mean of the null model) of the mean of 

the seven components (global value, extinction, colonization, and the four subcomponents 

created with the relative thermal optima of the species) for the two metrics 

(thermophilization and Δβ-diversity) with the Wilcoxon signed-rank test (Rey & Neuhäuser, 

2011). However, we chose a different reference for the test depending on the metrics and 

which hypothesis we were investigating. We tested the difference between the means of 

the thermophilization components and the means of the corresponding components of the 

random thermal optimum model. We tested the differences between the Δβ-diversity means 

with 0 as our null hypothesis (“no change in β-diversity”). Unlike thermophilization, the 

components were not constrained in their value (e.g. the contribution of colonizing warm-

adapted species to thermophilization was strictly positive, 0 was not adequate for testing 

it, but its contribution to Δβ-diversity could be positive or negative).  

For the sake of simplicity, we tested each component of thermophilization and Δβ-diversity 

only against 0 for the random thermal optimum model and the rarefaction null model.  

We tested the significance and the magnitude of the correlation between thermophilization, 

Δβ-diversity and their two components (extinction and colonization) with mean annual 

temperature using linear regressions. The applicability of linear regressions was checked 

through normality and homoscedasticity of the residuals and the independence to 

confounding variables, following the recommendation of Zuur et al. (2010).  

We conducted our analyses in R 4.2.2 statistical environment (R Core Team, 2019), with  the 

‘data.table’ (Dowle & Srinivasan, 2020), ‘ggplot2’ (Wickham, 2011), ‘sf’ (Pebesma, 2018), 

‘ggpubr’ (Kassambara, 2023), ‘foreach’ (Microsoft & Weston, 2022) ‘ggspatial’ (Dunnington 

& Thorne, 2020; OpenStreetMap contributors, 2017), and ‘doParallel’ (Corporation & 
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Weston, 2022) packages. We were inspired by the ‘ecopart’ method and adapted the code 

presented by Tatsumi et al. (2021) for Δβ-diversity partitioning. 

 

Data availability  

French National Forest Inventory data are freely distributed by the French Institute for 

Geographic and Forest Information (IGN) at https://inventaire-forestier.ign.fr 

The dataset and the code used to reproduce our analysis can be downloaded from GitHub 

https://github.com/Jeremy-borderieux/Article_thermo_beta_part.git . 

 

4. Extended Figures 

 

Extended Figure 1: Results of the 200 iterations of the random thermal optimum model 

(thermal optima randomly assigned to the species). In this figure, the runs are not 

averaged: the 80 ecoregions randomized 200 times are displayed. The average values of 

thermophilization, Δβ-diversity and their contribution of the original dataset are 

displayed.  

 

https://inventaire-forestier.ign.fr/
https://github.com/Jeremy-borderieux/Article_thermo_beta_part.git
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Extended Figure 2: Thermophilization and Δβ-diversity in lowland, mountain and 

Mediterranean ecoregion clusters (Extended Fig.1). Lowland (8,271 pairs, 45 ecoregions), 

mountain (4,116 pairs, 29 ecoregions), Mediterranean (377 pairs, 6 ecoregions). Each dot 

represents the values of one of the 80 ecoregions (ntot=80). 
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Extended Figure 3: Partitioning of the data presented in Fig.3. The contributions to a) 

thermophilization (°C decade-1), and b) Δβ-diversity (unitless) were partitioned on the basis 

of species declining or increasing in occurrences, of their thermal optimum relatively to 

their ecoregion, and whether these species were rare (baseline occurrences <10% of the 

plots) or common (baseline occurrences >10% of the plots). Each dot represents the values 

of one of the 80 ecoregions (ntot=80). The dashed gray line delineates the colonization and 

extinction components. The mean of each component is displayed. White dot; mean value 

of the thermophilization null model. The statistical difference between the null model 

value and the original dataset, obtained with a two-sided Wilcoxon test, is also displayed: 

p<0.05 (*), p<0.01 (**), p<0.001 (***). Exact P-values are available in Table S1. Boxes; 25th 

centile, median and 75th centile; whiskers, 1.5 times the interquartile range.  
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Extended Figure 4: (a) Map of the 86 forest ecoregions of France, with a colored gradient 

representing the number of plot pairs. Three main biomes (lowland, Mediterranean, 

mountain) cluster different ecoregions delineated with bold black lines. The clusters 

without a label are mountain ecoregions. The zoomed ecoregion in (b) is outlined in red in 

(a). (b) Example of the plot pair sampling design, with NFI plot localization. Some plots 

may overlap. Green, forested areas. Basemap credits: (OpenStreetMap contributors, 2017) 
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5. Supplementary materials 

Table S1: Thermophilization (°C/decades-1) and Δβ-diversity and their component mean 

value (Value) and standard deviation (s.d) across 80 forest ecoregions. The value from the 

original dataset (14,167 pairs of plots) and the randomized thermal optimum null model 

(see methods) are displayed. The P-value were obtained with a two-sided Wilcoxon one 

sample test against 0. 

Variable Original dataset Null thermophilization 
model  

Value s.d P-value Value s.d P-value 

Thermophilization 0,122 0,11 1,53e-12 -4,13e-04 0,0054 0,589 

Extinction 0,118 0,089 1,21e-14 -2,05e-04 0,0047 0,315 
Colonization 0,00346 0,065 0,664 -2,08e-04 0,0037 0,516 

Cold-adapted extinction 0,25 0,14 8,00e-15 0,185 0,096 8,00e-15 
Cold-adapted colonization -0,132 0,087 8,00e-15 -0,186 0,096 8,00e-15 
Warm-adapted extinction -0,123 0,061 8,00e-15 -0,122 0,055 8,00e-15 
Warm-adapted colonization 0,126 0,061 8,00e-15 0,121 0,055 8,00e-15 

Δβ-diversity 0,291 1,4 0,107 0,291 1,4 0,107 

Extinction -0,785 0,91 1,93e-10 -0,785 0,91 1,93e-10 
Colonization 1,08 0,97 5,55e-13 1,08 0,97 5,55e-13 

Cold-adapted extinction -0,744 0,82 5,22e-12 -0,396 0,48 1,81e-10 
Cold-adapted colonization -0,0417 0,46 0,397 -0,39 0,44 1,75e-10 
Warm-adapted extinction 0,877 0,72 6,92e-14 0,542 0,49 5,35e-13 
Warm-adapted colonization 0,199 0,45 0,000159 0,534 0,49 5,35e-13 

 

Table S2: Thermophilization (°C/decades-1) and Δβ-diversity and their component mean 

value (Value) and standard deviation (s.d) across 80 forest ecoregions. The value from the 

original dataset (14,167 pairs of plots) and the randomized original dataset where 

occurrences are rarefied so that each time period have an equal number of occurrences. 

The P-value were obtained with a two-sided Wilcoxon one sample test against 0. 

Variable Original dataset Rarefaction null model  
Value s.d P-value Value s.d P-value 

Thermophilization 0,122 0,11 1,53e-12 0,121 0,011 1,47e-12 

Extinction 0,118 0,089 1,21e-14 0,104 0,0071 1,46e-14 
Colonization 0,00346 0,065 0,664 0,0167 0,0072 0,049 

Cold-adapted extinction 0,25 0,14 8,00e-15 0,205 0,0085 8,00e-15 
Cold-adapted colonization -0,132 0,087 8,00e-15 -0,101 0,0053 8,00e-15 
Warm-adapted extinction -0,123 0,061 8,00e-15 -0,144 0,006 8,00e-15 
Warm-adapted colonization 0,126 0,061 8,00e-15 0,161 0,007 8,00e-15 

Δβ-diversity 0,291 1,4 0,107 -0,314 1,5 0,0855 

Extinction -0,785 0,91 1,93e-10 -1,01 0,9 3,38e-13 
Colonization 1,08 0,97 5,55e-13 0,696 1 2,76e-07 

Cold-adapted extinction -0,744 0,82 5,22e-12 -0,825 0,77 9,96e-14 
Cold-adapted colonization -0,0417 0,46 0,397 -0,185 0,4 0,000141 
Warm-adapted extinction 0,877 0,72 6,92e-14 0,771 0,75 3,98e-12 
Warm-adapted colonization 0,199 0,45 0,000159 -0,0752 0,55 0,253 
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Table S3: Thermophilization (°C/decades-1) and Δβ-diversity and their component mean 

value (Value) and standard deviation (s.d) across 80 forest ecoregions. The analysis was 

performed with two other thermal optimum value, from the original 2005 and a 2019 

analysis of the EcoPlant database1. The P-value were obtained with a two-sided Wilcoxon 

one sample test against 0. 

Variable EcoPlant Thermal 
optimum 2005 

EcoPlant thermal optimum 
2019  

Value s.d P-value Value s.d P-value 

Thermophilization 0,111 0,15 9,63e-11 0,061 0,2 0,0038 

Extinction 0,0965 0,085 8,61e-14 0,072 0,12 8,11e-08 
Colonization 0,0147 0,11 0,11 -0,011 0,15 0,212 

Cold-adapted extinction 0,273 0,16 8,00e-15 0,31 0,18 8,00e-15 
Cold-adapted colonization -0,177 0,12 8,00e-15 -0,238 0,18 8,00e-15 
Warm-adapted extinction -0,165 0,09 8,00e-15 -0,208 0,12 8,00e-15 
Warm-adapted colonization 0,18 0,11 8,00e-15 0,197 0,16 8,00e-15 

Δβ-diversity 0,0511 1,2 0,941 0,0401 1,1 0,772 

Extinction -0,715 0,74 8,22e-11 -0,136 0,61 0,012 
Colonization 0,766 0,83 1,25e-11 0,176 0,68 0,0422 

Cold-adapted extinction -0,628 0,68 2,39e-12 -0,307 0,49 9,15e-07 
Cold-adapted colonization -0,0868 0,47 0,0709 0,172 0,43 0,00206 
Warm-adapted extinction 0,578 0,55 2,56e-12 0,24 0,48 6,93e-05 
Warm-adapted colonization 0,188 0,48 0,00178 -0,0637 0,37 0,166 

Table S4: Thermophilization (°C/decades-1) and Δβ-diversity and their component mean 

value (Value) and standard deviation (s.d) across 80 forest ecoregions. The value from the 

original dataset (14,167 pairs of plots) is displayed. The value from subsets of the dataset 

created by balancing the number of “rare” species within the cold and warm-adapted 

categories (and to a lesser extend “common”) is also displayed. The P-value were 

obtained with a two-sided Wilcoxon one sample test against 0. 

Variable Original dataset Even “rare” species null 
model  

Value s.d P-value Value s.d P-value 

Thermophilization 0,122 0,11 1,53e-12 0,133 0,11 6,43e-14 

Extinction 0,118 0,089 1,21e-14 0,102 0,084 2,05e-14 
Colonization 0,00346 0,065 0,664 0,0319 0,059 5,90e-06 

Cold-adapted extinction 0,25 0,14 8,00e-15 0,233 0,14 8,00e-15 
Cold-adapted colonization -0,132 0,087 8,00e-15 -0,131 0,091 8,00e-15 
Warm-adapted extinction -0,123 0,061 8,00e-15 -0,0975 0,051 8,00e-15 
Warm-adapted colonization 0,126 0,061 8,00e-15 0,129 0,067 8,00e-15 

Δβ-diversity 0,291 1,4 0,107 0,391 1,2 0,0064 

Extinction -0,785 0,91 1,93e-10 -0,48 0,8 6,33e-07 
Colonization 1,08 0,97 5,55e-13 0,871 0,84 1,20e-12 

Cold-adapted extinction -0,744 0,82 5,22e-12 -0,287 0,57 2,28e-06 
Cold-adapted colonization -0,0417 0,46 0,397 -0,193 0,44 0,000175 
Warm-adapted extinction 0,877 0,72 6,92e-14 0,544 0,48 3,63e-13 
Warm-adapted colonization 0,199 0,45 0,000159 0,327 0,49 5,15e-08 
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Figure S1: a) Species occurrences (presence in a plot, log scale) in the entire dataset (n= 

28,334 plots) in relation to their thermal optimum. The blue line is a fitted linear model 

log(occurrences) ~ thermal optimum and its uncertainty (error bar, confidence interval). 

b) Y-axis: Relative change in occurrences in each ecoregion for each species. (0% mean 

stable occurrences,100% a species whose occurrences are only found in the “recent” 

period of the ecoregion, - 100% a species that lost every occurrence between the two 

periods, 50% and -50 an increase or decrease, respectively, of 50% the “past” 

occurrences). X-axis: total occurrence (log scale). The species and the linear fit 

Proportion ~ log(occurrences) are separated based on whether they were classified as 

locally cold or warm-adapted species in the given ecoregion. The error band around the 

model is the confidence interval of the linear model. 
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Figure S2: Thermophilization of the 80 ecoregions as a function of the increment of their 

mean basal area (a) and canopy cover (b). The increments are computed as a difference 

of the mean value of basal area or canopy cover between the “recent” and the “past” 

plots, a positive value means an increase. A linear model and its uncertainty is displayed, 

the R² of 5.0% of (b) is significantly different from 0. The error band around the model is 

the confidence interval of the linear model. 
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Supplementary equations. 
We define the weighted thermal optimum of an ecoregion of the past period as follow:  

𝑇𝑜𝑝𝑡𝑒𝑐𝑜 𝑝𝑎𝑠𝑡 =  
∑ 𝑇𝑜𝑝𝑡𝑖∗𝑜𝑐𝑐𝑖 𝑝𝑎𝑠𝑡𝑖

𝛴𝑜𝑐𝑐𝑝𝑎𝑠𝑡
 (1) 

Where Topti and occi past are the thermal optimum and occurrences in the “past” period of 

the species i, respectively. 

Σoccpast is the sum of past occurrences of every species, can also be written Σiocci past. 

We define the weighted thermal optimum of an ecoregion of the recent period as follow:  

𝑇𝑜𝑝𝑡𝑒𝑐𝑜 𝑟𝑒𝑐𝑒𝑛𝑡 =  
∑ 𝑇𝑜𝑝𝑡𝑖∗𝑜𝑐𝑐𝑖 𝑟𝑒𝑐𝑒𝑛𝑡𝑖

𝛴𝑜𝑐𝑐𝑟𝑒𝑐𝑒𝑛𝑡
 (2) 

Where occi recent is the occurrences of the species I in the “recent” period. 

Thus, thermophilization is defined as follow: 

𝑇ℎ𝑒𝑟𝑚𝑜𝑝ℎ𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =  𝑇𝑜𝑝𝑡𝑒𝑐𝑜 𝑟𝑒𝑐𝑒𝑛𝑡 − 𝑇𝑜𝑝𝑡𝑒𝑐𝑜 𝑝𝑎𝑠𝑡 (3) 

We defined the species i contribution to thermophilization with the equation: 

𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑖 =  
(𝑇𝑜𝑝𝑡𝑖−𝑇𝑜𝑝𝑡𝑒𝑐𝑜 𝑝𝑎𝑠𝑡) ∙  (𝑜𝑐𝑐𝑖 𝑟𝑒𝑐𝑒𝑛𝑡− 𝑜𝑐𝑐𝑖 𝑝𝑎𝑠𝑡 ) 

∑ 𝑜𝑐𝑐𝑟𝑒𝑐𝑒𝑛𝑡
 (4)  

And we want to demonstrate that  

∑ 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑖𝑖 =  𝑇ℎ𝑒𝑟𝑚𝑜𝑝ℎ𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 (5) 

We first develop (4) 

𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑖 =

 
 𝑇𝑜𝑝𝑡𝑖∗𝑜𝑐𝑐𝑖 𝑟𝑒𝑐𝑒𝑛𝑡− 𝑇𝑜𝑝𝑡𝑒𝑐𝑜 𝑝𝑎𝑠𝑡∗𝑜𝑐𝑐𝑖 𝑟𝑒𝑐𝑒𝑛𝑡+ 𝑇𝑜𝑝𝑡𝑒𝑐𝑜 𝑝𝑎𝑠𝑡∗𝑜𝑐𝑐𝑖 𝑝𝑎𝑠𝑡−𝑇𝑜𝑝𝑡𝑖 ∗𝑜𝑐𝑐𝑖 𝑝𝑎𝑠𝑡

∑ 𝑜𝑐𝑐𝑟𝑒𝑐𝑒𝑛𝑡
 (6)  

Then the sum of (6) is written as follow: 

∑ 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑖𝑖 =

 
 ∑ 𝑇𝑜𝑝𝑡𝑖∗𝑜𝑐𝑐𝑖 𝑟𝑒𝑐𝑒𝑛𝑡𝑖 − 𝑇𝑜𝑝𝑡𝑒𝑐𝑜 𝑝𝑎𝑠𝑡∗∑ 𝑜𝑐𝑐𝑖 𝑟𝑒𝑐𝑒𝑛𝑡𝑖 +𝑇𝑜𝑝𝑡𝑒𝑐𝑜 𝑝𝑎𝑠𝑡∗∑ 𝑜𝑐𝑐𝑖 𝑝𝑎𝑠𝑡𝑖 −∑ 𝑇𝑜𝑝𝑡𝑖∗𝑜𝑐𝑐

𝑖 𝑝𝑎𝑠𝑡𝑖

∑ 𝑜𝑐𝑐𝑟𝑒𝑐𝑒𝑛𝑡
(7) 

We can then simply (7) to  

∑ 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑖𝑖 =  
 ∑ 𝑇𝑜𝑝𝑡𝑖∗𝑜𝑐𝑐𝑖 𝑟𝑒𝑐𝑒𝑛𝑡𝑖

∑ 𝑜𝑐𝑐𝑟𝑒𝑐𝑒𝑛𝑡
− 

𝑇𝑜𝑝𝑡𝑒𝑐𝑜 𝑝𝑎𝑠𝑡∗∑ 𝑜𝑐𝑐𝑖 𝑟𝑒𝑐𝑒𝑛𝑡𝑖

∑ 𝑜𝑐𝑐𝑟𝑒𝑐𝑒𝑛𝑡
+

𝑇𝑜𝑝𝑡𝑒𝑐𝑜 𝑝𝑎𝑠𝑡∗∑ 𝑜𝑐𝑐𝑖 𝑝𝑎𝑠𝑡𝑖 − ∑ 𝑇𝑜𝑝𝑡𝑖∗𝑜𝑐𝑐𝑖 𝑝𝑎𝑠𝑡𝑖

∑ 𝑜𝑐𝑐𝑟𝑒𝑐𝑒𝑛𝑡
 (8) 

We can further simplify (8) to  

∑ 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑖𝑖 =  𝑇𝑜𝑝𝑡𝑒𝑐𝑜 𝑟𝑒𝑐𝑒𝑛𝑡 −  𝑇𝑜𝑝𝑡𝑒𝑐𝑜 𝑝𝑎𝑠𝑡 +  𝛷 (9) 

With: 

𝛷 =
𝑇𝑜𝑝𝑡𝑒𝑐𝑜 𝑝𝑎𝑠𝑡∗∑ 𝑜𝑐𝑐𝑖 𝑝𝑎𝑠𝑡𝑖 − ∑ 𝑇𝑜𝑝𝑡𝑖∗𝑜𝑐𝑐𝑖 𝑝𝑎𝑠𝑡𝑖

∑ 𝑜𝑐𝑐𝑟𝑒𝑐𝑒𝑛𝑡

 (10) 

We thus need to prove that 𝛷 = 0, however: 

𝑇𝑜𝑝𝑡𝑒𝑐𝑜 𝑝𝑎𝑠𝑡 ∗ ∑ 𝑜𝑐𝑐𝑖 𝑝𝑎𝑠𝑡𝑖 =   ∑ 𝑇𝑜𝑝𝑡𝑖 ∗ 𝑜𝑐𝑐𝑖 𝑝𝑎𝑠𝑡𝑖    (11) 

Thus: 

𝛷 =
∑ 𝑇𝑜𝑝𝑡𝑖∗𝑜𝑐𝑐𝑖 𝑝𝑎𝑠𝑡𝑖 − ∑ 𝑇𝑜𝑝𝑡𝑖∗𝑜𝑐𝑐𝑖 𝑝𝑎𝑠𝑡𝑖

∑ 𝑜𝑐𝑐𝑟𝑒𝑐𝑒𝑛𝑡
= 0 (12) 

Which leads to  

∑ 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑖𝑖 =  𝑇𝑜𝑝𝑡𝑒𝑐𝑜 𝑟𝑒𝑐𝑒𝑛𝑡 −  𝑇𝑜𝑝𝑡𝑒𝑐𝑜 𝑝𝑎𝑠𝑡 = 𝑇ℎ𝑒𝑟𝑚𝑜𝑝ℎ𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛  (13) 
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