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Abstract 21 

Foraging is a key driver of animal movement patterns, with specific challenges for predators 22 

which must search for mobile prey. These patterns are increasingly impacted by global 23 

changes, principally in land use and climate. Understanding the degree of flexibility in predator 24 

foraging and social strategies is pertinent to wildlife conservation under global change, 25 

including potential top-down effects on wider ecosystems. Here we propose key future research 26 

directions to better understand foraging strategies and social flexibility in predators. In 27 

particular, rapid continued advances in biologging technology are helping to record and 28 

understand dynamic behavioural and movement responses of animals, and ensuing energetic 29 

consequences, to environmental changes. Data collection can be optimised by calibrating 30 

behavioural interpretation methods in captive settings and strategic tagging decisions within 31 

and between social groups. Importantly, many species social systems are increasingly being 32 

found to be more flexible than originally described in the literature, which may be more readily 33 

detectable through biologging approaches than behavioural observation. Integrating the effects 34 

of the physical landscape and biotic interactions will be key to explaining and predicting animal 35 

movements and energetic balance in a changing world. 36 
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INTRODUCTION 44 

Animals adapt their behaviour to optimise gains and minimise losses in an environment, with 45 

energetic, ecological and evolutionary consequences [1]. Foraging is a sequence of continuous 46 

behavioural decisions made to maximise energetic gains while minimising costs in the search 47 

for food and its handling [2, 3]. Animals are faced with multiple foraging decisions, for 48 

example whether to target one prey species over another [4] or whether to forage cooperatively 49 

with conspecifics [5]. The energetic gains associated with each prey item, as well as encounter 50 

rate and handling time, determine which prey is chosen, where profitability is defined as the 51 

energy gain divided by handling time [6], with the number of individuals in a cooperatively 52 

foraging group also affecting each individual’s energy gain and the profitability of a prey 53 

species [7]. The encounter rate of the most profitable potential prey dictates the diet, 54 

irrespective of the encounter rate with less profitable prey [8], and kill rate varies in response 55 

to prey density depending on predator functional response and ecological conditions [9]. The 56 

costs associated with foraging are especially pertinent in predatory animals which must invest 57 

energy in the pursuit and handling of prey, often with risk of injury to themselves [10].  58 

Foraging strategies are shaped by external factors, such as resource availability and 59 

environmental conditions [11, 12], leading to considerable variation in foraging strategies 60 

within and between individuals, social groups, populations, species and taxa [13–17]. 61 

Flexibility in foraging strategy can occur in each of these levels from individuals displaying 62 

multiple foraging strategies (i.e., switching between multiple food types which require different 63 

handling) in complex or variable environments [18], including dynamic switches regarding the 64 

tolerance of satellites by territory owners [19], to distinct strategies associated with particular 65 

populations or habitats across temporal scales [20]. For example, foraging trip duration and 66 

rate of chick provisioning can vary between colonies of wedge-tailed shearwaters (Puffinus 67 
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pacificus) [21], and bluegill sunfish (Lepomis macrochirus) modify their foraging search speed 68 

between open-water and vegetated habitats [22]. 69 

 70 

Predation is costly 71 

Predation typically incurs high energetic costs, either through pursuing and subduing prey, for 72 

example in large mammalian predators such as African wild dogs (Lycaon pictus) and lions 73 

(Panthera leo) [23, 24], or shorter ambushes which require sudden bursts of energy, seen in 74 

diverse taxa including mantis shrimp [25] and snakes [26]. Collective hunting allows the 75 

takedown of large prey which individual predators could not manage alone [27, 28]. Other 76 

species, such as the red fox (Vulpes vulpes), target smaller prey individually, even if they live 77 

in a social group [29]. Hunting success is a central consideration in predation energetics, as a 78 

predator must intake enough energy to account for the hunt which has just taken place, but also 79 

previous unsuccessful hunts since the last meal, competition e.g., through kleptoparasitism [30, 80 

31], their basal metabolic rate, and other non-hunting behaviours required for survival, growth 81 

and reproduction (Figure 1). Meeting these diverse demands may promote flexibility in 82 

foraging behaviour, with species implementing more diverse suites of predation strategies and 83 

prey selection than commonly captured in the literature. This is particularly true where 84 

predation events are difficult to observe, though this can now increasingly be rectified with the 85 

expanding use of animal-attached technology to reveal out-of-sight animal behaviours, which 86 

is increasingly being used to study fine-scale behaviours across multiple species [32, 33]. 87 
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 88 

Figure 1. Animals can be in energy deficit, energy balance or energy surplus, with transition 89 

possible between these states, mediated by foraging success. Animals in energy deficit incur 90 

costs which affect body condition and eventually death will occur if animals cannot regain 91 

energy balance. Energy balance allows normal daily functioning, while surplus energy allows 92 

investment in growth, reproduction and social behaviours.  93 

 94 

Climate and land use change may cause shifts in predator-prey dynamics 95 

Environmental conditions can add further energetic costs to foraging [34], for example, rising 96 

temperatures may subject predators to heat stress during pursuit [35]. Prey species are subject 97 

to this pressure as well, but for many predator-prey pairs, it is unclear whether the species are 98 

equally (un)affected or whether temperature changes could shift the balance in favour of one 99 

species or the other. From the predator perspective, this could shift prey preference, with 100 

cascading ecosystem effects [36]. For marine predators, endotherms seem to have a 101 

competitive advantage over ectotherms at lower water temperatures, with consequences for 102 

species distributions [37]. In terrestrial systems, cursorial predators are more likely to be 103 

adversely affected than stalk and ambush predators, due to the additional energetic costs 104 

associated with pursuing prey over large distances [38]. Though disparities in prey versus 105 

predator responses to rising temperatures may also work in favour of the predator, if prey 106 
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become more easily exhausted under heat stress. These concepts are understudied at present, 107 

especially given the precedence of indirect climate change impacts on ecosystems. Where 108 

studies have been carried out, there is disagreement on predator-prey dynamics under rising 109 

temperatures, for example in the case of the African wild dog, where there have been 110 

contrasting findings on whether the wild dogs themselves or their prey are more impacted by 111 

heat stress associated with rising temperatures [39, 40]. These discrepancies may be partially 112 

explained by differences in prey preference across populations [35]. Assessing the energetics 113 

associated with different hunting and evasion strategies across populations is therefore a key 114 

consideration for understanding shifting predator-prey dynamics under climate change. 115 

 Land use represents another key form of global change with consequences for predator-116 

prey dynamics, often working in tandem with climate change impacts [41]. In some cases, land 117 

use change can benefit predators by improving search efficiency as vegetation is thinned or 118 

removed [41, 42]. These dynamics can be complex, however, and vary significantly between 119 

land use types. For example, pumas (Puma concolor) were found to have higher body condition 120 

scores in areas of marginal anthropogenic development than in both wilderness and highly 121 

developed areas [43]. Socio-ecological phenomena must be considered as habitats are 122 

modified; land use change increases human-wildlife conflict, particularly when predators of 123 

degraded habitats target livestock [44]. Within increasingly human-dominated landscapes, 124 

some prey take advantage of carnivore avoidance of areas of high human activity, a 125 

phenomenon known as the human shield [45, 46], while others show stronger avoidance to 126 

human activity than their natural predators [47]. 127 

 128 

Energetic landscapes reveal foraging costs  129 
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Climate and land use change may cause animal populations to shift in distribution [48] with 130 

consequences for how hunting animals locate, select and subdue their prey. Shifting population 131 

distributions lead to potential re-arrangement of prey preference and cascading ecosystem 132 

effects [46]. These dynamics may be better understood by mapping predation both in the 133 

physical landscape and the so-called landscapes of fear, food and energetics [49, 50]. The 134 

landscape of fear is the spatial and temporal variation seen in prey movements in response to 135 

their perceived risk of predation, typically visualised as peaks and valleys, similarly to terrain 136 

maps [51]. For example, in Yellowstone, landscape of fear maps computed for elk were 137 

strongly affected by the crepuscular activity patterns of wolves (Canis lupus) [52], with more 138 

complex changes to diel activity patterns for roe deer across European landscapes responding 139 

to the threat of both the lynx predator and humans [53]. These dynamics become more 140 

complicated in multi-predator systems where prey must contend with predators using different 141 

hunting strategies, resulting in complex landscapes of fear with varying levels of risk [54]. 142 

Foodscapes, though developed for herbivores navigating immobile forage [49, 55], can also be 143 

extended further up the food chain, as prey resource selection will shape the movements and 144 

selected hunting strategies of their predators [56].  145 

Energetic landscapes, as revealed through accelerometry (i.e., using on-board 146 

accelerometer sensors measuring the rate of change of velocity), represent efforts to put animal 147 

behaviour and physiology in the context of wider ecosystems and environments [57]. This 148 

concept was introduced by Wilson et al. (2011) assessing varying movement costs associated 149 

with foraging in a heterogeneous environment [58]. Specifically, Wilson et al (2011) compared 150 

the foraging dives of imperial cormorants (Phalacrocorax atriceps) and the travel costs 151 

between the foraging area and the breeding site to a model where individuals were evenly 152 

spaced. Complexity was added to the energy landscape definition through 1) cost functions and 153 

maps visualising areas of different energetic costs, 2) adding speed and tortuosity of animal 154 
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movement paths and 3) environmental factors such as wind conditions for aerial travel [59]. 155 

More recent considerations have assumed broader energy requirements, to account for 156 

thermoregulation and maintenance of body condition, with quantification of individual 157 

foraging strategies highlighted as a future direction in using energetic landscapes for population 158 

ecology and global change inferences, considering predator performance [60]. Integrating the 159 

landscapes of fear and energetics has been discussed elsewhere [57], but there is still little 160 

consideration of how species' social systems factor into this picture.  161 

 162 

Predator social interactions may be more flexible than originally described 163 

Research into how sociality affects animal spatial behaviour and general ecology has grown 164 

significantly in recent years, as the social landscape, as well as the distribution and density of 165 

conspecifics, can strongly affect the movements and behavioural decisions of individuals [61], 166 

(see also: the social resistance hypothesis [62]). Social network analysis in particular is 167 

becoming a dominant theme within behavioural ecology [63–66]. As well as looking at 168 

interactions within groups, social networks can be used to detect interactions such as territorial 169 

intrusions related to resource abundance [67] and social dynamics of semi-social conspecifics 170 

[68]. Investigating the role of species’ social systems, and intraspecific variation in these 171 

systems, as a factor influencing energetics requires attention. It is known that conspecifics can 172 

affect an individual’s foraging behaviour [69]. For example, information transfer pertaining to 173 

foraging sites can occur in colonially-breeding species, such as gannets (Morus bassanus) [70]. 174 

Social eavesdropping has been reported in vultures, as individuals obtain information about 175 

thermals from conspecifics, helping them choose energetically efficient foraging search paths 176 

[71]. Whether an animal is social has profound implications for foraging ecology, particularly 177 

if social group members start to cooperate to obtain food. Social information transmission can 178 
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influence every stage of predation, encompassing encounter, detection, identification, 179 

approach, subjugation and consumption of prey [72]. Some species that typically forage alone 180 

or in pairs can opportunistically adapt to cooperative hunting, such as the black backed-jackal 181 

Canis mesomelas [73]. Increasingly, there are reports of cooperative hunting in species thought 182 

to only forage alone, including harbour porpoises Phocoena phocoena [74], goshawks 183 

Accipiter gentilis [75] and yellow-throated martens Martes flavigula [76]. This opens research 184 

avenues focusing on dynamic behavioural decision-making, investigating spontaneous 185 

decisions on whether to cooperate to find food, mediated by internal state and animal 186 

personality [77, 78]. 187 

 188 

Aims 189 

Here we review the development of methods for estimating animal energetics and discuss how 190 

more recent technological and conceptual advances facilitate finer-scale, multifaceted insights, 191 

primarily through approximation of energy expenditure using accelerometry. We discuss the 192 

energetics underlying predation in social and solitary contexts, as hunting alone versus with a 193 

team has significant implications for both the intake and output of energy, particularly under 194 

changing climate and land use scenarios. We suggest methods for experimental design, data 195 

collection and analysis - including the need to calibrate sensors within captive settings prior to 196 

setting up experiments in the wild -  which will improve our understanding of shifting animal 197 

movement patterns and energetics in the Anthropocene. We posit that growing consideration 198 

of energetic landscapes and social networks respectively can be combined into a social-199 

energetic landscape framework. Energetic landscapes effectively capture the influence of 200 

abiotic factors on individual movement, behaviour and survival, while social networks often 201 

lack due consideration of temporal and spatial scales. By integrating these concepts, we 202 
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highlight avenues for integrating abiotic and biotic factors for a more comprehensive 203 

understanding of predator energetics. 204 

 205 

QUANTIFYING PREDATION ENERGETICS 206 

Due to the difficulties associated with studying energetics in wild systems, initial investigations 207 

into animal energetics were lab-based. Treadmills were, and continue to be, valuable tools in 208 

estimating the energetic costs associated with moving at different gaits across multiple species. 209 

This use of treadmills to quantify energetics associated with animal locomotion dates back to 210 

the 19th Century [79] and has expanded to include multiple species across diverse taxa 211 

including mammals [80],  reptiles [81] and birds [82]. In controlled settings (including 212 

laboratories and zoos), treadmills combined with oxygen chambers allow measurement of 213 

animal speed and oxygen consumption, allowing energy expenditure to be calculated for many 214 

species performing multiple gaits. However, this experimental set-up is not possible with free-215 

ranging wild animals; new developments were required. 216 

The doubly-labelled water method, developed in the 1950s, allows estimation of an 217 

animal’s energy expenditure during the window between two blood samples by using 218 

isotopically-labelled water to assess carbon dioxide production [83, 84]. With this, research on 219 

animal energetics in the wild could commence. It was first used outside the laboratory to assess 220 

energy expenditure during rest and flight for homing pigeons Columba livia domestica [85] 221 

and has since been used extensively across diverse wild species  [86–89]. While facilitating 222 

inferences across diverse systems, the major limitation of this method is the requirement to 223 

recapture animals within a rigid timeframe, as the second blood sample must be taken before 224 

the isotopes have been eliminated from the body [90]. Additionally, this method provides 225 
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energetic estimates from the study period as a whole and extensive behavioural observations 226 

are required to estimate the costs associated with specific behaviours [90, 91].  227 

 Technological advances leading to the development of animal-attached sensors allow 228 

the energetic intake and output associated with predation to be studied in wild systems on the 229 

level of individual behaviours and postures. Initial technological insights into wild animal 230 

energetics came from the development of VHF (Very High Frequency) telemetry, which allows 231 

triangulation of animal location using an antenna to detect pulsed radio signals emitted from 232 

an animal-attached transmitter [92–94]. This allowed studies on movements, home ranges and 233 

mortality of wild animals to proliferate, and detection of both predator foraging and prey 234 

mortality through VHF telemetry continues to provide important insights into predation [95–235 

97]. Satellite collars were first developed in the early seventies [98, 99], allowing location data 236 

to be collected and stored at regular intervals via satellite communication. Continued 237 

developments expanded options for collecting location information, and the wide adoption of 238 

GPS and Argos satellite telemetry has resulted in large, fine-scale datasets of animal 239 

movements across space [100, 101]. Beyond movement trajectories, these data provide detailed 240 

insights into behavioural states, including foraging [102, 103]. More recent developments have 241 

expanded the range of animal-attached sensors and associated insights, known as biologging 242 

[104–107]. 243 

Biologging devices incorporating Inertial Measurement Units (IMUs) such as 244 

accelerometers (measuring the rate of change of velocity), magnetometers (measuring Earth’s 245 

magnetic field, which can be used to give compass-like orientation) and gyroscopes (measuring 246 

orientation through angular velocity), allow quantification of fine-scale movement patterns and 247 

the relationship between animal behaviour and energetics [108–110]. This is possible as 248 

biologging devices allow animal movement to be considered on physiological and 249 

biomechanical scales, measuring the individual movements and conditions of the body [111]. 250 
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As such, these additional sensors provide data distinct from those obtained using even high-251 

resolution locational units (such as those collecting data at the scale of seconds or minutes as 252 

opposed to hours). Using IMUs in tandem with locational units such as GPS allows fine-scale 253 

animal behaviour to be mapped in space, leading to greater insights than achievable through 254 

use of locational sensors alone. Such multi-sensor techniques can be used to advance our 255 

understanding of animal energetics through deriving  field-based sub-second scale measures of 256 

movement costs using dynamic body acceleration metrics derived from tri-axial accelerometer 257 

data [112] or dead-reckoning fine-scale, tortuous animal movement paths [113]. Dead-258 

reckoning is a path reconstruction method where the inherent tortuosity of animal movement 259 

paths is captured by combining location data with heading and speed data derived from IMUs 260 

[110, 113, 114]. Deriving energetic landscapes through mapping these measures of energy 261 

expenditure in space further represents a powerful method of testing optimal foraging theory 262 

[58] and provides opportunities to test optimal foraging theory in the field at multiple scales, 263 

e.g., penguins foraging for krill within versus among foraging patches [115].  264 

High resolution GPS and IMU sensors offer different yet complementary information, 265 

with the behaviour of the species under study and the environment in which it lives dictating 266 

the most appropriate sampling regime [116]. For example, dead-reckoning can be particularly 267 

valuable in environments where high frequency GPS sampling is prone to errors or high rates 268 

of missed fixes due to habitat composition and/or animal behaviour and posture [116]. High 269 

frequency data have been found to provide additional insights into animal behaviour where 270 

coarser datasets may result in inaccurate or incomplete interpretations, such as contrasting 271 

exploratory movements between bold and shy individuals and detecting multi-animal 272 

interactions with consequences for disease transmission [117]. Figure 2 provides a summary 273 

of the introduction of key advancements in animal-borne sensor technology. 274 

 275 
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 276 

Figure 2. A summary of key developments facilitating insights into animal energetics. Note 277 

all references refer to studies of animal ecology, rather than use of these tools in other fields 278 

(e.g., engineering, physics, robotics). Figure references can be found in the reference list as 279 

entries [92, 93, 98, 114, 118–126]. 280 

 281 

Information about the type and amount of food ingested by animals can answer 282 

fundamental ecological questions relating to how animals manage their energy budgets in the 283 

wild [127]. Inter-mandibular angle sensors (IMASEN), placed on animal jaws, have been used 284 

to reliably determine prey ingestion [128]. More commonly, fine-scale movement data are used 285 

to reconstruct predation events, for example through identifying clusters of GPS locations as 286 

potential kill sites, often with field visits for verification [103, 129]; though it should be noted 287 

that this method is biased towards large predators hunting large prey, with kill sites of small 288 

prey typically classified at lower accuracies [129]. Hidden Markov models allow movement 289 

data to be categorised into discrete states [130]; although these states are typically not verified 290 

behaviours, kill sites can also be used to confirm HMM-defined predation occurrences [131]. 291 
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Foraging strategies vary depending on the food items targeted, habitat type and whether 292 

foraging is cooperative or solitary [76, 132–134]. As different hunting strategies involve 293 

different body postures and energetic signatures, it should be possible to extract these separate 294 

hunting strategies from biologging data (Table 1). For example, combined tri-axial 295 

accelerometer and GPS data have shown promise in elucidating the energetics underlying prey 296 

capture by large predators like African leopards Panthera pardus [135] and high frequency 297 

acceleration data have been used to classify behaviours related to foraging in smaller predators 298 

such as the Arctic fox Vulpes lagopus [136]. As speed estimates can be derived from both GPS 299 

and acceleration data, and magnetometers can capture the tortuosity of animal movement paths 300 

[137], these technologies present opportunities to look at speed, pursuit and evasion in hunting 301 

predators and fleeing prey (Figure 3; [138]). Detailed consideration of path tortuosity 302 

fundamentally changes the classical transport cost paradigm for terrestrial animals [139].   303 

 304 

 305 

Figure 3. Examples of analysis methods for GPS and Inertial Measurement Unit data with 306 

relevance to predation energetics. (a) Cluster analysis of GPS data allows detection of kill sites, 307 

e.g. [129, 140]. (b) Dead-reckoning animal movement paths using GPS, accelerometer and 308 

magnetometer data allow the tortuosity of movement paths to be captured and can be used to 309 

reconstruct paths of hunting predators [113]. (c) Behaviour classification of data from IMU 310 
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sensors such as accelerometers can be used to distinguish predation from other behaviours e.g., 311 

[141]. 312 

Table 1. A list of key sensors linked to behavioural interpretations relevant to predation 313 

energetics. 314 

Sensor Behavioural inferences Examples 

GPS units Identify kill site clusters [140] 

Accelerometers 

                              

Identify postures and movements related to 

pursuing prey, e.g. stalk, ambush, chase  

 

[142][143] 

Quantify predation success rate - identify predator 

attempts as well as successful kills 

 

[142] 

Turn capacity [138] 

Magnetometers Identify postures related to foraging [144] 

Turns [145] 

Dead-reckoning [113] 

Proximity sensors Social interactions [146] 

Social foraging [147] 

Intermandibular 

Angle Sensor 

(IMASEN) 

Opening/closing mandible [148] 

Camera Direct footage of all predation-related behaviours [149] 

Microphone Recordings of prey cries [150] 

 315 

Manoeuvrability is largely determined by the prey, and turning dynamics of coursing 316 

predators during a chase has been shown to vary with prey species and the mass of both 317 
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predator and prey [138]. Combining movement data with high resolution habitat data, i.e., those 318 

collected using remote sensing and LiDAR methodologies, e.g., [151], represents the highest 319 

accuracy framework for assessing manoeuvrability in predator-prey chases. Both pursuit and 320 

evasion have important energetic consequences, which ultimately determine hunt outcomes 321 

[152]. Hunt duration and success is not simply defined by the costs of the current pursuit; costs 322 

incurred by previous unsuccessful hunts and the sum of other behaviours performed by the 323 

animal should also be taken into consideration. In generalist predators, this may result in a need 324 

for balance between bouts of highly-costly exhaustive predation for more valuable prey with 325 

opportunistic scavenging, targeting of smaller prey, and foraging for other food items such as 326 

eggs or plant material [153]. For example, in some areas grey wolves seasonally exploit berries 327 

as an important food resource [154] and plant material has been detected in leopard cat 328 

Prionailurus bengalensis scats; its prevalence also varying with season [155]. According to 329 

optimal foraging theory, this balance between multiple strategies should be determined by 330 

energy gain, handling time and encounter rate [6]. Failed hunts, scavenging and foraging for 331 

smaller food items may also be accounted for through data from accelerometers and other IMU 332 

sensors as behaviour classification methods continue to advance [136, 141]. Developing 333 

classification methods for these complex behaviours may be assisted considerably by the 334 

increasing use of animal-attached cameras and microphones, allowing further verification of 335 

IMU sensor outputs [150, 156]. Proximity sensors can be used to detect cooperative foraging 336 

in predators [147], as well as encounters between predators and prey [157].  337 

The energetic costs of predation can be split into costs of 1) locating prey, 2) pursuit or 338 

ambush and 3) restraining and killing the prey, respectively (Figure 4). The sum of these 339 

energetic costs and how they are divided across these categories varies with prey species, e.g., 340 

harbour seals Phoca vitulina predating cryptic versus conspicuous fishes [158]. The time spent 341 

on each activity is also an important consideration, as increasing duration spent on any of these 342 
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aspects results in higher energy expenditure, but the costs of each step are unequal and vary 343 

between predator-prey dyads. For example, locating prey is less costly than the pursuit per unit 344 

time, where terrestrial predators switch from walking or trotting search gaits to running pursuit 345 

gaits [159]. Longer search times could involve finding easier prey with shorter pursuit and 346 

restraint times [160]. Therefore, time and energy are separate costs, but time spent on a given 347 

activity is critical to the total energetic cost of the behaviour. Further, the risk of injury and 348 

whether the prey is captured collectively and shared play important roles [28]. These costs must 349 

all be compensated by high enough energy gains to maintain metabolism and execute all 350 

necessary behaviours. Stresses such as habitat modification and environmental change may 351 

result in additional energetic costs for animals which should be considered in species 352 

conservation, as it may be the cumulative impacts of multiple costs that cause behaviour 353 

changes with knock-on demographic effects. The energy required for the separate composite 354 

behaviours comprising predation can be estimated through the collection of biologging data 355 

(Figure 4). Further, the fine-scale frequencies at which these sensors operate allows detailed 356 

activity and behavioural budgets to be estimated [161–164].  357 

 358 
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Figure 4. A schematic representing costs of predation to the predator, in terms of energy, time 359 

and risk. Accelerometers allow the calculation of Dynamic Body Acceleration proxies which 360 

provide estimates of energy expenditure which can be matched to distinct behavioural states. 361 

GPS and accelerometer data allow the start and end points of predation to be identified so that 362 

time spent hunting can be quantified. Inertial Measurement Units can be used to assess animal 363 

posture, to detect defensive or aggressive behaviours exhibited by prey and alert postures to be 364 

detected in predators. Predator retreat may also be identifiable from dead-reckoned movement 365 

paths. 366 

 367 

As well as facilitating fine-scale, behavioural insights, animal-attached technology can 368 

also provide important information on broader ecological scales. Understanding the energetics 369 

of predation can provide information on trophic cascades and predator-prey dynamics with 370 

consequences for whole ecosystems [165]. Integrating biologging data into Dynamic Energy 371 

Budget-Individual Population Models (DEB-IPMs) has been identified as a powerful emerging 372 

method to link individual level behavioural energetic trade-offs and metabolic processes to 373 

population dynamics including survival and reproduction, with due consideration to 374 

environmental change [166]. As such, despite the fine-scale nature of biologging data and often 375 

short deployment periods, these data can provide important, broader-scale inferences for 376 

population ecology [167, 168].  377 

 378 

SOCIAL PREDATORS 379 

Social foraging can decrease the time and energy an individual invests in locating and 380 

consuming prey [169, 170] and enable access to prey which cannot be obtained by a single 381 

predator [28, 171]. Whether a predator hunts alone or with a team has implications for how 382 
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animal-attached sensor data should be interpreted and which wider conclusions on predation 383 

energetics can be drawn. In this section, we provide a brief overview of challenges and 384 

considerations for studies on social predators. 385 

 Often when studying social species, tags are deployed on one or a few members of 386 

multiple social groups, to gain insights into the larger population, though with consequences 387 

for our understanding of social group interactions [172]. One of the primary difficulties in 388 

interpreting tag data from social foragers is that both the energy expended in acquiring a meal 389 

and the energy intake from a successful predation attempt may be unequal between group 390 

members, particularly where group members perform different roles during a hunt [173, 174]. 391 

This makes it difficult to extrapolate energy intake and output from tagged individuals to other 392 

group members, and indeed conspecifics more generally. This is particularly complex where 393 

social group sizes are unknown or fission-fusion dynamics are at play, leading to variable 394 

numbers of predators present at each predation event. Detection of interactions between 395 

members of the social group is influenced by sampling frequency, which must also be taken 396 

into consideration when studying group dynamics [172]. The strengths of within-group and 397 

between-group social interactions may also vary depending on ecological conditions, e.g., in 398 

lions [175]. Thus an additional complication is estimating the distribution of conspecifics 399 

across the landscape; additional data, such as sightings, combined with tag data, may be used 400 

to build a social landscape providing the likely density of conspecifics from different groups 401 

[61]. This will likely require intensive sampling and surveying across potentially large areas, 402 

however. Further analysis considerations are required for behaviour classification of IMU 403 

sensor data. For example, when some but not all members of a social group have made a kill 404 

and an untagged individual does not participate in the hunt but feeds on said kill, it may not be 405 

possible to decipher whether this feeding instance represents active predation by the group or 406 

opportunistic carcass scavenging.  407 
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 Studies of predation energetics should consider the range of prey species taken by a 408 

social predator, as the degree of cooperation may vary with prey size and relative risk to the 409 

predator. This is particularly relevant to generalist predators with wide distributions, the range 410 

of which may encompass different habitat types and prey species compositions. This is not 411 

static, for example larger wolf packs are more cooperative during a hunt when hunting more 412 

dangerous prey [28]. It is important to note that other factors affect the size of animal social 413 

groups, including defending vulnerable young and territories, which may explain why social 414 

groups are often larger than identified optimum group sizes for cooperative hunting [176, 177] 415 

and why some species, like the Ethiopian wolf (Canis simensis), occupy shared territories and 416 

breed cooperatively but forage alone [178]. Even when the hunt itself is cooperative, feeding 417 

behaviour following securing the prey may still be competitive when groups often contain more 418 

individuals than are necessary for optimised cooperative hunting [179, 180]. Dominant 419 

individuals may limit food access to more subordinate group members [181], though other 420 

factors beyond social hierarchies can also affect the roles social group members perform in 421 

hunts and the related energy intake and output from a kill. 422 

 423 

INTER-INDIVIDUAL VARIABILITY 424 

There has been relatively little consideration of how consistent inter-individual differences 425 

(i.e., animal temperament or animal personality) might affect hunting prowess. This individual 426 

variation may lead to specialisation in solitary hunters like octopuses [182] or distinct roles in 427 

cooperative hunters such as cichlid pike Crenicichla frenata [77, 183]. If individuals adopt 428 

flexible foraging strategies such as exhibiting prey preference based on prey size and 429 

availability, as well as the broader ecological context, then it is reasonable to assume that 430 

differences in strategy will arise between individuals. Some differences may be linked to 431 
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factors such as age and sex [11], though further variation may be attributed to consistent intra-432 

individual variability. This can be measured by considering the repeatability and predictability 433 

of behaviours. Protocols for extracting measures of personality from biologging data have 434 

recently been developed and are growing in popularity [184]. To date, these methods have 435 

largely focused on using parameters extracted from GPS data, including distance moved and 436 

activity patterns [185] though there is considerable scope for IMU sensors to yield additional 437 

insights into individual variation in activity level and space use as influenced by foraging [186, 438 

187]. Individual variation in activity rhythms and how prey are approached and hunted may 439 

affect predation strategies and the roles performed by cooperative hunters, with potential 440 

energetic implications. 441 

 442 

FUTURE DIRECTIONS 443 

In this review, we have summarised key theory in the predation energetics literature, outline 444 

the development of biologging tools for measuring animal energetics and highlight key 445 

considerations which must be accounted for when working with social predators. We conclude 446 

by proposing future directions in predation energetics research, which will be key in identifying 447 

different energetic costs and gains experienced by predators in a changing world. 448 

1. Integrating energetic landscapes and social networks. Energetic landscapes, which 449 

consider the costs of navigating the physical landscape, and social networks, which 450 

define the relative strength of social interactions, can be unified as a potential method 451 

for considering the abiotic and biotic factors shaping animal movement patterns in 452 

tandem. Large-scale tracking initiatives such as ICARUS [188] and data-sharing 453 

platforms such as Movebank (which also contributes a data standardisation philosophy; 454 

[189]) make it easier to consider multi-individual interactions across both conspecifics 455 
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and heterospecifics. Though social networks are not typically spatially explicit, they 456 

can be overlaid onto maps to show the spatial distribution of individuals and assess the 457 

role of spatial proximity in determining association strength, e.g., [68]. This process 458 

can be taken a step further by overlaying social networks onto mapped energy 459 

landscapes, where individuals have been tagged with locational units and 460 

accelerometers (Figure 5), and to the social landscape of conspecifics [61]. This can be 461 

used to identify scenarios where attraction or avoidance to conspecifics and/or 462 

heterospecifics results in suboptimal use of the physical landscape (e.g., expending 463 

more energy to traverse through rough terrain to search for prey or avoid competition). 464 

Conversely, an animal may choose the least costly path to navigate the local terrain, 465 

which then affects its biotic interactions.  466 

Social network analysis (in both intra- and inter-specific systems) offers an 467 

analytical means of assessing the role of social interactions in species ecology [65]. 468 

Social networks have typically been constructed in such a way as to disregard temporal 469 

and spatial scales in animal ecology (but see [190, 191]; see also [172] for GPS 470 

sampling designs for social species). However, animals are navigating a spatial 471 

landscape and other animals, including predators and prey, affect movement and 472 

energetics in a similar fashion to abiotic landscape factors. These biotic factors have 473 

unequal avoidance and attraction effects with consequences for how animals navigate 474 

their environment [192]. Technological approaches for deriving social networks, e.g., 475 

passive radio-frequency identification (RFID) [68, 193], are growing in popularity. 476 

This provides opportunities to better link the biotic and abiotic factors governing animal 477 

movement [117]. Recently, a new R package aniSNA has been developed to solve the 478 

autocorrelation issues encountered in the computation of social network metrics using 479 

radio-tracking data [194], unleashing the opportunity to test specific hypotheses on the 480 
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variation of social networks as a function of, for instance, prey availability or 481 

environmental conditions such as temperatures, or how individuals modify the strength 482 

of their bonds with other group members over time. Emphasising the potential role of 483 

additional technological approaches such as proximity sensors or assessing animal 484 

interactions through GPS data may expand proposed spatial-social data insights [195] 485 

to provide new insights on how other animals affect how an individual navigates its 486 

environment. 487 

 488 

 489 

Figure 5. Infographic contrasting the energetic costs and gains between a social group of 490 

cooperative hunters and a solitary predator, incorporating energetic landscape and social 491 

network concepts. Sensor data on animal location and energetics can be computed into energy 492 

landscapes, which can in turn influence prey selection and encounter rates.  493 

 494 

2. Refining data collection and analysis procedures using captive and domestic animals. 495 

Pilot studies on captive and domestic animals allow refinements before wild tag 496 
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deployments. Zoos provide settings where sensor data can easily be verified for 497 

improved data analysis procedures ahead of wild deployments [187]. Captive studies 498 

can also have welfare benefits by piloting device attachment and deployment methods 499 

and detecting potential species-specific considerations required ahead of long-term 500 

field deployments e.g., maned wolves Chrysocyon brachyurus; English et al., 501 

unpublished data. While there are limitations to using surrogates [196], with careful 502 

interpretation, data from captive and domestic animals can improve behaviour 503 

classification procedures for biologging data [197]. This can be particularly useful 504 

when investigating complex postures and motions such as those associated with 505 

feeding.  506 

 507 

3. Tagging multiple or all individuals in a social group. Simultaneously tagging multiple 508 

or all individuals in a single social group is rarely done for multiple reasons. Most 509 

studies typically have limited numbers of tags and aim to spread them across multiple 510 

social units so that broader population insights can be gained [172]. Deploying tags in 511 

discrete social groups can also address statistical assumptions of independence of data 512 

points, depending on the analysis methods used. These constraints are valid, but 513 

currently limit our fine-scale knowledge of within-group interactions, including distinct 514 

roles which may be performed during coordinated hunting behaviour. Studies which 515 

target an entire social group can reveal whether a hunt is truly cooperative and quantify 516 

the influence of habitat on pursuit predation, with important considerations for how 517 

focal species may adapt in changing land-use and climate scenarios [24]. While tackling 518 

entire social groups is easier where groups are small, it is becoming increasingly 519 

feasible and common to also tag larger social groups (e.g.,  [198]). While tagging 520 

multiple or all members of a social group will lead to advances in our understanding of 521 
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animal societies, tag burden should be kept in mind and research questions should be 522 

well formulated to ensure maximum information gain from studies with potential 523 

higher overall tag burden. Researchers can also implement non-invasive technologies 524 

to collect empirical data on group size, such as camera traps and drones, for example in 525 

scenarios where tagging all members of a social group is not feasible due to economic 526 

or logistical constraints, or to verify social bonds where these cannot easily be 527 

ascertained by an observer, e.g. red foxes [29]. 528 

 529 

4. Taking social groups as individual units to compare inter-group communication and 530 

interactions. Complementary to studies of within-group interactions, there is scope for 531 

further consideration of between-group interactions, where territoriality may (at least 532 

occasionally) be weaker than described in classical literature of species ecology. This 533 

also applies to solitary species which may interact socially with conspecifics in 534 

neighbouring territories more readily than previously thought (e.g., maned wolves 535 

[199]). These interactions may be aggressive or affiliative and include communication 536 

through scent-marking and vocalisations. These interactions also shape how an animal 537 

perceives and therefore navigates its environment, with consequences for territoriality 538 

and therefore the resources available to the territory holder. These interactions are more 539 

difficult to visualise and frame in a social-energetic landscape context, but mapping 540 

instances of scent-marking behaviour classified through IMU sensor data [200] and 541 

continued advancements in acoustic recording research [201] may improve our 542 

understanding of these non-visual communication channels in shaping how animals 543 

move through their environment. 544 

 545 
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5. Account for factors such as hunting success rate and relative prey energy value in 546 

statistical model structures. Fine-scale biologging data and related behaviour 547 

classification can also contribute additional variables to include in models of predation 548 

energetics. For example, where hunting can be defined, the approximate energetic costs 549 

of distinct prey species and their energy value when obtained (either estimated from 550 

time spent feeding if clear from IMU sensor traces or through a proxy derived from 551 

prey body size or estimated caloric value) can be included in model structures. Models 552 

explaining the likelihood of successful predation of a given prey would benefit from 553 

including the approximate energy value of the prey, encounter rate, handling time (i.e., 554 

profitability), and individuality. Conversely, failed predation attempts can be an 555 

important consideration when considering a more general model of a predator’s 556 

energetic balance.  557 

 558 

6. Increasing the diversity of species tagged and included in such studies. One of the 559 

limitations of animal-attached sensors is that tag size and weight can limit the potential 560 

for the use of such technology on smaller animals. Considerable advancements have 561 

been and continue to be made, however, such as biologger sensor networks developed 562 

for tracking bats [202]. Though the development of smaller tags facilitates deployments 563 

on smaller species, these developments should also aim to facilitate the use of reduced 564 

mass tags on individuals to minimise potential deleterious effects [203]. Biologging 565 

studies are also biased towards mammals, and to a lesser extent fish and birds [204]; 566 

efforts should be made to increase the diversity of species represented in such studies. 567 

 568 
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7. Sampling designs tackling the influence of climate and habitat modification on foraging 569 

behaviour. Predator-prey interactions are key to trophic ecology and it is therefore 570 

important to assess energy balance in these relationships in a changing world. Further, 571 

robust understanding of energy intake and output is required to understand species 572 

responses to climate and habitat change. These questions can be tackled, for example, 573 

by comparing energetics across populations with different weather patterns to 574 

approximate species responses to climatic shifts [40]. Studies on wildlife in human-575 

dominated landscapes such as urban areas or agricultural land can yield insights for 576 

areas undergoing current land-use change.  577 

 578 

Advances in animal-attached tagging technology have rapidly expanded the ecologist’s toolkit 579 

for understanding animal energetics. These tools, coupled with thoughtful study designs and 580 

integrated analysis concepts, can facilitate substantial advances in our understanding of 581 

predation energetics in a changing world. 582 
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