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2 

Abstract 17 

 18 

The ongoing climate change is triggering plant community thermophilization. Such selection 19 

process towards warm-adapted species may also lead to biotic homogenization. The link 20 

between those two processes and the community dynamic driving them (colonization and 21 

extinction) remain unknow but are critical to understand community response under rapid 22 

environmental change. 23 

We used 12,764 pairs of plots to study plant community change in 16 years of rising 24 

temperatures in 80 forest ecoregions of France. We computed thermophilization and Δβ-25 

diversity (homogenization) for each ecoregion, and partitioned these changes into extinction 26 

and colonization dynamics for cold and warm-adapted species.  27 

Forest understory communities thermophilized on average by 0.12 °C decade-1 and up to 0.20 28 

°C decade-1 in warm ecoregions. This rate was entirely driven by extinction dynamics. 29 

Extinction of cold-adapted species was a driver of homogenization, but it was compensated 30 

by the colonization of rare species and the extinction of common species. This results in a lack 31 

of apparent trend of homogenization.  32 

An extinction-driven thermophilization is concerning as it reflects the dieback of current 33 

species rather than adaptation of understory to climate change. These results suggest that a 34 

future loss of biodiversity and a delayed biotic homogenization should be considered. 35 

 36 
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1. Introduction 43 

The unprecedent speed of the current climate warming is causing major biodiversity shifts and 44 

the reshuffling of ecological communities(Lenoir & Svenning, 2015; Svenning & Sandel, 2013). 45 

Such reshuffling could lead to a major risk for biodiversity worldwide (Sala et al., 2000) and 46 

the services it provides (Reu et al., 2022; Wang et al., 2021). Two major patterns in community 47 

composition have been reported as a result of global changes: thermophilization and biotic 48 

homogenization. On the one hand, thermophilization of plant communities – the increase in 49 

the average temperature affiliation of species in a community over time – is increasing as a 50 

result of climate warming (De Frenne et al., 2013; Martin et al., 2019; Richard et al., 2021), 51 

albeit at a slower pace than climate e.g. (Bertrand et al., 2011, 2016). In parallel, evidence 52 

also suggests that biotic homogenization across plant communities is occurring (Cholewińska 53 

et al., 2020; Olden & Rooney, 2006; Staude et al., 2022).This is evidenced by a decrease in 54 

β-diversity, a measure that signal an increase of similarity among community of a region. To 55 

date, whether these processes occur simultaneously, their linkages, and which community 56 

dynamics underlie such shifts is unknown. 57 

 58 

Baseline expectations from global warming suggest that warm-adapted species may 59 

increasingly substitute cold-adapted species (De Frenne et al., 2013; Gottfried et al., 2012; 60 

Svenning & Sandel, 2013), with some degree of individual species adaptation (Franks et al., 61 

2014; Lavergne et al., 2010). At large scale, biogeographic predictions suggest species 62 

displacement via range shifts (Lenoir & Svenning, 2015), with lagged dynamics caused by 63 

dispersal and colonization constraints of warm-adapted species to colonize climatic suitable 64 

area (Boulangeat et al., 2012; Govaert et al., 2021; Ozinga et al., 2009). Thermophilization is 65 

thus the product of different rates of colonization and/or extinction (sensu local extirpation) of 66 

warm- vs. cold- adapted species in a community. At one extreme, thermophilization may stem 67 

from colonization of warm-adapted species without any extinction of cold-adapted species 68 

(Fig.1). Conversely, thermophilization may stem from extinction of cold-adapted species only 69 

thus implying biotic erosion of communities rather than community adaptation under climate 70 

change (Fig.1).  71 

 72 

Thermophilization effects on local-scale diversity (α-diversity) are straightforward, extinction 73 

could cause a loss of species richness and colonization a gain of species richness (Staude et 74 

al., 2022; Steinbauer et al., 2018). This change in diversity is particularly documented in 75 

mountains forest and summits, where colonization is facilitated (Steinbauer et al., 2018). Less 76 

known is how thermophilization causes a decrease of β-diversity, homogenization hereafter. 77 

Indeed, thermophilization can be driven by the increase of an already common ubiquitous 78 
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warm-adapted species, and thus reduces β-diversity (Fig.1.b). Conversely, local extinction-79 

driven thermophilization can homogenize communities if the declining cold-adapted species 80 

are rare (Fig.1.b). Understanding which community dynamics drive these processes and how 81 

thermophilization is linked with biodiversity changes is thus necessary to understand climate-82 

change induced community shifts (Baeten et al., 2012; Tatsumi et al., 2020, 2021). 83 

 84 

Here, we unveil the community dynamics (extinction and colonization) responsible for shifts in 85 

both thermophilization and β-diversity. We disentangled both β-diversity and thermophilization 86 

dynamics based on recent methods to decompose extinction and colonization processes of 87 

temporal changes in communities (Tatsumi et al., 2021). We applied our framework to analyze 88 

temporal shifts in 12,764 plots (with 745 plant species) of understory forest communities in 80 89 

forest ecoregions France (homogenous areas in environmental conditions, a total of 535,218 90 

km2), from 2005 to 2021 (IGN, 2013, 2019).  We computed the individual contribution of each 91 

species to the change in mean thermal optimum (i.e. thermophilization) and in β-diversity (i.e. 92 

homogenization) in each ecoregion (Fig1.b). We partitioned those contribution into 4 93 

community processes: extinction and colonization of cold and warm-adapted species, 94 

respectively. 95 

 96 

With this partitioning we specifically asked: (1) Is there a significant thermophilization of 97 

forests, and what community processes drive it? (2) Is there a significant flora homogenization 98 

of forests and what community processes drive it? And (3) is mean annual temperature 99 

significantly linked to thermophilization and homogenization or their extinction and/or 100 

colonization processes? Our initial expectation was that thermophilization is a product of both 101 

extinction of cold-adapted species and colonization of warm-adapted species, with faster rates 102 

in warmer ecoregions, and that homogenization is pervasive and triggered by abundant warm-103 

adapted species colonization (Merle et al., 2020; Tobias & Monika, 2012; Zwiener et al., 2018). 104 

 105 
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 106 

Figure 1: Example of the coupling between thermophilization and homogenization 107 

under increasing temperatures (a): An artificial ecoregion comprised of four communities. 108 

The ecoregion has two cold and two warm-adapted species depending on whether their 109 

thermal optimum is lower or higher than the mean thermal optimum of the ecoregion. The 110 

communities are heterogenous as they are all unique. The vertical dotted line represents the 111 

mean thermal optimum of the species, the horizontal dotted line represents a threshold 112 

differentiating rare from common species (b): An example of thermophilization triggered by 113 

the spread of a warm-adapted species and the extinction of one cold-adapted species. The 114 

loss of a rare species that made a community unique trigger homogenization, the spread of a 115 

common species can also trigger homogenization by increasing similarity with other 116 

community (arrow width shrinks). Thermophilization can also heterogenize communities by 117 

removing common cold-adapted species or by promoting a rare or absent warm-adapted 118 

species (not shown). (c): The resulting ecoregion with a higher mean thermal optimum and 119 

more similar communities.   120 

2. Results & Discussion 121 

Climate-driven extinction of species drives thermophilization  122 

 123 

The absolute number of occurrences with low thermal optimum decreased within a decade 124 

(2005-2011 vs. 2015-2021, Fig.2). As a consequence, 72 out of the 80 ecoregions had a 125 
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positive thermophilization rate. The mean thermophilization rate of an ecoregion was 0.012 °C 126 

yr-1 (s.d. 0.011, Fig.3.a). This rate was entirely driven by extinction (Fig.3.a) – species which 127 

occurrences decreased over time. The thermophilization rate we found is consistent with 128 

previous studies of temperate forest understory flora change (Bertrand et al., 2011; Dietz et 129 

al., 2020; Govaert et al., 2021; Martin et al., 2019; Richard et al., 2021), that reported rates of 130 

c.a 0.010 °C yr-1, a value lagging behind the observed warming rate of c.a 0.025°C yr-1 in our 131 

study region (Dietz et al., 2020). These studies, however, did not provide a quantification of 132 

the species turnover driving these rates.  133 

 134 

Thermophilization is generally interpreted as the gradual replacement of cold-adapted species 135 

by warm-adapted species, which growth and establishment are facilitated by temperature 136 

increase (De Frenne et al., 2013). As we measured the extinction contribution to be 0.012 °C 137 

yr-1 (s.d. 0.009), we only found evidence of a decrease of occurrences as a driver of the 138 

thermophilization. This result was confirmed by a null model in which the change of 139 

occurrences of a species is independent of its thermal optimum (Fig.3.a, see methods: null 140 

models). Extinction of warm-adapted species was significantly lower compared to this 141 

expected random rate. The observed colonization effects on thermophilization were not 142 

significantly different from those random rates (Fig.3.a). Our interpretation of an extinction-143 

driven thermophilization was robust to different databases used to infer species thermal 144 

optima (Table S1, see methods: null models), and to the uncertainty of thermal optima 145 

estimation (Rodríguez-Sánchez et al., 2012) (Table S1, see methods: null models). We also 146 

rejected the hypothesis of an overall decrease of occurrences (Fig.2) as an explanation for 147 

the significance of the extinction component with a rarefaction model (Table S2, see methods: 148 

null models). 149 

 150 

Extinction has already been identified as a key driver of thermophilization in drylands (Pérez‐151 

Navarro et al., 2021), via a selection of the most drought-resistant species at the expense of 152 

the colder-adapted species after a drought-pulse event. Our results extend this observation to 153 

the European Temperate, Mediterranean and Mountainous forests biomes (Extended table.1) 154 

over 16 years of continued warming. The Mediterranean and the warmest lowlands ecoregions 155 

displayed the fastest thermophilization rates, as we estimated the increase of the extinction 156 

component of 0.003 °C yr-1 per rise of degree in MAT (Fig.4.a), up to an extinction component 157 

of 0.020 °C yr-1 in the southmost ecoregions (Fig.4.a). This higher extinction rate indicates that 158 

thermal stress induced by a warmer climate is sufficient to trigger mortality or impair the 159 

establishment of cold-adapted individuals. This finding concurs with projections of species 160 

climatic suitability, where extinction is expected at the warm edge of a species distribution 161 

(Barbet-Massin et al., 2010; Dullinger et al., 2012; Engler et al., 2011).  162 
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 163 

The thermophilization rates we found do not match the climate warming rates during our study 164 

period (on average 0.026 °C yr-1, Dietz et al., 2020), implying a delay between community 165 

dynamics and climate change. This discrepancy could be explained by the lack of colonizing 166 

warm-adapted species needed to speed up thermophilization. As our analysis is set at the 167 

ecoregion level, our results confirm the lack of migration of understory plants over large areas 168 

and triggered by climate change (Fig.4.a). This observation is likely a consequence of the 169 

limited dispersal capacities of plants (depending on life cycle, seeds traits etc…) that are not 170 

fast enough to follow isotherms shifts induced by climate warming in lowlands ecosystems 171 

(Lenoir & Svenning, 2015; Loarie et al., 2009; Serra-Diaz et al., 2014). The only ecoregions 172 

where the colonization component drives thermophilization significantly (without exceeding a 173 

third of thermophilization) are the mountainous ecoregions (Extended Table 1), concurring 174 

with other studies (Bertrand et al., 2011; Lenoir et al., 2008). Indeed, the distance to track 175 

shifting isotherms is shorter than in lowlands (Rolland, 2003) which facilitates colonization. 176 

Other explanatory factors of the lagged rate could stem from local adaptation of plant 177 

populations (Franks et al., 2014; Kubisch et al., 2013; Lavergne et al., 2010) and  forest 178 

microclimate (De Frenne et al., 2019). Indeed, the temperature buffering of forest canopy 179 

slows down thermophilization, as it reduces the exposure of cold-adapted species to stress 180 

and extreme events (De Frenne et al., 2019; De Lombaerde et al., 2021; Suggitt et al., 2018; 181 

Zellweger et al., 2020). Conversely, warm-adapted species are promoted by canopy opening 182 

that increases temperature and light availability (De Frenne et al., 2015; Dietz et al., 2020; 183 

Gasperini et al., 2021; Zellweger et al., 2020) However, canopy cover did not influence our 184 

results as the mean canopy cover of plots did not meaningfully change between the two 185 

periods (mean across ecoregions: past period= 75.9%, present period= 78.5%). 186 

 187 

 Absence of large-scale community homogenization despite extinction of cold-188 

adapted species 189 

 190 

We expected the ecoregion to homogenize toward warmer-adapted communities, concurring 191 

with the strong signal of extinction-driven thermophilization (Fig.1). However, homogenization 192 

was not a significant trend as only 32 out of the 80 ecoregions displayed a negative Δβ-193 

diversity, whereas 48 showed a positive one. The mean Δβ-diversity across ecoregions was 194 

0.33 (s.d. 1.4) and it was not significantly different from 0 (Fig.3.b). The mean β-diversity of an 195 

ecoregion in the past period was 12.0 (s.d. 3.5). As a reminder, Whitaker β-diversity (βw) index 196 

reflects the total number of species of the ecoregion when multiplied over the average local 197 

(community) richness. The absence of a clear trend in homogenization did not imply a stasis 198 
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in community dynamics. We found significant contributions of colonization and extinction of 199 

warm- and cold-adapted species (Fig.3.b) to changes in β-diversity, except for the extinction 200 

of warm-adapted species. These dynamics displayed opposite directions and cancelled each 201 

other out, resulting in an overall weak signal of community homogenization.  202 

 203 

Colonization dynamics contributed significantly to heterogenization (mean effect of 1.04 s.d. 204 

0.94, Fig.3.b). This implies that the heterogenizing effect of the colonization of rare or new 205 

species surpassed the homogenization (β-diversity decrease) caused by the increase of 206 

already widespread species. Surprisingly, this effect was explained by the colonization of cold-207 

adapted species (Fig.3.b, 0.84 s.d. 0.68). As no significant increase of cold-adapted species 208 

were detected in the thermophilization analysis, this positive contribution is explained by 209 

stochastic colonization of rare or previously absent cold-adapted species (Fig.1). The 210 

unpredictability of such events may arise from extreme but exceptional values of some species 211 

dispersal distance (Vittoz & Engler, 2007), dormant seeds of the seedbank (Gasperini et al., 212 

2021), but also from the limited number of plots in certain ecoregions. With a low number of 213 

plots, γ-diversity (total number of species in the ecoregion) is lower, the species partitioning 214 

methods will thus be sensitive to local colonization of rare species that affect the γ-diversity. 215 

 216 

Extinction of cold-adapted species, the main driver of community thermophilization (see 217 

above), contributed significantly to homogenization (-0.72 s.d. 0.82, Fig.3.b). The magnitude 218 

of this contribution is, however, comparable to the colonization effects. This is explained by 219 

the decline of rare cold-adapted species strongly contributed to homogenization (-1.95, 220 

Extended Fig.2), that was mitigated by simultaneous gains in heterogeneity via the decline of 221 

widespread cold-adapted species (1.23, Extended Fig.2). While the widespread cold-adapted 222 

species effect on Δβ-diversity was lower, it should not be undermined as it corresponds to 223 

species contributing to two third of the thermophilization (Extended Fig.2). Furthermore, the 224 

decline of widespread cold-adapted species compensated for the extinction of rare cold-225 

adapted species by reducing local diversity, thus increasing the heterogeneity between plots. 226 

This is confirmed by the rarefaction null model we created where the number of total 227 

occurrences was kept constant (thus the α-diversity term of the Whitaker β is constant- see 228 

methods) displayed a significantly lower Δβ-diversity compared to the original dataset (Δβ-229 

diversity = - 0.32).   230 

 231 

Our results likely reflect transient community dynamics where the beginning of an 232 

anthropogenic stressor could initially increase β-diversity by reducing the occurrences of 233 

widespread species, but is not acute enough to trigger definitive extinction. This first increase 234 

in β-diversity could thus be transitory as every species becomes rarer over time, and 235 
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eventually become extinct (Socolar et al., 2016). In our case, the contribution of the decline of 236 

rare cold-adapted species to homogenization outweighed the positive effect of its colonization 237 

counterpart. That is, more rare species declined (with climate change as a driver of this 238 

decline) than rare species sporadically colonized. In addition to the thermal stress imposed by 239 

climate-change, populations of rare species are isolated from their source population, lack the 240 

critical size for maintenance and can be located at the warm edge of its distribution (Leibold & 241 

Chase, 2017; Pérez‐Navarro et al., 2021).  242 

 243 

The differences in homogenization contribution depending on the relative thermal optimum of 244 

a species is indicative of the relationship between thermophilization and β-diversity. 245 

Thermophilization is a selective process, in our study, we mostly documented a decline of 246 

cold-adapted species with antagonistic effect on β-diversity. The correlation of the 247 

homogenization components with MAT (Fig.4.b) is significantly positive and consistent with 248 

the correlation of thermophilization with MAT (Fig.4.a). This control of climate over the 249 

underlying community dynamics confirms that the thermophilization and homogenization rates 250 

could increase with climate change. 251 

 252 

 253 

Implications for forest understory in a warming climate 254 

 255 

Thermophilization is often interpreted as an adaptation of communities to warmer conditions 256 

or community substitution (De Frenne et al., 2013; Gottfried et al., 2012), but our results show 257 

that thermophilization stems from local extinctions of cold-adapted species, with little 258 

substitution from warm adapted species. Indeed, our results show the lack of individual 259 

resistance of understory plant species to raising temperature, which exceeds the 260 

establishment and dispersal capacities of those plants better adapted to warmer climates. This 261 

effect jeopardizes the ecosystems services that the herbaceous layer (Landuyt et al., 2019) 262 

and its β-diversity provide (Mori et al., 2018; Tobias & Monika, 2012; Wang et al., 2021). While 263 

the effects of an extinction-driven thermophilization on local diversity is clear, how it can cause 264 

homogenization is not apparent. We documented a lack of a unidirectional trend of community 265 

homogenization, but we observed a rarefaction of cold-adapted species that may trigger 266 

homogenization in the future.  267 

 268 

Our consistent finding of extinction being the driving force behind thermophilization calls for 269 

increased needs to assess future biodiversity trends as it is positively correlated with MAT. In 270 

other ecosystems, where the spread of warm-adapted species can be faster than in lowland 271 
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forest (e.g. mountains), the effects of β-diversity should still be studied and monitored (Staude 272 

et al., 2022; Xu et al., 2023).  273 

 274 

We demonstrated that the extinction of cold-adapted species occurs independently of their 275 

rarity. The decline of rare species is pervasive and hard to detect without dedicated 276 

conservation studies, but widespread cold-adapted species could be used to bioindicate early 277 

sign of climate induced extinctions. The question of whether increased thermophilization and 278 

lack of homogenization are transient and respond to the current flora-climate disequilibrium 279 

will need further monitoring, but remain critical under future needs to preserve biodiversity.  280 

Explicitly unveiling the community dynamics at play to strengthen our capacity to understand 281 

and predict community composition under an accelerating warming rate.  282 

 283 

 284 

 285 

 286 

Figure 2: Count of species occurrences in the two periods as function of their thermal 287 

optimum. The dataset is comprised of 12,764 “past” plots (surveyed in 2005-2011) and 288 

12,764 “recent” plots (surveyed in 2015-2021). The thermal optimum of a species is estimated 289 

as the mean of the mean annual temperature within a species distribution (Vangansbeke et 290 

al., 2021). 291 

 292 

 293 

 294 
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 295 

Figure 3: Thermophilization (a) and homogenization (b) partition of the 80 studied 296 

ecoregions. Change in mean thermal optimum (a) of recorded species and β-diversity (b) 297 

(respectively thermophilization and Δβ-diversity) of the 80 ecoregions (represented by a point). 298 

Those changes are broken-up in two components: colonization and extinction, estimated from 299 

the contribution of species with more or with less occurrences in the recent period. Those 300 

components are subsequently divided into the contribution of cold or warm-adapted species, 301 

defined as the species with a lower or higher thermal optimum than the mean thermal optimum 302 

of the ecoregion in the past period. For each component, the mean value is displayed (°C 303 

decades-1 for thermophilization, no unit for Δβ-diversity). The statistical difference between 304 

this value and a null model (for thermophilization) or 0 (for Δβ-diversity) is also displayed, 305 

p<0.05 (*), p<0.01 (**), p<0.001 (***). One outlier ecoregion is not displayed in (b), due to a 306 

low number of plots it displayed an extinction component of -4.8 and -5.6 respectively. 307 

 308 
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 309 

Figure 4: Relationship of thermophilization (a), β-diversity change (b) and their 310 

extinction and colonization components with mean annual temperature (MAT).  One 311 

point represents one ecoregion, the map of the ecoregion with the associated value is 312 

displayed for each component, the color scale of the point and the mapped ecoregion are the 313 

same. One outlier ecoregion is not displayed in (b), due to a low number of plots it displayed 314 

an extinction component of -4.8 and -5.6 respectively. The summary statistics corresponds to 315 

a linear model Value ~ MAT, if the MAT coefficient is significant, *** is displayed next to the 316 

R². 317 

 318 

 319 

 320 

3. Materials and methods 321 

Study region and forest ecoregion 322 

Our study area corresponds to metropolitan France (excluding Corsica island), including the 323 

temperate mixed forest biomes, the coniferous mountain biome and the Mediterranean forest 324 

biome. The territory has been divided into 86 forest ecoregions (hereafter ecoregions) 325 

characterized by similar and unique climatic and soil conditions combination (IGN, 2013). We 326 

used those ecoregions to delineate the sampling areas used to study understory flora change 327 



13 

and diversity at a wider scale than the plot scale. As they display distinct climate and soil 328 

characteristics, we assume the pool of species to be similar within an ecoregion, but differ 329 

from the pools of other ecoregions. 330 

Lowland ecoregions are characterized by mosaics of forest, meadow and croplands, with a 331 

climate ranging from oceanic to semi-continental (contemporary climate range at the 332 

ecoregion scale: MAT range=9.4 to 13.9 °C, Precipitation range= 300 to 559 mm yr-1). 333 

Mountainous and pre-mountainous ecoregions display higher forest cover and continental 334 

mountainous climate, with the exception of the oceanic influence over the Pyrenees (MAT 335 

range=6.5 to 12.4 °C, Precipitation range= 409 to 815 mm yr-1). The southmost ecoregions 336 

encompass the Mediterranean border from Spain into Italy and display the warmer and dryer 337 

climate of European France (MAT range=11.6 to 14.6 °C, Precipitation range= 284 to 451 mm 338 

yr-1) (IGN, 2013). 339 

 340 

Plot selection 341 

We extracted data from the French National Forest Inventory (NFI). We selected the plots 342 

from the year 2005 to 2021. The systematic sampling of the NFI is based on 1km-by-1km grid, 343 

with one tenth of the grid nodes being surveyed each year. Once the grid is completely 344 

surveyed, a new cycle of survey is performed. The plots of the new cycle are thus not a revisit 345 

of the previous plots but a new plot performed in a proximity of the node. We extracted from 346 

each plots the Mean Annual Temperature from a climate model calibrated with 214 French 347 

weather station (MAT) of the 1990-2015 period (Piedallu et al., 2019) and elevation from a 348 

25m resolution digital elevation model. 349 

We took advantage of the spatial representativeness the systematic sampling offers to study 350 

vegetation changes by creating a dataset balanced in sampling intensity and along 351 

environmental conditions through time. We assigned plots from the 2005 to 2011 campaign to 352 

the “past” category and the plots from the 2015-2021 campaign to the “recent” category. Plots 353 

between those two time-frames were removed as their geographically close plot from the new 354 

cycle was not available yet. We also removed plots identified as deforested at the time of the 355 

survey and plots with less than five species with a known thermal optimum. 356 

We then paired “past” and “recent” plots based on several criterion: (1) The distance between 357 

the two plots must be less than 2 km, (2) the time interval between plots must be  9 or 10 358 

years, (3) the plots must be in the same ecoregion, (4) the difference of elevation of two plots 359 

should be less than 50 m. Criteria (1) allowed us to select plots from two NFI cycles of the 360 

same node, and compensate for the coordinates fuzziness of the NFI plots (of ± 500m) due to 361 

private property protection laws. Furthermore, out of the initial 83 ecoregions, we removed 362 

three ecoregions with low number (N<10) of pairs. 363 
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 364 

The selection procedure yielded 12,764 pairs of NFI plots separated on average by 9.7 years 365 

(Extended Fig.1), distributed in 80 Ecoregions. Ecoregions had a minimum of 15 pairs, a 366 

maximum of 1,747. The median value was 104 pairs. In the absence of true remeasurements 367 

of past surveys, the selection of geographically close plots to study vegetation changes is the 368 

better alternative, but can still misestimate or detect changes where there are none (Chytrý et 369 

al., 2014). However, by conducting 80 separate flora change analyses, one per ecoregion, 370 

identifying consistent trends across ecoregions, as well as averaging the results limit the risk 371 

of misinterpretation. 372 

 373 

Floristic database  374 

Among dentrometric, canopy cover and soil measurement, the NFI also includes a floristic 375 

survey performed in a 15 m radius circle (area = 709 m²). From this survey, we selected 376 

vascular plants identified to the species level, and removed trees, as their presence in the 377 

understory can be induced by management and they respond slowly to environmental 378 

changes (Lenoir et al., 2008). After homogenization of the taxonomy to the TaxRef V13 379 

standard (Gargominy, 2022), we assigned to each species a thermal optimum from the 380 

ClimPlant V1.2 database (Vangansbeke et al., 2021). Those thermal optima have been 381 

computed by averaging the mean annual temperature within the species distribution obtained 382 

from European atlases. We also extracted two additional thermal optima (one computed in 383 

2005 and one computed in 2019 with updated information and methods) based on Gégout et 384 

al. (2005) to test the sensitivity of our results to the source information of thermal optimum 385 

estimation. 386 

In our 12,764 plot pairs, we recorded 183,608 species occurrences in the past plots, and 387 

175,617 species occurrences in the recent plots. We identified 745 different species with a 388 

known thermal optimum from ClimPlant V1.2. Those occurrences represented 78% of the total 389 

number of occurrences recorded in our plot pairs, showing a large taxonomic coverage of the 390 

thermal optimum database.  391 

 392 

Thermophilization computation and partitioning  393 

To compute thermophilization, we first defined the mean thermal optimum of the recorded 394 

species in the “past” and “recent” plots of each ecoregion. To this end, we calculated the 395 

weighted mean of the thermal optimum of the species using their occurrence count in the 396 

ecoregion, independently of their local abundance. Thermophilization was then obtained by 397 

subtracting the “recent” from the” past” occurrence-weighted mean of thermal optimum. As 398 
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our plots were not exactly separated by 10 years on average, we corrected the 399 

thermophilization rates by the average time difference of the plots to express thermophilization 400 

in degree Celsius per year (°C yr-1). This method of computing thermophilization differs from 401 

past studies with permanent plots, where change in mean thermal optimum is computed at 402 

the plot scale through time. Our approach does not investigate plot scale changes (that were 403 

blurred by the semi-permanent nature of our pairs) but allows to study the change of 404 

occurrence rates of species at regional scale under homogenous environmental conditions. 405 

We then computed the individual contribution of a species to thermophilization, contribi, with 406 

the following formula:  407 

𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑖 =  
(𝑇𝑜𝑝𝑡𝑖−𝑇𝑜𝑝𝑡𝑒𝑐𝑜𝑟𝑒𝑔 𝑝𝑎𝑠𝑡) ∙  (𝑜𝑐𝑐𝑖 𝑟𝑒𝑐𝑒𝑛𝑡− 𝑜𝑐𝑐𝑖 𝑝𝑎𝑠𝑡 ) 

∑ 𝑜𝑐𝑐𝑟𝑒𝑐𝑒𝑛𝑡
  (1) 408 

Where Topti is the thermal optimum of a species i, Toptecoreg past the weighted mean thermal 409 

optimum of the “past” occurrences, occi is the count of plots where the species is recorded in 410 

the “past” and “recent” period, and Σ occrecent is the total number of occurrences of the “recent” 411 

period, it allows to scale contribi as the two periods will not have an equal number of total 412 

occurrences. Species with equal occurrences in the two periods results in a contribi of 0, thus 413 

they do not contribute any further to the computation. 414 

When summing every contribi, we obtain the thermophilization value of the given ecoregion. 415 

As a result, we can partition the sums of contribi into components that can be added to obtain 416 

the thermophilization value. To create the extinction and colonization components, we added 417 

the contribi of species with declining occurrences for extinction (occi recent – occi past <0), and the 418 

contribi of species with increasing occurrences for colonization (occi recent – occi past >0). We 419 

subdivided those two components into the contribution of cold and warm-adapted species to 420 

those components. Those subcomponents depend on whether a species is locally cold-421 

adapted (Topti - Toptecoreg past < 0) or warm-adapted (Topti - Toptecoreg past > 0) compared to the 422 

weighted mean thermal optimum of the ecoregion Toptecoreg past.  423 

Consequently, the contribution of the extinction of cold-adapted species will always be positive 424 

(contribute to thermophilization) as denoted by Eq. (1), but the extinction component as a 425 

whole could either be positive or negative (contribute to slow thermophilization), as it also 426 

includes the extinction of warm-adapted species that is negative by design (eq (1)). 427 

Beta-diversity change computation and partitioning 428 

In parallel to the thermophilization analysis, we computed a β-diversity, the Whittaker βw 429 

metric, for the two periods (Whittaker, 1960). the Whittaker βw is calculated as described in Eq 430 

(2): 431 

𝛽𝑤 =  
𝛾

𝛼
 (2) 432 
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Where γ is the total number of different species recorded in the ecoregion and α is the mean 433 

species richness of the plots present in the ecoregion. This metric is more suited to investigate 434 

differences between multiple communities than mean of pairwise differences metrics as it 435 

accounts for species co-occurrences, and measures heterogeneity by directly assessing the 436 

proportionality between local and ecoregion diversity (Baselga, 2010; Socolar et al., 2016; 437 

Tatsumi et al., 2021).  438 

We computed β-diversity change (Δβ-diversity) at the ecoregion level by subtracting the βw of 439 

the “recent” plots by the βw of the “past” plots. We then computed the contribution of each 440 

species to this change in β-diversity by adapting the methods and code presented in Tatsumi 441 

et al. (2021). This method assigns an extinction and colonization component to each species; 442 

however, we added those two components to obtain a unique value of contribution to Δβ-443 

diversity per species. As a consequence, a species can decrease β-diversity (homogenize) by 444 

declining if it was already rare, or by colonizing if it is an already widespread species. 445 

Conversely, the colonization of a rare species, or an extinction of a widespread species have 446 

a positive impact on Δβ-diversity (heterogenize). We summed the contribution to Δβ-diversity 447 

following the same procedure described in the previous part. This allowed to obtain the 448 

contribution to Δβ-diversity of declining species (extinction) and spreading species 449 

(colonization), and whether these species were locally cold or warm-adapted, for a total of 4 450 

components.  451 

As other ecologically relevant processes can lie behind an extinction or a colonization 452 

component, e.g. the extinction of a rare species decreases β-diversity whereas the extinction 453 

of a common one increases β-diversity, we further split the 4 components into “common” and 454 

“rare” species subcomponents. A species is tagged “rare” if its decline reduces β-diversity, its 455 

colonization increases it between the two timeframes of our data, and conversely, a species 456 

is considered “common” if its decline increases β-diversity and its colonization decreases it 457 

(Extended Fig.2). 458 

 In order to have a comparable set of species and components than the thermophilization 459 

analysis, this analysis was done with the subset of species included in the thermal optimum 460 

database ClimPlant V1.2. 461 

 462 

We run the thermophilization and the Δβ-diversity analysis and partitioning with the two other 463 

thermal optima databases (Gégout et al., 2005) and found similar results and interpretations 464 

(Table S3). 465 

 466 
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Null models and bootstrapping 467 

We created two null models to test whether the change of species occurrences is independent 468 

of thermal optimum, and to correct the analysis when the two periods did not have an equal 469 

number of occurrences.  470 

 471 

To test the independence of species occurrence changes to their respective thermal optimum, 472 

we ran 200 iterations of the thermophilization analysis by randomizing the thermal optimum of 473 

species drawn from the species pool of each ecoregion. This model (hereafter random thermal 474 

optimum model) was used to test its difference with the partitioning result of the original 475 

dataset, but the lack of thermophilization in this model demonstrated a link between species 476 

occurrences changes and their thermal optima (Table S2). 477 

 478 

The total number of occurrences recorded in our dataset decreased between the two periods 479 

despite our sample having a balanced number of “past” and “recent” plots. While this decrease 480 

could be caused by true ecological factors such as climate change induced extinction, 481 

confounding methodological factors could be also be at play. In our dataset, more plots from 482 

the “past” period have been surveyed during the vegetation period (53% in the “past” plots vs 483 

49% in the “recent” plot), during this period, species identification is easier and more species 484 

will be visible. To account for this potential bias, but also to explore Δβ-diversity in setting 485 

without a decrease in mean species richness, we ran both the thermophilization and the β-486 

diversity change analysis by rarefying the occurrences. Specifically, for each ecoregion, we 487 

randomly removed occurrences of the period with the most total occurrences to match the 488 

total occurrences of the other period. We repeated this resampling and the analysis 200 times, 489 

(hereafter the rarefaction null model).  490 

With this stricter methodology thermophilization is still estimated at 0.12 °C yr-1 (s.d 0.11), the 491 

extinction component at 0.11 °C yr-1 (s.d 0.07), and the colonization component at 0.01 °C yr-492 

1 (s.d 0.08) (Table S2). 493 

We conducted our main analysis by using the MAT within the distribution of a species as an 494 

estimation of its thermal optimum, however the high variability of climate within one distribution 495 

induces uncertainties in this estimation (Rodríguez-Sánchez et al., 2012; Vangansbeke et al., 496 

2021). To consider this uncertainty, we ran the analysis 500 times by sampling one climatic 497 

grid within the distribution instead provided by Vangansbeke et al., (2021) instead of using the 498 

mean. Our results did not change with this method but helped quantify the uncertainties of 499 

thermophilization estimation of at the ecoregion scale (Table S2, Rodríguez-Sánchez et al., 500 

2012).  501 

 502 
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Statistical testing  503 

We tested the significance of the seven components (global value, extinction, colonization, 504 

and the four subcomponents created with the relative thermal optimum of the species) for the 505 

two metrics (thermophilization and Δβ-diversity) with the Wilcoxon signed rank test (Rey & 506 

Neuhäuser, 2011). However, we chose a different reference for the test depending on the 507 

metrics and what hypothesis we wanted to investigate. We tested the difference between the 508 

thermophilization components and the corresponding components of the random thermal 509 

optimum model. We tested the difference between the Δβ-diversity with 0 as our null 510 

hypothesis was “no change in β-diversity” and unlike thermophilization, the components were 511 

not constrained in their value (e.g. the contribution of colonizing warm-adapted species to 512 

thermophilization is strictly positive, 0 is not adequate for testing it, but its contribution to Δβ-513 

diversity can be positive or negative).  514 

For simplicity, we tested every component of Thermophilization and Δβ-diversity only against 515 

0 for the two bootstraps presented in previous section (the random thermal optimum model 516 

and the rarefaction null model).  517 

We tested the significance and the magnitude of the correlation between thermophilization, 518 

Δβ-diversity and their two components (extinction and colonization) with MAT with the use of 519 

linear regressions. The applicability of linear regressions was checked via the normality and 520 

homoscedasticity of the residuals and the independence to confounding variables following 521 

the recommendation of (Zuur et al., 2010). 522 

We conducted our analysis in the 4.2.2 R statistical environment (R Core Team, 2019), with  523 

‘data.table’ (Dowle & Srinivasan, 2020), ‘ggplot2’ (Wickham, 2011), ‘sf’ (Pebesma, 2018), 524 

‘ggpubr’ (Kassambara, 2023), ‘foreach’ (Microsoft & Weston, 2022) and the ‘doParallel’ 525 

(Corporation & Weston, 2022) packages. We were inspired by the ‘ecopart’ method and 526 

adapted the code presented by Tatsumi et al., (2021) for the Δβ-diversity partitioning. 527 

 528 

Data availability  529 

French National Forest Inventory data are freely distributed by the French Institute for 530 

Geographic and Forest Information (IGN) at https://inventaire-forestier.ign.fr 531 

The dataset and the code used are available from the authors upon request.  532 

 533 

4. Extended Data 534 

 535 

https://inventaire-forestier.ign.fr/
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 536 
Extended Figure 1: (a) Map of the 86 forest ecoregions of France, with a colored gradient 537 

representing the number of plot pairs. Three main biomes (Lowland forests, Mediterranean 538 

and Mountain) cluster different ecoregions delineated with bold black lines, the clusters without 539 

a label are mountain ecoregions. The zoomed ecoregion in (b) is outlined in red in (a). (b) 540 

Example of plot pair sampling design- with the blurred localization of the NFI plots, green 541 

represents forested areas. 542 

 543 

Extended Table 1: Mean of thermophilization (°C decades-1), Δβ-diversity and their 544 

components of one ecoregion depending on their cluster. The number of forest ecoregion 545 

within one cluster and the sum of plot pairs within that cluster is also displayed. 546 

 547 

 548 
Ecoregion 

cluster Thermophilization  Extinction Colonization Δβ-diversity Extinction Colonization 
Ecoregion 
number 

Pair 
number 

Lowland 0,01 0,011 -0,001 -0,171 -0,966 0,795 45 8271 

Mountain 0,012 0,01 0,002 0,795 -0,412 1,207 29 4116 

Mediterranean 0,027 0,029 -0,002 1,498 -0,56 2,058 6 377 
 549 
 550 
 551 
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 552 
Extended Figure 2: Subsequent partition of the data presented in Fig.3. The contributions to 553 

a) thermophilization (°C decade-1), and b) Δβ-diversity (no unit) are partitioned on the basis of 554 

species declining or increasing in occurrences, of their thermal optimum relative to the 555 

ecoregion and whether these species are rare (their decline decrease β-diversity) or common 556 

(their decline increases β-diversity). One point corresponds to one ecoregion. The mean of 557 

each components is displayed. The statistical difference between this value and a null model 558 

(species are assigned a random thermal optimum) is also displayed, p<0.05 (*), p<0.01 (**), 559 

p<0.001 (***). 560 

 561 

 562 
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