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Abstract 

Vegetation structural complexity and the diversity of animal communities are closely linked in 

vegetated ecosystems. These structure-diversity relationships have the potential to be used to 

predict biodiversity at large spatial scales using remote sensing data. However, structure-

diversity relationships may not be generalizable across different ecosystems or even across 

ecotypes within a single ecosystem. To understand how structure-diversity relationships vary 

within the tree-grass mosaic of a savanna environment, we evaluated how bird diversity relates 

to vegetation structure at multiple scales and across environmental gradients in an East African 

savanna- the Selenkay Conservancy in southern Kenya. We obtained detailed characterizations 

of vegetation structure using Light Detection and Ranging (lidar) from Unoccupied Aerial 

Vehicle (UAV) surveys, and related vegetation structure metrics to bird diversity metrics 

(Shannon diversity and species richness) collected at 50 sites spread inside and outside of the 

Selenkay Conservancy. We compared structure-diversity relationships across environmental 

gradients, including soil type (red and black soils) and protected status (inside and outside the 

conservancy). We also compared structure-diversity models at multiple scales, testing how 

relationships changed with scale. We found significant structure-diversity relationships with 

improved performed at larger spatial scales (≥ 50 m radius or 0.79 ha circular plots). Models of 

Shannon diversity performed better than those of species richness. While most structure-diversity 

relationships only applied to specific soil types, certain models showed the potential to be 

generalized across soil types, explaining ~55-59% of the variance. We found that strong 

relationships exist between vegetation structure and bird diversity in savannas. While most 

structure-diversity relationships were only applicable to specific soil types, several vegetation 

metrics were able to track bird diversity across the entire landscape, performing well in both red 



and black soil sites. These results demonstrate the potential to use airborne remote sensing to 

monitor biodiversity across savanna environments.  
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Introduction 

Biodiversity monitoring has largely relied on field observations taken by highly trained survey 

guides, but new technologies, including camera traps (Steenweg et al., 2017), audio recordings 

(Aide et al., 2013; Pekin et al., 2012; Rappaport et al., 2020), and remote sensing (Davies & 

Asner, 2014; Moudrý et al., 2022; Simonson et al., 2014) have the potential to revolutionize 

methods for measuring species counts and biodiversity metrics. These exciting new 

developments could enable researchers, companies, and governments to track both loss and uplift 

of biodiversity at large scales, offering potential new pathways for valuing biodiversity and the 

ecosystem services it provides (Berzaghi et al., 2019; Schmitz et al., 2023). With governments 

beginning to recognize biodiversity as a global resource (Kunming-Montreal Global Biodiversity 

Framework, 2022), these monitoring technologies have great potential for use in conservation 

and nature-based solutions (NBS) projects worldwide.  

Remote sensing technologies have been highlighted as particularly adept tools for measuring 

proxies of biodiversity, offering the potential to map biodiversity at landscape scales. Studies 

have demonstrated the strong correlation between remotely sensed measures of vegetation 

complexity and animal (Bae et al., 2019; Bonn et al., 2004; Davies & Asner, 2014; Goetz et al., 

2007), plant (Coverdale & Davies, 2023; Guo et al., 2017; Marselis et al., 2019), and acoustic 



diversity (Pekin et al., 2012; Rappaport et al., 2020). The theoretical basis for these studies 

largely relies on the habitat-heterogeneity hypothesis (MacArthur & MacArthur, 1961), which 

predicts that ecosystems with more complex structures have more ecological niches and 

therefore host a higher diversity of animal and plant species. Research on bird communities has 

built particularly strong support for this theory, showing that areas with higher vegetation 

productivity and structural complexity (Bonn et al., 2004; Carrasco et al., 2019; Goetz et al., 

2007; MacArthur & MacArthur, 1961) have more diverse avian communities.  

Airborne light detection and ranging (lidar) surveys provide an efficient means to monitor 

vegetation complexity as a proxy for biodiversity across large extents (Davies & Asner, 2014; 

Moudrý et al., 2022; Simonson et al., 2014). Lidar is an active remote sensing technology that 

emits pulses of light to sample environments, producing 3-D reconstructions of vegetation 

structure and topography (Gatziolis & Andersen, 2008). Lidar sensors are particularly well-

suited for biodiversity monitoring due to their ability to measure aspects of the vertical profile of 

multilayered vegetation that are influential for biodiversity, including structural indices derived 

from ratios of vegetation height, and measures of the variation in vegetation complexity across 

an area (Boucher et al., 2023; Davies et al., 2019, 2020; Davies & Asner, 2014; LaRue et al., 

2020; Moudrý et al., 2022). 

While there are clear links between lidar data and biodiversity measures, practical challenges 

to monitoring biodiversity with vegetation structure at large scales remain. Structure-diversity 

relationships measured with remote sensing may need to be localized and calibrated toward 

specific animal or plant communities, as well as to local environmental gradients. Ecological 

communities respond to environmental gradients at a variety of spatial and temporal scales 

(Jackson & Fahrig, 2015; Levin, 1992; McGarigal & Marks, 1995). Therefore, a remote-sensing-



based biodiversity survey needs to be detailed enough to capture vegetation structure at the 

spatial scales and temporal resolutions that are most pertinent to the ecological communities of 

interest. Similarly, structure-diversity relationships may not be universally applicable across 

environmental gradients and ecoregions. Most remote sensing studies of biodiversity 

relationships have been conducted in temperate and tropical forest environments (Davies & 

Asner, 2014). However, the same models of structure-diversity trained in forested environments 

might not apply to other environments and climates, such as grasslands and savannas. Yet 

biodiversity monitoring technologies and valuation schemes could be of particular benefit in 

African savannas and grasslands, where, historically, ecosystem services have been greatly 

undervalued (Bond et al., 2019; Veldman et al., 2015). 

Here, we explore how remote sensing biodiversity monitoring methods might operate in a 

non-forested, mosaicked ecosystem by evaluating structure-diversity relationships in an East 

African savanna: the Selenkay Conservancy in southern Kenya. As a small, protected area set 

aside for ecotourism within a larger mixed-use landscape, the Selenkay Conservancy provides a 

gradient of human activity and wildlife density within a small area (~5,000 hectares) that can be 

easily covered using airborne remote sensing surveys. We surveyed vegetation structure with 

unoccupied aerial vehicle (UAV) lidar surveys and sampled bird diversity with field 

observations, stratifying samples along gradients of protected status (inside and outside the 

conservancy) and soil type (red and black soils). We evaluated models of structure-diversity 

across these environmental gradients, modelling bird diversity (species richness and the 

Shannon-Wiener Index) with vegetation structure metrics derived from lidar data at a variety of 

scales. By searching for generalized models of biodiversity relationships in a savanna 



environment, we explore the feasibility of utilizing airborne remote sensing for monitoring 

biodiversity across environmental gradients in non-forested ecosystems.  

 

Materials and Methods 

Study Site 

The core wildlife area of the Selenkay Conservancy is a 5,260 ha protected area in southern 

Kenya, ~30 km north of Amboseli National Park (Fig. 1). The conservancy sits within a larger 

(~81,000 ha) collection of private lands primarily owned by members of indigenous Maasai 

communities who practice subsistence agriculture (outside the conservancy) and rotational 

livestock grazing (inside and outside the conservancy). The unfenced conservancy has been 

leased and managed by an ecotourism company, Gamewatchers Safari Ltd, since 1997. Other 

than a small, tented camp, dirt roads, some temporary livestock enclosures (bomas) and several 

man-made water sources, there is little development within the conservancy. In contrast, the 

outside area is generally considered to be degraded due to over-grazing from livestock and an 

abundance of invasive plant species, such as the common morning glory, Ipomoea purpurea.  

While rainfall is highly variable and droughts are common in the region (Tuqa et al., 

2014; Altman et al., 2002), there are generally 2 wet seasons a year, approximately from March-

May and October-December, and 2 dry seasons, from January-February and June-September. 

The terrain around the conservancy is relatively flat, with a range of ~120 m in elevation across 

the sampled area. The geology consists of 2 dominant soil types: black cotton soil, which retains 

moisture well, and red soils, which do not. These different geologies support different vegetation 

communities (Goheen et al., 2018). 

 



UAV Lidar Data Collection 

UAV lidar surveys were conducted over the course of 5 days during the beginning of the short 

dry season (5-9 Jan 2022). UAV survey extents were designed to capture both the protected area 

inside the conservancy and areas outside of the conservancy (Fig. 1). The UAV sampling design 

employed 5 circular surveys of ~2 km radius (covering ~1,800 ha area each) along with an 

additional survey of a smaller 723 ha area. Survey sites were designed to capture approximately 

equal areas of black and red soil.  

 UAV surveys were conducted with a Freefly Alta-X multirotor carrying the Harvard 

Animal Landscape Observatory (HALO), a sensor package designed for high resolution 

characterization of landscape structure (Boucher et al., 2023). Developed by Phoenix Lidar 

Systems in Los Angeles, California, USA, HALO integrates a Riegl VUX-1LR lidar, a FLIR 

Tau-2 thermal imager, and a Sony A6000 camera with an advanced positioning system. Survey 

flights were planned and deployed autonomously using the QGroundControl software 

application, with a certified pilot manually conducting take-offs and landings.  Flight and lidar 

sensor settings were parameterized with Riparameter 2.2 and Phoenix Lidar System’s Spatial 

Explorer 6.0. The UAV was flown at 8 m/s and at an altitude of 120 m above ground level to 

maximize area coverage while adhering to the Kenya Civil Aviation Authority (KCAA) 

regulations. The pulse rate of the lidar scanner was set to 820 kHz and the line speed was 78.1 

lines per second.  

Raw point clouds were denoised, and points were classified into ground and vegetation in 

Spatial Explorer 6.0 and the Terrasolid software suite. After processing, the resulting point 

density of the lidar data ranged from 201-234 points per m2 (Table S1), and the relative accuracy 

of the processed point clouds was ~3 cm or better. 



 

Bird Diversity Surveys 

Bird surveys were conducted twice a day over the course of 20 days at the beginning of the long 

dry season, from June 18-27 and July 1-10, at dawn (6:00 – 8:00) and dusk (16:00 – 19:00). 

Following Asefa et al. (2017), survey sites were laid out along 10 transects of 1-1.5 km each, 

with 5 sites on each transect. Transect locations were placed randomly within the boundaries of 

each lidar survey and stratified equally across soil types. Six transects were placed inside the 

conservancy, and 4 outside. Site locations were spaced ~300 m apart along a North-South axis, 

but several sites were adjusted to fit within the circular area of the lidar surveys and to facilitate 

access (Fig. 1). Each site was surveyed twice at dawn and twice at dusk. Surveys lasted ten 

minutes per site, with an additional two minutes of quiet time before data collection began. 

Observations were recorded at the center position of each site following Asefa et al. (2017), and 

bird species were identified both by sight and sound by trained ecotourism guides who were 

highly knowledgeable of the local bird species. Species observations and abundances were 

recorded in the field using a custom-built surveying application. Raw observations were 

aggregated by species, pooling the data collected across all time periods and observers.  

Bird observational data were processed into diversity statistics, and the species richness, total 

abundance, Shannon-Wiener index, and Pielous’s evenness (Oksanen, 2022) were calculated and 

compared across all 50 sites. To reduce the impact of extremely rare sightings on the diversity 

metrics, we removed records of bird species that were observed only once across all sites and 

throughout the entire 20-day survey. A nested ANOVA was used to test for significant 

differences between sites, grouped by soil type and protected status. In addition, a non-metric 

multidimensional scaling (NMDS) ordination with Bray-Curtis dissimilarity distances (Bray & 



Curtis, 1957) was performed to examine variation in bird communities by soil type and protected 

status. NMDS and diversity statistics were computed using the vegan package in R (Oksanen, 

2022). 

 

Lidar Vegetation Metrics 

To examine relationships between lidar vegetation metrics at multiple scales, we computed 

vegetation metrics within circular plots centered on the 50 bird diversity sites (similar to the 

methods in Sangermano, 2022). We derived sets of lidar metrics at 6 scales, using circular plots 

with 10 m, 20 m, 30 m, 50 m, 80 m, and 130 m radius buffers (Fig. 1c). Structural metrics were 

calculated from the processed point clouds following the workflow in Lidar-Notebooks 

(https://github.com/pbb2291/Lidar-Notebooks), a pipeline for deriving vegetation metrics from 

point clouds and polygons in python and jupyter notebooks.   

After reviewing previous studies of structure-diversity relationships (Bae et al., 2019; 

Goetz et al., 2007; Rappaport et al., 2020), a myriad of vegetation structural complexity metrics 

were identified for further analysis (Table S2). These metrics were selected to capture a variety 

of aspects of vegetation heterogeneity, including vertical and horizontal variation in vegetation 

height, density, layering, density, and plant composition (horizontal cover of pixels classified as 

trees, grasses, and shrubs). Metrics were summarized for each site in 2 ways: 1) as plot-based 

metrics calculated from the vertical distribution of all lidar points within a plot (Fig. 2a and 2c) 

and 2) as pixel-based statistics that describe the mean, standard deviation, and coefficient of 

variation of metrics rasterized at a horizontal spatial resolution of 0.5 m (Fig. 2b). Plot-based 

metrics describe the aggregated structure of all vegetation within a plot, whereas pixel-based 

metrics describe the spatial variation and average metrics across a plot. The difference between 



plot-based and pixel-based metrics is akin to the difference between large-footprint waveform 

lidar, which measures the aggregate metrics of a whole stand of trees within a single beam, and 

small-footprint lidar, which captures the structural details of individual trees, branches, and 

leaves (Boucher et al., 2020). With the full set of plot and pixel-based metrics, a total of 114 

variables were derived to describe the vegetation structure of each plot (Table S2). 

 

Analysis of Structure-Diversity Relationships 

To examine relationships between bird diversity and vegetation metrics at increasingly larger 

scales, we calculated the pairwise Spearman rank correlation between lidar vegetation metrics 

and bird species richness, and between the vegetation metrics and the Shannon diversity index, 

comparing the magnitude and direction of correlations across the series of increasing scales. We 

expected that structure-diversity relationships would also be influenced by soil type, and we 

therefore conducted separate correlation analyses for black and red soils (n = 25 sites per soil 

type) and examined the top variables for both diversity metrics within each soil type.  

We then fit Generalized Additive Models (GAMs) of Shannon diversity and log-

transformed species richness at each scale, using the top 3 most correlated variables from each 

soil type and each scale as the independent variables in the models. GAMs have been 

successfully employed in previous studies to model non-linear relationships between structure 

and diversity (Bae et al., 2019) and combine the robustness of Generalized Linear Models 

(GLMs) with the flexibility of black-box machine learning models (Wood, 2017). GAMs use a 

series of smoothing splines to model relationships between variables, employing a penalty to 

reduce the wiggliness of the splines and thereby prevent overfitting. GAMs can also penalize 

unimportant features in a similar manner to ridge regression, dampening the effect of 



insignificant variables. We used the mgcv package in R (Wood, 2017) to model species diversity 

and richness, fitting a GAM model for each of the 6 scales. To account for spatial 

autocorrelation, each model included a term to describe the interaction between the easting and 

northing locations of each site (s(X,Y)).  

 

Results 

Bird Community Analysis 

After filtering bird species records for rare observations (by dropping species with only 1 

occurrence in the entire dataset), a total of 8,237 individual birds from 129 species were recorded 

across all sites and time periods. In aggregate, similar numbers of birds were observed within 

each soil type, with 4,217 observations from 114 species in black soils and 4,020 counts from 

112 species in red soils (Table 1), with nested ANOVA results showing that there was not a 

significant difference in the mean abundance (p = 0.466) nor richness (p = 0.457) between soil 

types. However, the evenness of communities on black soil sites was significantly lower than red 

soil sites (p = 0.041), most likely because of the high evenness in red soil sites outside the 

conservancy (Fig. 3). Potentially, black soils also had lower Shannon diversity than red soil sites 

(p = 0.07).  

The average abundance, richness, and Shannon diversity of sites were generally higher 

inside the conservancy than outside (Table 1; Fig. 3). There was a significant effect of protected 

status within soil types for abundance (p = 0.02), richness (p = 0.01), and potentially also for 

evenness (p = 0.06), but not for Shannon diversity (p = 0.22).  

NMDS ordination analyses indicated that bird assemblage compositions were clustered 

and grouped by both soil type and protected status (Fig. 4). A visualization of the first 2 NMDS 



axes for all sites showed that bird communities tended to be more similar among sites with 

similar soil types (Fig. 4a). In addition, within each soil type, communities tended to be more 

similar among sites that shared the same protected status (Fig. 4b and 4c). The NMDS 

ordinations used 3 dimensions, and the resulting stress values were 0.17 for an ordination with 

all sites, 0.14 with black soil sites only, and 0.13 with red soil sites. 

 

Correlation of Structure and Diversity by Scale 

Correlations between UAV-lidar vegetation metrics and both species richness and Shannon 

diversity index were generally higher in black soils than red soils (Tables 2 and 3, Fig. 5). For 

Shannon diversity, the strongest correlation for black soils occurred at a 50 m scale (ρ=0.83, 

p<0.001) before plateauing, while the strongest correlation in red soils was at a 130 m scale 

(ρ=0.52, p=0.002; Table 2, Fig. 5). The strength of correlations with species richness were more 

similar across soil types, but in opposing directions. The strongest correlation in black soils 

occurred at a 50 m scale with a positive trend (ρ=0.69, p<0.001), while in red soils, the strongest 

correlation occurred at the 80 m and 130 m scales with a negative trend (ρ=-0.67, p=0.001; Table 

3, Fig. 5). 

The sets of variables that demonstrated the strongest correlations with Shannon diversity 

and species richness also varied by soil type. For Shannon diversity, vegetation metrics derived 

from the vertical profile of lidar returns, such as statistics of the height of points (meanH_plot), 

the distribution of peaks in the vertical profile (mean_gapsize, sd_gapsize, and mean_stdpeakh), 

and the canopy density (CD1p5m_plot), were highly correlated with the Shannon index (Table 

2). The top variables for black soils had a mix of plot-based and pixel-based metrics, while the 

top variables for red soils were all plot-based metrics (Table 2). For species richness, the set of 



highly correlated variables was different between black and red soils (Table 3). The top variables 

in black soils were measures of the average of (meanH_plot) and variation in vegetation 

complexity (sdH_plot, cv_nlayers, and sd_nlayers), particularly for taller, woody vegetation. In 

contrast, red soils showed a strong correlation with heterogeneity in the grass layer 

(horzcover_grass, sd_sdH_vegtype_grass, and sd_cvH_vegtype_grass).  

 

Models of Structure and Diversity by Scale 

In general, models of Shannon diversity and log-transformed species richness tended to improve 

with increasing scale. As the scale expanded from 10 m to 130 m, the R2 and explained deviance 

values of models increased, and the AIC and RMSE values decreased (Tables 4 and 5). Among 

the Shannon diversity (Table 4 and S3) and species richness (Table 5 and S4) models, the 50 m 

and 130 m models had the lowest errors and the highest correlations; the same scales that 

exhibited the strongest correlations in the pairwise correlation analysis (Tables 2 and 3). Both 

pixel-based and plot-based metrics of vegetation structure were found to be significant predictors 

of Shannon diversity and species richness (Tables 4 and 5).  

For Shannon diversity (Table 4), significant pixel-based metrics included: the standard 

deviation and coefficient of variation in canopy density at 25 cm above ground (sd_CD_AboveG, 

cv_CD_AboveG), and the mean and variation of various height statistics and indices derived 

from the vertical profile of point density (mean_gapsize, mean_stdpeakh, sd_gapsize, and 

sd_herbh). Important plot-based metrics included: the canopy density value of the entire plot at 

0.5 m and 1.5 m above ground (Cover0p5m_plot, Cover1p5m_plot) and vegetation height 

indices derived from the peaks in the vertical profile of the point density (VDRpeak_plot, 

cv_FHD, and cvpeakh_plot). The spatial autocorrelation term was not found to be a significant 



variable in any of the Shannon diversity models (p > 0.05), but it approached significance in the 

80 m model (p = 0.06). 

 Models of species richness had lower R2 values and higher error statistics compared to 

models of Shannon diversity, even at larger scales. Richness models reached a maximum R2 of 

0.39 (Table 5), while Shannon models reached a maximum R2 of 0.59 (Table 4). Richness 

models contained some of the same independent variables as the models of Shannon diversity 

(Table 5), including the variation in gap size (sd_gapsize), a canopy height index 

(VDRpeak_plot), and the variation in the heights of canopy layers (cvpeakh_plot). However, 

richness models also incorporated other vegetation structure metrics, including the proportion of 

area covered by grasses (horzcover_grass), the variation in canopy density (cv_CD_AboveG), 

and the variation in the number and height of canopy layers (sd_nlayers). The spatial 

autocorrelation term also had more of an effect in richness models, particularly at the 20 m and 

30 m scales (Table 5).  

 A simplified version of the best model of Shannon diversity at 130 m (Table 4) 

demonstrates how vegetation heterogeneity, measured as the pixel-wise standard deviation in gap 

size (sd_gapsize), varies with Shannon diversity (Fig. 6). The standard deviation in gap size, a 

metric describing the maximum vertical distance between canopy layers (Fig. 2c and Fig. S1), 

increases with Shannon diversity up to 1 m, where the function reaches an inflection point and 

begins to decrease (Fig. 6). This concave downward trend shows that variation in gap size 

increases with bird diversity up to a point, after which increasing heterogeneity is indicative of 

lower, rather than higher Shannon diversity. The increasing trend between gap size variation and 

Shannon diversity appears to be driven largely by the influence of black soil sites, while the 

decreasing trend seems to be due to the influence of red soil sites (Fig. 6).  



Using the model of gap size at 130 m scale, Shannon diversity was then predicted across 

a larger 3 km x 2 km area within the northwest region of the conservancy at 260 m spatial 

resolution (Fig. 7). This map demonstrates how structure-diversity models could be used to 

predict biodiversity at larger scales, revealing hotspots of Shannon diversity across a large area 

(Fig. 7).  

 

Discussion 

Our results reveal that bird diversity metrics are strongly (R2 = ~0.6) correlated with vegetation 

structure, particularly at larger scales (≥ 50 m radius or ≥ 0.79 ha plots). The structure-diversity 

relationships we observed at Selenkay involved similar structural metrics to those reported in 

previous studies in temperate and tropical forests (Bae et al., 2019; Goetz et al., 2007; Moudrý et 

al., 2022; Pekin et al., 2012; Rappaport et al., 2020), which suggests potential for predicting 

spatial variation in biodiversity with lidar in multiple vegetated ecosystems around the world. 

However, our results also highlight that vegetation structure-diversity relationships are not 

identical across ecosystems, but rather vary with ecotypes.  

At Selenkay, soil type played a particularly strong role in determining structure-diversity 

relationships. Each soil type had unique avian communities (Fig. 4a) and different spatial 

arrangements of vegetation, which led to variable relationships between vegetation structure and 

diversity in each soil type (Fig. 5). The scales and sets of variables for modelling bird diversity in 

black soil sites were also different from those in red soils, and correlations between structure and 

diversity metrics were generally higher in black soils (Tables 2 and 3). Furthermore, when 

plotting metric correlations with Shannon diversity by scale (Fig. 5), correlations in black soils 

stabilized and reached an asymptote at the 50 m scale (0.8 ha plots), whereas they did not 



stabilize in red soils, even at the 130 m scale (5.3 ha plots). The differences in structure-diversity 

relationships in black and red soils are likely indicative of differences in the spatial arrangement 

of vegetation between the soil types, with vegetation structure on black soils generally being 

more homogenous.  

The different structure-diversity relationships observed within each soil type demonstrate 

that certain models may not perform well across ecotypes, implying that biodiversity monitoring 

efforts that aim to scale up structure-diversity models to regional scales need to develop and 

implement ecotype-specific models. However, our results also reveal that certain vegetation 

metrics have greater potential for predicting biodiversity across soil types, particularly at larger 

scales. The 50 m (0.8 ha) and 130 m (5.3 ha) models of Shannon diversity performed relatively 

well across both soil types (R2 ≥ 0.56, RMSE = ~0.1; Table 4), with the 130 m model of the 

variation in gap size being particularly promising (Figs. 6 and 7).  

Gap size describes the distance between vertical layers within multilayered vegetation 

(Fig. 2c), and the standard deviation in gap size (sd_gapsize) describes the magnitude of its 

variation across the landscape, which is related to the height, complexity, and horizontal cover of 

multi-layered vegetation in an area. Variation in gap size, therefore, can be understood as a 

generalized measure of vegetation heterogeneity. At Selenkay, the variation in gap size increases 

with Shannon diversity, largely due to the influence of the black soil sites, until the trend reaches 

an inflection point where red soil sites cause a decreasing trend between gap size variation and 

diversity (Fig. 6). These differing trends in black and red soils have interesting implications for 

the habitat-heterogeneity (H-H) hypothesis, which posits that biodiversity increases with 

increased heterogeneity due to a larger number of ecological niches (MacArthur & MacArthur, 

1961). Vegetation heterogeneity increased with diversity in black soil sites, confirming the H-H 



hypothesis, while heterogeneity decreased with diversity in red soil sites, opposing it. Black soil 

sites tend to be much more homogenous in their vegetation structure relative to res soil sites 

(Figure 5), and bird assemblages within black soils therefore likely benefit from increased 

structural heterogeneity. In contrast, bird assemblages in the more heterogenous red soil 

environment could find increased heterogeneity to lead extreme heterogeneity that is detrimental 

to diversity because it favors certain species over others. Diversity-heterogeneity relationships 

may therefore be hump-shaped in much the same way as diversity-productivity relationships are 

(Mittleback et al., 2001). Overall, however, we found that the gap size metric is a promising 

predictor of diversity, and more field data from red soil sites with a wider range of diversity 

values could help confirm its applicability across soil types. 

More broadly, vegetation structure metrics that performed well for modeling diversity at 

Selenkay were those derived from the vertical profile of the distribution of lidar points (Fig. 2c). 

Metrics related to the variation of peaks in the vertical profile, including the number of canopy 

layers, the peak height values, and the gap size, were often selected as the top variables in the 

models. These important variables described the spatial variation of these vertical profile metrics 

across an area, calculated as the pixel-wise standard deviation or coefficient of variation of the 

metrics at a 0.5 m spatial resolution.  

Promisingly, the vegetation structure metrics that related to bird diversity at Selenkay 

were similar to variables selected by previous studies of animal diversity in forest ecosystems in 

other regions of the world (Table S2). For example, canopy density was identified as an 

important metric for habitat suitability and animal diversity in European forests (Bae et al., 2019; 

Moudrý et al., 2022). In addition, we found certain ratio measures of canopy height used in 

previous studies to be important, such as the vertical distribution ratio (VDR) used by Goetz et 



al. (2007) in a study of bird diversity in the eastern United States. Similarly, important measures 

of vertical complexity, such as the vertical gap size, were similar to a canopy gap metric 

identified in a study of acoustic diversity in a tropical Costa Rican rainforest (Pekin et al., 2012). 

The similar sets of metrics used among these studies bolsters support for the habitat-

heterogeneity hypothesis (MacArthur & MacArthur, 1961) and demonstrates the potential to 

utilize airborne lidar to monitor biodiversity across a variety of vegetated ecosystems.   

 

Implications for Biodiversity Monitoring 

While comparing models of species richness and Shannon diversity, we found that models of 

richness (Table 5) did not perform as well as those for Shannon diversity (Table 4). The 

maximum R2
 achieved in models of richness, 0.39 at the 130 m scale, was considerably lower 

than that achieved for Shannon diversity, 0.59 at 130 m scale, even though both models used the 

same independent variable (sd_gapsize). The success of Shannon diversity models shows the 

importance of relying on numerous aspects of community structure in a biodiversity survey, 

focusing on more than just the number of species within a site (i.e., species richness). The 

Shannon index takes multiple aspects of community structure into account to produce a 

normalized diversity score, summarizing species counts, evenness, and relative abundances 

within an area. Accounting for these aspects greatly improved the Shannon structure-diversity 

models relative to the richness models. It is likely that species abundance and evenness also 

covaried with vegetation structure metrics, causing the improvement observed in the Shannon 

model scores. Therefore, we suggest that future biodiversity monitoring efforts use Shannon 

diversity or similar indices that combine species abundance, richness, and evenness to map 

diversity at landscape-scales.   



However, our results also demonstrate that the Shannon index can be misleading when 

comparing biodiversity among sites. While evaluating bird community statistics within the 

Selenkay ecosystem, we found that both species abundance and richness were significantly lower 

outside the conservancy compared to inside (Fig. 3), suggesting that bird communities outside of 

Selenkay were less diverse than those inside. In contrast, when comparing Shannon diversity 

values, sites inside the conservancy were not significantly different from those outside, a result 

which is most likely due to differences in the evenness of bird communities among red soil sites 

inside and outside the conservancy (Fig. 3). If a monitoring study had relied on Shannon 

diversity alone to measure the status of bird communities at Selenkay, it might conclude that 

there is no significant difference in community structure inside and outside of the conservancy. 

Thus, relying on Shannon diversity alone would lead to a false-negative conclusion about the 

diversity among sites in this region. This result is highly informative for future biodiversity 

monitoring efforts, as it highlights the importance of relying on more than one diversity metric or 

analysis of community structure to make inferences about the diversity of an ecosystem relative 

to another. 

 By evaluating relationships between bird diversity and vegetation metrics in an African 

savanna, our study demonstrates the feasibility of predicting spatial patterns of biodiversity 

across non-forested landscapes with high-resolution remote sensing data. In the context of the 

many previous studies that have modelled structure-diversity relationships in tropical and 

temperature forests, our results show the potential to expand biodiversity monitoring efforts 

across a variety of biomes and ecoregions. The ability to map biodiversity across landscapes 

opens myriad new avenues of scientific research on the spatial and temporal drivers of 

biodiversity. In addition, these methods show great potential for monitoring biodiversity in the 



context of addressing the global biodiversity crisis, providing a means to measure biodiversity 

uplift and loss over time and to monitor areas so that they can be managed with specific 

biodiversity targets in mind.  
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Table 1. Summary statistics (means and standard deviations) of bird diversity data, grouped by 

soil type and protected status. 

Soil Protecte

d Status 

Sample 

Size 

(N) 

Abundance Richness Shannon 

Index 

Evenness 

Blac

k 

All Sites 25 168.68 ± 33.87 41.84 ± 6.21 3.35 ± 0.18 0.9 ± 0.03 

Inside 15 181.4 ± 31.05 43.87 ± 4.96 3.39 ± 0.16 0.9 ± 0.03 

Outside 10 149.6 ± 29.76 38.8 ± 6.89 3.28 ± 0.2 0.9 ± 0.03 

Red 

All Sites 25 160.8 ± 42.93 43.04 ± 6.11 3.43 ± 0.13 0.91 ± 0.02 

Inside 15 172.6 ± 51.13 45.33 ± 6.63 3.44 ± 0.16 0.9 ± 0.02 

Outside 10 143.1 ± 16.39 39.6 ± 3.06 3.42 ± 0.06 0.93 ± 0.01 

 

Table 2. Top 5 correlated variables for Shannon diversity at each scale. Bold italics mark the 

strongest Spearman correlation (ρ) achieved for each vegetation structure metric. 
 

Spearman Correlation with Shannon diversity 

Black 

Soil 

Metrics 10 m 20 m 30 m 50 m 80 m 130 m 

mean_gapsize 0.42 0.61 0.76 0.79 0.81 0.82 

sd_gapsize 0.42 0.62 0.71 0.75 0.78 0.81 

mean_stdpeakh 0.42 0.59 0.77 0.79 0.80 0.79 

meanH_plot 0.23 0.51 0.61 0.83 0.79 0.65 

Cover1p5m_plot 0.47 0.70 0.75 0.83 0.81 0.76 
 

gapsize_plot 0.08 0.04 -0.08 0.06 0.28 0.50 



Red 

Soil 

maxpeakh_plot 0.10 0.03 0.05 0.17 0.26 0.47 

ptoh_plot 0.14 0.08 0.15 0.19 0.29 0.46 

VDRpeak_plot 0.38 -0.13 -0.12 -0.05 0.18 0.52 

stdpeakh_plot 0.09 0.06 0.07 0.13 0.28 0.45 

 

Table 3. Top 5 correlated variables for species richness at each scale. Bold italics mark the 

strongest Spearman correlation (ρ) achieved for each vegetation structure metric. 
 

Spearman Correlation with species Richness 

Black 

Soil 

Metrics 10 m 20 m 30 m 50 m 80 m 130 m 

sd_nlayers 0.44 0.58 0.63 0.69 0.63 0.58 

cv_nlayers 0.39 0.52 0.59 0.64 0.55 0.53 

meanH_plot 0.24 0.36 0.42 0.66 0.68 0.52 

stdH_plot 0.22 0.20 0.33 0.57 0.68 0.61 

Cover1p5m_plot 0.29 0.44 0.50 0.62 0.64 0.53 
 

Red 

Soil 

horzcover_grass 0.43 0.45 0.44 0.52 0.59 0.60 

sd_shH_vegtype_grass -0.49 -0.45 -0.49 -0.61 -0.67 -0.67 

sd_cvH_vegtype_grass -0.47 -0.46 -0.47 -0.50 -0.52 -0.61 

50thPerc_plot -0.33 -0.48 -0.38 -0.41 -0.60 -0.56 

75thPerc_plot -0.43 -0.29 -0.28 -0.37 -0.58 -0.59 

 

 



Table 4. Statistics and descriptions of models of Shannon diversity with UAV-lidar vegetation 

metrics at increasing spatial scales. 

Plot 

Radius 

[m] 

R2 

Deviance 

Explained 

[%] 

AIC RMSE Significant Variables 

10 0.268 31.5 -49.7 0.133 
sd_CD_AboveG 

sd_herbh 

20 0.325 37.4 -53.4 0.127 
cv_FHD 

cv_CD_AboveG 

30 0.328 37.9 -53.5 0.126 Cover0p5m_plot 

50 0.558 59.9 -73.6 0.102 

sd_CD_AboveG 

cvpeakh_plot 

cv_FHD 

80 0.493 53.6 -67.2 0.109 

Cover1p5m_plot 

mean_gapsize 

mean_stdpeakh 

130 0.592 63.2 -77.5 0.097 
sd_gapsize 

VDRpeak_plot 

 

 

 

 



Table 5. Statistics and descriptions of models of log species richness with UAV-lidar vegetation 

metrics at increasing spatial scales. 

Plot 

Radius 

[m] 

R2 

Deviance 

Explained 

[%] 

AIC RMSE Significant Variables 

10 0.234 30.2 -44.2 0.767 

sd_nlayers 

VDRpeak_plot 

Sd_cvH_vegtype_tree 

20 0.201 24.7 -58.2 0.125 (X, Y) 

30 0.236 28.2 -60.2 0.122 
sd_nlayers 

(X, Y) 

50 0.362 41.8 -68.0 0.110 

sd_nlayers 

cv_CD_AboveG 

Cvpeakh_plot 

80 0.279 34.5 -61.6 0.117 
meanH_plot 

horzcover_grass 

130 0.388 44.0 -70.2 0.108 
sd_gapsize 

horzcover_grass 

 

 

 

 

 



Figures 

Figure 1. Overview of the study area and sampling sites around the Selenkay Conservancy, 

Kenya (a). The 50 bird survey sites and the extent of UAV lidar coverage is shown in (b). 

Canopy height is overlaid on a lidar terrain model. A Google Earth base map shows the 

characteristic soil types (black and red) of the region. Polygons of increasing size are shown in 

(c), colored by buffer radius. The polygons were centered on each bird survey site and used to 

derive lidar vegetation metrics at a series of increasing scales for comparison with bird diversity 

data.  



Figure 2. An oblique and top-down view of a 130 m circular plot of UAV-lidar point cloud data 

(a) over one of the bird survey sites outside of the Selenkay Conservancy, Kenya. Rasterized 

canopy height and standard deviation in point height per 0.5 m pixel are plotted for the same site 

(b). A vertical profile of the normalized point density distribution from the point cloud for the 

entire plot is shown in (c). The peaks and troughs in the point height distribution, smoothed with 

a gaussian kernel (“gauss1d”), were used to calculate numerous vegetation structure metrics, 

such as the number of layers (number of peaks), the gap size (maximum distance between 

peaks), and the herbaceous layer height (upper trough of the lowest identified peak). Point cloud 

figures were generated with Cloud Compare (CloudCompare (Version 2.11), 2018).  



 

 

 

 



Figure 3. Boxplots of bird diversity metrics by soil type (black or red) and protected status 

(inside or outside the Selenkay Conservancy, Kenya). 

 

 

 

 

 

 

 

 

 

 



Figure 4. Non-metric multidimensional scaling (NMDS) ordination plots of bird community 

dissimilarity, grouped by soil type and protected status (inside and outside of the Selenkay 

Conservancy, Kenya). The ellipses show the 95% confidence interval around each group. An 

ordination of all 50 sites is shown in panel (a), while panels (b) and (c) show ordination split by 

soil type (25 sites within each soil). 

 

 

 



Figure 5. Spearman correlations between the top selected vegetation structure variables and the 

Shannon diversity index and species richness for birds in and around the Selenkay Conservancy, 

Kenya, across spatial scales and for each soil type.  

 

 

 

 

 

 

 

 

 

 



Figure 6. Model fit for a Generalized Additive Model (GAM) of Shannon diversity. This model 

represents a simplified version of the best model at the 130 m scale from Table 4, following the 

formula: shannon ~ sd_gapsize.(R2 = 0.53, Explained Deviance = 55.7%, AIC = -72.1, and 

RMSE = 0.1).  

 

 

 



Figure 7. Maps of vertical gap size at 0.5 m resolution and predictions of Shannon diversity of 

bird communities at 260 m resolution based on the model in Figure 6 (shannon ~ sd_gapsize). 

The area shown is a 3 km by 2 km area from the northwestern portion of the Selenkay 

Conservancy, Kenya.  

 


