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Abstract

Aim: Trophic interactions are central to our understanding of essential ecosystem functions as 

well as their stability. Predicting these interactions has become increasingly common due to the 

lack of empirical data on trophic interactions for most taxa in most ecosystems. We aim to 

determine how far and accurately trophic interaction models extrapolate to new communities 

both in terms of pairwise predator-prey interactions and higher level food web attributes (i.e., 

species position, food web-level properties).

Location: Canada, Europe, Tanzania.

Time period: Current.

Major taxa studied: Terrestrial vertebrates

Methods: We use a trait-based model of pairwise trophic interactions, calibrated independently 

on four different terrestrial vertebrate food webs (Canadian tundra, Serengeti, alpine south-

eastern Pyrenees, and entire Europe) and assess the ability of each calibrated instance of the 

model to predict alternative food webs. We test how well predictions recover individual predator-

prey interactions as well as higher level food web properties across geographical locations.

Results: We find that, given enough phylogenetic and environmental similarities between food 

webs, trait-based models predict most interactions and their absence correctly (AUC > 0.82), 

even across highly contrasting environments. However, network metrics were less well-predicted

than single interactions by our models. Predicted food webs were more connected, less modular, 

and had higher mean trophic levels than observed. 

Main conclusions: Theory predicts that the variability observed in food webs can be explained 

by differences in trait distributions and trait-matching relationships. Trait-based models can 

predict potential interactions amongst species in an ecosystem when calibrated using food web 
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data from reasonably similar ecosystems. This suggests that food webs vary spatially primarily 

through changes in trait distributions. These models however, are less good at predicting system 

level food web properties. We thus highlight the need for methodological advances to 

simultaneously address trophic interactions and the structure of food webs across time and space.
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Introduction

Ecosystem functions (e.g., energy flows and material cycling) and community stability depend 

on the trophic relationships that link species within a community (Harvey et al., 2017). Despite 

the importance of food webs for understanding ecosystem structure and dynamics, recognized 

over the last 80 years (Lindeman, 1942), we still face major challenges to develop accurate 

descriptions of natural food webs. The lack of trophic interactions data across most locations and

taxa (Poisot et al., 2021) lies at the core of the fundamental technical and practical challenges in 

food web ecology. Observing interactions is more challenging than observing species because 

two individuals need to be simultaneously detected while interacting (Jordano, 2016). This 

challenge is exacerbated by the fact that the number of possible interactions in food webs 

increases quadratically with the number of species, making the potential set of observations to be

made dramatically large. Determining all possible interactions among species within a food web 

is thus difficult even in species-poor ecosystems, which calls for a systematic approach to predict

links.

A first step towards constructing food webs is to focus on predator-prey relationships because 

they are the most commonly recorded type of ecological interaction, and have been shown to 

respond to a predictable set of neutral and niche processes (Morales-Castilla et al., 2015). A 

neutral model for trophic interactions suggests that the probability and strength of interactions 

depend only onto the co-occurrences and abundances of species (Canard et al., 2012). However, 

recent studies have shown that even if co-occurrence is a requirement for species to interact, it is 

not evidence for realized trophic interactions (Blanchet et al., 2020). We must thus be careful 
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when making assertions about trophic interactions based solely on co-occurrence data. Niche 

theory predicts that the matching between the functional traits of predators and those of their 

prey (e.g., smaller predators eat smaller prey) should improve predictions by identifying 

interactions that are feasible (Morales-Castilla et al. 2015). Trait-based models have been used to

predict food webs in freshwater streams (Pomeranz et al., 2019), marine fishes (Albouy et al., 

2014), terrestrial systems comprising vertebrate (Caron et al., 2022; Fricke et al., 2022) and 

invertebrate species (Laigle et al., 2018), among others. Phylogenetic relationships are also 

informative since interactions and species role (i.e., species positions in the food web) tend to be 

evolutionary conserved (Gómez et al., 2010; Stouffer et al., 2012). Strydom et al. (2021) recently

used a mammal phylogeny to map latent traits extracted from the European mammalian food 

web to predict its Canadian counterpart. Using this approach, the authors were able to recover 

90% of known trophic interactions among Canadian mammals without any prior information on 

the food web.

It is however still unclear how well can predictive models of trophic interactions transfer 

knowledge across different regions. In Strydom et al. (2021), it is hard to know how inferences 

would transfer to more contrasting environments. Europe and Canada share similar bioclimatic 

conditions and, despite the few species common to both regions, more than half of Canadian 

mammals have congeneric species in Europe. It is also unclear how well trophic interaction 

models can predict the underlying structure of entire food webs emerging from individual trophic

interactions. Food web structure encompasses system-level properties such as connectivity or 

number of trophic levels, as well as species traits such as number of prey or their position within 
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the food web. Most studies are aimed at predicting either the properties of food webs (e.g., 

Williams and Martinez 2008) or their interactions (e.g., Laigle et al. 2018; Pomeranz et al. 2019).

They rarely assess how well predicted interactions can recover food web structure. Despite being

able to recover most trophic interactions among European tetrapods, Caron et al. (2022) found 

that food web connectance was systematically overpredicted across Europe by 2-4 times. 

However, the authors did not explore how other food web properties (e.g., maximum trophic 

level, modularity) or species positions (e.g., trophic level, centrality) were predicted.

Here we test whether predictive models calibrated using a network of predator-prey interactions 

(i.e. a food web) from one geographical region of the world can reliably predict interactions, 

species role, and food web structure in other ecosystems across the world. Using terrestrial 

vertebrate food webs from Europe, the Pyrenees, Northern Québec and Labrador, and the 

Serengeti, we develop trait-based Bayesian hierarchical models to study prediction efficiency of 

species interactions and food web properties across regions. We aim at (1) identifying the factors 

(i.e., geographic, environmental, functional, or phylogenetic distances) influencing the 

transferability of models across ecosystems and geographical regions, (2) predicting trophic roles

across species and (3) quantifying the predicted food web properties. 

Methods

Food web data
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We extracted predator-prey interactions among terrestrial vertebrates (mammals, birds, 

amphibians and reptiles) from four well-resolved food webs (Table 1, Figure 1): the Europe food 

webs of tetrapods (Maiorano et al., 2020), the Pyrenees vertebrate food webs (Lurgi et al., 2012),

the Northern Québec and Labrador food web (Berteaux et al., 2018), and the Serengeti food web 

(de Visser et al., 2011). All four food webs are compiled from literature review and completed by

expert knowledge. The four food webs document the predator-prey interactions (i.e., the predator

could feed on the prey species) between all terrestrial vertebrates. Trophic interaction is a binary 

variable where 0 defines the absence of predator-prey interaction and 1 the presence of predator-

prey interaction between two species. The nodes in the original Serengeti food web are trophic 

groups including one or more vertebrate species. In this study, we assumed that species within a 

trophic group share the same predator and prey species. We describe each food web in Appendix 

1.

The species composition of the four food webs are different (Table 1). There are no amphibians 

or reptiles in Northern Québec and Labrador, the Pyrenees food web is dominated by birds 

(67%) and mammals (23%), with very few reptiles (8%), the European food web has a 

comparable number of reptiles (21%) and mammals (25%), and almost half (46%) of the 

Serengeti food web are mammals. The Europe, Pyrenees, and Northern Québec and Labrador 

food webs all have comparable mean trophic levels (between 1.24 and 1.3) and connectance 

(between 0.02 and 0.05) compared to the Serengeti food web (mean trophic level: 1.61; 

connectance: 0.12). In Europe, the Pyrenees and Northern Québec and Labrador most species are
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basal species (e.g., insectivores, herbivores, piscivores), whereas many more species feed on 

terrestrial vertebrates (non-basal species) in the Serengeti.

Trait data

We extracted terrestrial vertebrate species ecological traits from the database compiled by Etard 

et al. (2020). This dataset combines species-level information from large freely available 

secondary trait databases (e.g., EltonTraits: Wilman et al. (2014), AmphiBIO: Oliveira et al. 

(2017)). Overall, the database includes traits for 6 990 amphibian, 11 634 bird, 5 380 mammal, 

and 10 612 reptile species. We extracted the body mass (mean: 11 kg; range: 0.001–4 220 kg), 

longevity (mean: 5 885 days; range: 91–46 386 days), litter or clutch size (mean: 131 offsprings; 

range: 1–20 000 offsprings), habitat breadth (number of habitats a species uses, using level 2 of 

the IUCN Habitat Classification Scheme; mean: 10 habitats, range: 1-90 habitats), trophic level 

(3 levels: herbivore, omnivore, carnivore), activity time (2 categories: nocturnal, non-nocturnal) 

and habitat use (12 categories: forest, savanna, shrubland, grassland, wetland, rocky 

areas/cave/subterranean, desert, marine, marine/intertidal or coastal/supratidal, artificial, 

introduced vegetation) for all species considered in our study.

To match species in the trait databases to the species in the food webs, we standardized their 

names following the taxonomic backbone of the Global Biodiversity Information Facility (GBIF)

using the function name_backbone from the package rgbif (Chamberlain et al., 2022) in the R 

statistical language (R Core Team, 2022). In each food web, we excluded species for which no 

taxonomic information or none of the traits were available. For species that have one or more of 
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the traits documented, we imputed missing traits with the MissForest algorithm using the 

missForest R package (Stekhoven & Buehlmann, 2012) for amphibians, birds, mammals and 

reptiles separately.  MissForest uses random forests to iteratively predict missing data from the 

known data. Each random forest uses a different trait as response variable and the remaining 

traits as predictors.

Phylogeny data

We used phylogeny data to measure how model transferability was influenced by phylogenetic 

relatedness. We used published global phylogeniesy for birds (Jetz et al. 2012), amphibians (Jetz 

and Pyron 2018), squamates (Tonini et al., 2016), turtles (Thomson et al., 2021), and mammals 

(Upham et al., 2019). All five phylogenies are dated, were built from molecular data, and 

delivered as posterior distribution of trees. We sampled 100 trees from the posterior of each 

phylogeny and calculated the mean cophenetic distance from these samples between all species 

of the four food webs. Following Letten & Cornwell (2015), we square root transformed 

cophenetic distances to better represent functional dissimilarity. 

Predictive models

We calibrated a Bayesian hierarchical generalized linear model on each of the four food webs 

(Figure 1a.I). The response data are trophic interactions we modelled as Bernoulli distributed. 

Because Caron et al. (2022) found that trait-interaction relationships vary between predator 

groups, we used the order of the predator as varying intercepts and slopes. For each model, we 
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randomly drew 30% of the data for validation to keep the prevalence of trophic interaction in the 

validation subset equal to the prevalence of the entire food web. We used all predator-prey 

interactions of the remaining 70% of the data and an equal number of absence of interactions for 

calibration.

,

,

where  is the occurrence of interaction between predator j and prey i,  is the associated 

probability of interaction,  and  are the fixed intercept and slopes of the linear model, and

 and  are the random intercepts and slopes for the order of predator j.

We used 13 trait-based predictors in the models: five predator traits (trophic level, body mass, 

habitat breadth, longevity, and clutch size), five prey traits (trophic level, body mass, habitat 

breadth, longevity, and clutch size), and three trait-match predictors (match in activity time, 

habitat use and body mass). Since the activity time trait is binary (nocturnal and non-nocturnal) 

in Etard et al. (2020), activity time match is a binary variable where a 1 means the predator and 

the prey share the same activity time trait. Habitat match is calculated as the Jaccard similarity 

index between the habitat used by the prey and the predator across the 12 habitat categories 

available in the trait database. The Jaccard similarity index takes into account the overlap in 

habitat used by both species and how specialized they are to these shared habitats (e.g., the 

habitat match of two habitat specialist species sharing their only habitat category is higher than 

the habitat match of two habitat generalists sharing one of their respective habitat categories). 

Body mass match is the squared difference between the log-transformed body mass of the prey 
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and the predator. We used the squared difference between log-transformed body mass because 

we expect predators to eat prey within a given body mass interval (small enough to be handled 

by the predator, but big enough to be profitable). We log-transformed body mass, longevity and 

clutch size, because we expect the probability of interaction to respond more linearly with 

relative change in these variables (e.g., increase of 10% of body mass) than absolute change 

(e.g., increase of 10 grams). We scaled each continuous predictor (after transformation) by 

subtracting out the mean and dividing by two times the standard deviation, so that the 

coefficients of the scaled continuous predictors are directly comparable to coefficients of 

unscaled binary predictors (Gelman, 2008).

Fixed effects were drawn from a normal distribution with a mean of 0 and a standard deviation of

1. Random effects were drawn from normal distributions. We used a normal distribution with a 

mean of 0 and a standard deviation of 1 as prior for the mean and a Half-Cauchy distribution 

with a scale parameter of 5 as prior for the standard deviation of the random effects:

Model parameters were estimated with Hamiltonian Monte Carlo (Neal, 2011). To fit the models,

we ran four chains, each with 2000 warm-up iterations, followed by 2000 iterations for 

inference. We diagnosed convergence and adequacy with rank plots, posterior predictive checks, 

and we calculated the rank-normalized potential scale reduction factor on split chains for all runs
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(Vehtari et al. 2021; Appendix XX). We conducted the analyses using Stan (Carpenter et al., 

2017) through the package brms in R (Bürkner 2017).

Predicting species interactions

To quantify model transferability, we used each model to predict the food web fitted with that 

model and that of the other regions considered (Figure 1a.II). For each possible predator-prey 

pair, we extracted the mean of the posterior as the probability of interaction, and the standard 

deviation of the posterior as the uncertainty around the predicted probability of interaction. When

predicting the food web on which the model was calibrated (i.e., within food web predictions), 

we compared the predicted interaction probabilities to the validation subset of the food web. 

When predicting food webs other than the one on which the model was calibrated (i.e., between 

food web predictions), we compared the predicted interaction probabilities to the entire empirical

food web. We measured performance with the area under the receiver operating characteristic 

curve (AUC; Hanley and McNeil 1982). AUC varies from 0 to 1 where 0.5 indicates that the 

model failed to rank interactions higher than absences of interactions (i.e., random predictions), 

and 1 indicates that the model systematically ranked interactions higher than non-interactions 

(i.e., perfect predictions). We also measured the area under the precision-recall curve (Davis & 

Goadrich, 2006), and directly used posterior draws to get distributions for the true positive rate, 

true negative rate, positive predictive value and negative predictive value (Appendix XX).

To explore factors influencing model transferability, we assessed the performance of models to 

predict each food webs using three distance measures: geographic distance, environmental 
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dissimilarity, and phylogenetic relatedness. We measured geographic distance as the Euclidean 

distance between the polygon centroid delimiting the spatial domain of each food web. 

Environmental dissimilarity was quantified using all 19 bioclimatic variables in WorldClim 

(Hijmans, 2021). We randomly drew 500 points within each polygon corresponding to the spatial

domain of our food webs and extracted bioclimatic data for these points. We used the mean of 

each bioclimatic variables to calculate the bioclimatic centroid of each food web. We calculated 

environmental distance as the Euclidean distance between the food web bioclimatic centroids. 

We repeated this step 10 times (10 sets of 500 random points) to make sure the environmental 

distance estimates are robust to random sampling (Appendix X). To measure phylogenetic 

relatedness, we used the mean cophenetic distance to the nearest taxon of every species in the 

predicted food web. We averaged over all species in the predicted food web the cophenetic 

distance to the phylogenetically closest species in the food web used for calibration. This 

approach measures the amount of evolutionary history in the predicted food web undocumented 

by the food web the model was calibrated on.

Another test of the factors influencing model transferability focuses on analyzing predictive 

performance at the species level. For each combination of predicted food web models (i.e., 

curves in Figure 1b), we measured how accurately the set of prey and predators of each species 

were predicted also using the AUC. We modelled species-specific performance in terms of how 

connected the focal species is and how distinct the focal species is to the species pool used to 

calibrate the predictive model. To do this, we used species normalized degree (number of 

interactions divided by the maximum possible number of interactions), the functional mean 
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pairwise distance (Mouchet et al., 2010) and distance to nearest taxon (Tucker et al., 2017). 

Functional mean pairwise distance is the average Gower distance (Gower, 1971) between the 

focal species and all species in the food web used for calibration. To calculate Gower distances, 

we used all traits available in Etard (2020) through the function funct.dist from the R package 

mFD (Magneville et al., 2022). Distance to nearest taxon was quantified as the cophenetic 

distance between the focal species and the closest relative in the species in the food web used for 

model calibration.

Predicting species’ functional roles

Next, we were interested in how well species functional roles were predicted by our models. The 

functional role of a species is determined by its position in the food web (Cirtwill et al., 2018), 

which we quantified using five metrics related to the species centrality within the food webs 

(number of prey, number of predators, betweenness, closeness, eigenvector centrality), two 

metrics related to their trophic position (trophic levels and omnivory), two module-based metrics

(within-module degree and participation coefficient; Guimerà & Amaral, 2005), and the motif 

profile of each species (Stouffer et al., 2012). We detail each metric, their relation to functional 

role, and how they were calculated in Appendix XX.

To measure how well species roles were predicted, we compared each species position metric in 

empirical food webs to the species position in predicted food webs. For predicted food webs, we 

measured each role metric on 100 samples of the posterior distribution of the entire food web 

with the mean as the best point estimate for the metric and the standard deviation as measure of 

uncertainty. For each combination of model, predicted food web, and species role metric, we 
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fitted a linear regression between the predicted position and the empirical position. We used the 

coefficient of determination (R²) to measure how well species roles were predicted. We also 

explored prediction biases using the simple linear models’ coefficients. We expect an intercept of

zero for perfect predictions of species role, and deviation from zero would suggest systematic 

bias across the range of the role metric. We expect a slope of one for perfect predictions. A slope 

less than one would suggest that the role metric of species at the lower range are overpredicted, 

whereas the role metric of species at the upper range are underpredicted (i.e., more homogeneous

role across species than in the empirical food web). A slope greater than one would suggest the 

opposite (i.e., more heterogeneous role across species than in the empirical food web).

Predicting food web properties

Finally, we investigated how well the global properties of food webs were predicted. We selected

a range of metrics commonly used to quantify food web structure and which have been shown to 

influence food web functioning and stability: connectance, mean trophic level, maximum trophic

level, motifs distribution, food web diameter, number of clusters, and modularity (Borrelli, 2015;

Vermaat et al., 2009). As for species position, we evaluated these properties on the empirical 

food webs and compared them to the properties predicted using the mean of 100 samples of the 

posterior food web prediction. We detail each metric, their relation to food web function, and 

how they were calculated in Appendix X.

Results

Predicting trophic interactions
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For all food webs, trophic interactions were better predicted by the model calibrated on the same 

food web (within food web predictions) than by model calibrated on other food webs (between 

food web predictions; Table 2). For within food web predictions, AUC varied between 0.92 and 

0.96. Model performance was also good (AUC > 0.82) for transfer between the Europe, 

Pyrenees, and Northern Québec and Labrador food webs. Models did not transfer as well from 

and to the Serengeti food web, but performance was still good (AUC > 0.75). The area under the 

precision-recall curve, true positive rate, true negative rate, positive predictive value, and 

negative predictive value were all positively correlated with AUC and showed the same overall 

pattern (Appendix X).

To explore the factors influencing the transferability of interaction models, we modelled their 

performance relative to the geographic, environmental, and phylogenetic distances between the 

calibrated and predicted food web (Figure 2). Overall, performance tended to decrease with 

environmental (direct effect estimate: -0.50, 95%CrI = [-0.90, -0.09]) and phylogenetic distance 

(direct effect estimate: -0.39, 95%CrI = [-0.76, 0.00]). Performance also decreased with 

geographic distance (total effect estimate: -0.54, 95%CrI = [-0.78, -0.30]), but this effect 

disappeared after controlling for phylogenetic and environmental distances (direct effect 

estimate: -0.07, 95%CrI = [-0.49, 0.34]).

We also identified the species for which the interactions were incorrectly predicted between food

web. We modelled species-specific performance to the phylogenetic and functional distance 

between the focal species and the species pool used to train the models (Figure 3). As expected, 
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species with phylogenetically close relatives in the species pool used for calibration were, on 

average, better predicted than distant relatives (Figure 3a). Species-specific performance slightly 

decreased at low and intermediate phylogenetic distances, and then dropped significantly at large

distances. Models calibrated and predicted across classes (e.g. mammals to amphibians) had the 

lowest performance, as expected (Appendix X). This situation only occurs with the Northern 

Québec and Labrador model predicting the other three food webs as there are no amphibians or 

reptiles in Northern Québec and Labrador. Surprisingly, predictive performance remained 

qualitatively unchanged by functional distance (Figure 3b). We also found that interactions of 

specialist (i.e., species with few interactions) and generalist species (i.e., species with many 

interactions) were, on average, better predicted than interactions of species of intermediate 

specialization (Figure 3c). 

Predicting species functional role

We found significant variation in how well species trophic positions were predicted across 

models (Figure 4). Species roles were slightly better predicted by within food web predictions 

than by between food web predictions. Interestingly, some measures of centrality (betweenness 

and closeness) were not well predicted, whereas others (number of prey and predators, 

eigenvector centrality) were relatively well predicted. 

We also found important biases in the predictions of species roles when we fitted linear 

regressions between species roles in predicted food webs to their roles in the empirical food 

webs. The number of prey, predators, trophic level, omnivory, and the frequency of motif 
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positions tended to be similarly overestimated across species (slopes close to 1, and intercept 

greater than 0). For other measures such as eigenvector centrality, betweenness, closeness, and 

module-based roles, species had more similar values between predicted and empirical food webs 

(Appendix X, slopes less than 1).

Predicting food web properties

The majority of food web properties were not well predicted by our interaction models (Figure 

5). Connectance, mean and max trophic levels, and the frequency of most motifs were 

overpredicted, whereas modularity were slightly underpredicted. Mean and variance of relative 

errors were greater for between- compared to within-food web predictions. In general, predicted 

food webs were more connected, displayed a higher frequency of most motifs, and were less 

modular and with less basal species, which increased the trophic level of most species.

Discussion

Predictive models of trophic interactions have recently become central in filling knowledge gaps 

about how predator-prey interactions vary across space and time. Here, we showed that trait-

based trophic interaction models can predict interactions across ecosystems. We found that, given

enough phylogenetic and environmental similarities between the system on which the model is 

calibrated and the system for which the predictions are made, models predicted most interactions

reasonably well. Our results suggest that, for terrestrial vertebrate food webs, trait relationships 

driving interactions appear to be relatively general even in highly contrasting environments. 
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Although models were successful at predicting interactions, they were less successful at 

predicting higher-level food web properties. We found systematic biases in the species position 

and food web properties predictions. Biases varied across metrics, but overall, the predicted food

webs were better more highly connected, less modular, had more trophic levels, with species 

within them being more homogeneously connected than their observed counterparts. These 

higher-level properties of food webs were especially poorly predicted when making between 

food web predictions (i.e., knowledge transfer).

The trait-matching framework of trophic niche theory assumes that variation across food webs 

arises through differences in the trait-matching rules driving interactions and the distribution of 

traits in different systems (Gravel et al., 2016). Our ability to predict food web interactions 

across contrasting environments partially agrees with this framework by suggesting that spatial 

food web variation is mainly driven by changes in the distribution of functional traits, and less so

by the variation of trait-matching relationships. These results are in line with previous finding 

generalities made on trait-interactions relationships across European bioregions (Caron et al., 

2022), the predator-prey body-size ratios within habitat, predator, and prey types (Brose et al., 

2006), and the trait-interactions relationships in soil invertebrates across three forest areas in 

Germany (Laigle et al. 2018). Given that trait-matching rules driving species interactions seem 

general in reasonably similar environments, it should be possible to use data from well-studied 

areas to predict interactions in areas we know very little about or forecast (and hindcast) food 

webs given new trait distributions. 
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We also highlighted a major limitation of trophic interaction models: trophic interaction models 

predict interactions, not food webs. Even if most interactions and absences of interactions are 

well predicted (high true positive and negative rates), there are many more absences of 

interactions to predict than presences in real food webs (low connectance). This might explain 

why our models systematically overpredicted the number of interactions (number of prey and 

predators) across species (Appendix X). This bias probably propagated through the food webs, 

explaining why the centrality of species was more evenly distributed, and why the predicted food

webs were more connected, less modular, and with higher trophic levels. 

The structural properties of food webs (i.e., connectance, number of trophic levels, modularity) 

influence the stability, invasibility, and productivity of ecosystems (Duffy et al., 2007; Lurgi et 

al., 2014; Wang & Brose, 2018), whereas the position of species within food webs determine 

their functional role, and can help identify keystone species and prevent cascading effects of 

extinction (Cirtwill et al., 2018; Estes et al., 2011). Here, predicting individual links failed to 

predict higher-level properties, suggesting that there are constraints acting on the structures of 

food webs that trophic interaction models cannot capture. A consequence of such constraints is 

the spatial and temporal variations of ecological network, which have gained a lot of interest 

recently (Baiser et al., 2019; Gravel et al., 2019). Because sampling interactions at large scales is 

difficult, predictions by interaction models could help investigate the variation of interactions 

and network structures simultaneously (e.g., Albouy et al., 2014), which would be possible only 

if the biases in predicted network structure are constant across the gradient of interest. Given our 

results, testing the assumption that the bias is constant should be necessary to robustly measure 

the variation in network structure. 
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Correcting biases in higher-level property predictions presents an opportunity to improve species

interaction predictions. In species distribution models, methods have been developed to harness 

biases in higher-level properties (e.g., species richness) to correct distribution predictions (e.g., 

Leung et al., 2019). These models correct systematic biases in predictions similar to those we 

found in our study. Therefore, methods that would combine predictions of interactions and 

networks have the potential to provide better food web predictions. Structural food web models 

can predict the probability distribution of many food web properties (Williams & Martinez, 

2008). Information on probable food web structure could be used to correct posterior predictive 

distributions of species interactions. 

Our study suffers from a few limitations that, if overcome, can move us closer to a 

comprehensive framework for ecological interactions and networks prediction. First, our study 

relied on terrestrial vertebrates. Although there is no clear a priori reason not to be applicable in 

other systems, our results are unlikely to be general across all taxa and types of interactions. We 

are not aware of another other test of interaction model transferability, but it would be interesting

to investigate if our results hold for systems where trait-matching relationships are stronger or 

weaker. The exclusion of non-vertebrates (e.g., plants, invertebrates, parasites) also influence the 

empirical and predicted species role and food web properties. For example, the first trophic 

levels in our food webs were not primary producers, but species not feeding on terrestrial 

vertebrates (e.g., herbivores, invertivores). However, extension of trait-matching models to also 

include invertebrates can be achieved with a coarser resolution (Li et al., 2023) or with additional
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traits (Laigle et al., 2018).  Second, the food webs we used were potential and binary food webs. 

Trait-matching models predict the probabilities that a species could eat another species given 

they are encountering each other. Additional data, such as co-occurrence and abundance data, are

needed to make predictions of realized and quantitative interactions. Finally, due to the scarcity 

of food web data, we only had four food webs to work with. This means we only had four sets of

within food web predictions, and 12 sets of between food web predictions. This explains the 

large uncertainty for some of our results (e.g., Figure 2). Despite the low sample size, we still 

detected significant relationship between model transferability and geographic, phylogenetic, and

environmental distances.

Overall, we found that trait-based interaction models can transfer knowledge relatively well 

given enough phylogenetic and environmental similarities between systems. These models can 

predict pools of potential interactions even in contrasting environments, suggesting that changes 

in food webs are mainly explain by changes in trait distribution, and less by changes in the trait-

interaction relationships. This ability to transfer predictions suggests that there are fundamental 

trait-based constraints on trophic interactions that are generalizable to some extent (within 

reasonably similar ecosystems).  However, these trait-based relationships appear to be driven 

more by the traits of the respective predator-prey pair rather than the ‘match’ between them. This

finding has interesting ties to the broader question of how traits vary between ecosystems and 

along gradients (Gravel et al., 2016). Future research could better link these two fields for a 

comprehensive understanding of how species relate to their environment and to other species, 
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and to enable better predictions of the responses of species and ecosystems to threats and global 

change.
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Table 1: Summary of properties of the food webs used in this study after 
excluding species for which no match was found in the GBIF Backbone 
Taxonomy or was not documented in the trait database. Trait coverage is the 
percentage of traits documented in Etard et al. (2020) before imputing missing 
traits.

Europe Pyrenees Serengeti
No. of species 1135 196 200 298
Prop of amphibians 0.09 0.02 0 0.06
Prop of birds 0.45 0.67 0.78 0.35
Prop of mammals 0.25 0.23 0.22 0.46
Prop of reptiles 0.21 0.08 0 0.13
No. of interactions 57 746 831 1 098 11 038
Connectance 0.05 0.02 0.03 0.12
Mean trophic level 1.24 1.25 1.3 1.61
Trait coverage (%) 83.9 92.1 96.3 81.9

North Québec 
and Labrador
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Table 2: Food webs are better predicted by their own calibrated model. 
Area under the receiver operating curve (AUC) of each model 
predicting every food web.  

Food web

Europe Pyrenees Serengeti
Model

   Europe 0.96 0.89 0.9 0.8

   Pyrenees 0.86 0.95 0.85 0.79

0.82 0.9 0.95 0.75

   Serengeti 0.85 0.78 0.77 0.92

North Québec 
and Labrador

   North Québec
   and Labrador
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Figure 1: Trophic interaction model transferability analysis workflow. We calibrated trophic 

interaction model using each food web considered in this study separately (panel a.I). We 

validated the four models on a validation subset for within food web predictions, and the entire 

food webs for between food web predictions (panel a.II). Panel (a) shows an example workflow 

for the between food web predictions. Panel (b) maps the spatial domain of each food web. The 

12 curves are the model food web pairs for between food web predictions. The within food web 

predictions are not shown in the figure. Bar plots are the proportion of amphibians (green), birds

(yellow), mammals (purple), and reptiles (red) in each food web. 

Figure 2: Transferability of predictive models. Points are the predictive performance (AUC) of 

the sixteen combination of model-food web prediction (Table 2). The trend lines are the median 

effects with their 95% credible interval constructed with the posterior predictive distribution of 

geographic, environmental, and phylogenetic distances on predictive performance. Shown are 

the total (turquoise) and partial (dark blue) effects of geographic distance (controlling for 

environmental and phylogenetic distances), and the direct (controlling for geographic distance) 

effects of environmental and phylogenetic distances.

Figure 3: Predicting species interactions. Performance of the model calibrated on each food 

web to predict the interactions of species in the other food webs. Each point is the performance 

to predict the prey and predators of a single species. The trend lines are the median effects with 

their 95% credible interval constructed from the posterior predictive distribution of (a) distance 

to the nearest taxon, (b) mean functional pairwise distance, and (c) normalized degree on 

predictive performance.
34



Figure 4: Predicting species functional role. Performance of models to predict species 

functional role measured as the proportion of the variance in trophic positions explained by the 

models (R²). From left to right, the figure shows the number of prey, number of predators, 

betweenness, closeness, eigenvector centrality, within-module degree (z), participation 

coefficient (P), times the species is at a specific position in the linear chain (predator – 

consumer - resource), intraguild predation (omnivore – consumer - resource), direct competition 

(2 consumers – 1 resource), and apparent competition motifs (1 consumer – 2 resources). The 

short horizontal lines are the R² for each role, model, and food web predicted combination. Grey 

open dots are the mean R² with for within food web predictions. Full black dots are the mean R² 

for across food web predictions.

Figure 5: Prediction error of global food web properties. The relative error of the predicted 

food web properties. Relative error is the difference between the predicted and empirical 

estimates divided by the empirical estimate. From left to right, the figure shows the relative error

for connectance, maximum trophic level, mean trophic level, number of clusters, modularity, 

diameter, number of linear chain (predator – consumer - resource), intraguild predation 

(omnivore – consumer - resource), direct competition (2 consumers – 1 resource), and apparent 

competition motifs (1 consumer – 2 resources). Short horizontal lines are the relative errors for 

each property, model, and food web predicted combination. Grey open dots are the mean relative

errors for within- food web predictions and full black dots are the mean relative errors for 

between-food web predictions. The relative errors were presented in two panels to highlight the 

important difference in relative error between network properties and species roles.
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Figure 1: Trophic interactions model transferability analysis workflow. 
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Figure 2 : Transferability of predictive models.

Figure 3: Predicting species interactions.
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Figure 4: Predicting species functional role. 

Figure 5: Prediction error of global food web properties.


