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Establishing complexity targets 
to enhance artificial reef designs
Elisabeth Riera 1,2*, Benjamin Mauroy 3, Patrice Francour 1 & Cédric Hubas 2

Artificial reefs (AR), which are integral tools for fish management, ecological reconciliation and 
restoration efforts, require non-polluting materials and intricate designs that mimic natural habitats. 
Despite their three-dimensional complexity, current designs nowadays rely on empirical methods 
that lack standardised pre-immersion assessment. To improve ecosystem integration, we propose 
to evaluate 3-dimensional Computer-aided Design (3D CAD) models using a method inspired by 
functional ecology principles. Based on existing metrics, we assess geometric (C-convexity, P-packing, 
D-fractal dimension) and informational complexity (R-specific richness, H- diversity, J-evenness). 
Applying these metrics to different reefs constructed for habitat protection, biomass production and 
bio-mimicry purposes, we identify potential complexity target points (CTPs). This method provides 
a framework for improving the effectiveness of artificial reef design by allowing for the adjustment 
of structural properties. These CTPs represent the first step in enhancing AR designs. We can refine 
them by evaluating complexity metrics derived from 3D reconstructions of natural habitats to advance 
bio-mimicry efforts. In situ, post-immersion studies can help make the CTPs more specific for certain 
species of interest by exploring complexity-diversity or complexity-species distribution relationships 
at the artificial reef scale.
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Among the artificial structures spread across the ocean, artificial reefs (AR) can be defined as “submerged struc-
tures placed on the seabed deliberately to mimic some characteristics of natural habitats”1. The use of artificial 
reefs made of rocks, wood or bamboo by fishermen dates back at least 3000 years in the  Mediterranean2. A similar 
practice has been documented in Japan since the seventeenth  century3. Over time, these handcrafted practices 
have been developed on a larger scale using objects from their immediate environment. Recycled materials, such 
as shipwrecks, offshore platforms, construction waste, and used tyres, were favoured, with no regard for the envi-
ronmental  impacts4,5. During the 1970s and 1980s, specific programs for fisheries management were developed 
on the impulse of the first International Conference on Artificial Reefs and Related Aquatic Habitats (CARAH)1,6.

Finally, in the late 2000s, the United Nations Environment Programme published the first guidelines, estab-
lishing a precise framework for artificial reef deployment and enlarging their objectives to fish production, habitat 
protection, habitat restoration and/or regeneration, and recreational opportunities. Nowadays, artificial reefs 
have to be made from non-polluting inert materials and designed with a structural complexity that mimics the 
natural habitats of the  location7,8.

Despite establishing these guidelines, there is still a lack of scientific basis to monitor and compare the effec-
tiveness of such  structures9. To evaluate the quality and theoretical adequacy of the structure before immersion, 
precise information is needed regarding the material and design of the reefs. Some studies have investigated the 
effect of different materials on the primary and macrofouling communities that settle on the artificial reef to 
select the most suitable substrates according to  objectives10–12. As far as three-dimensional structure is concerned, 
artificial reefs are mainly designed empirically based on expert recommendations by quantifying the number 
of spaces, voids and crevices to assess fish preference for different types of  shelter13. Since the early 90s, most of 
the structures used have been simple in shape and have been aggregated randomly underwater without offering 
much heterogeneity. Assuming that habitat complexity strongly influences the diversity and abundance of species 
colonizing artificial  reefs5,14–20; some studies have practiced post-complexification of artificial reefs to improve 
their  effectiveness5,15,21. More recently, large scale 3D printing has given rise to a new generation of artificial 
reefs that more closely mimic the structural complexity of natural  habitats22,23. A few studies have attempted to 
use surface  roughness24,25 or fractal  dimension26,27 as indicators of the structural complexity of artificial reefs. 
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However, no standardized method is available for assessing the structure of artificial reefs prior to immersion 
or evaluating their effectiveness based on complexity aspects.

The link between the complexity of the habitat and species diversity is a pillar of functional ecology. In natural 
ecosystems, a myriad of studies has been published since the studies of MacArthur and  MacArthur28,29, who 
proposed that the structural complexity or heterogeneity of the habitat influences the diversity of bird species in 
an area. The idea that habitat structure can affect species diversity is based on the notion that different species 
have different ecological requirements and may prefer or require different habitats for survival, reproduction, 
and resource use. Habitats with greater structural complexity can provide a broader range of ecological niches 
or opportunities for species with different ecological needs, leading to higher species richness and  diversity30–34, 
functional  diversity35, and higher prey-predator  dynamics36,37.

Although there is a consensus on the existence of this link, the definition and methods for evaluating it remain 
debated. Mc Coy and  Bell31 defined the habitat structure by three different aspects, namely scale, complexity, and 
heterogeneity, which are closely related to the shape of the structures and the abundance, diversity and arrange-
ment of the structural elements that compose the habitat. The metrics used to assess complexity and heterogeneity 
can vary according to the scale of the study; this scale dependency can bring high variability between studies 
and must be precisely defined. This definition has been followed for decades in the  literature34,36,38. Therefore, 
the metrics that evaluate habitat structure are classified into two categories. To name the most famous: fractal 
dimension, rugosity, or vertical relief fall into the complexity category that evaluates the global shape; whereas 
diversity, richness, or standard deviation fall into the heterogeneity that evaluates the variation of elements in 
the shape. More recently, Loke and  Chisholm39 proposed to define complexity and heterogeneity by geometric 
and informational complexity, respectively and gave recommendations for choosing the most suitable metrics 
and ensuring comparability between studies. This framework provides a valuable tool to help advance research 
in these areas, and we will use their categorization hereafter to describe complexity. They also expressed stringent 
criticisms and limitations on the use of some geometric complexity metrics in favor of informational complexity 
metrics. However, as Madin and  colleagues40, we agree that well-defined geometric complexity metrics are rel-
evant for highlighting important ecological responses. Moreover, we believe that no metrics prevail over others 
if they assess different parameters of the habitat structure related to ecological responses.

Facing these heated debates, we have been cautious in evaluating both geometric and informational com-
plexity of the structure of artificial reefs designed by 3D computer-aided design (CAD). We chose six different 
measures: fractal dimension (D), Packing (P) and Convexity (C) (as proxies of geometric complexity); and 
richness (R), diversity (H) and evenness (J) (as proxies of informational complexity). To summarize the overall 
complexity of the artificial reefs, we combined these six measures into an additional metric called the Complex-
ity Index (CI) to illustrate the global complexity. We then used the six metrics to evaluate various artificial reefs 
built for different purposes (habitat protection, biomass production and biodiversity enhancement) produced 
by moulding or 3D printing. First, this approach allowed us to confirm the a priori categorization of the artificial 
reefs and revealed that each purpose is associated with a specific set of complexity factors. Secondly, we have 
identified Complexity Target Points (CTPs) that effectively summarize the most complex structure evaluated.

Our method can enhance the effectiveness of artificial reef design by providing a clear understanding of AR 
structural properties that can be adjusted according to CTPs prior to immersion. Additionally, it provides a quan-
titative approach to examining the relationship between habitat complexity and diversity of biotic assemblages 
at the scale of artificial reefs, allowing verification of CTPs’ accuracy post-immersion.

Materials and methods
Complexity assessment of 3D CAD models
3D CAD models of artificial reef modules
Our methodology was developed using 3D computer-aided design (CAD) models to generate functional virtual 
prototypes of three-dimensional artificial reefs. We used STL files, which describe a 3D model’s surface using a 
series of connected triangles defined by their normal vectors and vertices in a 3D Cartesian coordinate system. 
Our analysis included a range of artificial reef unit models of a volume ranging from 2.35e+05 to 1.19e+07  cm3, 
produced by moulding and 3D printing. The models originated from various sources: some were provided by 
constructors, while others were modelled on  Tinkercad® using dimensions and shapes collected from Tessier and 
colleagues’  review5. Each design was built for specific objectives. Therefore, our selection consists of six designs 
for habitat protection from illegal trawling, seven designs for biomass production for artisanal fishing support, 
and seven bio-mimicry designs to enhance biodiversity. Detailed information about the artificial reefs is available 
in the supplementary materials (Supplementary Table S1).

Geometric complexity
An organism needs a specific volume when mobile or a surface when sessile. Therefore, to assess these param-
eters quantitatively, we were inspired by the metrics "Packing" (P) and "Convexity" (C) from Zunic and  Rosin41. 
These metrics help evaluate parameters associated with the volume and surface of the 3D CAD model and its 
convex hull (the smallest possible convex shape that completely contains the 3D model, with no concave areas). 
However, we adapted the formulas to our aims. Specifically, P is based on the surface ratio of the convex hull to 
the 3D CAD model. For C, instead of using the volume of the structure that is inaccessible to mobile organisms, 
we used the accessible volume available within the convex hull.

Furthermore, to encompass the multiscale structure of the artificial reef models, we used the fractal dimen-
sion (D), a widely recognised metric in natural environment complexity analysis that defines how an object fills 
space at all  scales34,36,39,40.
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Informational complexity
To welcome a rich trophic network, an artificial reef must display heterogenous  microhabitats42–44. In 3D CAD 
models, we have access to the normal vectors, which vary across the model surface and represent the heterogene-
ity of the structure. In our study, we refer to this as informational complexity. Ecologically, high surface hetero-
geneity orientations imply various anchor points promoting sessile species  settlement45–48. Moreover, it increases 
the likelihood of creating cavities or shelters attracting a diverse range of mobile species to the artificial  reef5,13,17. 
Therefore, each normal vector in the 3D CAD model serves as a parameter representing the heterogeneity of 
the orientation of the surface in 3D space. We used metrics commonly applied in ecology to determine specific 
richness (R)49, diversity (H)50, and evenness (J)51 of the normal vectors of the evaluated structures. These metrics 
provide insights into normal vector orientations in terms of relative distribution, diversity, and homogeneity, 
which we referred to as ’Orientation Richness,’ ’Orientation Diversity,’ and ’Orientation Evenness,’ respectively.

Extraction of parameters and computation of the metrics
We used Python programming language (version 3.12.1) to extract various parameters from the STL files of the 
3D CAD models, such as surface area, volume, point clouds and associated normals (refer to Fig. 1 for details).

Fig. 1.  Summary figure providing an overview of the complexity metrics used in the study, which are classified 
as geometric (3 first rows) and informational (3 last rows). The first column describes the definition and formula 
for each metric, while the second column lists the parameters used to compute these metrics, including surface, 
volume, point clouds, and normals. The last columns of the figure include an example of a 3D CAD artificial reef 
and its convex hull, which illustrate the application of these parameters.
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All parameters were extracted with a 1 cm resolution to balance computation time and structural definition. 
When applying this to future biodiversity data, selecting the resolution carefully in advance is crucial to ensure 
comprehensive and accurate analysis. A 1 cm resolution was chosen because it was suitable for studying both 
fixed macro benthic communities and mobile species such as fish. Although a finer scale resolution would have 
been beneficial for monitoring larval and propagule settlement during the early stages of colonization, it would 
have doubled the fractal dimension computation time for complex structures like 3D-printed models, extending 
processing time to over 24 h and requiring more memory—resources that might not be accessible to all stake-
holders wishing to apply this method. Additionally, the fractal dimension score showed only slight variations 
between 1 cm and 1 mm resolutions, with the most significant differences observed when transitioning from 
meter to decimetre scales and from decimetre to centimetre scales.

Using the extracted parameters and elements, we computed most of the metrics with the Python framework 
(version 3.12.1), utilizing the "entropy" function from the "scipy.stat" package to calculate H.

D was calculated using the Minkowski-Bouligand method (or "box-counting") in the R statistical framework 
(version 4.0.3) with the “est.boxcount” function from the “Rdimtools” package, which required the computation 
of point  clouds52.

To ensure equivalent weight for the variables, we transformed P, D, and H, and named the transformed vari-
ables  Pt,  Dt, and  Ht. To summarize the overall complexity of the artificial reefs, we computed an additional metric 
called the Complexity Index (CI), which is simply the sum of the six metrics. This additional metric provides an 
overview of the global complexity.

All steps of the computation and details on transformations are summarized in Fig. 1. All the scripts and data 
are open access (see section Data availability statement).

Data analyses
Multiple factor analysis (MFA)
Statistical analyses were conducted using the open-source software R (version 4.0.3). We performed a Multiple 
Factor Analysis (MFA) on the indices using the “FactoMineR” package. We grouped the two types of indices 
(geometric and informational) into separate categorical groups of variables. The Complexity Index (CI) was set 
as a supplementary quantitative variable and, therefore, was not used to determine the dimensions of the analysis; 
it was projected onto the existing factor space as an illustration of the global complexity.

Clustering
To verify if the purpose categorization was consistent with complexity attributes, we conducted hierarchical 
clustering on principal components using the “HCPC” function of the “FactoMineR” package. We fixed the 
number of groups at three, corresponding to protection, production, and bio-mimicry purposes. Finally, the 
“Catdes” function of “FactoMineR” was used on the Euclidean distance matrix of the scaled complexity variables 
to describe the clusters.

Complexity target points (CTPs)
Based on the Multiple Factor Analysis (MFA) results, we identified 3D models that best represent high complex-
ity to establish Complexity Target Points (CTPs), which summarize the most complex structures evaluated. The 
selection process focused on the primary axes of variation identified by the MFA and their relationships with the 
complexity metrics. To guide this selection, we calculated the mean Euclidean distance of the models within the 
MFA space. This ensured the chosen models were well-represented by the relevant dimensions and exhibited a 
balanced distribution across the ordination space. The final subset of models was identified by combining their 
scores on key dimensions with their mean distance metrics. These selected models, representing the highest 
overall complexity, were then used to calculate the mean values for each complexity variable, which served as 
the basis for determining the CTPs.

Results
Evaluation of the structure of the AR modules
The computed complexity indices for the 3D CAD models of the artificial reefs did not show consistent rankings 
across all structures. Regarding geometric complexity, the Convexity (C) values ranged from 0.145 (PROD1) 
to 0.924 (PROT1), transformed Packing  (Pt) values ranged from − 0.031 (PROT5) to 0.765 (BIOM6), and 
transformed Fractal dimension  (Dt) values ranged from 0.026 (PROT2) to 0.529 (BIOM6). In terms of indices 
related to informational complexity, the Orientation Richness (R) values ranged from 1.16.10–6 (PROT1) to 0.905 
(BIOM6), Orientation diversity  (Ht) values ranged from 0.527 (PROT1) to 2.603 (BIOM6), and Orientation 
Evenness (J) values ranged from 0.414 (PROD7) to 1 (for PROT1, PROT3, PROD5) (Table 1).

The two first dimensions of the MFA represented 67.48% of total inertia and mainly structured the factor map 
(Dim.1: 43.21% and Dim.2: 24.28%). These dimensions displayed a good projection of the data, as evidenced 
by the proximity of all variables to the correlation circle. According to the Karlis-Saporta-Spinakis (KSP)  rule44 
for selecting the number of principal components to retain for the analysis, the third dimension displayed a 
cumulative (of the two groups of variables) eigenvalue of 0.18, which was below the KSP threshold (2.03). Thus, 
only the first two dimensions were retained for the analysis.

Ht, R,  Pt and  Dt contributed equally to building the first dimension (respectively, 22.41%, 21.80%, 26.38%, 
and 23.64%), while J and C mainly contributed to building the second one (respectively, 38.04% and 25.32%). 
The Complexity Index, implemented as a supplementary quantitative variable, showed a strong correlation with 
the first dimension (Pearson’s cor.test Dim.1 vs CI: R = 0.92, t = 10.384, df = 18, p-value = 4.986e-09) and poor 
correlation with the second (Pearson’s cor.test Dim.2 vs CI: R = 0.35, t = 1.6324, df = 18, p-value = 0.12). (Fig. 2A).
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Table 1.  Metrics and Complexity index computed on the artificial reef ’s models ordered by their score on the 
first dimension (Dim. 1) of the of the Multiple Factor Analysis (MFA). The complexity target points for the 
metrics and complexity index are calculated as the average values of the selected models. These models were 
chosen based on their Euclidean distance from the origin in the Dim.1 × Dim.2 space, specifically those with 
distances greater than or equal to the average distance in this space. Selected models are highlighted in italic 
and bold.

AR’s model C—Convexity Pt—Packing
Dt—Fractal 
dimension

R—Orientation 
richness

Ht—Orientation 
Diversity

J—Orientation 
eveness

CI—Complexity 
index Dim.1 Score

Dim.1 × Dim.2 
distance

PROT5 0.633 − 0.031 0.124 0.000 1.200 0.523 2.449 − 1.729 1.729

PROT1 0.924 0.009 0.081 0.000 0.527 1.000 2.541 − 1.699 2.276

PROT3 0.649 0.108 0.129 0.000 0.527 1.000 2.413 − 1.438 1.697

PROT2 0.922 − 0.026 0.026 0.002 1.780 0.815 3.519 − 1.412 1.853

PROT6 0.262 0.103 0.116 0.001 1.480 0.675 2.637 − 1.223 1.311

PROD1 0.145 0.369 0.249 0.011 1.560 0.450 2.784 − 0.716 1.696

PROD2 0.193 0.394 0.260 0.012 1.620 0.478 2.957 − 0.612 1.560

PROT4 0.761 0.398 0.213 0.001 1.550 0.665 3.588 − 0.550 0.552

PROD7 0.815 0.648 0.352 0.000 1.220 0.412 3.447 − 0.193 0.963

PROD4 0.221 0.520 0.357 0.066 1.970 0.593 3.727 0.089 1.323

PROD5 0.564 0.611 0.497 0.000 0.527 1.000 3.199 0.225 0.295

BIOM3 0.382 0.270 0.203 0.658 2.430 0.881 4.824 0.368 0.542

PROD6 0.676 0.608 0.359 0.000 1.760 0.994 4.397 0.499 0.520

BIOM1 0.633 0.362 0.210 0.672 2.440 0.889 5.206 0.598 0.934

BIOM2 0.310 0.369 0.246 0.694 2.470 0.904 4.993 0.677 0.708

BIOM4 0.311 0.388 0.246 0.700 2.480 0.907 5.032 0.744 0.766

PROD3 0.430 0.721 0.529 0.064 2.200 0.736 4.680 1.034 1.476

BIOM7 0.624 0.451 0.304 0.539 2.500 0.988 5.406 1.035 1.193

BIOM5 0.646 0.578 0.390 0.839 2.590 0.995 6.038 1.682 1.802

BIOM6 0.828 0.765 0.482 0.905 2.600 0.997 6.577 2.623 2.674

Complexity target points (CTPs)

 MEAN 0.550 0.607 0.412 0.483 2.372 0.862 5.286

 SD 0.232 0.133 0.092 0.405 0.277 0.187 1.123

Fig. 2.  Multiple factor analysis (MFA). (A) correlation circle of the variable of complexity coloured according 
to the type of complexity measurement (i.e. geometric vs informational) and complexity index (CI) as 
supplementary quantitative variable. (B) the score map of the artificial reef models, coloured according to their 
construction objectives and ordinated according to the clustering. The models selected for the complexity target 
points are enhanced in italic and bold.
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The clustering of the artificial reefs’ (AR) 3D CAD models was consistent with the intended purpose of each 
design. Protective purpose ARs were mostly grouped in Cluster 1, except for PROT 4. This cluster was charac-
terized by negative scores on Dimension 1, influenced mainly by negative scores for  Pt,  Dt,  Ht, and CI (Fig. 2A 
and B). Cluster 2 included all the production models and PROT 4, described by negative scores on Dimension 
2 and metrics J and R but positive scores for  Pt (Fig. 2A and B). Cluster 3 grouped all the 3D printing models 
designed for bio-mimicry purposes. These models were positively described by Dimensions and metrics R,  Ht, 
J, and CI (Fig. 2A and B).

Selection of 3D models for determining complexity target points (CTPs)
To identify the 3D models that best represent high complexity and establish Complexity Target Points (CTPs), 
we focused on the first two dimensions of the Multiple Factor Analysis (MFA). We began by calculating the 
Euclidean distances of the models based on their coordinates in Dim.1 and Dim.2 (Table 1).

Dim.1, the primary axis of variation, captures 43.21% of the total variance and is primarily associated with 
metrics such as Ht (Orientation Diversity), R (Orientation Richness), Pt (Transformed Packing), and Dt (Trans-
formed Fractal Dimension) (Fig. 2A). These metrics reflect both informational complexity (R and Ht) and geo-
metric complexity (Pt and Dt). The strong correlation between Dim.1 and the Complexity Index (CI) (R = 0.92) 
suggests that models with high positive scores on Dim.1 likely have higher overall complexity. Although CI was 
not directly used to construct Dim.1, this correlation supports the use of Dim.1 as a proxy for overall complexity. 
Consequently, our initial selection focused on models with positive scores on Dim.1.

Dim.2 captures additional variance primarily related to C (Convexity) and J (Orientation Evenness), which are 
important aspects of complexity not captured by Dim.1 (Fig. 2A). While these metrics are crucial for understand-
ing shape uniformity and volume considerations, they do not dominate overall complexity to the same extent as 
those in Dim.1. By considering Dim.2, we ensured the inclusion of models that exhibit significant features related 
to convexity and orientation evenness, thus preventing these ecological aspects from being overlooked (Table 1).

To ensure that models with positive scores on Dim.1 were well represented across both dimensions, we cal-
culated their mean Euclidean distance within the MFA space (mean Euclidean distance for models with positive 
scores on Dim.1: 1.112 ± 0.689). We used this value as a threshold to select the "complex" models. The selected 
models are BIOM5 (Distance: 1.802), BIOM6 (Distance: 2.674), BIOM7 (Distance: 1.193), PROD3 (Distance: 
1.476), and PROD4 (Distance: 1.323) (Table 1 and Fig. 2B).

We then calculated the mean ± standard deviation for each complexity variable of these "complex" mod-
els to establish the Complexity Target Points (CTPs). These CTPs represent the average metrics a 3D model 
must achieve or surpass to be considered "complex." The CTPs are as follows: CTP-C: 0.555 ± 0.232; CTP-Pt: 
0.607 ± 0.133; CTP-Dt: 0.412 ± 0.092; CTP-R: 0.483 ± 0.405; CTP-Ht: 2.372 ± 0.277; J: 0.862 ± 0.187; CTP-CI: 
5.286 ± 1.123 (Table 1).

Discussion
A single metric alone cannot fully capture the complexity of habitat  structures31,34,36,39. Therefore, we have selected 
a combination of metrics that, when considered together, provide a comprehensive estimate of the structural 
complexity across various parameters such as surface area, volume, and point clouds with associated normals 
extracted from the STL file of the 3D CAD models. To assess all aspects of the structure of the artificial reef 
models, we based our method on three metrics related to geometric complexity  (Dt,  Pt and C) and three metrics 
related to informational complexity (R,  Ht and J). While we acknowledge that there are potentially infinite math-
ematical methods to calculate structural complexity and that more advanced mathematical knowledge might 
yield increasingly complex and potentially more accurate metrics, our focus is within the realms of ecology and 
engineering. We have deliberately chosen metrics that can be straightforwardly linked to ecological parameters. 
We believe that introducing overly abstract mathematical formulas would not be practical for our ecological 
and engineering objectives.

Our methodology aimed to quantitatively assess the geometric and informational complexity of artificial 
reefs using 3D computer-aided design (CAD) models and propose target points to achieve high complexity of 
AR’s design prior to immersion to enhance the attraction of diverse and abundant communities theoretically. We 
proposed a framework that evaluated the global complexity of the structure based on a wide range of artificial 
reef models, comprising both conventional models for moulding (for protection and production purposes) and 
bio-mimicry models designed for 3D printing (to enhance biodiversity).

Surface and volume metrics as basic indicators for assessing ecological suitability of artificial 
reefs
A suitable substrate is essential for marine benthic organisms, providing the foundation for attachment, growth, 
movement, and the spread of life from biofilm to epibenthic  species47,53–55. In habitat complexity literature, 
surface-derived metrics are frequently employed, the most famous being  rugosity56–61. The concept of rugosity 
refers to the refolding aspect of the surface in relation to an orthogonal plan. This parameter was first evalu-
ated through the chain and tape  method61, which provides a linear measurement of rugosity. However, with 
the advancements in 3D modelling and reconstruction techniques, it has progressed to encompass 3D surface 
 rugosity57 and, more recently, the concept of  Packing41 has been introduced and successfully used to compare 
the refolding surface of the coral structure in relation to its convex  hull62.

While the surface offers vital substrate, the available volume within the habitat structure provides the neces-
sary physical space for organisms to move and carry out their life processes: it provides shelter to survive, repro-
duce, or maintain their ecological  roles63. Volume metrics are less commonly used in habitat complexity studies, 
likely due to the challenges in evaluating them in a natural  environment64. More recently, thanks to tomography 
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or scanner technology, volume-driven metrics can be computed from 3D CAD models of habitat fragments, 
such as  coral62,65,66. Assessing volume parameters becomes easy using the metrics Convexity introduced with 
Packing by Zunic and  Rosin41.

Incorporating fractal and surface orientation metrics in habitat evaluation: addressing multi-
scale complexity
Habitats are inherently multiscale and provide a diverse range of microhabitats that meet the needs of different life 
stages and ecological roles of  organisms42–44,67. From primary producers to predators, it supports a broader range 
of species and ecological interactions, providing a rich food web for  biodiversity42–44 and resilience to environ-
mental  stressors68,69. An artificial reef is expected to provide various microhabitats at different scales to support 
a diverse and abundant community. Thus, we used the fractal dimension to measure how an object fills space at 
different scales. It has been widely used in marine ecology to describe the relationship between species diversity 
and the structure of different marine habitats, such as coral reefs, seagrass beds, and rocky intertidal  zones34. 
Nowadays, it is even easier to compute it on habitat reconstruction with 3D CAD modelling by photogrammetry 
or 3D  scanning59,66. We have been cautious in choosing a resolution to compute the fractal dimension relevant 
to our study case (1 point/cm2). Our goal was to achieve a balance between computation time and structural 
clarity, thereby excluding finer details. We are confident this resolution will satisfy our objectives, focusing on 
benthic macrofouling and mobile species.

We based our evaluation of the informational complexity of the artificial reef models on the distribution of 
normal vectors. This gives information on the surface orientation of the structure, which is critical for both fixed 
and mobile marine species. For fixed species, such as corals, sponges, and algae, surface orientation affects their 
ability to capture light, nutrients, and planktonic prey (for coral and sponge), essential for their survival and 
 growth54,55,70,71. The orientation can also influence their ability to resist physical disturbances such as strong water 
currents or  waves72. For mobile species, surface orientation provides shelter and plays a crucial role in the ability 
of species to navigate, detect prey, and avoid  predators73. Overall, surface orientation is an important factor affect-
ing marine species’ distribution, abundance, diversity, and interactions with each other and their environment.

Moreover, the normal vector is the only parameter whose heterogeneity can be quantified without relying 
on subjective observations, such as manually counting shelters or cavities. While these techniques can estimate 
informational complexity, they are often impossible or time-consuming. Counting micro-habitats on a model is 
particularly difficult for several reasons. First, the scale of the community targeted—whether fixed or mobile—
affects how micro-habitats are determined. Complex designs, such as bio-mimicry models with interconnected 
shapes, make it even harder to identify and count micro-habitats objectively. Except for some obvious cavities, 
the rest remain highly subjective.

Therefore, we support using normal vectors as a parameter in our study. Existing metrics use the normal 
 parameters30,36,59,74–76, offering diverse values to identify surface topography (related to geometric complexity): 
strength vector, vector dispersion, and several standard deviations to the plane. We used metrics commonly 
applied in ecology to determine habitat informational complexity derived from Webb and  colleagues41,  Shannon42 
and  Pielou43 indexes, named respectively in our study: orientation Richness (R), Orientation diversity  (Ht), 
and Orientation evenness (J). We used these indexes to assess habitat informational complexity as a proxy of 
the potential diversity that the reef can welcome. These metrics provide information on the proportion of the 
different types of surface orientations, their diversity in relation to their relative abundance and distribution.

Scaling up: proposing complexity target points to assess the ecological potential of artificial 
reefs
With the six metrics selected, we embrace global complexity (both geometrical and informational) by evaluating 
variations in surface, volume, scale, types of elements, and their relative abundance.

Using multifactorial analysis, we identified Complexity Target Points (CTPs) by selecting models with the 
highest complexity features scores. It is important to consider that the proposed targets represent optimal com-
plexity levels based on a sample of artificial structures. However, environmental factors, such as depth, current, 
light, and connectivity to surrounding adjacent habitats, influence community  responses77–80. Therefore, while 
the CTPs are grounded in habitat complexity  theory36,81–85 and suggest that structures meeting these targets 
should attract a diverse and abundant community, the actual community composition may vary due to other 
additional environmental factors. Therefore, relying solely on these proposed targets might underestimate the 
ecological responses when an artificial structure is deployed in a natural environment.

To delve deeper into the geometrical complexity metrics and the associated CTPs, we start with C. This metric 
stands out as the sole volume-based measure, contrasting with other geometric complexity metrics derived from 
surface properties. Interpretation of C values is nuanced: a value close to 1 indicates an empty structure devoid 
of hiding places from predators, whereas a value near 0 signifies a filled structure with no cavities available for 
shelter. The computed CTP for C reflects a moderate value (CTP-C: 0.550 ± 0.232), striking a balance between 
space availability and structural integrity, providing enough living space necessary to attract an abundant and 
rich  community63. For the other metrics, transformed Packing and transformed fractal dimension also demon-
strate moderate values (CTP-Pt: 0.607 ± 0.133, CTP-Dt: 0.412 ± 0.092), reflecting a straightforward logic. A highly 
folded surface correlates with a high transformed fractal dimension (cor.test  Pt vs  Dt: R = 0.93, t = 10.463, df = 18, 
p-value = 4.432e−09), as seen in the MFA results (Fig. 2). Therefore, a structure with a score approaching 1 for 
 Pt or  Dt would result in a surface object with structural elements of habitat becoming too small to be beneficial 
for organisms of any  size34. In nature, mechanisms or organisms that exhibit a certain fractality are governed by 
rules acting at both small and large scales, in both ascending and descending manners, thus limiting the extent 
of their  fractality67. The CTP of the metrics  Pt and  Dt, which are strongly correlated, reflect this limitation.
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Turning to informational complexity and the associated CTPs, we begin with J, which measures the equita-
bility of normal vectors’ distribution. As the C metric, J is not straightforward to understand; both simple and 
complex structures can display a high score (i.e.: 1). Euclidean shapes such as a cube, a sphere or a triangle, for 
instance, display the highest score because each face of these shapes is oriented differently. Therefore, J should be 
considered alongside the other informational complexity metrics to provide a comprehensive assessment of the 
reef structure. If R or  Ht are below their respective CTP (CTP-R: 0.483 ± 0.405; CTP-Ht: 2.372 ± 0.277) while J is 
high, it means that we have a simple structure, in the reverse case, low J but high R and  Ht, it means then that the 
orientation of the structure is dominated by few different normal vectors. Consistently, the CTP-J should prefer-
ably be high (0.862 ± 0.187) to propose a structure with an equitable distribution of different surface orientations.

Building on this analysis of complexity metrics, our method proved valuable in evaluating the three purposes 
of the artificial reef structures based on their complexity metrics. This validates the empirical approaches used 
historically, confirming their relevance and accuracy, considering our current results. From protection to bio-
mimicry, the three categories were perfectly distributed along the first dimension of the MFA. Protection designs, 
with the simplest shapes and most voided space, had the lowest Complexity Index scores (CI.mean = 2.858 ± 0.545, 
C.mean = 0.692 ± 0.246,  Pt.mean = 0.094 ± 0.161,  Dt.mean = 0.115 ± 0.062, R.mean = 0.001 ± 0.001,  Ht.
mean = 1.177 ± 0.537, J.mean = 0.780 ± 0.194). These structures are not intended to attract rich communities, 
so their low scores do not detract from their purpose of habitat protection. In contrast, biomass production 
structures, more massive and complex, showed lower C but higher  Pt and  Dt scores and globally low infor-
mational complexity scores (CI.mean = 3.599 ± 0.717, C.mean = 0.435 ± 0.261,  Pt.mean = 0.553 ± 0.132,  Dt.
mean = 0.372 ± 0.107, R.mean = 0.022 ± 0.030,  Ht.mean = 1.551 ± 0.548, J.mean = 0.666 ± 0.250). Bio-mimicry 
designs exhibit the highest scores for the Complexity Index and all informational complexity metrics, but mod-
erate values of geometrical metrics (CI.mean = 5.335 ± 0.426, C.mean = 0.505 ± 0.178,  Pt.mean = 0.430 ± 0.090,  Dt.
mean = 0.279 ± 0.071, R.mean = 0.689 ± 0.107,  Ht.mean = 2.496 ± 0.057, J.mean = 0.937 ± 0.051).

Nowadays, in the context of the reconciliation ecology, artificial structures are intended to exhibit several 
functions at the same time, such as sea level rise mitigation in combination with bio-mimicry to become a “grey 
nature-based solution” when green ones cannot be  applicable86. Therefore, designers can evaluate new artificial 
structures before deployment using this method and framework provided in this study. This process helps iden-
tify specific areas for improvement and optimizes design characteristics such as increasing space availability, 
enhancing surface refolding, varying shelter scales, or increasing the heterogeneity of surface orientations. These 
enhancements aim to improve the ecological performance of the structure, ensuring it meets the Complexity 
Target Points (CTPs).

By providing a clear framework for establishing Complexity Target Points (CTPs), we aim to offer practical 
guidelines for future artificial structure design that seek to enhance colonization performance by optimizing 
complexity metrics. Recognizing that our current analysis is foundational, we propose the following approach 
to substantiate the ecological benefits of our method. Although the lack of post-immersion data is a limitation 
to validating our CTPs, this can be mitigated through in situ pilot studies to monitor the actual biodiversity and 
community distribution in correlation with the CTPs of the studied reef and make the CTPs more specific for 
certain species of interest. Another perspective involves comparing the different metrics’ scores of bio-mimicry 
artificial structures with those obtained from 3D reconstructions of natural reefs made by  photogrammetry87–92. 
This comparison would be valuable for advancing the CTPs for bio-mimicry efforts and aligning artificial struc-
tures more closely with the metrics of natural habitats.

Conclusion
We argue that our approach, which focuses on the structural aspects of artificial reefs, can contribute to the devel-
opment of global artificial reef design and support ecological reconciliation and restoration efforts by enhancing 
landscape complexity in the face of growing marine artificialization and habitat  degradation93–95. In conjunction 
with the methodology developed by Carral and  colleagues96, which considers other extrinsic parameters such 
as stakeholder engagement and immersion site selection, the effectiveness of artificial reef deployment projects 
may be, nowadays, enhanced by a more rigorous scientific framework.

Data availability
The data and code for this research are openly accessible on Zenodo and GitHub: https:// doi. org/ 10. 5281/ zenodo. 
80917 88, https:// github. com/ ELI- RIERA/ Artifi cial Reef_ Compl exity. However, please note that the 3-dimen-
sional computer-aided design (3D CAD) models, proprietary to BOSKALIS, D-SHAPE and SEABOOST, are 
not included. For access to these specific 3D CAD models, contact the corresponding author.

Received: 27 November 2023; Accepted: 4 September 2024

References
 1. Pickering, H., Whitmarsh, D. & Jensen, A. Artificial reefs as a tool to aid rehabilitation of coastal ecosystems: Investigating the 

potential. Mar. Pollut. Bull. 37, 505–514 (1999).
 2. D’Anna, G., Badalamenti, F. & Riggio, S. Artificial Reefs in north-west sicily: Comparisons and conclusions. In Artificial Reefs in 

European Seas (eds Jensen, A. C. et al.) 97–112 (Springer Science+Business Media Dordrecht, 2000).
 3. Thierry, J. M. Artificial reefs in Japan—A general outline. Aquac. Eng. 7, 321–348 (1988).
 4. Pickering, H., Whitmarsh, D. & Jensen, A. Artificial reefs as a tool to aid rehabilitation of coastal ecosystemes: Investigating the 

potential. Mar. Pollut. Bull. 37, 505–514 (1998).
 5. Tessier, A. et al. Assessment of French artificial reefs: Due to limitations of research, trends may be misleading. Hydrobiologia 753, 

1–29 (2015).

https://doi.org/10.5281/zenodo.8091788
https://doi.org/10.5281/zenodo.8091788
https://github.com/ELI-RIERA/ArtificialReef_Complexity


9

Vol.:(0123456789)

Scientific Reports |        (2024) 14:22060  | https://doi.org/10.1038/s41598-024-72227-z

www.nature.com/scientificreports/

 6. Jensen, A., Collins, K. & Lockwood, P. Introduction and background to artificial reefs in European seas. In Artificial Reefs in 
European Seas (ed. Al., A. C. J. et) ix–xi (Kluwer Academic Publishers, 2000). https:// doi. org/ 10. 1017/ CBO97 81107 415324. 004.

 7. UNEP MAP. Guidelines for the Placement at Sea of Matter for Purpose Other than the Mere Disposal (Construction of Artificial 
Reefs). (2005).

 8. UNEP. An introduction to Artificial Reefs. in London Convention and Protocol/UNEP: Guidelines for the Placement of Artificial 
Reefs 1–8 (International Maritime Organization, London, 2009).

 9. AW Ramm, L., Florisson, J. H., Watts, S. L., Becker, A. & Tweedley, J. R. Artificial reefs in the Anthropocene: A review of geographi-
cal and historical trends in their design, purpose, and monitoring. Bull. Mar. Sci. 97, 699–728 (2021).

 10. Liu, G., Li, W. T. & Zhang, X. Assessment of the benthic macrofauna in an artificial shell reef zone in Shuangdao Bay, Yellow Sea. 
Mar. Pollut. Bull. 114, 778–785 (2017).

 11. Riera, E., Lamy, D., Goulard, C., Francour, P. & Hubas, C. Biofilm monitoring as a tool to assess the efficiency of artificial reefs as 
substrates: Toward 3D printed reefs. Ecol. Eng. 120, 230–237 (2018).

 12. Salamone, A. L., Robicheau, B. M. & Walker, A. K. Fungal diversity of marine biofilms on artificial reefs in the north-central Gulf 
of Mexico. Botanica Marina 59, 291–305 (2016).

 13. Bohnsack, J. A. Habitat structure and the design of artificial reefs. In Habitat Structure 412–426 (1991).
 14. Bohnsack, J. A. & Sutherland, D. L. Artificial reef research: A review with recommendations for the future prorities. Bull. Mar. Sci. 

37, 11–39 (1985).
 15. Charbonnel, E., Serre, C., Ruitton, S., Harmelin, J. & Jensen, A. Effects of increased habitat complexity on fish assemblages associ-

ated with large artificial reef units (French Mediterranean coast). ICES J. Mar. Sci. 59, 208–213 (2002).
 16. Hackradt, C. W., Félix-Hackradt, F. C. & García-Charton, J. A. Influence of habitat structure on fish assemblage of an artificial reef 

in southern Brazil. Mar. Environ. Res. 72, 235–247 (2011).
 17. Pickering, H. & Whitmarsh, D. Artificial reefs and fisheries exploitation: A review of the ‘attraction versus production’ debate, the 

influence of design and its significance for policy. Fish. Res. 31, 39–59 (1997).
 18. Rouanet, E., Astruch, P. & Antonioli, A. How artificial reef design and architectural complexity affect the benthic colonization. In 

RECIF Conference 53–60 (2015).
 19. Sherman, R. L., Gilliam, D. S. & Spieler, R. E. Artificial reef design: Void space, complexity, and attractants. ICES J. Mar. Sci. 59, 

196–200 (2002).
 20. Svane, I. & Petersen, J. K. On the problems of epibioses, fouling and artificial reefs, a review. Mar. Ecol. 22, 169–188 (2001).
 21. Bodilis, P., Seytre, C., Charbonnel, E. & Patrice, F. Monitoring of the artificial reef fish assemblages of golfe juan marine protected 

area (France, North-Western Mediterranean). Braz. J. Oceanogr. 59, 167–176 (2011).
 22. Levy, N. et al. Emerging 3D technologies for future reformation of coral reefs: Enhancing biodiversity using biomimetic structures 

based on designs by nature. Sci. Total Environ. 830, 154749 (2022).
 23. Riera, E. et al. Artificial reef effectiveness changes among types as revealed by underwater hyperspectral imagery. Restor. Ecol. 31, 

e13978 (2023).
 24. Ferreira, C. E. L., Gonçalves, J. E. A. & Coutinho, R. Community structure of fishes and habitat complexity on a tropical rocky 

shore. Environ. Biol. Fishes 61, 353–369 (2001).
 25. Wilding, T. A., Rose, C. A. & Downie, M. J. A novel approach to measuring subtidal habitat complexity. J. Exp. Mar. Biol. Ecol. 353, 

279–286 (2007).
 26. Caddy, J. F. & Stamatopoulos, C. Mapping growth and mortality rates of organisms onto a perforated surface: The relevance of 

‘cover’ to the carrying capacity of natural and artificial habitats. Estuar. Coast Shelf Sci. 31, 87–106 (1990).
 27. Lan, C. H., Lan, K. T. & Hsui, C. Y. Application of fractals: Create an artificial habitat with several small (SS) strategy in marine 

environment. Ecol. Eng. 32, 44–51 (2008).
 28. MacArthur, R. H. & MacArthur, J. W. On bird species diversity. Ecology 42, 594–598 (1961).
 29. MacArthur, R. H., MacArthur, J. W. & Preer, J. On bird species diversity II. Prediction of bird census from habitat measurements. 

Am. Soc. Nat. XCVI, 167–174 (1962).
 30. Beck, M. W. Separating the elements of habitat structure: Independent effects of habitat complexity and structural components 

on rocky intertidal gastropods. J Exp Mar Biol Ecol 249, 29–49 (2000).
 31. McCoy, E. D. & Bell, S. S. Habitat structure : The evolution and diversification of a complex topic. In Habitat Structure (1991).
 32. Tagliapietra, D. & Sigovini, M. Biological diversity and habitat diversity: A matter of Science and perception. NEAR Curriculum 

Nat. Environ. Sci. 88, 147–155 (2010).
 33. Tews, J. et al. Animal species diversity driven by habitat heterogeneity/diversity: The importance of keystone structures. J. Biogeog.r 

31, 79–92 (2004).
 34. Tokeshi, M. & Arakaki, S. Habitat complexity in aquatic systems: Fractals and beyond. Hydrobiologia 685, 27–47 (2012).
 35. Mocq, J., Soukup, P. R., Näslund, J. & Boukal, D. S. Disentangling the nonlinear effects of habitat complexity on functional 

responses. J. Anim. Ecol. 90, 1525–1537 (2021).
 36. Kovalenko, K. E., Thomaz, S. M. & Warfe, D. M. Habitat complexity: Approaches and future directions. Hydrobiologia 685, 1–17 

(2012).
 37. Smith, J. A. et al. Habitat complexity mediates the predator–prey space race. Ecology 100, e02724 (2019).
 38. Lazarus, M. & Belmaker, J. A review of seascape complexity indices and their performance in coral and rocky reefs. Methods Ecol. 

Evol. 12, 681–695 (2021).
 39. Loke, L. H. L. & Chisholm, R. A. Measuring habitat complexity and spatial heterogeneity in ecology. Ecol Lett 25, 2269–2288 (2022).
 40. Madin, J. S. et al. A word on habitat complexity. Ecol. Lett. 26, 1021–1024 (2023).
 41. Zunic, J. & Rosin, P. L. A new convexity measure for polygons. IEEE Trans. Pattern. Anal. Mach. Intell. 6, 923–934 (2004).
 42. Spencer, M. & Warren, P. H. The effects of habitat size and productivity on food web structure in small aquatic microcosms. Oikos 

75, 419–430 (1996).
 43. Halaj, J., Ross, D. W. & Moldenke, A. R. Importance of habitat structure to the arthropod food-web in Douglas-fir canopies. Oikos 

90, 139–152 (2000).
 44. Klecka, J. & Boukal, D. S. The effect of habitat structure on prey mortality depends on predator and prey microhabitat use. Oecologia 

176, 183–191 (2014).
 45. Brown, C. J. Epifaunal colonization of the Loch Linnhe Artificial Reef: Influence of substratum on epifaunal assemblage structure. 

Biofouling 21, 73–85 (2005).
 46. Callow, M. E. et al. Microtopographic cues for settlement of zoospores of the green fouling alga enteromorpha. Biofouling 18, 

229–236 (2002).
 47. Callow, M. E. & Callow, J. A. Marine biofouling: A sticky problem. Biologist 49, 1–5 (2002).
 48. Bixler, G. D. & Bhushan, B. Biofouling: Lessons from nature. Philos. Trans. R. Soc. A 370, 2381–2417 (2012).
 49. Webb, L. J., Tracey, J. G., Williams, W. T. & Lance, G. N. Studies in the numerical analysis of complex rain-forest communities: I. 

A comparison of methods applicable to site/species data. Source J. Ecol. 55, 171–191 (1967).
 50. Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).
 51. Pielout, E. C. Species-diversity and pattern-diversity in the study of ecological succession. J. Theoret. Biol 10, 370–383 (1966).
 52. You, K. & Shung, D. Rdimtools: An R package for dimension reduction and intrinsic dimension estimation[Formula presented]. 

Softw. Impacts https:// doi. org/ 10. 1016/j. simpa. 2022. 100414 (2022).

https://doi.org/10.1017/CBO9781107415324.004
https://doi.org/10.1016/j.simpa.2022.100414


10

Vol:.(1234567890)

Scientific Reports |        (2024) 14:22060  | https://doi.org/10.1038/s41598-024-72227-z

www.nature.com/scientificreports/

 53. Ly, O. et al. Optimisation of 3D printed concrete for artificial reefs: Biofouling and mechanical analysis. Constr. Build. Mater. 272, 
121649 (2021).

 54. Ushiama, S., Smith, J. A., Suthers, I. M., Lowry, M. & Johnston, E. L. The effects of substratum material and surface orientation on 
the developing epibenthic community on a designed artificial reef. Biofouling 32, 1049–1060 (2016).

 55. Connell, S. D. Effects of surface orientation on the cover of epibiota. Biofouling 14, 219–226 (1999).
 56. Dustan, P., Doherty, O. & Pardede, S. Digital reef rugosity estimates coral reef habitat complexity. PLoS ONE 8, 1–10 (2013).
 57. Friedman, A., Pizarro, O., Williams, S. B. & Johnson-Roberson, M. Multi-scale measures of rugosity, slope and aspect from benthic 

stereo image reconstructions. PLoS ONE 7, e50440 (2012).
 58. Preez, CDu. A new arc–chord ratio ( ACR ) rugosity index for quantifying three-dimensional landscape structural complexity. 

Landsc. Ecol. 30, 181–192 (2015).
 59. Young, G. C., Dey, S., Rogers, A. D. & Exton, D. Cost and time-effective method for multiscale measures of rugosity, fractal dimen-

sion, and vector dispersion from coral reef 3D models. PLoS ONE 12, 1–18 (2017).
 60. Parravicini, V., Rovere, A., Donato, M., Morri, C. & Bianchi, C. N. A method to measure three-dimensional substratum rugosity 

for ecological studies: An example from the date-mussel fishery desertification in the north-western Mediterranean. J. Mar. Biol. 
Assoc. UK 86, 689–690 (2006).

 61. Luckhurst, E. & Luckhurst, K. Analysis of the influence of substrate variables on coral reef fish communities. Mar. Biol. 49, 317–323 
(1978).

 62. Zawada, K. J. A., Dornelas, M. & Madin, J. S. Quantifying coral morphology. Coral Reefs 38, 1281–1292 (2019).
 63. Warfe, D. M., Barmuta, L. A. & Wotherspoon, S. Quantifying habitat structure: Surface convolution and living space for species 

in complex environments. OIKOS 117, 1764–1773 (2008).
 64. Anderson, M. J., Diebel, C. E., Blom, W. M. & Landers, T. J. Consistency and variation in kelp holdfast assemblages: Spatial patterns 

of biodiversity for the major phyla at different taxonomic resolutions. J. Exp. Mar. Biol. Ecol. 320, 35–56 (2005).
 65. Hennige, S. J. et al. Crumbling reefs and cold-water coral habitat loss in a future ocean: Evidence of “coralporosis” as an indicator 

of habitat integrity. Front. Mar. Sci. 7, 668 (2020).
 66. Reichert, J., Backes, A. R., Schubert, P. & Wilke, T. The power of 3D fractal dimensions for comparative shape and structural 

complexity analyses of irregularly shaped organisms. Methods Ecol. Evol. 8, 1650–1658 (2017).
 67. Brown, J. H. et al. The fractal nature of nature: Power laws, ecological complexity and biodiversity. Philos. Trans. R. Soc. B Biol. Sci. 

357, 619–626 (2002).
 68. Kéfi, S., Miele, V., Wieters, E. A., Navarrete, S. A. & Berlow, E. L. How structured is the entangled bank? The surprisingly simple 

organization of multiplex ecological networks leads to increased persistence and resilience. PLoS Biol. 14, e1002527 (2016).
 69. Saint-Béat, B. et al. Trophic networks: How do theories link ecosystem structure and functioning to stability properties? A review. 

Ecol. Indic. 52, 458–471 (2015).
 70. Irving, A. D. & Connell, S. D. Sedimentation and light penetration interact to maintain heterogeneity of subtidal habitats: Algal 

versus invertebrate dominated assemblages. Mar. Ecol. Prog. Series 245, 83–91 (2002).
 71. Relini, G., Zamboni, N., Tixi, F. & Torchia, G. Patterns of sessile macrobenthos community development on an artificial reef in 

the gulf of genoa (Northwestern Mediterranean). Bull. Mar. Sci. 55 747–771 (1994).
 72. Sokołowski, A., Ziółkowska, M., Balazy, P., Kukliński, P. & Plichta, I. Seasonal and multi-annual patterns of colonisation and growth 

of sessile benthic fauna on artificial substrates in the brackish low-diversity system of the Baltic Sea. Hydrobiologia 790, 183–200 
(2017).

 73. Langhamer, O., Wilhelmsson, D. & Engström, J. Artificial reef effect and fouling impacts on offshore wave power foundations and 
buoys—a pilot study. Estuar. Coast Shelf Sci. 82, 426–432 (2009).

 74. Beck, M. W. Comparison of the measurement and effects of habitat structure on gastropods in rocky intertidal and mangrove 
habitats. Mar. Ecol. Prog. Ser. 169, 165–178 (1998).

 75. Carleton, J. H. & Sammarco, P. W. Effects of substratum irregularity on success of coral settlement: Quantification by comparative 
geomorphological techniques. Bull Mar. Sci. 40, 85–98 (1987).

 76. Grohmann, C. H., Smith, M. J. & Riccomini, C. Surface roughness of topography: A multi-scale analysis of landform elements in 
midland valley, Scotland. Proc. Geomorphometry 2009, 140–148 (2009).

 77. Bauman, A. G., Feary, D. A., Heron, S. F., Pratchett, M. S. & Burt, J. A. Multiple environmental factors influence the spatial distri-
bution and structure of reef communities in the northeastern Arabian Peninsula. Mar. Pollut. Bull. 72, 302–312 (2013).

 78. Zinke, J. et al. Gradients of disturbance and environmental conditions shape coral community structure for south-eastern Indian 
Ocean reefs. Divers. Distrib. 24, 605–620 (2018).

 79. Solan, M. & Whiteley, N. Stressors in the Marine Environment: Physiological and Ecological Responses; Societal Implications (Oxford 
University Press, 2016).

 80. García-Charton, J. A. et al. Multi-scale spatial heterogeneity, habitat structure, and the effect of marine reserves on Western Medi-
terranean rocky reef fish assemblages. Mar. Biol. 144, 161–182 (2004).

 81. McCoy, E. D., Bell, S. S., Terborgh, J. & Petren, K. Habitat Structure (Springer Science & Business Media Dordrech, 1991).
 82. Strain, E. M. A. et al. A global analysis of complexity–biodiversity relationships on marine artificial structures. Glob. Ecol. Biogeogr. 

30, 140–153 (2021).
 83. Carvalho, L. R. S. & Barros, F. Physical habitat structure in marine ecosystems: The meaning of complexity and heterogeneity. 

Hydrobiologia 797, 1–9 (2017).
 84. Darling, E. S. et al. Relationships between structural complexity, coral traits, and reef fish assemblages. Coral Reefs 36, 561–575 

(2017).
 85. Porter, A. G. Habitat structural complexity in the 21st century: measurement, fish responses and why it matters. (2019).
 86. Firth, L. B. et al. Greening of grey infrastructure should not be used as a Trojan horse to facilitate coastal development. J. Appl. 

Ecol. 57, 1762–1768 (2020).
 87. Marre, G., Holon, F., Luque, S., Boissery, P. & Deter, J. Monitoring marine habitats with photogrammetry: A cost-effective, accurate, 

precise and high-resolution reconstruction method. Front. Mar. Sci. 6, 1–15 (2019).
 88. Burns, J. H. R. & Delparte, D. Comparison of commercial structure-from-motion photogrammety software used for underwater 

three-dimensional modeling of coral reef environments. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. ISPRS Arch. 42, 
127–131 (2017).

 89. Burns, J. H. R. et al. 3D habitat complexity of coral reefs in the Northwestern Hawaiian islands is driven by coral assemblage 
structure. ISPRS J. Photogramm. Remote Sens. 42, 61–67 (2019).

 90. González-Rivero, M. et al. Linking fishes to multiple metrics of coral reef structural complexity using three-dimensional technol-
ogy. Sci. Rep. 7, 1–15 (2017).

 91. Robert, K. et al. New approaches to high-resolution mapping of marine vertical structures. Sci. Rep. 7, 1–14 (2017).
 92. Pygas, D. R., Ferrari, R. & Figueira, W. F. Review and meta-analysis of the importance of remotely sensed habitat structural com-

plexity in marine ecology. Estuarine Coast. Shelf Sci. https:// doi. org/ 10. 1016/j. ecss. 2019. 106468 (2020).
 93. Morris, R. L. et al. Design options, implementation issues and evaluating success of ecologically engineered shorelines. Oceanogr. 

Mar. Biol. 57 169–228 (2019).

https://doi.org/10.1016/j.ecss.2019.106468


11

Vol.:(0123456789)

Scientific Reports |        (2024) 14:22060  | https://doi.org/10.1038/s41598-024-72227-z

www.nature.com/scientificreports/

 94. Perricone, V. et al. Nature-based and bioinspired solutions for coastal protection: An overview among key ecosystems and a 
promising pathway for new functional and sustainable designs. ICES J. Mar. Sci. 80, 1218–1239. https:// doi. org/ 10. 1093/ icesj ms/ 
fsad0 80 (2023).

 95. Solé, R. & Levin, S. Ecological complexity and the biosphere: The next 30 years. Philos. Trans. R. Soc. B Biol. Sci. 377, 20210376 
(2022).

 96. Carral, L., Lamas, M. I., Barros, J. J. C., Lopez, I. & Carballo, R. Proposed conceptual framework to design artificial reefs based on 
particular ecosystem ecology traits. MDPI Biol. 11, 680 (2022).

Acknowledgements
We dedicate this work to the deceased Prof. Patrice Francour,, who passed away on October 13th, 2019, and who 
inspired and pushed for more natural artificial reefs. We thank Jacqueline Gautier-Debernardi, Director of AMPN 
(Monegasque Association for Nature Protection – Manager of MPAs of Monaco), for her invaluable support. 
We thank Boskalis, Sea Boost and D-shape for providing the 3D CAD models of the artificial reef manufactured 
by 3D printing. Finally, we thank the editor and the two anonymous reviewers for their valuable comments on 
the manuscript, which helped us improve it. The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence the work reported in this paper.

Author contributions
ER, PF, CH: Design and conceptualization; ER: Data Curation; ER: Formal Analysis; PF, CH: Funding Acquisi-
tion; ER: data acquisition; ER, BM: Methodology; PF, CH: Project Administration, supervision and validation; 
ER, BM: Software; ER: Visualization; ER, PF, CH, BM: Writing – Original Draft Preparation.

Funding
ER’s PhD was funded by the University Côte d’Azur and supported by the Prince Albert II of Monaco Foun-
dation and the Association Monégasque pour la Protection de la Nature (AMPN). The EBSM project (n° 
0202/21007460/00048656) provided additional support for the research during ER’s postdoctoral work funded 
by the inno R&D program of the Brittany council (Région Bretagne, France).

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 024- 72227-z.

Correspondence and requests for materials should be addressed to E.R.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give 
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and 
indicate if changes were made. The images or other third party material in this article are included in the article’s 
Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy 
of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

https://doi.org/10.1093/icesjms/fsad080
https://doi.org/10.1093/icesjms/fsad080
https://doi.org/10.1038/s41598-024-72227-z
https://doi.org/10.1038/s41598-024-72227-z
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Establishing complexity targets to enhance artificial reef designs
	Materials and methods
	Complexity assessment of 3D CAD models
	3D CAD models of artificial reef modules
	Geometric complexity
	Informational complexity
	Extraction of parameters and computation of the metrics

	Data analyses
	Multiple factor analysis (MFA)
	Clustering
	Complexity target points (CTPs)


	Results
	Evaluation of the structure of the AR modules
	Selection of 3D models for determining complexity target points (CTPs)

	Discussion
	Surface and volume metrics as basic indicators for assessing ecological suitability of artificial reefs
	Incorporating fractal and surface orientation metrics in habitat evaluation: addressing multiscale complexity
	Scaling up: proposing complexity target points to assess the ecological potential of artificial reefs

	Conclusion
	References
	Acknowledgements


