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Abstract

Second-generation  Anticoagulant  Rodenticides  (ARs)  can  be  particularly  critical  for  large

carnivores, due to their widespread use and time-delayed impacts on their populations. While many

studies explored the impacts of ARs on small and mesocarnivores, no study explored the extent to

which they could contaminate large carnivores in anthropized landscapes of Europe.

We filled this gap by exploring spatiotemporal trends in grey wolf (Canis lupus) exposure to ARs in

central and northern Italy, by relying on a dataset of dead wolves (n = 186) tested with standardized

laboratory  protocols.  The  determination  of  anticoagulants  was  carried  out  by  means  of  a

semiquantitative LC-MS/MS method.

Most wolves (n = 115/186, 61.8%) tested positive for ARs (1 compound, n = 36; 2 compounds, n =

47;  3  compounds,  n  =  16;  4  or  more  compounds,  n  =  16).  Bromadiolone,  Brodifacoum  and

Difenacoum,  were  the  most  common  compounds,  with  Brodifacoum/Bromadiolone  the

combination of ARs that co-occurred the most (n = 61).

Both  the  probability  to  test  positive  for  multiple  ARs  and  the  presence  of  Brodifacoum,  and

Bromadiolone in the liver, systematically increased in wolves that were found at more anthropized

sites. Moreover, wolves became more likely to test positive for ARs through time, particularly after

2020.

Our results underline that rodent control, based on ARs baiting, increases the risks of unintentional

poisoning non-target wildlife. However, this risk does not only involve small and mesocarnivores,

but also large carnivores at the top of the food chain, such as wolves. Therefore, rodent control is

adding one further conservation threat for endangered large carnivores in anthropized landscapes of

Europe,  whose severity could increase through time and be far higher than previously thought.

Widespread monitoring schemes for ARs in European large carnivores should be devised as soon as

possible.
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1.Introduction

The long-term conservation of large mammals in anthropized landscapes is often said to depend

upon a combination of legal protection, sustainable exploitation, the availability of suitable habitat

and trophic resources, human tolerance, and infrastructure development (Apollonio et al., 2017; Di

Marco  et  al.,  2014;  Di  Minin  et  al.,  2016;  Kauffman  et  al.,  2021;  Wolf  and  Ripple,  2016).

Moreover, many studies highlighted the risk posed by infectious or parasitic diseases, often from a

One Health perspective (Cunningham et al., 2017).

However, exposure of large mammals to anthropogenic chemicals received proper attention only

over the last few years (https://www.ewg.org/interactive-maps/pfas_in_wildlife/map/). This despite

persistent,  bioaccumulative and toxic (PBT) chemicals can enter the trophic chain and alter  the

physiology, behaviour, health, and reproduction of mammals (Torquetti et al., 2021; Saaristo et al.,

2018; Zala and Penn, 2014; Köhler and Triebskorn,  2013),  sometimes with temporally  delayed

dynamics  which  are detected  only when it  is  too late  to  counteract  their  demographic  impacts

(Desforges  et  al.,  2018).  The  impact  of  PBTs  can  be  particularly  critical  for  large  carnivores

(Rodríguez-Estival  and  Mateo,  2019),  whose  populations  in  many  parts  of  the  Global  North,

although recovering (Ingeman et al., 2022), are still relatively limited and potentially susceptible to

strong shrinking.

Anticoagulant rodenticides (hereinafter ARs) are among the most problematic PBTs for predators,

due to the possibility of secondary exposure through direct predation of rodents or the consumption

of dead ones (Wright et  al.,  2022; Fernanez-de-Simon et al.,  2018, 2022; Elmeros et  al.,  2019;

López-Perea et al. 2018; Gedhun et al., 2015) given their long-term impact on the immune system

of mammals (Serieys et al.,  2018). This is especially true for second-generation ARs which are

more  effective  against  rodents  than  first-generation  compounds  and  more  persistent  in  the

environment.  Although  the  European  Union  over  the  years  has  adopted  regulations  that  have

progressively restricted the range and patterns of use of rodenticides, these normative changes failed

so  far  to  reduce  exposure in  non-target  mammal  predators  (Elmeros  et  al.,  2018),  also  due  to

different national laws and free trade between member states (Eisemann et al., 2018).

The  grey  wolf  (Canis  lupus)  steadily  expanded  its  distribution  in  Europe,  over  the  last  three

decades, due to environmental change and increased legal protection (Cimatti et al., 2021), with

previously  disconnected  populations  becoming  genetically  connected  for  the  first  time  after

centuries  (Fabbri  et  al.,  2014).  Despite  exposure  to  ARs might  be occurring  among wolves  in

Europe, since i) rodents are part of the wolf diet (Newsome et al., 2016; Zlatanova et al., 2014) and

ii) wolves are expanding into areas where rodent control is a routine activity, no study explored

neither the occurrence and extent of this phenomenon, nor its spatio-temporal dynamics. This gap is
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surprising because ARs have been recently found in meso and large carnivores living near to human

settlements,  indicating that  secondary exposure to these substances  is  not anymore restricted to

small and mesopredators specializing on rodents (Serieys et al., 2018, 2019; McMillin et al., 2018;

Rudd et al., 2018; Lestrade et al., 2021).

Here we want to fill this gap by exploring spatiotemporal trends in wolf exposure to ARs in central

and northern Italy, by relying on a dataset of animals found dead between 2018 and 2022 and tested

with standardized laboratory protocols.

2.Methods

2.1.Study area

The  study  area  encompasses  the  Emilia-Romagna  and  Lombardy  regions,  as  well  as  the

northernmost  portion  of  the  Tuscany  region  (Fig.  1).  This  area  is  characterized  by  different

ecosystems, from Mediterranean maquis on the coasts of Tuscany, to broad-leaved forests and sub-

alpine grasslands in the Apennines, to alpine grasslands and glaciers in the Alps, to urbanized areas

in the lowlands. The human population is estimated around 10.5 million people, across 46.039 km2,

with a density of 269.4 ± 167.6 inhabitants/km2 (mean ± standard deviation).

In the Tuscany region, approximately 107 - 110 packs of wolves were estimated between 2014 and

2016  (Apollonio  et  al.,  2016),  while  in  the  Emilia-Romagna  region,  approximately  42  packs

occurred between 2000 and 2009 (Caniglia et al., 2014). These originated from two distinct sub-

populations, that had subsequently merged, around 2013, as the species expanded its distribution

(Apollonio et al., 2013). In the Lombardy region, wolf expansion occurred mostly from the Western

Alps (Marucco et al., 2022) and in the Po Plain, along the Ticino River (Dondina et al., 2020).

As  wolves  are  territorial,  and  many  individuals  are  forced  to  disperse  and  settle  down  into

unoccupied habitats,  the species progressively colonized the whole study area, starting from the

more undisturbed habitat patches to the more disturbed agricultural and peri-urban environments in

lowlands (Bassi et al., 2015; Zanni et al., 2023).

Moreover,  the  Emilia-Romagna  and Tuscany regions  host  among the  highest  densities  of  wild

ungulates in Europe (Apollonio et al., 2010). Available evidence indicates that in the study area,

wolves rely mostly on wild ungulates, such as the roe deer (Capreolus capreolus) and the wild boar

(Sus scrofa) (Bassi et al., 2017, 2020; Ferretti et al., 2019; Mori et al., 2017; Milanesi et al., 2012;

Mattioli et al., 2011; Capitani et al., 2004), although they can also regularly include other preys,

such as an invasive alien coypu (Myocastor coypus, Ferretti et al., 2019).

As  elsewhere,  in  the  study area  rodent  control  is  authorized  according  to  provisions  from the

Regulation  n.  1062/2014  from  the  European  Commission

Archived as a preprint on EcoEvoRxiv (https://doi.org/10.32942/X2J30M) 4

89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

https://doi.org/10.32942/X2J30M


(https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32014R1062), which have been

translated into provisioning from the Ministry of Health (Cabella et al., 2015). In Italy, both first-

generation  (Chlorophacinone, Coumatetralyl)  and  second-generation  ARs  (Brodifacoum,

Bromadiolone,  Difenacoum,  Difethialone,  Flocoumafen)  have  been authorized.  In  Table  1,  the

number of anticoagulant rodenticide formulations available on the market in Italy, based on active

ingredient is given. Rodent control primarily - and almost exclusively - target synanthropic species,

i.e., the house mouse (Mus musculus), the brown rat (Rattus norvegicus) and the black rat (Rattus

rattus), while more sporadic interventions are also made against voles in agriculture, although these

are now much less frequent than in the past (Capizzi & Santini, 2007). By being a non-selective

method, rodenticides are not allowed for the control of coypus. Rodent management is performed

mostly  by  pest  control  operators  (hereinafter:  PCO),  which  often  include  cleaning  companies

contracted  to  also  carry  out  rodent  control.  According  to  Regulation  n.  1062/2014  from  the

European Commission, PCOs can purchase any active ingredient, with concentrations up to 50 ppm

of the active principle (Sinergitech, 2020). Noteworthy, the use of rodenticides is also allowed for

amateurs, but these can only purchase small packages with concentrations of the active principle

below  30  ppm  (https://www.izs.it/IZS/Engine/RAServeFile.php/f/pdf_normativa/Biocidi-

Rodenticidi/Biocidi_IZSTeramo.pdf). Rodent control interventions are carried out both at relatively

large spatial scales (e.g., house blocks, inhabited areas, large private factories) as well as in form of

localized  interventions,  such as  those  carried  out  in  private  houses  or  shops.  However,  rodent

control interventions through rodenticides mainly target outdoor areas, since in several industrial

and  commercial  settings  rodents  are  controlled  mostly  indoors  through  trapping.  Unlike  other

European countries (e.g., the United Kingdom), in Italy there are no restrictions to the use of the

most powerful active principles in rodent control operations carried out outdoors.

2.2.Data collection and laboratory analysis

Our final sample of wolves included 186 individuals (Fig. 1), which had been collected between

2018 and 2022 by local authorities/people encharged and subjected to necropsy investigation by the

University of Bologna and the Experimental Zooprophylactic Institute of Lombardy and Emilia-

Romagna. They were subjected to toxicological examinations and had the coordinates of their site

reported  by  local  authorities.  The  age  of  the  animal  was  estimated  on  the  basis  of  dental

development, body size and weight (Mòrner et al., 2005). Individuals had a quite balanced sex ratio

(53.6 % were males),  and our sample included either young or adult  wolves (1st year of age =

27.9%; 2nd year of age = 34.6%, 3rd year of age or higher = 37.7%).
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The  determination  of  anticoagulants  (Coumafuryl,  Warfarin,  Coumatetralyl,  Coumachlor,

Bromadiolone, Difenacoum, Brodifacoum, Flocoumafen, Difethialone) was carried out by means of

a LC-MS/MS method (Vandenbrouke et al., 2008; Fourel et al., 2017, Bertero et al., 2020). In detail

the sample (typically 40 g) was extracted by vigorous stirring with acetone (100 mL); after filtration

on  paper,  an  aliquot  (2  mL)  was  dried  under  gentle  nitrogen  flow at  40°C.  The  residue  was

reconstituted  with 2 mL of 2% ammonia  solution in  acetonitrile.  Three defatting  steps with n-

hexane (2 mL) followed. Finally, an aliquot (1 mL) was stripped to dryness and reconstituted with

0,4 mL of acetonitrile. A 1  L volume was injected into an LC-MS/MS system (Agilent QQQ

6460, equipped with an Agilent  1290 Infinity  II  UPLC). Chromatographic column was Zorbax

Eclipse Plus C18 (2,1x50 mm, 1,8 m). Column temperature was set at 40° C. Chromatographic

separation was performed through a linear gradient using as aqueous phase a 0,1% formic acid

solution and as organic phase 0,1% formic acid solution in acetonitrile. Flow rate was set at 0,4

mL/min. Run time was 11 min, with a post-time reconditioning of 2 min. Quantification was carried

out by the external standard method in MRM mode (ESI negative) acquiring two proper and typical

transitions, quantifier,  and qualifier, for each analyte (Tab. S1). MS/MS parameters were set as

follows: capillary 4000 V, gas temperature 300°C, gas flow 10 L min–1, nebulizer 35 psi, sheath

gas temperature 300°C, sheath gas flow 12 L/min.

 The limit of quantification (LOQ) was 1 g /Kg for all analytes. A concentration found ≥ 1 g /Kg

did  indicate  a  positive  sample,  while  a  concentration  < 1  g /Kg denoted  a  negative  sample.

Therefore, this method gives a result positive or negative for the presence of anticoagulants; in a

healthy animal, anticoagulants should not be present. Even if the concentration of anticoagulants

above the LOQ is evaluated by the method this data is not reported as a result because the meaning

of different levels of principles in wolves as for other non-targeted species for the baits is not clear

due to the lack of information. In particular, there is a lack of information about; species sensitivity,

consequences of sublethal effects, effects of different-level exposure to rodenticides, the relation

among residues of multiple  ARs, their  relative potency and combined effect at  the level  of the

individual, quantitative estimates of mortality, identification of the occurrence of sublethal effects

and long-term ecological consequences and the effects of multiple low-level AR exposures (Rattner

et al., 2014), toxicokinetic aspects, absorption, distribution, excretion/elimination and especially all

factors affecting metabolism (such as; differences in breed, sex, age, physiological state or disease

states, nutritional states, individual genetic aspects, presence of enzyme inducers or inhibitors in the

diet and so on).

Regarding the evaluation of the analytical data, it is emphasized that the latter is only one part that

makes up the story of "each case" examined; the other components include not only lesions and the
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anatomopathological picture but also the anamnesis and recent symptoms. The latter data referring

to wild animal carcasses found in the territory are not available. Therefore, we are only able to

classify as poisoned animals those in which the toxicological examination was positive (presence of

anticoagulants)  in  association  with  an  anatomopathological  picture  indicative  of  acquired

coagulation disorders.

In  all  other  cases,  only  positivity  on  toxicological  examination  could  be  reported  without  the

characteristic alterations of coagulation caused by ARs, on subjects in good body condition. One

factor that can complicate the interpretation of the data is the state of preservation of the carcass,

which when suboptimal, can alter the anatomopathological pictures and interfere with the finding of

the ARs.

Taking into account all these considerations we put the data of quantitative level found in the livers

in relation to the area of recovery of the carcasses with the purpose to see if there were higher levels

of anticoagulants in different areas.

2.3.Statistical analyses

We modelled how the effect of landscape characteristics, measured at the sites where wolves had

been  found,  affected  i)  their  probability  of  testing  positive  to  1,  2,  3  or  more  ARs  (among

Brodifacoum,  Bromadiolone,  Coumatetralyl,  Difenacoum,  Difethialone,  Flocoumafen),  ii)  the

presence of Brodifacoum and Bromadiolone, the two most common ARs (see below), detected in

their livers.

Rodent control in the study area is associated with urban areas, farms, and animal husbandry. In

these environmental conditions, we expected wolves to be positive to a higher number of ARs, due

to the higher exposure to contaminated rodents, which would be scavenged or hunted. Moreover, as

exposure to ARs is expected to occur in these areas with a higher frequency than in natural habitats,

we expected wolves from anthropized areas to have a higher presence of ARs in their livers.

Environmental  characteristics  of  the  site  where  each  wolf  has  been  found  were  quantified  by

aggregating important environmental attributes with Partitioning Around Medoids cluster analysis

(Kassambara, 2017). Rather than using only the presence of human infrastructures, we opted for

creating a composite index, reflecting both human presence and other important topographic and

land cover characteristics of the study area. These included i) the presence of human infrastructures,

by using the Human Footprint Index (Venter et al., 2009) as a proxy, ii) the percentage of tree cover

and iii) croplands at a 250 m scale, measured through the MODIS/Terra Vegetation Continuous

Fields (https://lpdaac.usgs.gov/products/mod44bv006/),  iv) the elevation,  v) the roughness of each

point and the vi) topographic position index, indicating if a certain point was on a mountain top or
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on the bottom of a valley (Wilson et al., 2007). Environmental variables were calculated as median

values in  a buffer with a radius of 6 km around the point. This size corresponded to an area of

approx. 113 km2, reflecting the most recent estimates for the home range of the species reported in

Italy (Mancinelli et al., 2018; Mattioli et al., 2018).

The silhouette method, the elbow method, and the gap statistic method supported the existence of

two different environmental conditions (Fig. S1). By overlaying them with a satellite imagery of the

study area,  and by exploring the distribution of environmental  characteristics in the two groups

(Fig. S2), we noticed that the first group corresponded to relatively undisturbed areas on hills and

mountains,  with  high  levels  of  tree  cover  and  terrain  roughness,  and  low  presence  of  human

infrastructures. On the other hand, the second group corresponded to lowland areas with a high

presence of human infrastructures and croplands.

We modelled the probability of testing positive to multiple ARs through a Bayesian ordered-logit

formulation  (Bürkner  and  Vuorre,  2019).  On  the  other  hand,  we  used  a  zero-altered  Gamma

regression (Zuur et al., 2017) to model the presence of Brodifacoum and Bromadiolone detected in

the liver of tested wolves.

In our models, we also controlled for the sex and age class of each individual,  two potentially

confounding  variables  that  were  measured  as  ordered  variables  with  polynomial  contrasts.

Anthropization was deemed to be a potentially important predictor of positivity to ARs, as rodent

control  in  the  study  area  is  mostly  concentrated  around  urban areas  and  in  farms  and animal

husbandry.  Moreover,  in  anthropized  landscapes,  wolves  could  face  a  higher  exposure  to

anticoagulants as their diet might rely more on rodents, due to the lack of their main prey such as

ungulates. Finally, young male wolves were assumed to be more at risk of exposure from ARs, as

this  group  is  the  most  involved  in  dispersal  (Ausband,  2022;  Morales-González  et  al.,  2021;

Caniglia et al., 2014), when individuals cannot rely on group hunting, thus shifting to smaller preys,

like rodents. We used bivariate thin-plates splines to measure the spatial correlation of observations

and a cyclic cubic spline to measure cyclic variations, accounting for the temporal correlation of

observations, in the temporal distribution of recoveries, between January 2018 and December 2022

(Wood, 2017). Exploratory analyses indicated that predictors did not have any association between

them, nor any spatial, or temporal pattern.

2.4.Comparison with other recovered wildlife

To have a more complete understanding of temporal trends in wildlife exposure, we compared our

findings about wolves, with positivity to ARs in other wildlife that has been recovered and tested

for these compounds in the Emilia-Romagna region.  Contrary to wolves that have always been

Archived as a preprint on EcoEvoRxiv (https://doi.org/10.32942/X2J30M) 8

224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257

https://doi.org/10.32942/X2J30M


tested for AR, in the case of these species, only those individuals that showed signs of acquired

coagulopathies on pathological examination were tested for AR.  This dataset (n = 176), included

recoveries  of  multiple  species,  that  could  prey or  consume dead individuals  of  rodents,  which

occurred between 2018 and 2022, mostly red fox (Vulpes vulpes, n = 67),  common buzzard (Buteo

buteo, n = 23), Eurasian badger (Meles meles, n = 13), wild boar (Sus scrofa, n = 9), European

hedgehog (Erinaceus europaeus, n = 9), coypu (n = 7), house mouse and rats (n = 7), stone and pine

marten (Martes sp., n = 4), and other diurnal (n = 15) and nocturnal (n = 8) raptors. Individuals

were subjected to the same laboratory analyses that were used for wolves, and we modelled the

temporal  trends  of  positivity  to  Coumatetralyl,  Brodifacoum,  Bromadiolone,  Difenacoum,

Difethialone and Flocoumafen. This dataset was used as a “control”, to detect any temporal change

in the use of rodenticides,  at least for part  of the study area. A Bayesian Generalized Additive

model, with a cyclic cubic spline, and a Bernoulli distribution of the response, was used to model

temporal fluctuations in the probability that a recovered animal was positive to rodenticides.

Model selection for both wolves and recovered wildlife followed a stepwise approach, starting from

a  null  model,  and  then  evaluating  the  effect  of  each  covariate  on  the  predictive  accuracy  of

candidate models, through leave-one-out cross-validation (Vehtari et al., 2017). Statistical analyses

were carried out with the statistical software R (R Core Team, 2022) and with STAN (Carpenter et

al., 2018), through the ‘brms’ package (Bürkner et al., 2017). A reproducible dataset and software

code is available at the following link: https://osf.io/yqv4n/

3.Results

Our findings indicate that most wolves (n = 115/186, 61.8%), analyzed between 2018 and 2022,

tested positive for ARs (1 compound, n = 36; 2 compounds, n = 47; 3 compounds, n = 16; 4 or more

compounds, n = 16). The most common compounds were Bromadiolone (n = 97), Brodifacoum (n

= 93) and Difenacoum (n = 26,  Fig. S3), which often occurred in the same individual (Fig. S4).

Overall, Brodifacoum/Bromadiolone was the combination of ARs that co-occurred the most (n =

61), followed by a mix of Brodifacoum/Difenacoum (n = 20; Tab. S2).

Of  the  115  wolves  who tested  positive  for  ARs,  19  presented  an  anatomopathological  picture

attributable  to  acquired  coagulopathies  with  evident  coagulation  alterations  (i.e.,  macro,  and

microscopic  hemorrhages)  while  96  died  of  other  causes  such  as  vehicle  collision,  gunshot,

intraspecific aggression, diseases, presenting laboratory positivity to AR, even if in the absence of

characteristic pathological lesions.

Leave-one-out cross-validation retained anthropization and the time when wolves were found as

meaningful covariates. Wolves from more anthropized areas had a lower probability than wolves

Archived as a preprint on EcoEvoRxiv (https://doi.org/10.32942/X2J30M) 9

258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291

https://doi.org/10.32942/X2J30M
https://osf.io/yqv4n/


from less anthropized areas of being negative to ARs or testing positive for a single compound, but

they had a higher probability to test positive for 2, or more, ARs (Fig. 2). Moreover, wolves had a

higher chance of testing positive for ARs from late summer to late  winter,  and this probability

became higher after 2020, particularly the probability of testing positive to 3, or more, ARs (Fig. 3).

Model selection indicated that wolves from more anthropized areas had also a higher concentration

of  Brodifacoum  in  their  liver  (Fig.  4).  However,  the  concentration  of  Bromadiolone  was  not

significantly higher.

As for other wildlife species, positivity to ARs was found to be particularly high for the red fox,

where 60 individuals out of 67 (89.6%) showed traces of rodenticides. Moreover, also 18 buzzards

out of 23 (78.3%) were positive. However, when considering the temporal distribution of positivity

to ARs, among all the various wildlife species, no clear trend emerged (Fig. S5).

The Bayesian ordered-logit GAM modelling the number of ARs, and zero altered Gamma GAM

modelling Brodifacoum and Bromadiolone presence in the liver of wolves and our Bernoulli GAM

modelling presence/absence of ARs in recovered wildlife, converged, and showed a good fit to the

data. No spatial correlation was detected, as the inclusion of coordinates with a thin-plate spline did

not improve model fitness. A complete overview of model selection is given in Appendix S1.

4.Discussion

The grey wolf is now widespread in Italy, with an estimated population of 2,945 – 3,608 individuals

(La  Morgia  et  al.,  2022),  and  a  conservation  status  that  changed  from “Vulnerable”  to  “Near

Threatened” during the last decade (Rondinini et al., 2022). Nevertheless, our findings highlight a

concerning situation regarding the exposure of this species to both first and second-generation ARs.

In our opinion our findings should raise a concern about i) our true understanding of wolf ecology

in human-dominated landscapes, ii) the extent to which grey wolves in Italy, and more generally in

Europe,  might  be  subjected  to  secondary  exposure  to  ARs,  altogether  with  the  long-term

consequences of this phenomenon, iii) the lack of selectivity of rodent control through ARs and the

need to update regulations about their use.

4.1.Understanding of wolf ecology in anthropized landscapes

More than half wolves in our sample tested positive for one, or more, ARs, particularly after 2020.

While we expected some individuals to show traces of rodenticides (Di Blasio et al., 2020), due to

the trophic flexibility of the species, a similar magnitude was largely unforeseen. Moreover, both

the number of ARs and the presence of Brodifacoum in the liver of wolves, increased in wolves that

had been found in anthropized environments.
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In Europe wolves,  although capable of exploiting many different preys,  have traditionally  been

regarded as relying on wild ungulates or livestock (Zlatanova et al., 2014). Our findings indicate

that rodents might be consumed regularly, and perhaps might also be an important food in certain

seasons and environmental conditions, even where wild ungulates are abundant. Indeed, Ferretti et

al. (2019) reported invasive alien coypu as an important prey, whose importance can locally be

comparable to that of the roe deer. Although coypu cannot be controlled with ARs, it is a major pest

in northern Italy (Cocchi and Bertolino, 2021), and it is likely subjected to illegal baiting with ARs.

Empirical  evidence  indicates  that  wolves  in  the  Po  Plain  regularly  feed  on coypu (Myocastor

coypu), which may be somehow involved in the contamination with ARs.

Among wolves two categories of individuals could be more susceptible to contamination: the first is

lone nomadic individuals moving in unfamiliar landscapes (“floaters”,  sensu Fuller et al., 2003).

Floaters include different types of wolves, such as juveniles undergoing dispersal, adults that faced

pack disruption or old individuals that left  their  pack (Mancinelli  et al.,  2019). These have two

characteristics that could increase their exposure to ARs. First, by not being able to hunt large prey

in groups (MacNulty et al., 2012), floaters could have shifted to smaller prey, like coypus, or rats

(Rattus  norvegicus,  Rattus  rattus).  As  floaters  usually  avoid  contacts  with  resident  packs,  by

moving between territories, to minimize the risk of aggressions (Cassidy et al., 2017) this makes

them prone to move more around human settlements, or along anthropogenic landscape features

(Mancinelli et al., 2019). In our study area, where packs started their colonization from the most

undisturbed habitats (Bassi et al., 2015), floaters were forced to concentrate their movements in the

most  anthropized  areas,  where they could have sustained themselves  by scavenging or hunting

rodents. It is also plausible that this particular group of individuals could have further increased

their  frequentation  of anthropized areas during COVID-19 lockdowns, due to  decreased human

disturbance. In turn, this would have increased their exposure to ARs and produced the marked

increase in positivity observed after 2020. The second categories of wolves potentially more prone

to contamination are those belonging to the packs that recently started to colonise plain areas with

high  levels  of  human  presence  and  limited  access  to  natural  prey:  this  process  is  growing  in

importance in Italy where these last environments are more and more frequently hosting breeding

pairs that exploit the rich anthropogenic food sources (e.g., Tuscany see Zanni et al., 2023). In both

cases,  wolves  found  themselves  in  environments  where  resource  distribution  was  mainly

determined by human activities as consequence garbage, slaughter remains, limited barrier livestock

farms and small synanthropic mammals probably constitute the bulk of the food biomass available.

Thus, our study calls for a detailed assessment of wolf diet and movements in human-dominated

landscapes, and how individuals undergoing different life stages could change their diet. Since our
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data is based on the opportunistic collection of dead individuals, in the near future it would also be

important to set up methods, such as scat analysis (Prat-Mairet et al., 2017), which would allow us

to assess exposure to ARs homogeneously across a wolf population.

4.2.Selectivity of chemical control of rodents

By having detected for the first time a significant level of contamination from anticoagulants in

wolves, our study is a warning on on the penetration of anticoagulant rodenticides into the food

chain of terrestrial ecosystems in Europe. Indeed, finding high frequencies of contamination in a

species  believed  to  prey  mostly  on  ungulates  raises  serious  concerns  about  the  actual  level  of

bioaccumulation that rodent control can determine, even in those species which are not specialized

in rodents. The study reveals a relevant spatial spread, with significant temporal variations, in the

use  of  rodenticides  across  the  study  area,  affecting  even  some  of  the  most  persistent  active

ingredients. 

Worldwide,  rodenticides  are  the most  widely used technique  for  rodent  control  (Capizzi  et  al.,

2014). Empirical evidence suggests that rodenticides are used without adequate awareness and as a

preventive measure, often resorting to so-called permanent baiting. Although permanent baiting is

explicitly banned in official EU documents, it still finds application in the daily practices of many

professionals  and  amateurs  engaged  in  rodent  control.  There  is  a  need  to  identify  integrated

approaches to rodent control that can limit the use of rodenticides to only those situations where

they  are  truly  needed,  and  which  prioritize  the  use  of  trapping  and  environmental  sanitation.

Moreover, even when rodenticides are needed, the use of compounds with lower persistence and

toxicity towards nontarget species should be preferred (e.g., cholecalciferol, Witmer, 2018).

Finally, in regulating the use of these substances, environmental risk must be balanced with the

social benefits of synanthropic rodent control (e.g., Van den Brink et al., 2018).

4.3.Exposure to ARs in expanding wolf populations and potential consequences for conservation

The  potential  widespread  positivity  to  ARs  calls  for  the  rapid  creation  of  a  pan-European

surveillance network for toxic chemicals in recovering populations of large carnivores.

Our findings are not based on randomly sampled individuals, but rather on a convenience sample

that  probably  included  more  individuals  from  anthropized  areas  and/or  undergoing  nomadic

behaviour.  Even if  our  level  of  exposure could hardly  be taken as representative  of  the whole

population in the study area, it reasonably indicates that exposure to ARs can involve a considerable

number of individuals. 
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It  is  not  easy to identify  what  causes  and factors  can explain  these findings.  The risk of  ARs

accumulation in predators depends on both the frequency with which they are present in their prey,

as well as their concentration (Lopez Perea and Mateo, 2018). Confounding factors could include

the unauthorized use of rodenticides  against  coypu (Cocchi  and Bertolino,  2021), or occasional

baiting against voles (Microtus sp.) in orchards, although the latter is not an activity that has seen a

recent increase in the territory. But the discrepancy is inevitable between exposure to ARs and the

finding of animals that died from other causes at a time subsequent to exposure even by many days,

leading to  mismatched data,  especially  in the case of species  that  make very large  movements

(Mancinelli et al., 2018; Mattioli et al., 2018) and very persistent active ingredients (Horak et al.,

2018).

However, considering that both the number of ARs and the presence of Brodifacoum in the liver of

wolves increased with the level of anthropization at the sites where these had been found, the most

likely hypothesis is that an increased frequentation of peri-urban areas (Zanni et al., 2023) raised

wolf exposure to ARs through two different mechanisms. These included mostly the predation, or

scavenging, of contaminated rodents as well as perhaps the consumption of some poisonous baits,

made with ARs and targeting wolves (intentional poisoning). If wolf positivity to ARs had arisen

mostly from poisonous baits, we would have expected some spatial or temporal clustering, deriving

from the constraints that offenders would face to deploy baits (Faulkner et al., 2018). We did not

find any evidence for a similar clustering. On the other hand, both the red fox and diurnal raptors

had widespread positivity to ARs across the Emilia-Romagna region, without any temporal trend.

Taken together,  these  two findings  indicate  that  the  high  prevalence  of  ARs among recovered

wolves derived mostly from the widespread use of these substances for pest management and the

positivity found in the wolves object of this study, could be understood as accidental poisoning.

Considered that rodent control is common in many other parts of Italy and Europe (Eisemann et al.,

2018),  where  it  already  affects  raptors  (Gomez  et  al.,  2022;  Nakayama  et  al.,  2017),  smaller

carnivores (Wright et al., 2022; Fernanez-de-Simon et al., 2018, 2022; Elmeros et al., 2018, 2019;

López-Perea et al. 2018; Gedhun et al., 2015) and domestic pets  (Calzetta et al., 2018; Berny et al.,

2010)  we  believe  that  secondary  exposure  to  ARs  might  be  an  overlooked  phenomenon  for

European wolf populations.

This could bear two consequences for wolves. The first one is toxicosis, which is suspected to be a

relevant source of mortality for urban coyotes (Canis latrans) in North America (Poessel et al.,

2015). This scenario might be realistic only for those wolves whose diet is largely based on rodents,

but it is hard to make predictions about its impacts, as we currently do not have threshold values for

ARs in the grey wolf.
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On the other hand, there is evidence that ARs can amplify immune dysfunctions in carnivores,

increasing their impact on mortality. For example, Serieys et al. (2015) found that bobcats (Lynx

rufus), that had been exposed to ARs had a higher probability of having a severe level of mange.

Subsequent studies (Fraser et al., 2018; Serieys et al., 2018) showed that this was due to multiple

impacts  of  ARs  on  the  immune  system,  including  on  gene  expression,  that  compromised  the

immune response of bobcats against mange. Moreover, ARs are suspected to affect pregnancies in

domestic dogs (Fitzgerald et al., 2017) and their impacts can also be exacerbated by simultaneous

exposure to multiple compounds (Serieys et al., 2015).

It should be noted that 83.8% of the positive wolves did not show an anatomopathological picture

indicative of coagulation disorders. This could lead one to think that many positive wolves had

sublethal  concentrations which could have been a contributing cause of death.  In facts, chronic

exposure to ARs would have compromised the hepatic metabolism, coagulation, and behavior of

wolves, undermining their capacity to react to dangerous situations (Fournier-Chambrillon et al.,

2004). Moreover, poisoned individuals, due to behavioral alteration and the incapacity to effectively

hunt could approach  anthropized landscapes more easily, remaining victims of car collisions or

direct persecution (Musto et al., 2021).  This may be somewhat of a shortcoming in the sampling

strategy, but it is nonetheless something that is inevitably present in ecotoxicology studies based on

the analysis of animals found dead, not affecting the consistency of the findings (Schwartz et al.,

2020).

Although we still need to understand the extent to which ARs can affect the immune response in the

grey wolf, their populations in Europe regularly experience infectious and parasitic diseases (Millán

et  al.,  2016;  Kołodziej-Sobocińska  et  al.,  2014)  and  sometimes  have  low  genetic  variability

(Hindrikson et al., 2016), two threats whose demographic impact could be magnified by sublethal

exposure to ARs. Although it  is unlikely that ARs affected wolves living in undisturbed areas,

increased wolf mortality in anthropized landscapes could generate widespread and unpredictable

source-sink dynamics. These scenarios are particularly concerning, given the increasing pressure in

some areas of Europe for the lethal control of wolves, a practice whose long-term impact on wolf

populations  is  still  uncertain  (Lennox et  al.,  2018;  Treves  et  al.,  2016),  and the  difficulties  in

monitoring wolf populations  at  a temporal  and spatial  resolution that  would allow for adaptive

management (Merli et al 2023).

5. Conclusion

This  study emphasizes  the need for  national  and international  coordination in  the collection of

carcasses  of  large  carnivores  in  wild  and  anthropized  ecosystems.  This  study  also  wants  to
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encourage researchers to integrate multiple sources of information about the presence and mortality

of wolves, and more generally large carnivores, in Italy and across Europe, (i) to answer relevant

questions about illegal killing and cryptic conflicts with human activities, which can seriously affect

the  conservation  status  of  their  populations  despite  their  increasing  abundance;  (ii)  understand

environmental  phenomena  of  bioaccumulation  and disproportionate  use  of  anticoagulants,  with

repercussions on the entire food chain of terrestrial ecosystems.

Finally,  our study underlines that animal and bait poisoning, a widespread practice in urban and

rural areas, is a public health concern (DiBlasio et al., 2020), in particular, because it is potentially

harmful to humans and the environment including non-targeted domestic and wild species. These

results  underline that  controlling  rodents  by anticoagulants  baits  includes  risks  of  unintentional

poisoning of  non-target  animals  both  primary  poisoning through  ingestion  of  baits  (intentional

poisoning)  and secondary  exposure  consuming issues  from animals  which  carry  anticoagulants

(accidental poisoning) leading to a cumulative number of animals affected over time, in particular

those at the top of the food chain, as previously reported (Rattner et al., 2014; Fisher et al., 2019). 

This work wants to give a contribution to the lack of formal estimates of a number of wolves

affected  by anticoagulants  including animals  killed by these  poisons  and animals  in  which  the

anticoagulants  were  present  in  the  livers,  but  another  primary  cause  of  death  was

seen/demonstrated.
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Fig. 1. Distribution of wolves that were found dead in the study area and were negative (white dots)

or  positive  (red  dots)  to  anticoagulant  rodenticides  (ARs).  Provinces  in  the  Emilia-Romagna,

Lombardy, and Tuscany regions, that were covered by data collection are highlighted. The position

of the study area in Italy is shown in the figure in the lower-left corner.
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Fig. S1. Optimal number of clusters, according to the silhouette width method, the within sum-of-

squares and the gap statistics method. And overall cluster plots (lower-right figure) representing the

distribution of observations between the two clusters.
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Fig. S2. Characteristics of areas categorized, through PAM cluster analysis, as having low or high

anthropization:  median  percentage  of  tree  cover,  median  percentage  of  cropland cover,  median

elevation,  median  human  footprint  index,  median  roughness,  and  median  topographic  position

index.
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Fig. S3. Most common anticoagulant rodenticides (ARs) that were found in wolves. Total number

of individuals that tested positive for each compound.
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Fig. S4. Presence in the liver, as micrograms/kg, of Brodifacoum and Bromadiolone. Number of

wolves where compounds were not detected, and where concentration was between 0 and 10, 11

and 100 and over 100 micrograms/kg.
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Fig. 2.  Predicted probabilities that wolves tested positive for a certain number of anticoagulant

rodenticides (ARs), between areas with different levels of anthropization. Conditional effect plot

from the Bayesian ordered logit model, representing the posterior distribution: the largest section of

the violin plot indicate values with the highest probability.
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Fig. 3.  Predicted probabilities that wolves tested positive for a certain number of anticoagulant

rodenticides (ARs), through time. Conditional effect plot from the Bayesian ordered logit model.
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Fig. 4.  Predicted concentrations of Brodifacoum and Bromadiolone, expressed as micrograms per

kg, between areas with different levels of anthropization. Conditional effect plot from the Bayesian

zero-altered Gamma model, representing the posterior distribution: the largest section of the violin

plot indicates values with the highest probability.
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Fig. S5. Predicted probability that wildlife recovered in Emilia-Romagna region tested positive for

anticoagulant rodenticides  (ARs),  through  time.  Conditional  effect  of  the  Bayesian  Bernoulli

regression. Mean value from the posterior distribution (dashed line) altogether with 95% Bayesian

credibility intervals (highlighted area between solid lines. 
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Tables

Table 1. Number of anticoagulant rodenticide formulations available on the market in Italy, based on active ingredient (data updated to 2020). These 

include rodenticides falling under Product-Type (PT) 14, i.e., formulations intended for Trained Professionals, Professionals, General public. Source: 

Sinergitech, 2020.

Active ingredient n genera-
tion

Brodifacoum 12
1

2nd

Bromadiolone 98 2nd

Difenacoum 68 2nd

Chlorophacinone 4 1st

Coumatetralyl 4 1st

Difethialone 8 2nd

Flocoumafen 3 2nd

Bromadiolone+Dife-
nacoum

3 2nd

1156
1157
1158
1159
1160
1161
1162

1163
1164
1165
1166

1



PREPRINT

Table S1. MS/MS transitions parameters and retention times for 11 ARs (the quantifier transitions are reported in bold)

Analyte TRANSITIONS (CE=COLLISION ENERGY)
Retention Time

(min)

COUMAFURYL
297,1  161 (CE 12 V, Fragmentor 132 V)

297,1  240 (CE 12 V, Fragmentor 132 V)
1,58

WARFARIN
307,1  161 (CE 12 V, Fragmentor 133 V)

307,1  250,1 (CE 16 V, Fragmentor 133 V)
2,67

COUMATETRALYL
291,1  141 (CE 24 V, Fragmentor 158 V)

291,1  143 (CE 40 V, Fragmentor 158 V)
4,38

COUMACHLOR
341,1  284 (CE 20 V, Fragmentor 148 V)

341,1  161 (CE 16 V, Fragmentor 148 V)
4,57

BROMADIOLONE
525,1  250,1 (CE 36 V, Fragmentor 215 V)

525,1  93 (CE 40 V, Fragmentor 215 V)
6,86

DIPHACINONE
339,1  167 (CE 20 V, Fragmentor 220 V)

339,1  116 (CE 40 V, Fragmentor 220 V)
7,21

DIFENACOUM
443,2  135 (CE 36 V, Fragmentor 210 V)

443,2  293,1 (CE 32 V, Fragmentor 210 V)
7,70

CHLOROPHACINONE
373,1  201 (CE 16 V, Fragmentor 220 V)

373,1  145 (CE 16 V, Fragmentor 220 V)
7,96

FLOCOUMAFEN
541,2  161 (CE 36 V, Fragmentor 215 V)

541,2  382,1 (CE 24 V, Fragmentor 215 V)
8,17

BRODIFACOUM
521,1  135 (CE 40 V, Fragmentor 210 V)

521,1  78,9 (CE 40 V, Fragmentor 210 V)
8,66

DIFETHIALONE 537  79 (CE 40 V, Fragmentor 215 V) 9,58
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537  371,3 (CE 40 V, Fragmentor 215 V)

Table S2. Most common co-occurrences of anticoagulant rodenticides in recovered wolves.

Brodifacoum Bromadiolone Difenacoum Flocoumafen Difethialone Coumatetralyl

Brodifacoum - 61 20 7 9

Bromadiolone - - 19 7 9

Difenacoum - - - 3 1 5

Flocoumafen - - - - 3 0

Difethialone - - - - - 1

Coumatetralyl - - - - - -
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Appendix S1 – Overview of model selection and diagnostics

Ordered logit regression

Table S2. Model comparison from leave-one-out cross-validation, representing theoretical expected

log pointwise predictive density (ELPD) and their standard error (SE). Leave-one-out cross retained

the time when wolves were found and the level of anthropization of the site where they had been

found. Splines follow the following nomenclature (Wood, 2017): “s” = thin plate spline, “cc” =

cyclic cubic spline.

Model structure ELPD ± S.E.

N. rodenticides ~ 1 -274.8 ± 7.2

N. rodenticides ~ anthropization -268.2 ± 7.4

N. rodenticides ~ anthropization + sex -268.9 ± 7.9

N. rodenticides ~ anthropization + sex + age class -264.8 ± 7.8

N. rodenticides ~ anthropization + sex + s(time, bs = “cc”) -216.7 ± 11.0

N. rodenticides ~ anthropization + sex + s(time, bs = “cc”) + s(lon, lat) -216.8 ± 11.0
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Fig. S6. Comparison between the empirical distribution of the data (y) with the distributions of

simulated/replicated  data  from  the  posterior  predictive  distributions  (yrep).  See:

https://mc-stan.org/bayesplot/reference/PPC-distributions.html
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Fig. S7. Overview of the posterior distribution of model parameters (left) and MCMC (right).
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Fig. S8. Overview of the posterior distribution of model parameters (left) and MCMC (right).
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Zero-altered gamma regression: Brodifacoum concentration

Table S3. Model comparison from leave-one-out cross-validation, representing theoretical expected

log pointwise predictive density (ELPD) and their standard error (SE). Leave-one-out cross retained

the level of anthropization of the site where they had been found. Splines follow the following

nomenclature (Wood, 2017): “s” = thin plate spline, “cc” = cyclic cubic spline.

Model structure ELPD ± S.E.

N. rodenticides ~ 1 -414.3 ± 15.9

N. rodenticides ~ anthropization -410.5 ± 15.3

N. rodenticides ~ anthropization + sex -410.3 ± 15.2

N. rodenticides ~ anthropization + sex + age class -412.0 ± 15.5

N. rodenticides ~ anthropization + sex + s(lon, lat) -411.6 ± 15.3

N. rodenticides ~ anthropization + sex + s(time, bs = “cc”) + s(lon, lat) -411.9 ± 15.5
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Fig. S9. Comparison between the empirical distribution of the data (y) with the distributions of

simulated/replicated  data  from  the  posterior  predictive  distributions  (yrep).  See:

https://mc-stan.org/bayesplot/reference/PPC-distributions.html
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Fig. S10. Overview of the posterior distribution of model parameters (left) and MCMC (right).
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Zero-altered gamma regression: Bromadiolone concentration

Table S4. Model comparison from leave-one-out cross-validation, representing theoretical expected

log pointwise predictive density (ELPD) and their standard error (SE). Leave-one-out cross retained

the time when wolves were found and the level of anthropization of the site where they had been

found. Splines follow the following nomenclature (Wood, 2017): “s” = thin plate spline, “cc” =

cyclic cubic spline.

Model structure ELPD ± S.E.

N. rodenticides ~ 1 -467.9 ± 16.7

N. rodenticides ~ anthropization -469.1 ± 17.5

N. rodenticides ~ anthropization + sex -471.0 ± 17.2

N. rodenticides ~ anthropization + sex + age class -471.8 ± 18.2

N. rodenticides ~ anthropization + s(lon, lat) -468.4 ± 17.0

N. rodenticides ~ anthropization + s(time, bs = “cc”) -464.8 ± 17.2
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Fig. S11. Comparison between the empirical distribution of the data (y) with the distributions of

simulated/replicated  data  from  the  posterior  predictive  distributions  (yrep).  See:

https://mc-stan.org/bayesplot/reference/PPC-distributions.html
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Fig. S12. Overview of the posterior distribution of model parameters (left) and MCMC (right).
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Bernoulli regression

Fig. S13. Comparison between the empirical distribution of the data (y) with the distributions of

simulated/replicated  data  from  the  posterior  predictive  distributions  (yrep).  See:

https://mc-stan.org/bayesplot/reference/PPC-distributions.html
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Fig. S14. Overview of the posterior distribution of model parameters (left) and MCMC (right).
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