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Abstract

Many games, especially repeated games, have multiple Nash equilibria, which lim-

its the predictive power of game theory for understanding animal behavior. In this

article, I propose a solution to this problem inspired by the notion of stability by

convergence from adaptive dynamics. The multiplicity of equilibria is due to the pos-

sibility of strategies that are arbitrary in the sense that they are individually adaptive

only because others use them. While arbitrariness is a possibility in standard game

theory, since it is always possible to design patterns of behavior as complex as one

wishes, it cannot be gradually shaped by biological evolution. I propose an equilibrium

refinement, the concept of evolutionarily parsimonious equilibrium, that captures this

convergence constraint by relying on the premise that a complex strategy cannot evolve

as a by-product of selection for a simple strategy. Using examples, I show that this

refinement supports the selection of biologically reasonable equilibria in several of the

most important games in the literature. In particular, it eliminates the vast majority of

equilibria in repeated games and reveals that the conditions necessary for the evolution

of reciprocal cooperation are not consistent with the prisoner’s dilemma, but rather

correspond to a situation in which individuals have some degree of immediate interest

in cooperating.

1 Introduction

Many of the most important games for understanding social behavior have multiple Nash

equilibria. This is the case, for example, of the ultimatum game (Binmore and Samuelson

1994), of most signaling games (Riley 2001; Sobel 2012), of bargaining games (Binmore

1985; Nash 1950; Rubinstein 1982; Shaked 1986), and, most famously, of repeated games,

for which this multiplicity is called the folk theorem (Aumann and Shapley 1994; Boyd
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2006). To illustrate, in the pairwise repeated prisoner’s dilemma, any quantitative level of

cooperation can be supported by a Nash equilibrium, from no cooperation to maximum

cooperation, through all possible intermediates. This indeterminacy limits the predictive

power of game theory for understanding animal behavior.

To work around this limitation, game theoreticians, as well as some evolutionnary biolo-

gists, have developed refinements of the Nash equilibrium concept. They have sought ways

to reduce the multiplicity of equilibria by arguing that some equilibria are more “reasonable”

from a rational point of view than others, or are more likely to be the result of evolution.

In standard, non-evolutionary game theory, the most prominent of these refinements is

the concept of subgame perfection (Selten 1965, 1973, 1975). It captures the idea that some

Nash equilibria are implausible because they involve non-credible threats. For example, in

the ultimatum game, any strategy profile that consists of the proposer offering x ∈]0, 1] and
the receiver refusing any offer strictly less than x is a Nash equilibrium, but not a subgame

perfect equilibrium, because it involves the threat that if the proposer deviates from the

equilibrium, then the receiver would behave irrationally by refusing a strictly positive offer.

The only subgame perfect equilibrium in the ultimatum game is for the proposer to offer

exactly x = 0, which is indeed the most reasonable outcome, consistent with the strategic

asymmetry of the game.

However, for evolutionists interested in understanding how evolution has shaped the

social behavior of humans and other animals, the application of the concept of subgame

perfection is not straightforward. Evolution by natural selection can lead to subgame perfect

equilibria under certain assumptions (e.g., assuming errors in the course of the game; Selten

1983, 1988), but it need not always lead to such equilibria (Gale et al. 1995). Moreover,

the concept of subgame perfection does not reduce the diversity of equilibria in important

cases. It does not reduce the diversity of equilibria in games without subgames. And it does

not reduce the diversity of equilibria in repeated games, which is one of the most important

challenges to understanding cooperation in the human species. In a game repeated long

enough, all possible levels of cooperation can be supported by a subgame perfect equilibrium

(Aumann and Shapley 1994). The diversity of subgame perfect equilibria is thus as great

in practice as the diversity of Nash equilibria.

Based on evolutionary considerations, two other mechanisms have been proposed to

refine the predictions of game theory beyond the Nash equilibrium concept.

The first of these mechanisms, proposed by some evolutionary anthropologists and

economists, is based on cultural diversity and group selection. The idea is that different

human groups will culturally reach different Nash equilibria, and that competition between

groups will secondarily favor those groups that have reached the more socially efficient equi-

librium, leading to the spread of “cultural norms” of cooperation. This mechanism has been

very influential among scholars interested in evolutionary approaches to human behavior. It

has been proposed and formalized by a school of biological anthropologists in a theory called

“cultural group selection” (Boyd and Richerson 1990, 2002, 2009a,b; Boyd, Richerson, and
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Henrich 2011; Henrich and Henrich 2007; Soltis et al. 1995). And it has also been proposed,

albeit verbally, in the work of game theorists and philosophers, such as in Binmore’s theory

of natural justice (Binmore 2009) or Gintis’s theory of property (Gintis 2007).

The second of these mechanisms uses a famous refinement of the Nash equilibrium con-

cept from biology: the concept of an evolutionarily stable strategy (hereafter ESS). An ESS

is defined by two conditions. The first corresponds to the Nash equilibrium condition. The

second, called Maynard-Smith’s condition, refines the Nash concept by taking into account

the payoffs of rare mutants that interact with each other. Somewhat paradoxically, in the

vast majority of games studied by biologists, this second condition plays no role at all,

because these games have strict Nash equilibria, in which case the second condition does

not matter. The main exception is dynamic games. These games generally do not have

strict Nash equilibria, so the second ESS condition plays a role and eliminates equilibria

that are not socially efficient. For example, in the repeated prisoner’s dilemma, all levels

of cooperation can be supported by a Nash equilibrium, but only the maximum possible

level of cooperation is ESS (André and Day 2007; Binmore and Samuelson 1992; Fudenberg

and Maskin 1990; Nowak, Sasaki, et al. 2004). A variant of this mechanism, which tends

to favor less cooperative equilibria, is to consider the effects of interaction between two dif-

ferent mutants, a neutral mutant on the one hand, and another mutant that can use the

first as a stepping stone to destabilize the resident (Boyd and Lorberbaum 1987; Garćıa and

Van Veelen 2016; Van Veelen 2012; Van Veelen and Garcıa 2019).

Both mechanisms–group selection and mutant-mutant interaction–are in principle valid

from an evolutionary point of view, but the conditions necessary for them to be effective

are very restrictive. The first requires the existence of structured groups that have the

opportunity to establish a diversity of social norms and then compete with each other. The

second relies on selection due to the presence of mutants, which is a weak selective force–

because it is second order in the effect of mutations and proportional to the frequency of

mutants–that can play a role only if all other forces are very weak.

In this article, I argue that neither mechanism is necessary because there is another,

more robust and parsimonious constraint that selects equilibria in biology: the constraint

of evolutionary convergence.

Contrary to what the success of the ESS concept might suggest, the most important

conceptual innovation in evolutionary biology with respect to the Nash equilibrium is not

the second ESS condition, but the concept of stability by convergence developed for the

study of quantitative traits (Eshel 1983; Eshel et al. 1997; Geritz et al. 1998). Stability

by convergence captures the fact that evolution is a gradual process. It occurs through a

succession of fixations of adaptive mutations of relatively small effect, each of which must be

advantageous at the time of its appearance. Some strategies are Nash equilibria and ESSes,

but will not evolve by natural selection because they cannot be achieved by such a gradual

process. They are then said to be evolutionarily stable but not convergence stable.

In the specific case of quantitative traits, the idea that adaptive mutations have small
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effects and that adaptation is gradual has a very clear mathematical translation. It is much

less straightforward to understand how this notion translates in the case of games, such as

repeated games, whose strategy sets are typically discrete rather than quantitative. As a

result, the notion of stability by convergence has never been used or formalized in dynamic

games.

Yet the notion that adaptive mutations are of weak effect, and the ensuing notion that the

adaptive process is gradual, is not a mere technicality specific to the evolution of quantitative

traits. On the contrary, it captures a fundamental principle of biological evolution. The

very problem with complex adaptations is that they are organized and thus improbable

states (Dawkins 1996). As a result, the probability that they could arise by chance, from

one or a few macro-mutations, is by definition extremely small–Fisher (1930)’s geometric

model of adaptation can be seen as a formalization of this idea. Natural selection is a major

scientific breakthrough because it solves the apparent puzzle of adaptation by breaking down

an unlikely random occurrence of complex order into an accumulation of a series of small

effect, and therefore plausible, adaptive mutations that progressively increase the amount

of functionality and order in biological systems. The convergence condition is therefore a

fundamental and general constraint on biological evolution.

This constraint dramatically reduces the range of strategies that can be produced by

evolution. The multiplicity of equilibria arises from the fact that many games have a circular

dimension (Boyd 2006). What is adaptive for one individual depends on what others do, and

vice versa, opening up the possibility of an infinite number of equilibria. If other individuals

cooperate only on odd days, then it is adaptive to do the same. If they cooperate only on

rainy days, then it is pointless to try to cooperate on sunny days, and so on. These strategies

imply conditional abilities–e.g., cooperating only on odd days–that have no adaptive value in

themselves, but are valuable only if other individuals have the same abilities. Such abilities

may well be part of a equilibrium, but the circular nature of their adaptive advantage makes

it impossible for evolution to converge to them through the gradual accumulation of weak-

effect mutations.

Thus, not all equilibria can be reached by biological evolution. Some equilibria involve

circular capabilities that have no value per se, but only value if others have them, while

others do not involve such capabilities. Only the latter can be attained through the gradual

process of evolutionary adaptation.

In this article, I propose an equilibrium concept, the concept of evolutionarily parsi-

monious equilibrium, that allows to capture this convergence constraint by relying on the

premise that a complex strategy cannot evolve as a by-product of selection for a simple

strategy. Using examples, I show that this concept supports the selection of biologically

reasonable equilibria in many of the most important games in the literature. In particu-

lar, it eliminates the vast majority of equilibria in repeated games and provides a better

understanding of the conditions necessary for the evolution of reciprocal cooperation.

4



2 Evolutionarily parsimonious equilibrium

First, a restricted formulation of the concept is presented to help understand its logic. The

general formulation follows.

Let G be an extensive-form game, defined by a finite set of n players, a game tree

representing the sequence of player decisions, a set of final nodes with payoff values for each

player, and a partition of the non-terminal nodes into n + 1 subsets, one for each player

and one for Nature’s moves. Each node of the game tree is called a “history”. We say that

a history belongs to a player if he is the one making a decision at that history. A player’s

strategy is then defined by a partition of his histories and a mapping from the elements of

this partition to the set of possible behavioral policies.

In the restricted version of the analysis, I consider a symmetric game in which, for

exogenous reasons beyond the players’ control, each player has only 2 different information

states. In other words, of all their histories, players can distinguish at most two types, and

no more.

The goal of the analysis is to determine the conditions necessary for evolution by natural

selection to drive the transition from a strategy in which players do not distinguish between

the two information states and play the same policy in each history of the game, to a strategy

with an additional level of contingency in which players play two different policies in each

of the two information states.

Consider an ancestral strategy S that does not distinguish between the two states. In

pure strategy, this means that players unconditionally play exactly the same action in all

their histories. In mixed strategy, this means that they unconditionally draw their actions

from the same probability distribution or from infinitesimally close probability distributions

in all histories.

Consider another strategy, S′, that distinguishes between the two information states and

plays policies b1 and b2 in each state where at least one (or both) differs from b.

Then let two other strategies S1 and S2 be defined as follows: like S they do not dis-

criminate between the two states, but unlike S they unconditionally play the policies b1 and

b2 in both states.

We call P (X,Y ) the payoff of a player with strategy X interacting with a player with

strategy Y .

Proposition: The evolutionary transition from strategy S to strategy S′ is possible if the

following three conditions are satisfied:

P (S′, S) > P (S, S) (1)

P (S′, S) > P (S1, S) (2)

P (S′, S) > P (S2, S) (3)

In this case, we say that S′ is parsimoniously evolvable from S.
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Condition 1 requires that S′ is strictly better than S. A neutral strategy with a superflu-

ous conditional ability is not parsimoniously evolvable from an unconditional resident.This

captures the idea that strategies cannot become more complex, i.e., acquire novel behav-

ioral dispositions, without selection pressures to favor it. The other two conditions are more

subtle. They require that neither of the two simpler strategies that would play the same

policy in both states is able to do better than S′ against the resident. In other words, S′

is parsimoniously evolvable from S, provided that its extra complexity really gives it an

advantage over strategies without that complexity.

2.1 General formulation

Consider the same game G as defined above, but this time not necessarily symmetric, and

with no limit on the number of information states.

Define a symmetric positive function d(X,Y ) that measures the mutational distance

between any two strategies X and Y . This mutational distance is intended to measure

a transition probability (see below). The greater the mutational distance between two

strategies, the less likely it is that a random biochemical event will cause a lineage to switch

from one to the other.

Consider a resident strategy S and any alternative strategy S′. We say that S′ is

parsimoniously evolvable from S in one step if the following condition is satisfied:

∀S′′ with d(S′′, S) < d(S′, S), P (S′, S) > P (S′′, S) (4)

i.e. S′ is strictly better against S than any strategy whose distance to S is smaller. In

particular, this implies that S′ is strictly better against S than S itself.

This can then be generalized to multiple steps. The evolutionary transition from an

ancestral strategy S to a derived strategy S′ is possible if there exists an ordered list of

strategies of finite length, where S is the first one in the list, S′ is the last one in the list,

and each element of the ordered list is parsimoniously evolvable in one step from the previous

element. In this case, we say that S′ is parsimoniously evolvable from S.

Finally, the concept of an evolutionarily parsimonious equilibrium is defined from an an-

cestral strategy S0. We say that a strategy S∗ is an evolutionarily parsimonious equilibrium

from S0 if it is a Nash equilibrium and it is parsimoniously evolvable from S0. Note that if

S0 itself is a Nash equilibrium, then the only evolutionarily parsimonious equilibrium from

S0 is S0 itself.

The concept of evolutionarily parsimonious equilibrium is independent of the exact choice

of the mutational distance function d(·). In principle, any distance measure could be consid-

ered. However, the biological intuition that this approach aims to capture is that conditional

abilities are adaptations that can only arise if they are favored as such. Thus, it is essential

that the distance measure between two strategies take into account their conditional capac-

ities (as was done in the restricted approach above). In the examples shown in the paper,
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I measure mutational distances using finite automata. The distance between two strategies

is computed in 3 steps (see Appendix A for details): (1) I build the finite automata needed

to implement each strategy. (2) I search for the best possible alignment between the two

automata. (3) I comprehensively count the number of differences between the two automata

once they are aligned.

2.2 Evolutionary interpretation

The concept of an evolutionarily parsimonious equilibrium attempts to capture in a simple

way an underlying biological hypothesis: adaptive mutations are all the rarer the stronger

their effect. This hypothesis, hereafter referred to as the relative rarity of adaptive mutations

hypothesis, is standard in evolutionary biology and was captured geometrically by Fisher

(1930).

An adaptive mutation that transforms a strategy S into a strategy S′ at a mutational

distance k away (i.e., with d(S′, S) = k) is rarer and thus occurs later in expectation

than all mutations that transform S into S′′ at a smaller mutational distance (i.e., with

d(S′′, S) < k). Thus, if one of these closer mutants can invade a population of S, it will do

so before the more distant mutant has a chance to rise. As a result, the one-step evolutionary

transition from S to S′ cannot occur.

The consequence of the relative rarity of adaptive mutations hypothesis is that a complex

behavior cannot evolve as a by-product of selection in favor of a simpler behavior. For

example, a conditional behavior cannot evolve as a by-product of selection for a constitutive

behavior. It can only evolve if it provides an advantage over the constitutive behavior.

Note that according to the relative rarity of adaptive mutations hypothesis, one should

require the following stricter conditions for S′ to be evolvable from S in one step:

P (S′, S) > P (S, S) (5)

∀S′′ with d(S′′, S) < d(S′, S), P (S′′, S) ≤ P (S, S) (6)

These stricter conditions require (i) that S′ is strictly better against the resident, and (ii)

that there is no mutant strategy S′′ that is both more similar to the resident and also strictly

better against the resident. In other words, under these stricter conditions, even if S′ is

better against the resident than all closer strategies, S′ cannot be considered evolvable in

one step if some closer strategies are able to invade the resident before it.

It is not entirely clear which of these two conditions is the better choice (condition 4

or the stricter condition above). The strict condition is a more natural consequence of

the relative rarity of adaptive mutations hypothesis, but it is also stricter. To show that

the present approach significantly reduces the multiplicity of equilibria, the less restrictive

condition is preferable because it is more conservative.

Finally, in the introduction I used the notion of stability by convergence to introduce

the concept of evolutionary parsimony, so it is important to understand both how these
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two concepts are related and how they differ. The notion of stability by convergence allows

one to characterize the local adaptive dynamics of a quantitative trait around a singular

point, under the assumption that mutations have weak effects. The notion of evolutionary

parsimony is related in its goal: it aims to characterize the dynamics of adaptation in more

detail than is possible with the notion of an ESS. However, it differs from the concept of con-

vergence in three ways. (1) Stability by convergence concerns the evolution of quantitative

traits, while evolutionary parsimony concerns games where the strategy space is discrete.

(2) Stability by convergence holds for a range of initial states in the neighborhood of an

equilibrium, i.e. it tells us whether evolution will reach a given equilibrium when starting

from any initial state sufficiently close to it. On the other hand, evolutionary parsimony

holds only for one specific initial state, which is not necessarily close to the focal equilibrium.

(3) Stability by convergence is a necessary and sufficient condition for an equilibrium to be

reached by evolution (assuming local initial conditions and weak effect mutations), whereas

evolutionary parsimony, and in particular the less strict condition 4, is only a necessary

condition for a strategy to be reached by evolution. It does not guarantee convergence, only

the possibility of convergence.

3 Application to examples

3.1 Divide-the-dollar game

The divide-the-dollar game is a two-player sharing game. Each player must announce in

advance the fraction of a resource he is claiming, without knowing what the other player is

claiming. Each player gets what he asked for if the sum of the two requests does not exceed

the total amount of the resource, otherwise both players get nothing. Here I consider the

simple case where the two players are initially symmetric, and I consider only the set of

pure strategies.

I assume that the game starts with a move by Nature (i.e., an event that cannot be

controlled by the players) that creates an asymmetry between the two players, e.g., one

player arrives from the right, the other from the left, one player arrives before the other,

and so on.

If the symmetry breaking is physically undetectable to both players, then they cannot

condition their behavior on it. In this case, in pure strategy, both players must make exactly

the same demand in equilibrium, and the only possible Nash equilibrium of the game is for

the players to demand exactly half of the resource, i.e., x∗ = 0.5. Any demand other than

x = 0.5 is not in equilibrium, as players would have an incentive to deviate (things are a bit

more complex when considering mixed strategies, see Skyrms 1996).

On the other hand, if the players have the sensory capacity to detect the symmetry

breaking, they can condition their demands on it, dramatically expanding the range of

possible equilibria. Suppose one individual is in role A and the other in role B after Nature’s
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move, then all pairs of demands (x∗
A, x

∗
B) with x∗

A + x∗
B = 1 are Nash equilibria in pure

strategy, since neither player gains anything by deviating. Moreover, all these equilibria are

strict Nash (deviations have strictly positive costs) and therefore evolutionarily stable.

Thus, the Nash equilibrium is unique and symmetric only in the very specific situation

where the players are in a completely identical state with respect to their perceptual abilities.

In practice, since it’s very unlikely that two individuals will be in completely symmetric

perceptual states, there will always be an infinite number of Nash equilibria.

Biologically, however, it seems unrealistic that complete sensory symmetry is necessary

for evolution to lead to a symmetric outcome. It would seem more natural for a notion of

ecological symmetry to play a role. The concept of evolutionarily parsimonious equilibrium

captures this intuition.

Consider an ancestral strategy S that does not distinguish between the two states and

requests the same q ∈ [0, 1] regardless of which state, A or B, it is in. Consider also

a conditional strategy S′ that requests qA when in state A and qB ̸= qA when in state

B. And finally, consider two unconditional strategies SA and SB that request qA and qB ,

respectively, regardless of their state, i.e., regardless of the situation A or B in which they

find themselves. We will show that S′ can never be parsimoniously evolvable from S in

one step (the restricted formulation of evolutionary parsimony can be used here because

individuals can be in only two information states).

The first condition for S′ to be parsimoniously evolvable from S in one step is that S′ is

strictly better than S against S itself (condition 1). This implies that S′, at least in one of the

two states i ∈ {A,B}, makes a request qi ∈ R, where R =]q, 1−q] if q < 0.5 and R =]0, 1−q]

if q > 0.5. Since S′ by definition makes a different request in the other state j ̸= i, one of its

two requests is necessarily strictly better than the other. If qj /∈ R, then qi is strictly better

than qj , and if qj ∈ R, then the larger of the two requests is strictly better than the other. So

there will always be one of the two unconditional strategies, SA or SB , that is strictly better

than S′ against the resident, i.e. ∀(qA, qB), P (SA, S) > P (S′, S) or P (SB , S) > P (S′, S).

At least one of the two conditions 2 or 3 is not true. Therefore, S′ is not parsimoniously

evolvable from S in one step.

Extending the reasoning to multiple evolutionary steps, a strategy that discriminates

between the two states can never be parsimoniously evolvable from an ancestral strategy

that does not. That is, from any ancestral unconditional strategy, the only evolutionarily

parsimonious equilibrium is the symmetric strategy that demands q∗ = 0.5 in both states.

All asymmetric equilibria are excluded by the parsimony condition, because they require

that individuals have the ability to condition their actions on their state, and the only

selection pressure that can lead to the evolution of such an ability comes from the pre-

existence of the same ability in other players. Such circularity allows asymmetric strategies

to be evolutionarily stable, but it does not allow evolution to converge on them.
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3.2 Hawk-Dove game

This second example will be contrasted with the first to understand the conditions under

which evolution can produce a symmetry breaking.

Let us also consider two players, previously distinguished by a move by Nature, playing

a Hawk-Dove game with the payoff given in Table 1. Here we consider the full set of mixed

strategies. That is, the strategy played by each individual is characterized by a pair (pA, pB),

where each pi ∈ [0, 1] is the probability of playing Hawk when in state i.

Hawk Dove
Hawk P T
Dove S R

Table 1: Payoff matrix of
the Hawk-Dove game. Pa-
rameters must respect T >
R > S > P

Consider an ancestral strategy (p, p) that plays Hawk with the same probability p ∈ [0, 1]

regardless of its state. By the same reasoning as in the divide-the-dollar game above, since

this strategy behaves identically regardless of its state, there can be no selection pressure to

condition one’s action on one’s state when playing against it. The fixation of parsimonious

adaptive mutations from this ancestral strategy can therefore only lead to a strategy that is

itself unconditional. Thus, evolution converges to a strategy profile where both players play

Hawk with an intermediate probability given by pA = pB = p∗ = (T −R)/(T + S − P −R).

The difference with the divide-the-dollar game is what can happen once this situation is

reached. Consider the effect of introducing an uncontrollable infinitesimal disparity in the

respective probabilities of playing Hawk in states A and B. More specifically, suppose that

for some reason all players in state A tend to play Hawk a little more often than players in

state B, i.e., we have pA = p∗ + δ and pB = p∗ − δ, where δ ≪ 1 and δ > 0.

Now consider a mutant strategy that is able to condition its behavior on its state, so

that it plays Hawk with probability pA > p∗ when in state A, and pB < p∗ when in state

B. We want to find out if this mutant is parsimoniously evolvable from the resident (p∗, p∗)

in one step.

To the first order in δ, the net advantage of the mutant over the resident is 1
2 (T + S −

P −R)(pA − pB)δ, which is strictly positive if pA > pB . Thus the condition 1 is satisfied.

Since the strategy (p∗, p∗) is defined by the fact that playing Hawk or Dove against it is

strictly neutral, the two unconditional mutants playing (pA, pA) and (pB , pB) are themselves

neutral against (p∗, p∗). Therefore, the conditional strategy (pA, pB) has a net advantage
1
2 (T + S − P −R)(pA − pB)δ > 0 over them. So both conditions 2 and 3 are fulfilled.

In sum, the conditional strategy (pA, pB) is parsimoniously evolvable from the ancestral

strategy (p∗, p∗) as long as there is some infinitesimal difference in the probability that
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the ancestral strategy plays Hawk on each state. Once symmetry breaking is achieved,

the resulting evolutionarily parsimonious equilibrium is a strategy in which players fully

condition their behavior on their state. That is, from the initial ancestor (p, p), two strategy

profiles are evolutionarily parsimonious equilibria: (1, 0) and (0, 1), corresponding to the

so-called Bourgeois strategy from evolutionary biology (Maynard Smith and Parker 1976)

and to the more general notion of correlated equilibrium in game theory (Aumann 1974;

Aumann 1998).

The emergence of an arbitrary asymmetry from a symmetric ancestral strategy is possible

here because even an infinitesimally small initial asymmetry is sufficient to select for a strict,

non-infinitesimal, divergence between the two states. In other words, selection will amplify

even the smallest difference between players, allowing evolutionary convergence toward a

state-dependent strategy.

In the divide-the-dollar game considered earlier, on the other hand, an initial infinitesimal

difference between players A and B could only select for the same infinitesimal difference,

not for an increase in that difference. Thus, there could be no evolutionary path from

initially state-independent to state-dependent strategies.

Intuitively, role specialization is a “reasonable” evolutionary outcome in a game where

coordination is useful because it allows players to solve an actual problem they face, as in

the hawk-dove game (or other coordination games). In contrast, role specialization is only

an unnecessary complication in games where coordination has no functional use, such as

when sharing a divisible resource, since it would only add unnecessary complexity to the

players’ decision mechanism. The concept of adaptive parsimony accounts for this intuitive

difference between the two types of situations.

3.3 Ultimatum game

Consider two asymmetric players, one playing the role of proposer and the other playing

the role of responder, who need to share a resource of size 1. To do this, the proposer first

offers to give a fraction p of the resource to the responder, who then decides whether to

accept or reject the offer. If the offer is accepted, the proposer and the responder receive

1−p and p respectively, otherwise both players receive 0. The proposer’s strategy is defined

by an offer p ∈ [0, 1], while the responder’s strategy is a mapping from the set [0, 1] to the

set {accept, reject}.
All pairs of strategies where the proposer offers p∗ ∈ [0, 1] and the responder accepts p∗

and rejects any p < p∗ are Nash equilibrium profiles, since no deviation is advantageous.

Among these equilibria, however, the equilibrium profile in which the proposer offers p∗ = 0

and the responder accepts any offer, no matter how small, is more “reasonable” than the

others because it is consistent with the strategic asymmetry of this game.

This intuition that one particular equilibrium is more reasonable than others is well

captured by the concept of subgame perfection. Any equilibrium in which the responder
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rejects some strictly positive offers implies that he behaves suboptimally in all subgames in

which these offers are made, and is therefore not subgame perfect.

The concept of adaptive parsimony captures the same intuition in a more evolutionarily

relevant way. The responder’s acceptance of some offers and rejection of others involves a

conditional decision mechanism. He must be able to evaluate the offers made to him and

make a decision based on their value. In other words, any strategy that consists of the

responder accepting some offers and rejecting others contains more conditionality than a

strategy that consists of accepting or rejecting all offers. The question, then, is whether a

responder’s strategy with conditional acceptance is parsimoniously evolvable from an ances-

tral strategy without such conditionality.

First, consider an ancestral strategy profile where the proposer offers p0 ∈ [0, 1] and the

responder accepts all offers unconditionally. Then consider a mutant responder that accepts

offers only if they are strictly above a threshold x > 0. The mutational distance between this

mutant and the resident is strictly positive, while the mutant is at best neutral (if x < p0)

and at worst counter-selected (if x ≥ p0). Therefore, condition 4 cannot be satisfied.

Now consider an ancestral strategy profile S where the proposer offers p0 > 0 and the

responder unconditionally rejects all offers. Then consider a conditional responder strategy

S′ that consists of accepting offers only if they are strictly above a threshold x ∈]0, 1[. And

consider a third responder strategy S′′, which consists of accepting all offers unconditionally.

If x < p0, then we have P (S′, S) > P (S, S), i.e. the conditional acceptor mutant S′ is

strictly favored by selection in a resident population of S, because it accepts the offer p0

instead of rejecting it. However, the unconditional mutant S′′ is just as good as S′, i.e.

P (S′′, S) = P (S′, S). In terms of mutational distance, we have d(S′, S) > d(S′′, S), because

S′ has both one additional state and two different transitions (see Appendix A and Figure

1), while S′′ only plays a different action in its single state. Therefore, condition 4 cannot

be satisfied.

From any unconditional ancestral strategy profile where the proposer offers p0 > 0,

the only evolutionarily parsimonious equilibrium is where the proposer offers the minimum

possible offer p0 ≈ 0 and the responder accepts any offer.

One way to see this is to recognize that in the absence of reciprocity or genetic relatedness,

there is never any selection pressure on individuals to be able to reject useful resources

available in their environment. The only selection pressure on individuals is to exploit as

many resources as possible, whether or not they originally came from another individual

who gave them away in the first place.

3.4 Repeated prisoner’s dilemma

Consider a discrete repeated prisoner’s dilemma with two symmetric players who have the

choice at each stage of the game between cooperating (C) and defecting (D), and consider

the family of strategies called Grim, which consists in responding to all deviations, including
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Figure 1: Strategies in the ultimatum game represented as fi-
nite automata. The distance between unconditional acceptance and
unconditional rejection is ∆B = 1. The distance between either uncondi-
tional acceptance or unconditional rejection and conditional acceptance
is ∆E +∆T = 1 + 2.

deviations by the player herself, with an infinite series of defections.

Let us start with the simplest strategy of this family, here called Grim1, which consists

of the following behavioral rule: Play C at every stage of the game, if you and your partner

have always played according to Grim1 in the past, otherwise play D (see Figure 2 for a

representation of this strategy and other strategies in the repeated prisoner’s dilemma as

finite automata). If the game has a sufficiently high continuation probability, then Grim1 is

a Nash equilibrium and a subgame perfect equilibrium. Deviating from Grim1 by playing D

when no one has ever deviated leads to the end of cooperation, which is costly. Conversely,

deviating from Grim1 by playing C when you should have played D has an immediate cost

and no benefit, since your partner will play Grim1 and thus defect in all future stage games

anyway.

For the same reason, many other strategies in the Grim family are also Nash and subgame

perfect equilibria. For example, consider Grimeven, which consists of unconditionally playing

D every odd round and C every even round as long as no one has ever deviated from Grimeven.

That is, Grimeven is a Grim1 that discounts every odd-stage game. It is also subgame perfect,

since no deviation can be beneficial before a Grimeven. By the same logic, any Grimx that

cooperates a fraction x ∈ [0, 1] of the stage games is also subgame perfect.

In addition, if a prior move by Nature breaks the symmetry between the two players, then

any Grimx,y in which player A cooperates a fraction x of the time and player B cooperates a

fraction y of the time is a subgame perfect equilibrium as long as the payoff to both players

is greater than what they would gain by not cooperating at all.

An intuitive way to understand this multiplicity of equilibria is to see that there is an

element of coordination in reciprocal cooperation (Boyd 2006). To be in equilibrium is to

cooperate in the way “required” by one’s partner. If the partner requires cooperation only

13



Figure 2: Strategies in the prisoner’s dilemma represented as
finite automata. Mutational distances are as follows: d(AllC,AllD) = 1,
d(AllC,TFT) = d(AllD,TFT) = 4, d(AllC, Grim) = 4.

in certain rounds, then cooperation is adaptive in those rounds and not in others.

This diversity, known as the folk theorem, is present in all repeated games. Provided a

game is repeated a sufficiently large number of times, all payoff profiles can be supported

by a subgame perfect equilibrium if they are individually rational, i.e., if they compensate

all players for their outside options.

From a biological point of view, this multiplicity seems like a strange complication.

Why should individuals refuse to cooperate in some rounds? Why should natural selection

favor strategies of partial cooperation if they only add unnecessary complexity? Again, the

concept of evolutionary parsimony captures this biological intuition.

Partial cooperation strategies condition their action on a physically perceptible property

of stage games (e.g., round parity), even though this property does not predict the payoff

profile of the stage game. The only selection pressure that can make such an arbitrary con-

ditionality adaptive comes from the existence of the same conditionality in others. For this

reason, a strategy with an arbitrary conditionality cannot be an evolutionarily parsimonious

equilibrium from an ancestral strategy without the conditionality.

The problem, however, is that the repeated prisoner’s dilemma is not the right model

to formalize the consequences of this equilibrium refinement. Starting from an ancestral

strategy of pure defection, the only evolutionarily parsimonious equilibrium is actually pure

defection itself. Even the simple cooperation strategy Grim1 is not an evolutionarily par-
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simonious equilibrium from an unconditional ancestor. Thus, the concept of parsimony

eliminates much more than strategies of partial cooperation. It eliminates any possibility

of reciprocal cooperation. In fact, this negative result is a mere consequence of the fact

that pure defection is a Nash equilibrium in the repeated prisoner’s dilemma. By defini-

tion, the only evolutionarily parsimonious equilibrium from a Nash equilibrium is this Nash

equilibrium itself.

The fact that pure defection is a Nash equilibrium in the repeated prisoner’s dilemma is

generally not considered a problem for the evolution of reciprocity in this game. Many mod-

els in evolutionary game theory suggest that stochasticity may be sufficient to escape this

equilibrium and reach more cooperative ones (André and Day 2007; Binmore and Samuelson

1992; Fudenberg and Maskin 1990; Nowak, Sasaki, et al. 2004). The concept of parsimony,

on the other hand, attempts to capture the idea that complex biological functions cannot

emerge without selective pressures to shape them. In the particular case of the repeated

prisoner’s dilemma, it implies that, contrary to what these models suggest, the stochastic

transition from pure defection to conditional cooperation is impossible, since it would imply

that the ability to cooperate conditionally should emerge in a fully functional form by mu-

tation. I have already formalized elsewhere why this is unlikely (André 2014) and tested it

in a simulated robotics model (André and Nolfi 2016). The notion of parsimony formalizes

the consequences of this constraint in a more general framework.

3.5 Investment game: from variable by-products to reciprocity

Reciprocal cooperation can be supported by an evolutionarily parsimonious equilibrium

from a non-reciprocal ancestor, provided that we consider a game in which individuals are

directly under selection to cooperate conditionally, independent of the prior existence of

such conditionality in others. We can illustrate this in a simple game that I will briefly

describe here and analyze in more detail in Appendix B (see also Geoffroy and André 2021).

Consider a repeated game between two individuals, called the investor and the responder.

The game is preceded by a move by Nature that determines the type of stage game that

the individuals will then play repeatedly. Three types of stage games are possible: (1) The

stage game can be a by-product cooperation game, in which both the responder and the

investor automatically benefit from the investment. (2) The stage game can be a trust game,

in which the investment has a net cost to the investor, but the responder can reward him

afterwards and still make a net profit. (3) The stage game can be an inefficient cooperation

game, in which the investment has a net cost to the investor and the responder cannot

reward him in a mutually beneficial way.

Regardless of the game type chosen by Nature, the investor has two possible actions in

each round: Invest or Decline. Then, if the investor decides to invest in a given round, the

responder has two possible actions: Reward or Defect. If the investor chooses to decline,

then the responder has no decision to make.
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I assume that only the responder knows the type of game being played, which captures

the essence of what makes reputation relevant. The responder is informed about his own

payoffs, and the investor can only discover them indirectly by observing the responder’s

behavior.

Consider a strategy profile (I∗, R∗), where (i) the investor tests each game for one round

and continues to invest in subsequent rounds only if there is a net gain, and (ii) the responder

rewards the investor only if the game is a trust game, i.e., only if rewarding is useful to ensure

the investor’s continued participation (see Figure 3 for a representation of this strategy as

a finite automaton).

Figure 3: Strategies in the investment game represented as finite
automata. Mutational distances are d(I∗, I0) = 5, and d(R∗, R0) = 4.

One can verify that, provided the probability that the game is an inefficient cooperation

game is not too high, the profile (I∗, R∗) is a Nash equilibrium, and that, contrary to Grim

or TFT in the prisoner’s dilemma, if the probability that the game is a by-product game is

high enough, (I∗, R∗) is parsimoniously evolvable from the pure defection profile (I0, R0).

This is the case because the conditionality of the investor’s behavior has an adaptive value

in itself. Even if the responder is a pure defector, it is in the investor’s interest to test an

initial round of each game to see if the game is a by-product cooperation game.

Moreover, like the repeated prisoner’s dilemma, this game has a large variety of subgame

perfect equilibria in which the investor (i) invests in every round if he is in a by-product

game, (ii) never invests if he is in an inefficient cooperation game, and (iii) invests in a

variable fraction of rounds if he is in a trust game. One extreme equilibrium is where the
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investor invests in all rounds of the trust game and the responder systematically rewards

him. Another extreme is where the investor never invests in the trust game and the re-

sponder never rewards him. And all possible intermediate equilibria exist between these

two extremes, where the investor only invests in some rounds of the trust game and the

responder only rewards these specific rounds and no others (see Appendix B).

Crucially, however, none of the intermediate equilibria are parsimonious. There are only

two parsimonious equilibria. The first is fully cooperative: individuals cooperate in all

rounds of the by-product game and extend this cooperation to all rounds of the trust game,

which corresponds to the reciprocal cooperation profile (I∗, R∗) defined above. The second

is completely uncooperative: individuals cooperate only in the by-product game and never

extend this cooperation to the trust game, which corresponds to the complete absence of

reciprocal cooperation. Intermediate equilibria are not parsimonious because cooperating

in some rounds but not in others implies the ability to condition one’s behavior on arbitrary

properties of the environment, which can never be gradually shaped by selection.

Finally, it is interesting to note that the parsimonious cooperative equilibrium profile

(I∗, R∗) is not subgame perfect. As in all repeated games, subgame perfection is achieved

when individuals are equipped with a self-punishing mechanism that ensures that sticking

to the strategy after any deviation is individually rational. Such a self-punishing mechanism

cannot be parsimonious because it also implies a conditional ability that cannot be gradually

shaped by selection.

In sum, the investment game shows that the concept of adaptive parsimony implies that

the ecological conditions under which reciprocal cooperation can emerge are not consistent

with the prisoner’s dilemma. Rather, they correspond to a situation in which individuals

initially cooperate because they have some degree of common interest or interdependence

with each other, i.e. they play a by-product game, and later extend this cooperation to

a trust game as well. This is consistent with earlier arguments by Tomasello et al. (2012)

(see also West et al. 2007), and formal approaches by André (2015), Ito et al. (2017), and

Geoffroy and André (2021). Individuals may either extend their cooperation fully to the

trust game (cooperative equilibrium) or not at all (uncooperative equilibrium), but they will

never condition their cooperation on arbitrary properties of the environment, since evolution

cannot cause individuals of a species to arbitrarily distinguish between situations that are

evolutionarily and ecologically identical.

4 Discussion

In this article, I have argued that biological evolution cannot actually produce the wide

variety of Nash equilibria predicted by game theory. Most equilibrium strategies, such as

Grim-type strategies in repeated games, cannot evolve through the gradual accumulation of

adaptive mutations because they involve arbitrary rules of behavior that are never under di-

rectional selection. I have proposed an equilibrium refinement, the concept of evolutionarily
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parsimonious equilibrium, that captures this constraint. This refinement does eliminate the

vast majority of equilibria, and the equilibria it preserves are more biologically reasonable

than others. I will now end with a brief discussion on the relationship between the concept

of an evolutionarily parsimonious equilibrium and other approaches to equilibrium selection

that exist in the literature.

4.1 The cost of complexity

The concept of evolutionarily parsimonious equilibrium states that a complex conditional

strategy cannot evolve if it has no added value over a simpler constitutive strategy. In

this respect, it is closely related to game-theoretic approaches that consider the cost of

complexity in the characterization of equilibria (Abreu and Rubinstein 1988; Banks and

Sundaram 1990; Binmore and Samuelson 1992; Cooper 1996; Van Veelen and Garcıa 2019;

Volij 2002).

The difference between the two approaches, however, is that considering a cost of com-

plexity only eliminates conditional capabilities that are superfluous in equilibrium. In con-

trast, the concept of evolutionary parsimony also eliminates the possibility that superfluous

conditional abilities play a role in the path to equilibrium. Even behavioral contingencies

that end up being useful in equilibrium cannot be the result of evolution if there is no

evolutionary pathway in which they have adaptive value when they first appear.

This distinction has fundamental implications. For example, in the repeated prisoner’s

dilemma, when noise is added, every strategy in the Grim family is an equilibrium ac-

cording to the complexity cost criterion. On the contrary, even with noise, Grim is not

evolutionarily parsimonious from full defection because it implies the emergence of a con-

ditional ability without an advantage. Similarly, in the divide-the-dollar game (section 3.1)

or the investment game (section 3.5), considering a cost of complexity does not reduce the

diversity of equilibria, since all conditionalities, even arbitrary ones, are used in equilibrium.

On the contrary, the parsimony approach eliminates most equilibria, since it stipulates that

evolution cannot converge to arbitrary conditional capacities.

4.2 Subgame perfection

Subgame perfection requires that a strategy respond optimally to all possible histories,

including histories that are not reached in equilibrium. This is related to the constraint

imposed by the notion of parsimony that an equilibrium strategy must contain conditional

capabilities that were adaptive on the path to equilibrium, i.e., under conditions other than

those realized at equilibrium. For example, in the ultimatum game, the perfection condition

and the parsimony condition have the same effect for the same reason. From the perfection

point of view, rejecting an offer in equilibrium is suboptimal (even if it never happens).

From the parsimony point of view: in the course of evolution, it can never be adaptive to

reject offers, so evolution cannot converge on such a strategy. For this reason, in practice,
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the notion of perfection often leads to equilibria that are biologically reasonable because

they are also parsimonious.

But the concepts of parsimony and perfection are also profoundly different. Perfection

implies that a strategy responds optimally in all possible histories, assuming that the contin-

uation game is played with a partner who plays the equilibrium strategy itself. In contrast,

parsimony implies that the equilibrium strategy is adaptive in interactions with individuals

playing other strategies encountered on the path to equilibrium, and it does not imply that

a strategy responds optimally in histories that never occur in equilibrium. This has three

consequences.

First, most perfect equilibria are not parsimonious. This is typically the case in repeated

games. The Grim family in the repeated prisoner’s dilemma, or the partial cooperation

strategies in the investment game, are subgame perfect because they are optimal in all his-

tories. But they are not parsimonious because they involve conditional capabilities that have

no adaptive value on the path to equilibrium. This is why parsimony, but not perfection,

dramatically reduces the diversity of equilibria in repeated games.

Second, parsimonious equilibria are often imperfect, since parsimony does not imply that

a strategy responds optimally to game histories that never occur. This makes sense for a

concept that seeks to reflect the consequences of biological evolution. Any action taken on

a history that never occurs is neutral and has no reason to be optimized by selection. The

concept of parsimony recognizes that evolution can lead to mismatches when organisms are

placed in non-ecological situations.

Third, in repeated games, the criterion of parsimony is incompatible with perfection.

Perfection is achieved thanks to a “trick” of strategies of the Grim type, which consists in

self-punishment when one has deviated. Such a trick may well constitute an equilibrium

when it is present, but it is never favored by evolution when it is initially absent. Therefore,

in repeated games, evolution cannot converge to perfect strategies.

4.3 Stationary equilibria

Another equilibrium refinement considered in game theory and related to parsimony is the

notion of stationarity. A stationary strategy is one in which players’ actions depend only

on the current state of the game and not on the history of past actions. Although it would

require further analysis, stationarity is likely a consequence of parsimony. A stationary

strategy does not condition its actions on arbitrary features of the past history of the game

(such as having respected a complex pattern of actions in the past), but only on ecologically

relevant properties of the environment, which is the essence of the idea of parsimony. For

this reason, it is reasonable to expect that the concept of parsimony would also reduce

the diversity of equilibria in the n-person alternating bargaining game. With n > 2, this

game has a multiplicity of subgame perfect equilibria, but only one stationary equilibrium

(Chatterjee et al. 1999), and probably only one evolutionarily parsimonious equilibrium
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from a stationary ancestor, which would consist in dividing the resource into n equal shares.
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Appendix

A Measuring mutational distance with finite automata

Here I seek a formal approach to obtaining a proxy for the mutational distance between

two strategies. No approach is perfect, since the true mutational distance is a biochemical

variable that cannot be measured from a simple model.

To this aim, I first characterize each strategy as a finite-state machine (see Figures 1,

2, 3, 4, and 5). For the sake of conceptual clarity (and without losing generality), I always

consider an initial state before the start of the game, called the initialization state, which is

present in all games and all strategies.

To measure the distance between two strategies, I then have to solve an alignment

problem. To do this, I try all possible alignments between the two strategies and define the

distance between them as the smallest distance found in all these trials, i.e. with the best

possible alignment. More precisely, I proceed as follows:

Let there be two strategies S1 and S2 with k1 and k2 states respectively (with k2k1),

and let there be an alignment A defined as a bijective mapping from the set of states of S1

to the image of that set in the states of S2 (i.e, each state of S1 has one and only one image

in S2), subject only to the constraint that the image of the initialization state of S1 must

be the initialization state of S2. Any pair consisting of a state of S1 and its image in S2

according to A is called a pair of homologous states according to A. States in S2 which are

not the image of any state in S1 are said to be non-homologous according to A.

I then measure the following 4 quantities with this alignment:

• ∆B : Number of pairs of homologous states where the behavior of S2 is different from

that of S1.

• ∆E : Number of non-homologous states of S2 (k2 − k1).
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• ∆N : Total number of transitions from non-homologous states of S2.

• ∆T : Number of differences between the two strategies among transitions from homol-

ogous states.

The distance between S1 and S2 according to A is given by dA(S1, S2) = ∆B+∆E∆N +

∆T . The distance between S1 and S2 is then obtained by minimizing dA over all possible

alignments, i.e., d(S1, S2) = min
A

dA(S1, S2). Figures 1, 2 and 3 show examples of this

approach.

In principle, another possible approach to measuring the distance between two strategies

might be to consider all possible information states in the game from the start, not just those

that each strategy really distinguishes, and to count the number of such states in which the

two strategies play different actions.

For example, in the repeated prisoner’s dilemma with memory 1, the individuals can

be in two information states: one’s partner has just cooperated or one’s partner has just

defected. In this case, pure defection is defined by the pair of actions (D,D) since it plays

D in each of these states, pure cooperation is defined by the pair (C,C) and tit-for-tat is

defined as an intermediate strategy that plays C only in one of the two states and D in

the other, i.e., by the pair (C,D). By this measure of distance, full defection would be

considered closer to tit-for-tat than to full cooperation.

This way of measuring distances is implicitly used in many models of evolutionary game

theory (e.g., Lehmann and Keller 2006; Nowak and Sigmund 1992), and it has been shown

to have important implications for evolutionary dynamics (André 2014; Garćıa and Traulsen

2012). While this may be considered a reasonable way to describe strategies, I contend that

it is not reasonable from a mechanistic point of view. From a machine that constitutively

performs a single action, creating a machine that constitutively performs another action

requires fewer modifications than creating a machine that can first measure a property of the

environment and then respond to that property by conditionally performing two possible

actions. This insight is captured by the measure of distance I propose above. By this

measure, full defection is indeed closer to full cooperation than to tit-for-tat (see Figure 2)

because full cooperation simply plays a different action than full defection in its single state,

whereas tit-for-tat has both 1 additional state and 3 modified or supplementary transitions.

B Investment game

The investment game is an asymmetric repeated game played by two individuals, called the

Investor and the Responder. The game is preceded by a move by Nature that randomly

determines the type of stage game that the two individuals will play repeatedly (see main

text, section 3.5). Three types of stage games are possible: the stage game can be a by-

product cooperation game, a trust game or an inefficient cooperation game, with respectively

probabilities pb, pt and pi, all strictly positive.
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Regardless of the game type chosen by Nature, the investor has two possible actions in

each round: Invest or Decline. Then, if the investor chooses to invest in a given round, the

responder has two possible actions: Reward or Defect. If the investor chooses to decline,

then the responder has no decision to make.

In each round of the game, several events are possible: (1) “Invest-No-Reward”, when

the investor has invested and received no reward, neither from his partner nor from Nature.

(2) “Invest-Reward”, when the investor has invested and received a reward, either from his

partner or from Nature, this event being itself the union of two events: (3) “Invest-Natural-

Reward” and (4) “Invest-Social-Reward”. (5) “Decline”, when the investor has not invested

in this round.

The payoffs for each game are as follows:

In the trust game, the cost of investing is c, the benefit of receiving the investment is b,

the cost of rewarding is r, and the benefit of receiving the reward is also r (i.e., the reward

is a conservative transfer), and we assume that we have the relation b > r > c > 0.

In the by-product game, the automatic benefit of investing is a > 0, and all other

parameters are as in the trust game.

In the inefficient cooperation game, for simplicity and without loss of generality, I assume

that the benefit of receiving the investment is 0, and that all other parameters are as in the

trust game.

Finally, for simplicity and without loss of generality, I assume that the game is repeated

for an expected number of rounds n, which is infinite. Thus, any strictly positive benefit

accrued over the whole game will always be greater than any finite cost paid only once.

This assumption could easily be relaxed. n would then simply have to be greater than

some finite computable threshold. However, this would make the presentation unnecessarily

cumbersome.

B.1 Investors cannot distinguish the two types of rewards

The investor can receive two types of rewards in this game: a social reward, which he receives

when he is in a trust game if the responder decides to reward him, and a natural reward,

which he receives automatically when he is in a by-product cooperation game. In this first

version of the model, I assume for simplicity that, for some exogenous reason beyond his

control, it is impossible for the investor to distinguish between the two types of reward.

Apart from this restriction, both players have access to all information about past actions.

Each strategy profile consists of a pair of strategies, the investor’s strategy and the

responder’s strategy. Consider the ancestral strategy profile (I0, R0), where the investor

unconditionally plays Decline and the responder unconditionally plays Defect. This strategy

is represented by a finite automaton in Figure 3.

Consider then the strategy profile S∗ = (I∗, R∗) (see Figure 3), defined as follows:

1. Investor’s strategy I∗:
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• If the “Invest-No-reward” event never happened in the past, play Invest

• In all other situations play Decline

2. Responder’s strategy R∗:

• If the first round of the game was a by-product cooperation game or an inefficient

cooperation game, play Defect.

• If the first round of the game was a trust game, play Reward

B.1.1 S∗ is Nash equilibrium

On the investor’s side, if the investor invests in the first round, he can discover the nature

of the game he is playing, so in the long run he will win n[pt(r − c) + pba]− pic, whereas if

he does not invest, he gets 0, which is always lower under our assumptions. Thus, deviating

from I∗ by not investing in the first round is costly. In subsequent rounds, if there have

been no “invest-no-reward” events, then the game is a by-product cooperation game or a

trust game, and in this case, in every round, the investment payoff is strictly positive in

expectation, so there is no benefit to deviating from I∗. On the other hand, if there has

been at least one ”invest-no-reward” event in the past, then the game is an innefficient

cooperation game, and in this case the expected payoff of investing is negative, so there is

no point in deviating from I∗.

On the responder’s side, if the first round of the game is a by-product cooperation game

or an innefficient cooperation game, then every round will be a by-product cooperation game

or an innefficient cooperation game, since Nature doesn’t change its mind. In this case, there

is no profit in rewarding the investor, either because the investor will invest in every round

anyway (if the game is a by-product cooperation game), or because his investment will not

yield a net profit (if the game is an innefficient cooperation game). Therefore, there is no

profit to be made by deviating from R∗. Conversely, if the first round is a trust game,

rewarding the investor leads to a payoff n(b− r) > 0, while deviating leads to a zero payoff.

In conclusion, no deviation is strictly favored on either side. The profile (I∗, R∗) is a

Nash equilibrium.

B.1.2 S∗ is an evolutionarily parsimonious equilibrium from S0

To show that the strategy profile (I∗, R∗) is parsimoniously evolvable from (I0, R0), I will

first show that the profile (I∗, R0) is parsimoniously evolvable from (I0, R0) in one step, and

then show that the profile (I∗, R∗) is parsimoniously evolvable from (I∗, R0) in one step.

To prove that (I∗, R0) is parsimoniously evolvable from (I0, R0) in one step, one must

show that there is no alternative strategy I ′ such that d(I ′, I0) < d(I0, I
∗) and P (I ′, R0) ≥

P (I∗, R0), where P (I∗, R0) = npba − (pt + pi)c, which is strictly greater than zero under

our assumption.
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For a strategy to be closer to I0 than I∗, it must necessarily give up its conditionality.

So there are only two possibilities. Either I ′ plays Decline unconditionally in all rounds,

i.e. I ′ = I0. In this case P (I ′, R0) = 0, which by hypothesis is less than P (I∗, R0). Or I ′

plays Invest unconditionally in all rounds. Its distance from I0 is then d(I ′, I0) = 1, which

is smaller than d(I∗, I0) = 5. But I ′ gets a payoff P (I ′, R0) = n[−(pt + pi)c+ pba], which is

lower than P (I∗, R0), because I
′ repeatedly invests in games where it gets a negative payoff.

Tthere is no alternative strategy I ′ such that d(I ′, I0) < d(I0, I
∗) and P (I ′, R0) ≥

P (I∗, R0). The profile (I∗, R0) is thus parsimoniously evolvable from (I0, R0) in one step.

To prove that (I∗, R∗) is parsimoniously evolvable from (I∗, R0) in one step, one must

show that there is no alternative strategyR′ such that d(R′, R0) < d(R∗, R0) and P (R′, I∗) ≥
P (R∗, I∗), where P (R∗, I∗) = n[pbb+ pt(b− r)], with b > r > c and n(b− r) > b.

Again, there are only two possibilities. Either R′ plays Defect unconditionally in all

rounds, i.e. R′ = R0. In this case, P (R′, I∗) = (npb + pt)b. Since we have n(b− r) > b, this

payoff is strictly lower than P (R∗, I∗), i.e., it is always worthwhile for a responder to reward

in the trust game in order to receive long-term investments, rather than taking advantage

of a single round. Or R′ plays Reward unconditionally in all rounds. In this case we have

the distance d(R′, R0) = 1, which is smaller than d(R∗, R0) = 4, but we have the payoff

P (R′, I∗) = n[(pb + pt)(b − r) − pir], which is also strictly less than P (R∗, I∗) as long as

r > 0 and pi + pb > 0 (which is the case by assumption).

There is no alternative strategy R′ such that d(R′, R0) < d(R∗, R0) and P (R′, I∗) ≥
P (R∗, I∗). The profile (I∗, R∗) is thus parsimoniously evolvable from (I∗, R0) in one step.

In conclusion, the strategy profile (I∗, R∗) is parsimoniously evolvable (in two steps)

from (I0, R0). Since (I
∗, R∗) is also a Nash equilibrium, it is an evolutionarily parsimonious

equilibrium from (I0, R0).

B.1.3 S∗ is not Subgame perfect

It is easy to see that (I∗, R∗) is not a subgame perfect strategy profile. In the out-of-

equilibrium situation where a responder deviates from R∗ and plays Defect once in a trust

game, the strategy I∗ dictates that the investor should then play Decline in all future rounds

of the game, even though the best response would be to play Invest, since the responder

will return to the R∗ profile and reward all future investments.

A more complex strategy on the responder’s side, R∗∗, would be necessary to obtain

a strategy profile (I∗, R∗∗) that is subgame perfect. To achieve this, R∗∗ must contain a

self-punishing principle as follows:

• If the first round of the game was a by-product cooperation game or an inefficient

cooperation game, play Defect.

• If the first round of the game was a trust game and the responder has always rewarded

in the past, play Reward.
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• If the first round of the game was a trust game, but the responder has defected at

least once in the past, play Defect

However, since the behavior of R∗∗ depends on a larger number of parameters than

R∗, the mutational distance between R∗∗ and R0 is larger than between R∗ and R0. In

the framework of finite automata, we get the distance d(R∗∗, R0) = 6, whereas we had

d(R∗, R0) = 4 (see Figure 4).

Figure 4: Subgame perfect strategy on
the responder’s side in the investment
game

So we have P (R∗, I∗) = P (R∗∗, I∗), but d(R∗, R0) < d(R∗∗, R0), i.e. compared to R∗∗,

R∗ is both closer to R0 and just as good in terms of payoff. The profile (I∗, R∗∗) is therefore

not parsimoniously evolvable from (I∗, R0) in one step.

More generally, the responder’s ability to punish himself gives him strictly no advantage

under any circumstances. It is at best neutral. This does not prevent this strategy profile

from being subgame-perfect, but it does prevent it from being an evolutionarily parsimonious

equilibrium from an ancestor that does not already have the self-punishment trait, since

there are no circumstances in which this ability is favored by directional selection.

B.2 Investors can distinguish the two types of rewards

In this second version of the model, the investor can distinguish two types of rewards: the

natural rewards that he automatically receives in the by-product cooperation game, and the

social rewards that he receives from trustworthy partners in the trust game.
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Consider a subset A ⊂ Z+ of strictly positive integers, and consider the strategy profile

(I∗A, R
∗
A) defined as follows (see Figure 5 for a representation as finite automata):

1. Investor’s strategy I∗A:

• Play Invest if at least one of the following three conditions is true:

– This is the first round of the game.

– There is at least one round in the past where the ”Invest-Natural-Reward”

event occurred

– The current round number belongs to A, and there are no past rounds that

belong to {A ∪ 1} in which the event ”Invest-No-Reward” occurred.

• Play Decline in all other situations

2. Responder’s strategy R∗
A:

• Play Reward if the current round number belongs to A and the first stage game

was a trust game.

• Play Defect in all other situations

Figure 5: Partial cooperation strategies in the investment game.

Note that with this definition, if the subset A is the set of all natural numbers, then the

strategy profile becomes (I∗Z+ , R∗
Z+) = (I∗, R∗).
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B.2.1 For any infinite size A ⊂ Z+, the profile (I∗A, R
∗
A) is a Nash equilibrium

Consider an infinite size A ⊂ Z+. Since I assume that the game is repeated an infinite

number of times n, it is also repeated an infinite number of times in rounds belonging to A.

And, whatever a round number k, since A is infinite, there are an infinite number of rounds

after k belonging to A. The game is therefore repeated an infinite number of times in A

after k.

Here I aim to show that (I∗A, R
∗
A) is a Nash equilibrium. To this end, I consider all possible

deviations on both sides and verify that they cannot yield a strictly positive benefit.

On the investor’s side:

(1) In the first round of a game, I∗A dictates to play Invest. If the investor plays Invest,

he can discover the type of game he is playing, and so in the long run he will make a strictly

positive profit as long as the game is repeated for long enough, which we have assumed.

Therefore, deviating from I∗A is costly.

(2) If there is at least one round in the past in which the event ”Invest-Natural-Reward”

occurred, I∗A dictates to play Invest. If this situation is reached, it implies that every stage

game is a by-product game, because Nature does not change its mind. Thus, in every stage

game, investing yields payoff a > 0, so there is no advantage in deviating from I∗A.

(3) If the current round number belongs to A, and there are no past rounds belonging

to A in which the ”Invest-No-Reward” event occurred, I∗A dictates to play Invest. If this

situation is reached, it implies that either the partner or Nature will reward every investment,

so there is no point in deviating from I∗A.

(4) If the current round number does not belong toA and the investor has never received a

natural reward in the past, I∗A dictates to play Decline. If this situation is reached, it implies

that neither Nature nor the partner will reward this investment. So there is no point to

deviate from I∗A.

(5) If the current round number belongs to A, but there is at least one past round

belonging to A in which the event ”Invest-No-Reward” occurred, I∗A dictates to play Decline.

If this situation is reached, it implies that the stage game is an inefficient cooperation game,

in which case the partner will not reward the investment. So there is no point in deviating

from I∗A.

On the responder’s side:

(1) If the first stage game was a by-product cooperation game or an inefficient cooperation

game, R∗
A dictates to play Defect in all rounds. It cannot be beneficial to deviate because

rewarding has no benefit in these games.

(2) If the first stage game was a trust game, each stage game will be a trust game.

The partner will invest in all rounds belonging to A and only in those rounds, and R∗
A

dictates to play Reward after each investment. Deviating from R∗
A by defecting for one

round would give a one-shot gain, but cause a long-run cost by ending cooperation. Since

we have assumed that the game will be repeated long enough for a profit accumulated over

the whole game to always be greater than a cost paid only once, it cannot be beneficial to
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deviate from R∗
A.

In conclusion, no deviation is favored. The profile (I∗A, R
∗
A) is a Nash equilibrium for

any infinite size A ⊂ Z+.

B.2.2 The profile (I∗∅ , R
∗
∅) is a Nash equilibrium

On the investor’s side:

In the first round, if the investor plays Invest as stipulated by I∗∅ , he can discover the

type of game he is playing, and so in the long term he will get a strictly positive payoff as

long as the game is repeated for long enough, which we have assumed. Deviating from I∗∅
would thus be costly.

In subsequent rounds, if there is at least one round in the past in which the event ”Invest-

Natural-Reward” occurred, I∗∅ stipulates to invest. Indeed, this situation implies that every

stage game is a by-product game. Thus, in every stage, investing yields payoff a > 0, so

there is no gain in declining instead. On the other hand, if the investor has never received

a natural reward, I∗∅ stipulates to decline. And indeed, this situation implies that neither

Nature nor the partner will ever reward. So there is no benefit to invest.

On the responder’s side: Regardless of the nature of the stage game, the investor’s

behavior is completely independent of the responder’s actions, so there is never any benefit

to reward.

In conclusion, no deviation is favored. The profile (I∗∅ , R
∗
∅) is a Nash equilibrium.

B.2.3 The profile (I∗∅ , R
∗
∅) is an evolutionarily parsimonious equilibrium from

(I0, R0)

First, note that R∗
∅ = R0. This is simply a responder that never actively rewards.

So to show that (I∗∅ , R
∗
∅) is a parsimonious equilibrium from (I0, R0), we only need to

show that (I∗∅ , R0) is parsimoniously evolvable from (I0, R0) in one step.

We have P (I∗∅ , R0) = P (I∗, R0), i.e., against the ancestral strategy R0, I
∗
∅ is strictly

equivalent to I∗ in terms of payoff. However, we also have d(I∗∅ , I0) = d(I∗, I0), i.e., I
∗
∅ is no

further away from I0 than I∗ was. Since (I∗, R0) is parsimoniously evolvable from (I0, R0)

in one step, then (I∗∅ , R0) is also parsimoniously evolvable from (I0, R0) in one step.

So (I∗∅ , R
∗
∅) is parsimoniously evolvable from (I0, R0). And since it’s a Nash equilibrium,

it’s a parsimonious equilibrium from (I0, R0).

B.2.4 ∀A /∈ {∅, Z+}, the profile (I∗A, R
∗
A) is not parsimoniously evolvable from

(I0, R0)

We know that d(I∗A, I0) > d(I∗, I0) (see Figure ??), but we have P (I∗A, R0) = P (I∗, R0). In

other words, an investor who behaves conditionally on the round number is (i) further away

from the ancestor in terms of mutational distance but (ii) does not get a larger payoff than
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an investor who invests regardless of round number. Hence (I∗A, R
∗
A) is not parsimoniously

evolvable from (I0, R0) in one step.

More generally, a strategy that conditions its action on the fact that the round number

belongs to A can never be parsimoniously evolvable in one step from an ancestor that does

not, since this supplementary conditional ability confers no advantage. Thus (I∗A, R
∗
A) could

not even be parsimoniously evolvable from (I0, R0) in multiple steps. There is no evolution-

ary path from (I0, R0) to (I∗A, R
∗
A) by a sequence of parsimonious adaptive mutations.

B.2.5 Multiplicity of subgame perfect equilibria

As in the simpler version of the game, none of the parsimonious strategies is subgame perfect.

But we can easily construct a subgame perfect strategy profile. Consider again an infinitely

large set A ⊂ Z+, and the strategy profile (I∗A, R
∗∗
A ), where

I∗A is defined as above, and R∗∗
A is defined as follows: Play Reward iff the stage game is

a trust game and one of the following two conditions is true:

• This is the first round of the game.

• The current round number belongs to A, and the responder has always played Reward

in all rounds belonging to {A ∪ 1} in the past

In all other cases, play Defect

This strategy profile is subgame perfect for any set A ⊂ Z+, since no deviation is strictly

advantageous, even on out-of-equilibrium histories. That is, any level of cooperation can

be supported by a subgame perfect equilibrium, from the complete absence of reciprocal

cooperation (i.e., players cooperate only in the by-product game) to the maximum possible

level of reciprocal cooperation (players cooperate in all rounds of both the by-product and

the trust game), including all intermediaries (players cooperate only in a fraction of rounds

of the trust game). None of these equilibria is parsimonious, however, because they include

a self-punishment mechanism that cannot be gradually shaped by selection.

33


	Introduction
	Evolutionarily parsimonious equilibrium
	General formulation
	Evolutionary interpretation

	Application to examples
	Divide-the-dollar game
	Hawk-Dove game
	Ultimatum game
	Repeated prisoner's dilemma
	Investment game: from variable by-products to reciprocity

	Discussion
	The cost of complexity
	Subgame perfection
	Stationary equilibria

	Measuring mutational distance with finite automata
	Investment game
	Investors cannot distinguish the two types of rewards
	S* is Nash equilibrium
	S* is an evolutionarily parsimonious equilibrium from S0
	S* is not Subgame perfect

	Investors can distinguish the two types of rewards
	For any infinite size A Z+, the profile (I*A, R*A) is a Nash equilibrium
	The profile (I*, R*) is a Nash equilibrium
	The profile (I*, R*) is an evolutionarily parsimonious equilibrium from (I0,R0)
	A -.25ex-.25ex-.25ex-.25ex{,Z+}, the profile (I*A, R*A) is not parsimoniously evolvable from (I0,R0)
	Multiplicity of subgame perfect equilibria



