Coining one currency for nature

Joseph Millard

Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK

Keywords: spatial finance, global carbon reward, biodiversity modelling, central bank digital currencies (CBDC), monetary policy, carbon quantitative easing, global biodiversity observing system (GBiOS)

Abstract

Humanity is at a critical juncture. Despite our efforts to set targets and goals, biodiversity and climate are both changing rapidly, pushing us towards a biosphere our species has not known. To solve this problem one view is that we need transformational change of the economic paradigm, but that might be more an ideal than pragmatic. A new idea could be to take inspiration from recent developments in global carbon market theory and spatial finance, and devise a new central bank digital currency (CBDC) for nature. We could then track a conjunction of anthropogenic pressures from space or remotely, combine that with a model predicting biodiversity change, and then link that to our new global currency that would self-regulate those pressures towards bending the curve. In biodiversity modelling alone there is a lot we would need to learn to make this work, but I think one federated currency for nature might be the economic mechanism we need to fully realise the potential of a global biodiversity observing system (GBiOS).

Main

Humanity is at a critical juncture. Biodiversity and climate are both changing rapidly, pushing us towards a biosphere our species has not known (Xu et al., 2020). For climate and biodiversity change our efforts to halt both are insufficient (Mace et al., 2018; Nordhaus, 2019). We have a 1.5°C target for climate change and some understanding of how to get there (IPCC, 2022), but such agreements and targets are not enforceable. For biodiversity the situation is worse. The Convention on Biological Diversity (CBD) regulates goals for biodiversity change, but our 23 Targets (Ainsworth, 2022) and associated indicators are not fully agreed by the broader scientific community (Geldmann et al., 2023). Importantly, our Targets do not explicitly recognize that the mechanisms of the service of biodiversity are borne of biodiversity itself, and that the uncertainty of this relationship is large (Nicholson et al., 2009). For both biodiversity and climate change our failures are the fault of no one individual. Our current economic paradigm has locked us into a trajectory that feels to have become unstoppable.

In parallel, private investment in biodiversity conservation is growing, with companies aiming to monitor biodiversity and the contribution it makes to people. These companies are wanting to make reasonable choices on the measurement and value of biodiversity, but a clear message and direction is not coming from us as biodiversity researchers. There is now I think a significant and real risk that private companies find ways of monitoring biodiversity at scale in real-time, but build systems that optimize parameters from the literature that we know are not correlated with metrics that are meaningful. This will be compounded when that same
problem occurs independently across tech companies, such that collectively we will measure metrics that are not meaningful, and that don’t map between one another.

There are ideas for how we might solve the biodiversity crisis. One view is that we need transformational change of the economic paradigm (IPBES, 2019). That might be an ideal, but it is not pragmatic. Our current economic paradigm I think is too embedded in the structure of states and the psyche of what’s possible, such that a shift from without seems unlikely. Another view is that within the current paradigm organisations such as the TNFD (Taskforce on Nature-related Financial Disclosures (TNFD, 2023)) can incentivise a more equitable approach to biodiversity. There may be some ways in which we can say the TFND has worked for localized biodiversity change, and it will undoubtedly help to leverage knowledge of biodiversity in financial institutions, but it alone gives us no quantifiable roadmap for approaching a stable state. Most importantly, at present the TNFD will not regulate or enforce metrics. Companies will be able to record one biodiversity metric and then make a decision to switch, meaning reported change in biodiversity will not be meaningful either within or between companies.

There are also developments in biodiversity credits (Bruggeman et al., 2005), biodiversity offsets (Maron et al., 2016), and payments for ecosystem services (PES) (Farley and Costanza, 2010). Some of these may work at a given scale to shift metrics of biodiversity (although the evidence is scarce, e.g. see (Salzman et al., 2018)), but given their decentralization and the lack of consensus on the appropriate valuing of biodiversity, it seems unlikely that these policies will pull biodiversity in any one consistent direction, and very unlikely with any associated degree of quantifiable uncertainty.

Central banks are increasingly taking note of the systemic risks associated with a rapidly changing environment (Campiglio et al., 2018). Central banks ordinarily function to implement monetary policy for the stability of fiat currencies, taking actions such as changing interest rates or buying up government bonds to control inflation (e.g. the Bank of England, The European Central Bank, the People’s Bank of China). These actions are distinct from fiscal policies such as taxes and subsidies which are set by the government. Importantly, central banks at least in principle act independently of government, meaning they can take more long term decisions on financial stability that don’t necessarily concern immediate consumptive gain. Central bank digital currencies (CBDC) are an emerging technology that enable the creation of digital money by central banks (Bordo and Levin, 2017), as opposed to via commercial banks in the form of debt. Although there are many concerns regarding privacy and greater government control (Baronchelli, Halaburda and Teytelboym, 2022), CBDCs potentially enable a more efficient means of money transfer and better control of the money supply (Meaning et al., 2018). Notably, money could be created by central banks without the indirect means of quantitative easing (i.e. ordinarily quantitative easing involves the lending of money to governments by central banks via the purchase of government bonds), and then distributed directly to a population in the form of “helicopter money” (Reis and Tenreyro, 2022). CBDCs are currently being actively researched by ~86% of central banks (Deloitte, 2022), with the first launch in a major economy in China in 2021 (Popper and Li, 2021). Central banks are historically highly resistant to mandate change and intervention that might itself cause financial or political instability (Campiglio et al., 2018), but as the risks of inaction on biodiversity change become more apparent, significant intervention does not seem unreasonable given the precedent set by the financial crisis of 2007-2009 and the COVID-19 pandemic (Haas, Neely and Emmons, 2020).

Drawing across recent developments in central bank digital currencies (CBDC) and global carbon market theory, a new idea for biodiversity change could be to develop a CBDC for nature, modelled on the global carbon reward (Chen, Beek and Cloud, 2017). The philosophy of the global carbon reward is that central banks should back a new form of carbon currency,
that can be issued to entities upon some action to mitigate emissions or capture carbon. Whereas cryptocurrencies are mined by using energy to validate transactions, a carbon currency would be mined by reducing emissions or storing carbon, and then awarded by central banks to individuals through a process called carbon quantitative easing. Two crucial outcomes of the global carbon reward are that it would be a single global carbon standard, and that it could ultimately help to self-regulate towards net zero. One of its core insights is that the floor price of carbon should be allowed to emerge as a function of systemic risk, rather than from consumption alone. For biodiversity, what that would mean is that with an aggregated metric of biodiversity, and an associated target and timeframe, our biodiversity pricing emerges without needing to value contribution in the form of an ecosystem service. As far as I know, biodiversity researchers have not been talking about a standardized nature currency that would be backed and issued by central banks, such that biodiversity stability is reached through a coordinated international monetary intervention. If we can find a way to put the brakes on environmental change with a new CBDC for nature, and allow the Court Jester to catch up (Barnosky, 2001), it might be that biodiversity stability emerges organically.

We would however need to guide the way in which our CBDC for nature reduces anthropogenic pressure. If we do not, we risk mitigating inconsequential anthropogenic pressures, either because their effect size is smaller than we anticipated, or because their effect is actually inherited from elsewhere. To do that we would need a set of reasonable models that guide our decisions (Bateman and Balmford, 2023). The emerging field of spatial finance might hold a solution (Patterson et al., 2020). Spatial finance refers to the integration of geospatial data and financial policy (Patterson et al., 2020), giving a means through which assets and risk can be quantified in space unambiguously and remotely in real-time. Leaning on these developments, we could track a conjunction of anthropogenic pressures from space or remotely, combine that with our model predicting biodiversity change, and then link that to our new federated CBDC that would self-regulate those pressures towards bending the curve. Given the unambiguity of spatial finance, landowners would be awarded a nature coin only when pressure change has been confirmed remotely for some specific period of time, thereby reducing the likelihood of false reporting. Such an algorithm could be made open, helping to increase buy in from low income counties that lack influential central banks, and to guide decision makers themselves on anthropogenic pressure reduction to maximise return on downregulation. We would still then need to monitor future biodiversity, but that comes secondarily to confirm that the currency is functioning. And then if it’s not, we use that future record to refine our model of biodiversity change and shift the reward weighting of the currency.

Recent developments in global carbon market theory rest on two principles: a target for climate change (1.5°C) and a unit of measure responsible (carbon). With both of these parameters a floor price of carbon over time emerges organically. For biodiversity we have no such simplicity. There is mixed consensus as to the value and importance of biodiversity at the global level (Seddon et al., 2016); we don’t know with a quantified degree of uncertainty the extent to which these metrics can change before the biosphere reaches a tipping point or is overcommitted (Brook et al., 2013); and among taxonomic groups we don’t know the extent to which multiple anthropogenic drivers are causally responsible for biodiversity change (Gonzalez, Chase and O’Connor, 2023). To settle some of these debates, we perhaps need to see that each individual means through which we measure biodiversity is to some extent capturing the variation of others. I don’t think we need to measure everything; perhaps we just measure the minimum number of metrics such that we capture enough of the uncorrelated ways in which all metrics are collectively important, both to stability and services. That could then be manageable, and perhaps more crucially and hopefully, enough.
A federated CBDC for nature could I think be built into GBiOS (Gonzalez et al, 2023) as a deliberate guiding principle for action on biodiversity change, helping to solve a number of problems. First, GBiOS does not yet provide a modelled mechanism that can flow from detection and attribution to action. Although it is true that significant gaps remain in geographic and taxonomic coverage, arguably our bigger issue is that even if we can measure biodiversity change comprehensively and understand why it’s changing, our mechanisms of action are highly distributed and assumed to emerge from change in indicators and engagement alone. This is also the case for climate change and the WMO’s Integrated Global Observation System (WIGOS), despite this monitoring system being some way ahead of biodiversity monitoring (Gonzalez et al. 2023). Given that biodiversity change is highly spatially resolved, it’s unclear to me how the levers of action will be pulled in the future without direct government intervention that infringes on the liberties of individuals. What we need, I think, is some economic mechanism that can respond to models of detection via GBiOS. Second, GEOBON provides comprehensive guidance on EBVs (Essential Biodiversity Variables) and EEVs (Essential Ecosystem Variables), and on the logistics of setting up a BON, but not yet on how BONs should fit into networks of currently existing institutions within states. BONs I think do need to be federated, but federated within a set of institutions that already exist, that can both understand the common goal and communicate in one terminology. We also, I think, to justify the quantity of funding required for GBiOS, need to see that although our proximate goal might be mitigating biodiversity change, we need to align that our ultimate goal is to capture at least the most important dimensions of systemic risk. Given that, although it might be unorthodox, BONs I think should be funded and run by central banks, where long term systemic risk can be moderated both within and between states.

Mid to late this century, for me I imagine a system in which GBiOS, a constellation of remote sensers of anthropogenic activity, a set of causal inference models of biodiversity change, and a federated CBDC for nature are combined to create one self-regulatory system for biodiversity. It would work something like the following. A custodian or owner of land consults an open-access algorithm for payment of a CBDC for nature. That custodian then makes a set of management changes or pressures reductions on their land for a specific period of time, before being paid some quantity of currency in the form of a CBDC, according to anthropogenic pressure reduction measured unambiguously from space. That quantity of currency paid out would be a function of systemic risk mitigation, derived from some function of land area, quantity of pressure reduction, and a systemic risk threshold or magnitude at that time. A federated network of central banks would facilitate BONs that take future measures of biodiversity to confirm whether the currency is functioning, coordinate a constellation of satellites, and iterate over a prior model of biodiversity change. Effectively it would be one global control system that, to a quantifiable degree of uncertainty, does at least enough for systemic stability. Crucially, a system such as this only needs to monitor biodiversity as far as it’s useful to model validity, both in building an initial causal inference model and in continually updating predictions. This both brings down our overhead on biodiversity monitoring (i.e. we don’t need to monitor everywhere at very high temporal and spatial resolution), and anchors our currency to measures that we know individuals can directly control and we know we can measure (i.e. anthropogenic activities). A system in which a landowner makes some management change, and then needs confirmation of biodiversity change in that specific location to receive payment, is I think naïve to both the difficulties we will likely always have in predicting absolute change in biodiversity at a given time, and to the likelihood of buy in from landowners when management change is always a gamble. What we need I think is not to know that biodiversity always changes in a specific instance, but to know that management interventions made will on average be enough.
Irrespective of all of the above, for a single currency for nature to be workable, there are at least eight areas I think in which we would need to make significant advances in biodiversity modelling alone: 1) We need to be confident that the anthropogenic variables we measure do explain change in biodiversity. To do that we need more models built on the basis of causal inference (Arif and MacNeil, 2022); 2) we need to be confident that through valuing only some set of biodiversity metrics, we are not going to overlook something important, and we need to settle on what those metrics are; 3) we need to get better at building models that consider multiple anthropogenic variables together, such that we will not overlook surprising high magnitude interactions; 4) we need to be better at accounting for uncertainty by incorporating variation predicted by temporal or spatial autocorrelation (Johnson et al., 2022); 5) we need to sample biodiversity in space across more locations and across a greater breadth of anthropogenic intensities (Daskalova et al., 2021); 6) we need to know that space-for-time models can be used to back-project time series, in a manner that is not consistently wrong; 7) we need to build a consistent global monitoring system such that we can track biodiversity at future intervals (Gonzalez, Chase and O’Connor, 2023), to check the currency is working; and 8) we need infrastructure in place for tracking change in anthropogenic variables from space or remotely at high resolution (Antonelli, Dhanjal-Adams and Silvestro, 2023).

References

Ainsworth, D. (2022) 'Nations Adopt Four Goals, 23 Targets for 2030 In Landmark UN Biodiversity Agreement'.


Campiglio, E. et al. (2018) ‘Climate change challenges for central banks and financial regulators’, Nature Climate Change, 8(6), pp. 462–468. Available at: https://doi.org/10.1038/s41558-018-0175-0.


Acknowledgements

JM is funded by the NERC GLiTRS project (grant number NE/V006800/1). Thanks also to Bruna Millard, Nick Isaac, Tim Newbold, Andy Purvis, Thomas Frederick Johnson, Richard Cornford, Graeme Cumming, and Delton Chen for comments and edits on initial drafts.