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Abstract  12 

Insects play important roles in food chains, but quantifying how insect abundance affects 13 
population dynamics in natural communities is challenging. National scale monitoring data 14 
provides opportunities to identify trophic relationships at broad spatial and temporal scales 15 
but requires careful approaches to link data from different schemes. Here, using two 16 
monitoring datasets from Great Britain, we apply a two-step process to reveal how the 17 
population dynamics of the blue tit Cyanistes caeruleus is influenced by the abundance of 18 
moths - a core component of their breeding diet. We first find that at a national scale, years 19 
with increased population growth for blue tits strongly correlate with high average moth 20 
abundance, but population growth in moths and birds is less correlated; suggesting moth 21 
abundance affects bird population change rather than shared responses to environmental 22 
variation. Next, we identify moth species that are important components of the blue tits' diet, 23 
recovering associations to species previously identified as key food sources such as the 24 
winter moth Operoptera brumata. Our work provides rare evidence that insect abundance 25 
can impact bird population dynamics in natural communities and provides insight difficult to 26 
obtain from smaller-scale observations as we evaluate spatial diet turnover at a national 27 
scale. 28 
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Introduction  42 

Insects play important roles in ecosystems, performing various ecosystem functions and, as 43 
key food sources, supporting the functions of higher trophic levels 1–3. Recent concern over 44 
insect declines 4–7 has focussed attention on how insect abundance may be impacting birds 45 
8,9 with several lines of evidence suggesting that declines in insectivorous birds may be 46 
driven by reductions of insect prey 9–12. For example, declines in insect prey populations 47 
have been implicated in causing reductions in breeding success in birds 13–16 and local scale 48 
studies have found correlations between insect and bird population dynamics 17,18. Recent 49 
meta-analytic approaches have also found that insects are often a limiting resource for birds 50 
with reduced insect food provision leading to lower reproductive fitness19. However, 51 
quantifying population-level impacts of insect abundance on birds remains a challenge, 52 
particularly at broad spatial and temporal scales, as it requires concurrent information on the 53 
densities of both the prey and the birds and evidence of a connection between their 54 
populations 20.  55 

Two approaches have predominantly been used to link birds to their insect prey: diet and 56 
population studies. Traditional diet studies have a long history in ecology21,22 and consist of 57 
some form of observation, or collection, of food taken, providing direct evidence of diet 58 
composition 23–25. However, the need to identifying the prey species, either before or after 59 
ingestion limits the scale of the analysis 26. Some limitations have been overcome by 60 
advances in molecular techniques that can provide greater taxonomic information 27–30 and 61 
can be conducted at wider scales 31,32. However, these approaches only provide a qualitative 62 
snapshot of dietary content at a given time and subset of locations and, without collecting 63 
additional information, do not provide insight into how changes in prey abundance impact 64 
population change. Similarly, population studies that measure both bird populations and prey 65 
abundance at a location (e.g. 16,33) can link contemporaneous population dynamics but are 66 
typically limited to a handful of locations and time periods. 67 

An alternative approach, that can be conducted at broader spatial and temporal scales, is to 68 
leverage national-scale monitoring data34. The UK has several monitoring schemes that 69 
record abundance using standardised techniques (e.g. Breeding Bird Survey, UK Butterfly 70 
Monitoring Scheme, Rothamsted Insect Survey, National Bat Monitoring Program) providing 71 
counts of abundance over multiple years at national scales. These schemes offer the 72 
opportunity to link changing abundance of important insect prey to population change of 73 
higher trophic levels 16,35 at broad spatial and temporal scales. Here we utilise two national 74 
monitoring schemes (the Bird Breeding Survey; https://www.bto.org/our-75 
science/projects/breeding-bird-survey, and Rothamsted Light Trap Network; 76 
https://insectsurvey.com/) to estimate the effect of moth abundance on population change in 77 
the blue tit Cyanistes caeruleus, an insectivorous bird which preys upon Lepidopteran 78 
larvae, particularly during the breeding season 13,21,32,36,37. Our analysis covers the period 79 
1994-2017 and a region from southern England to northern Scotland. 80 

There are two main challenges to linking population data from different monitoring schemes; 81 
first, observations do not directly overlap, and second, the interactions between species are 82 
not observed (i.e. no observations of prey taken to the nest) increasing the chances of 83 
spurious associations. To address the first issue, we took only moth and bird survey sites 84 
within 5km of one another and applied distance weighting when more than one moth site 85 
was included in the radius. The second issue presents a greater challenge as correlations in 86 
population change and moth abundance may not be due to the direct effect of prey 87 
abundance, but rather that certain environmental conditions are beneficial to both taxa. For 88 
example, dry winter conditions may lead to increases in moth abundance by reducing the 89 
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impact of pathogens 38,39 but also increase overwinter survival of birds. One approach to 90 
isolate direct effects is to search across a variety of possible environmental variables 91 
(including interactions and varying temporal windows) and then, after controlling for the 92 
correct variable(s), one can estimate direct effects. However, uncovering the important 93 
environmental variables impacting a single species is challenging and when multiple taxa 94 
are involved can become unwieldy. Choices between many variables can also invite brute 95 
force approaches, such as comparing all possible models, which while often suitable for 96 
prediction 40, does not guarantee the representation of causal relationships 41,42.  97 

To address these issues, we apply a two-step procedure to evaluate the population effects 98 
of moth abundance on the blue tit.  Our procedure aims to disentangle correlations in 99 
population dynamics derived from common environmental causes from the direct effects of 100 
moth abundance as food – even though our approach is still ultimately correlational. We then 101 
build on these models to identify key moth species in the diet of the blue tit and spatial 102 
variation in their importance as food sources.  103 

 104 

Results  105 

Moth abundance and bird population change 106 

Our approach derived from two observations when fitting a simpler a priori plausible model 107 
that linked population change in the blue tit to moth abundance. First, including yearly 108 
intercepts, that control for potential extraneous environmental influences on yearly 109 
population change, strongly influenced the estimate of the effect of moth abundance on 110 
population change and with model sampling efficiency subsequently low due to posterior 111 
correlations. Second, estimates of the intercepts were highly correlated with annual moth 112 
abundance. Effectively, a good year for birds in terms of population change was a year with 113 
lots of moths. Therefore, in the first step, to disentangle correlations derived from common 114 
environmental causes from the direct effects of moth abundance, we compared two multi-115 
level models based on a linearized Ricker equation (Methods), fitted separately to site-level 116 
population growth in the birds and moths. In model one we observed, how the yearly 117 
intercepts (which we term the ‘population change score’) from the bird model correlated with 118 
total annual moth abundance (the annual average across all sites of the sum of all moths) 119 
after accounting for average site effects and density dependence, i.e. we asked, does a 120 
better than average year for birds correlate with high average moth abundance? We also 121 
repeated this for selected moth families where we expect a higher proportion of species to 122 
be preyed upon 32,37. Next, we compared population change scores from the moth and bird 123 
model, i.e. did better than average years for birds correlate with better than average years 124 
for moths?  125 

To describe the results we use evidence-language43, with ‘evidence’ for an effect if the 95% 126 
posterior uncertainty intervals exclude zero, weak evidence if 80% uncertainty intervals 127 
exclude zero, and no evidence if 80% uncertainty intervals contain zero44. We found 128 
evidence of strong correlations between the population change scores estimated in the blue 129 
tit population change model and the mean abundance of all moths, as well as with the mean 130 
abundance of the Noctuidae (owlet moths) and the Geometridae (geometrid moths) (Figure 131 
1c&d, g&h, k&l). When we compared population change scores for the blue tits and the moth 132 
groups, we found evidence (albeit marginal) of correlations for all moths and the Noctuidae, 133 
and weak evidence for the Geometridae. Mean posterior correlation coefficients were 134 
uniformly lower when comparing population change scores for the birds and moths relative 135 
to those comparing bird population change score to moth abundance. The results suggest 136 



that increased population growth for blue tits is most associated with years of high moth 137 
abundance rather than moths and blue tits having synchronised dynamics due to shared 138 
responses to environmental variation. The mean posterior estimate for the correlation 139 
coefficients between bird population change score and moth abundance were higher for 140 
Noctuidae and Geometridae than for all moths combined as anticipated given these groups 141 
make up a large component of the diet of blue tits 32,37, although there was substantial 142 
overlap in posterior correlation coefficients. We also find evidence of site-level variation and 143 
density dependence for both birds and moths (supplementary materials). 144 

 145 

 146 

Figure 1.  Comparisons between population change scores (average annual population 147 
change) for the blue tit and population change scores for different moth groupings, alongside 148 
comparisons for population change scores for the blue tit and the annual abundance of moth 149 
groups. Each scatterplot is paired with a posterior estimate of the correlation coefficient to its 150 
right. Each point in the scatterplots refers to a single year. Comparisons are a and b) 151 
population change scores for the blue tit and yearly offset in total moth abundance; e and f) 152 
population change scores for the blue tit and yearly offset for the Geometridae; I and j) 153 
population change scores for the blue tit and yearly offset for the Noctuidae; c and d) 154 
population change scores for the blue tit and mean total moth abundance; g and h) 155 
population change scores for the blue tit and mean abundance of Geometridae; and k and l) 156 
population change scores for the blue tits and mean abundance of Noctuidae. In a, e and i 157 
uncertainty intervals on the x-axis and y-axis show standard deviations of posterior 158 
estimates for the offsets. For c, g, and k, uncertainty intervals on y-axis show standard 159 
deviations of posterior estimates and on the x-axis show standard error of the mean. 160 

 161 

 162 



The importance of different moth species  163 

In the second step of our analysis, after establishing that moth abundance was the likely 164 
cause of increased average yearly population growth, we aimed to estimate this effect in a 165 
multi-level model and identify moth species that may be particularly important food sources 166 
(Methods). Due to the relationship found in the first stage, we did not include a yearly offset 167 
in these models, which means shared environmental causes may confound our estimate of 168 
the effect of moth abundance, though our results suggest that these influences are likely 169 
weak. Isolating the importance of a single species also introduces other potential 170 
confounding factors, as correlations between the population dynamics of different moths 171 
might introduce spurious correlations between a non-target moth and population change in 172 
the blue tits. To limit this, we focussed only on species where we had some prior evidence 173 
that they are used as food sources for the adult and nestlings of blue tits 21,32,45 and used a 174 
model where we controlled for the effect of mean annual moth abundance (the mean 175 
abundance of all moths across all sites) before regressing the difference of the selected 176 
moth from this average. Taking the difference decorrelates the abundance of a particular 177 
species from the mean annual abundance, providing a stronger test of whether a particular 178 
moth influences abundance above and beyond the general abundance of all moths in that 179 
year. If the moth is an important component of the diet, we expected a positive relationship 180 
(note: models including abundances rather than differences, and varying transformations on 181 
differences, are provided in a sensitivity analysis in the supplementary materials). Our 182 
approach also made multiple comparisons (models for 46 prey species). Corrections for 183 
multiple testing do not fit simply into the Bayesian paradigm and corrections are often overly 184 
conservative 46. Consequently, we compare the number of species with evidence for a 185 
relationship to the number expected to show a relationship through chance (i.e. informal 186 
calibration).  187 

We found evidence for a positive relationship between blue tit population change and the 188 
abundance of ten moth species and evidence of a negative relationship for one moth 189 
species (Figure 2a). This is greater than four-fold the number expected to occur by chance. 190 
Effect sizes for individual moth species were generally modest, with considerable additional 191 
unexplained variation (Figure 2b). We also found evidence for a strong effect of mean 192 
annual moth abundance (Figure 2a and 2d). Results from models included in the sensitivity 193 
analysis were broadly similar (supplementary materials). 194 

 195 

 196 

 197 



 198 

 199 

Figure 2. Influence of moth species and mean annual moth abundance on population 200 
change in the blue tit: a) effect sizes for moths species from all models and for the mean 201 
annual moth abundance (as an example we present the fit for mean annual abundance from 202 
the Operoptera brumata model)  b) marginal fit of mean annual moth abundance against 203 
residual inter-annual change and, c-f) marginal fits of abundance against residual inter-204 
annual change for c) Operoptera brumata d) Operophtera fagata, e) Cosmia trapezina, f) 205 
Lymantria monacha. Reasons for the selection of these species are explained below. Bars 206 
represent 95% uncertainty intervals on slope coefficient posteriors and in scatterplots 207 
dashed lines represent fits with weak or no evidence of a relationship and solid lines 208 
represent those where we have evidence of a relationship, variables are presented on a 209 
standardised scale.  210 

Spatial variation in diet 211 

Finally, national monitoring data allows assessment of spatial variation in food sources at 212 
broad scales indicative of spatial diet turnover. To investigate these relationships, we used a 213 
Gaussian Process model that allowed the effects of moth abundance to vary through space. 214 
We fitted the model to annual mean moth abundance, and the abundance of Operophetra 215 
brumata (winter moth), Operophetra fagata (northern winter moth), Erannis defoliaria 216 
(mottled umber), Cosmia trapezina (dun-bar), and Lymantria monachal (black arches). We 217 
selected these species as O. brumata and O. fagata are sister species but with different 218 



spatial distributions and O.brumata is often recognised as a key food source 21, E. defoliaria 219 
as it is has also been reported as a relatively important food source 21, C. trapezina as our 220 
analysis showed it to have the largest positive association at the national scale and L. 221 
monacha as a representative of one of the species where we found no evidence of an 222 
association at a national scale, but where there could be regional variation in its importance 223 
due to variation in regional diets. Our spatial models outperformed the non-spatial versions 224 
in information criteria (lower WAIC47) for all species apart from O. fagata where WAIC scores 225 
were practically indistinguishable (∆WAIC 0.3). This suggests relevant spatial variation in the 226 
effect of mean annual moth abundance on population change in the blue tit (Figure 3a), 227 
along with spatial variation for individual species (Figure 3 b-f).  228 

 229 

 230 

Figure 3. Spatial variation in the relationship between a) mean annual moth abundance and 231 
interannual population change in the blue tit and b-f) species-specific abundances and 232 
population change in the blue tit. Darker blue colours show larger (positive) regression 233 
coefficients for mean annual moth abundance, with effect sizes presented in the adjacent 234 
colour bar. For species-specific abundances, stronger orange colours show larger (positive) 235 
regression coefficients indicating a greater influence on bird population dynamics, grey 236 
shows little to no correlation, and green shows negative correlations, the values of the 237 
standardised regression coefficient are indicated on the lower colour bar. Moth indices are b) 238 



Operophetra brumata, c) Operophtera fagata, d) Cosmia trapezina, e) Erannis defoliaria , f) 239 
Lymantria monacha. Photo credits are provided in the acknowledgements. 240 

 241 

Discussion 242 

We provide compelling evidence that the abundance of moths influences population change 243 
in the blue tit and identify several moth species that may be important enough in the diet of 244 
the blue tit to influence population dynamics. This is one of only a handful of demonstrations 245 
that annual insect abundance influences population change in birds at broad spatial and 246 
temporal scales. Further, our approach of using national monitoring scheme data uncovers 247 
possible spatial variation in how important these species are in the diet of the blue tit 248 
suggesting diet turnover. However, our approach also shows that these analyses must be 249 
conducted with caution. We first provide our interpretation of the key results and then 250 
suggest approaches to enhance the use of national monitoring data to understand trophic 251 
relationships. 252 

We found a strong correlation between bird population growth and annual total moth 253 
abundance, indicating that years with high moth abundances resulted in increased 254 
population growth for the blue tit (Figure 1, 2). Our results suggest that blue tits prey on a 255 
variety of Geometridae and Noctuidae, consistent with faecal/gut content analysis and field 256 
observations 21,32,37,45,48. The weaker effects we observed for individual species, compared 257 
with that of total moth abundance suggest that the blue tit's diet is diverse and not strongly 258 
dependent on any single species. However, we recover evidence for relationships between 259 
O. brumata and E. defoliaria consistent with previous research highlighting the relative 260 
importance of these species in the blue tits diet. We also found evidence of spatial variation 261 
in the strength of association for several moth species, indicating that the composition of the 262 
blue tits' diet likely varies across space (Figure 3), consistent with other research on diet 263 
turnover 32. Reasons for this could include the changing abundance and distribution of moth 264 
species, as we as varying phenology. Moth species becoming more important components 265 
of diet in sites where they are more abundant is qualitatively consistent with blue tits 266 
selecting prey simply opportunistically or prey switching to optimise energy intake 49–53. We 267 
note that the spatial variation in the effect size of total moth abundance may not represent 268 
changing importance of moths in the diet, but rather reflect the fact that the annual mean we 269 
calculate is most informed by south-eastern sites, which make up a larger proportion of the 270 
sample, and so the index better represents moth abundance in these regions. However, this 271 
factor does not influence our results from the individual moth species, as their abundance is  272 
based on the abundance of the moth at each site (Figure 2, 3). 273 

In our study, we applied a sequence of models to attempt to disentangle the effects of 274 
common environmental causes from the effects of moth abundance on bird population 275 
change. However, fully maximizing the use of national monitoring data to understand trophic 276 
relationships likely requires careful consideration of the causal factors driving population 277 
changes for both trophic levels. Rather, our results suggest that including variables in an 278 
exploratory approach could hinder inference. For example, including weather variables 279 
without clear mechanistic interpretations in an attempt to control for extraneous sources of 280 
population variability in the birds, may include, but are not limited to estimating an indirect 281 
relationship mediated through insect abundance, a combination of its effects on insect 282 
abundance and foraging suitability, or a direct influence on bird mortality. The correlations 283 
we found between population change scores and moth abundance in our first models 284 
suggest these relationships may be difficult to separate. This issue may be particularly 285 

prevalent for national monitoring schemes where abundance observations are only an 286 



approximate estimate of the true local abundance and could be outperformed, in terms of 287 
information criteria, by models based on predictors with uncertain mechanisms. 288 

Additional considerations when using national monitoring data are both the ecological 289 
relationships and the data generating process. Our results suggest that populations of blue 290 
tits are controlled bottom-up, as a lower abundance of moths was correlated with reduced 291 
population growth, consistent with other studies conducted on blue tit populations 54 and 292 
other insectivorous birds 19. However, greater top-down control in combination with different 293 
sampling regimes could reverse the directions of the correlations. For example, if birds 294 
varied in their effectiveness of finding prey between years and consumed a substantial 295 
proportion of the local prey population (see 9,55,56  for predation rates), then years when they 296 
had been successful (e.g. through optimal phenology57) may correlate with both increased 297 
blue tit population growth and a lower than expected abundance of adult moths caught in the 298 
traps later in the year. That both positive and negative relationships could plausibly provide 299 
evidence of prey-predator interactions is challenging from a falsification standpoint and can 300 
likely only be resolved through careful consideration of both ecological and observational 301 
processes. These relationships will vary with the life stage at which the prey is preyed upon 302 
relative to the life stage when it is observed in the monitoring scheme.  303 

Our results and approach open further avenues for enquiry. Plausibly, national monitoring 304 
data could be used to identify the collection of prey species that best predict population 305 
change for predators. This would be a challenging model selection problem, but generating a 306 
reliable combined index could further resolve the importance of insects for higher trophic 307 
levels and be used as a general index of insect food that could identify regions or times of 308 
shortfalls. Our results also described spatial variation in insect food and could lead to new 309 
hypotheses about how diet varies at broad scales. Validating the spatial patterns is currently 310 
challenging as diet studies for the blue tit have been qualitative 32, or semi-quantitative 21,37 311 
and these data only representing a snapshot of diet for a few timepoints. Informally our 312 
results are plausible, given we identify key species (e.g. O. brumata) often highlighted as 313 
crucial resources 21,58. 314 

National monitoring data also opens opportunities to better resolve the importance of drivers 315 
of population change at large scales. Reliable inference for the effects of multiple drivers 316 
may be challenging using only monitoring data, but combined approaches may overcome 317 
some of these limitations. For example, combining monitoring data and field studies may 318 
allow a broadening of the scale of the analysis relative to a typical field study, and also 319 
provide clearer mechanistic insight than utilising monitoring data alone. Approaches 320 
combining smaller-scale studies and national monitoring data have been applied to 321 
investigate the effects of trophic asynchrony on population change in the blue tit 57 and 322 
similar methods could investigate factors such as food choice and inter-specific competition 323 
on population change in birds. Similarly, developing transparent causal relationships and 324 
applying the tools of causal inference 59 could provide a useful route to reliable estimates of 325 
drivers of population change. For example, several factors likely impact annual population 326 
growth in blue tits that we do not consider here, such as varying habitat types and qualities, 327 
predation rates, or the impact of supplementary feeding. Summarising current evidence 328 
either through meta-analytic approaches, or expert elicitation, and then testing a variety of 329 
graphical causal model structures 60 will likely produce more reliable estimands and also 330 
summarise the major factors influencing population growth in an accessible manner for a 331 
variety of stakeholders.  332 

 333 

 334 



Online methods  335 

Data  336 

Population data for the blue tit were derived from the BTO/JNCC/RSPB Breeding Bird 337 
Survey (BBS). The scheme has been running since 1994 and has over 4000 survey squares 338 
currently monitored. The BBS uses stratified random sampling with skilled volunteers 339 
surveying 1km transects twice during the breeding season. The first transect aligns with the 340 
early breeding season (April to early May) and the second with the late breeding season 341 
(late May to June). Volunteers record all birds seen or heard along the transects and 342 
separate observations into four distance categories (0-25m, 25-100m, >100m and flying 343 
over). Transects are also split into sections which are coded for broad habitat categories 344 
(woodland, scrubland, semi-natural grassland/marsh, farmland, waterbodies, human sites, 345 
coastal, inland rock and miscellaneous61). We summed all observations across all distance 346 
categories and sections as our observed abundance for that site and year, and we used 347 
dominant transect habitat as our measure of the habitat of the site.  348 

Moth data were derived from the Rothamsted light-trap network. This is a network of 349 
standardised light traps, currently operating at 84 sites, that are run throughout the year by 350 
volunteers. The samples are identified by volunteers, verified by an expert, and then the data 351 
are stored in a long-term database. The traps have been running since 1968, though records 352 
for a few species are only from a later period due to taxonomic uncertainty. As opposed to 353 
the bird data where we construct our site-level indices, for the moths we used a pre-354 
constructed site-level index which was derived for calculating moth trends in the period 355 
1968-2017 62. These indices were produced by applying the Generalised Abundance Index 356 
(GAI) method 63 a widely used method to estimate site and national-level indices from site-357 
level monitoring data for butterflies and moths. 358 

 359 

Generating site-level indices for the blue tit 360 

Site level counts are taken only a few times a year, most often twice a year, introducing two 361 
sources of error, error due to only encountering only a subsample of the population during a 362 
visit and error from detecting only a proportion of those that were encountered.  363 

N-mixture models 64 explicitly account for these processes to estimate a latent local 364 
population abundance from repeated count data. To produce site-level indices for the blue tit 365 
we used a hierarchical GAM N-mixture framework. The N-mixture model, models count data 366 
as a mixture of an ecological process and an observational process. An observer first 367 
encounters at visit i, a fraction, Ni, of the individuals from the unobserved latent population 368 
abundance λ. Though the N-mixture model is estimating a latent abundance we use it only 369 
here to estimate a relative yearly site level index rather than an estimate of absolute local 370 
population size. 371 

(1) Ni ~ Poisson(λ) where λ >= Ni  372 

Factors affecting changes in λ over time are ecological processes and are estimated in a 373 
log-linear model e.g. 374 

(2) Log(λ) = α + β X 375 

Where α is an intercept, X is a matrix of variables, and β a vector of parameters. We use a 376 
hierarchical GAM to estimate log(λ) which we describe in more detail below.  377 



For the observational process, the model estimates out of those encountered individuals, Ni, 378 
how many, yi, are detected (yi is the actual count data recorded) with the probability of 379 
detection given by parameter p. 380 

(3) yi | Ni ~ Binom(Ni,p) 381 

Similarly, to the ecological process, factors affecting the observation process can be 382 
modelled in a logit-linear model e.g. 383 

(4) Logit(p) = α + δ X 384 

           Logit(δ) ~ N(0,1.6)   385 

Here we use the notation δ to indicate coefficients on the observational model which can, 386 
and do here, include different variables from the ecological model. The parameter p varies 387 
between visits to represent detection probability varying throughout the year varying, but λ is 388 
considered a fixed estimate of abundance for a site each year. 389 

Our model for the ecological component was a hierarchical GAM. The hierarchical approach 390 
strikes a balance between using information contained across all sampling locations and the 391 
information at a particular site (a variety of similar model structures were considered using 392 
pilot data from similar datasets 10.5281/zenodo.8026915). 393 

(5)  Log(λj) = αj + ∑ 𝛽𝑗𝑘𝑏𝑗𝑘
𝐾
1  394 

 395 

            Log(βjk) ~ N(�̂�k , σ)  396 

            Log(�̂�1:k) ~ N(0, 0.05)  397 

           σ ~ Exponential(1) 398 

           Log(αj) ~ N(2, 1) 399 

 400 

Where K is the number of splines covering the sampling years, βk a vector of coefficients, 401 
and bk basis functions (here we use B spline basis functions). The optimal number of splines 402 
for fitting the trends were estimated around Fewster’s 65 recommendation of 0.3 x the 403 
number of years for bird trends, however, we tested models ± 1 and 2 splines on a subset of 404 
the data and selected splines for the final model using WAIC 47.  405 

In the observational process models, we considered all the variables recorded in the survey 406 
that may influence bird detection. Due to relatively large dataset and the complexity of the 407 
model, the model runtime was slow putting a priority on minimising unnecessary model 408 
complexity and precluding exhaustive testing of model structures. Therefore, we first used a 409 
subset of the data and tested a model containing all potentially relevant variables and only 410 
retained those for the full model run where there was any evidence they influenced detection 411 
probability, this included visit time (early, late), detection band, and dominant habitat type.  412 

 413 

Models linking across trophic levels  414 

To link moth populations to the bird populations, we identified all moth sites within a radius of 415 
5km of a bird sampling location. When there were multiple moth sites within the radii, we 416 
produced a combined moth index through inverse distance weighting. We use two main 417 



summed moth indices in the analysis, total annual moth abundance and mean annual 418 
abundance. For total annual moth abundance, we first summed all moths at the site before 419 
applying distance weighting to estimate the average total abundance at a location. This 420 
process was then repeated to provide summed indices for species in the Noctuidae and the 421 
Geometridae. For mean annual abundance, we simply took the yearly average abundance 422 
across every moth. During analysis, we also considered the previous year's moth 423 
abundances but found stronger correlations with the current moth generation and bird 424 
population change in the models constructed below and so preceded with only the current 425 
year indices.   426 

To construct the population models, we used a linearized Ricker formulation (Equation 6). 427 
This is a log-linear Ricker growth model 66 with the dependent variable the log per capita 428 
population growth rate and parameters estimating intrinsic growth, environmental modifiers 429 
on growth rate (e.g. moth abundance, site random intercept, year random intercept), and 430 
density dependence. All model variables were centred and scaled before fitting and we used 431 
weakly regularizing standard normal priors for the linear model parameters, and exponential 432 
priors with λ =1 for the standard deviations. 433 

 434 

(6) log  (
𝑁𝑡+1

𝑁
) = 𝑠𝑖𝑡𝑒𝑖 + 𝑦𝑒𝑎𝑟𝑗 +  𝛽 𝑋 + 𝑏𝑁𝑡 435 

b ~ Normal(0 , 1) 436 

Bi ~ Normal(0 , 1) 437 

site ~ Normal(0,1) 438 

year ~ Normal(0,1) 439 

In Equation 6 𝑁𝑡 represents the population size and time t, b represents the coefficient on 440 

previous years' abundance (density dependence), 𝑠𝑖𝑡𝑒𝑖 and 𝑦𝑒𝑎𝑟𝑗 represent site and year 441 

offsets, 𝛽  the coefficient on the moth index and X the moth index. 442 

We fitted this model to population data of the blue tit and then to the yearly estimates of total 443 
moth abundance and abundances of the Noctuidae and the Geometridae at each site. We 444 
then extracted the year coefficients from both models and compared them to see if good 445 
years for the blue tit corresponded with a good year for moths. We next extracted the year 446 
coefficients from the blue tit model and compared this with the mean total annual abundance 447 
(i.e. averages of total abundance across all sites) for each group of moths. This allowed us 448 
to see if good years for the blue tit corresponded with high moth abundance. Correlations for 449 
the comparisons were estimated in a Bayesian framework by fitting a multivariate normal 450 
and extracting the correlation coefficient from the posterior variance-covariance matrix.  451 

In the next stage, we aimed to estimate the effect of mean annual moth abundance and the 452 
effect of selected species on bird population change. To do this we removed the yearly 453 
intercept due to the aforementioned correlations with mean annual abundance and included 454 
the mean annual moth abundance and the difference between this average and the 455 
candidate moth species at each (Equation 7). The model was then rerun for each candidate. 456 
Here for the mean annual abundance, we didn’t sum moths and instead took the average 457 



abundance of all moths at a site and year. This is essentially perfectly correlated with the 458 
mean of the summed total abundance, but makes the difference measure a similar scale and 459 
therefore more interpretable (i.e. either + or – the average). 460 

(7) log  (
𝑁𝑡+1

𝑁
) = 𝑠𝑖𝑡𝑒𝑖 + �̅��̅� + 𝛾𝑥𝑖 + 𝑏𝑁𝑡 461 

 462 

In Equation 7 symbols are as before but �̅��̅� represent the coefficient on the mean annual 463 

abundance and the annual mean abundance respectively, 𝛾𝑥𝑖 represents the coefficient on 464 

the species abundance difference and the species abundance difference at site i 465 
respectively. 466 

When fitting, we found that the species abundances were often skewed with a few large 467 
values that had high leverage on the regression fits. To account for this we used the inverse 468 
hyperbolic sign transformation 67 which performs as a log transformation with larger values 469 
but zero and negative values remain defined. To understand the effects of this 470 
transformation we also re-ran the models without the transformation and further tested the 471 
impact of using the difference rather than directly using species abundance by refitting all 472 
models with species abundance in place of the difference. In both cases, results were similar 473 
(Supplementary materials). 474 

 475 

Spatial variability trophic-link models 476 

To construct models that accounted for spatial variation in the importance of different food 477 
sources, we adapted the model in Eq. 7 to include a Gaussian Process 68 on γ the response 478 
to the species-specific moth abundance and in the model in Eq. 6 to include spatial variation 479 
on β (again excluding the year random intercept). In the Gaussian Process, parameters 480 
were drawn from a multivariate normal with the covariance matrix between sites estimated 481 
using Euclidian distance and a squared exponential covariance function (L2 norm)42. All 482 
variables were centred and scaled before fitting and site distances were max-scaled. We 483 
used weakly regularizing standard normal priors for linear model parameters, and an 484 
exponential prior with λ =1 for the standard deviations, η, and p. 485 

(8) log  (
𝑁𝑡+1

𝑁
) = 𝑠𝑖𝑡𝑒𝑖 + 𝛽𝑖𝑋 + 𝑏 𝑁𝑡 486 

b ~ Normal(𝑏 , 𝜎𝑏) 487 

[
𝛽1

𝛽2

⋮
] ~ MVNormal([

0
0
⋮
] , 𝑅 ) 488 

𝑅  = 𝜂 
2𝑒−𝑝 

2𝐷𝑖𝑗
+ 𝛿𝑖𝑗𝜎 

2 489 

In Equation 8, i is an index for site, R is a covariance matrix, η2 is the maximum covariance 490 
between any sites, ρij the correlation between site i and j, Dij the distance between sites i and 491 
j, and δσ2 accounts for within-site variance in β when i = j. 492 

The spatial models were fitted to the mean annual abundance and to a representative panel 493 
of five selected individual species (Operoptera brumata, Erannis defolaria, Operoptera 494 
fagata, Cosmia trapezina, Lymantria monacha). We selected O. brumata and E. defolaria as 495 
they are often cited as key species in the diet of blue tit; O. fagata as it is a sister species to 496 



O. brumata but there was less evidence for an effect overall (see Results); C. trapezina as it 497 
had the largest effect size; and L. monacha as a species representative of a national scale 498 
effect that was estimated close to zero.  499 

 500 

Fitting details  501 

Analysis was conducted in R 4.1.2 69, and the probabilistic programs for fitting the Bayesian 502 

models were written in Stan 2.21.0 70. We used a cut-off of <1.1 for the �̂� 71 for indicating 503 

convergence. The R packages ‘RStan’ 2.26.11 72 and ‘rethinking’ 2.13 73 were used to 504 
analyse model outputs, and ‘raster’ 3.4-13 74 and ‘geosphere’ 1.5-14 75 were used for spatial 505 
processing and visualisations. Code and data in support of the results are available at 506 
10.5281/zenodo.8021350 507 
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 729 

Figure S1. Species-specific coefficients when a) fitting without using the inverse hyperbolic 730 
sine transformation, and b) when using raw abundance rather than differences from the 731 
mean moth abundance. 732 

 733 

Table S1. Coefficients of density dependence from the population change models, columns 734 
show posterior means and boundaries of the 95% credible intervals. 735 

 Mean 2.5% 97.5%  

blue tit  -0.09 -0.13 -0.06 

Total moth 
abundance 

-0.71 -0.76 -0.66 

Noctuidae -0.50 -0.54 -0.46 

Geometridae -0.63 -0.69 -0.57 
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