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 10 
Abstract 11 

There is a cross-sectoral push amongst conservation practitioners to simultaneously 12 

mitigate biodiversity loss and climate change, especially as the latter increasingly threatens the 13 

former. Growing evidence demonstrates that animals can have substantial impacts on carbon 14 

cycling and as such, there are increasing calls to use animal conservation and trophic rewilding to 15 

help dually overcome biodiversity loss and climate change. Trophic rewilding is a complex 16 

conservation approach to mitigating climate change because it requires accurate baseline estimates 17 

of carbon cycling and species impacts on a system, social support for the project, and the actual 18 

reintroduction of a species. We join the growing excitement around this potential but caution that 19 

rewilding cannot always be justified on carbon benefits alone: a species’ net impact on ecosystem 20 

carbon dynamics is context dependent. The need for caution intensifies whenever biodiversity 21 

conservation (including rewilding), climate change mitigation, and human welfare do not readily 22 

align. Hence, these burgeoning efforts must avoid sweeping generalizations. To bolster reliable 23 

outcomes, we highlight the regional social and ecological context dependencies that can drastically 24 

vary outcomes in a rewilded carbon cycle and provide ethical considerations for successful 25 

implementation. We conclude with an overview of the available technology to predict and monitor 26 

progress toward both biodiversity and climate mitigation goals.  27 
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I. Introduction  32 

Scientists, policymakers, and conservation practitioners are confronted with the dual 33 

challenge of mitigating climate change and biodiversity loss (Dinerstein et al., 2020; Pörtner et al., 34 

2023; Seddon et al., 2021; Smith et al., 2022). Until recently, solutions to each have been routinely 35 

treated as functionally unrelated (Dinerstein et al., 2020; Malhi et al., 2022; Smith et al., 2022; 36 

Figure 1); yet this line of thought is shifting. Growing evidence shows that animals may play an 37 

essential role in mitigating climate change by mediating ecosystem carbon capture and storage in 38 

ecosystems, demonstrating potential congruence between the biodiversity and climate challenges 39 

(Cromsigt et al., 2018; Kristensen et al., 2022; Malhi et al., 2022). Hence, continuing to focus 40 

landscape conservation on maximizing either animal diversity or carbon capture and storage could 41 

lead to missed opportunities to further both goals (Schmitz et al., 2023).  42 

Nature-based solutions to climate change and biodiversity loss encompass landscape-scale 43 

conservation practices aimed at driving carbon uptake and storage through the protection and 44 

restoration of biodiversity, ecosystem processes, and ultimately ecological resilience for both 45 

people and nature (Seddon et al., 2021; Woroniecki et al., 2020). Among these nature-based 46 

efforts, a burgeoning climate change mitigation strategy is animating the carbon cycle through 47 

trophic rewilding. Animating the carbon cycle recognizes that animals, particularly large 48 

vertebrates, can have important effects on ecosystem carbon capture despite their smaller total 49 

biomass relative to other biological drivers of carbon cycling (e.g., plants or microbes; Schmitz et 50 

al., 2014, 2023). Trophic rewilding rebuilds ecosystems by restoring intact animal communities, 51 

the trophic structure of food webs, and natural ecosystem processes and services for both humans 52 

and wildlife (Carver et al., 2021; Svenning et al., 2016). Thus, Trophic Rewilding to Animate the 53 

Carbon Cycle (TRACC) utilizes both frameworks, positing that rewilding animals’ functional 54 
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roles in ecosystems can simultaneously further biodiversity conservation and increase carbon 55 

capture and storage in ecosystems (Figure 1). 56 

Estimates derived from a subset of animals across diverse ecosystems reveal that animals 57 

could substantially alter an ecosystem’s carbon budget by an average of 60-95% relative to cases 58 

where focal animals are absent (Schmitz & Leroux, 2020), thereby potentially enhancing 59 

ecosystem carbon capture and storage globally by at least 6.4 billion tonnes per year (Schmitz et 60 

al., 2023). By comparison, this amount rivals that of each of the IPCC top 5 steps for reducing net 61 

emissions expeditiously, including rapid transition to solar and wind technology, reducing the 62 

conversion of natural ecosystems, enhancing carbon capture and storage in agriculture, and 63 

restoring, afforesting and reforesting ecosystem (IPCC, 2022). Hence the high potential of TRACC 64 

to add to the portfolio of nature-based solutions makes it an appealing way to promote wildlife 65 

conservation everywhere to overcome the dual challenges of mitigating climate change and 66 

biodiversity loss.   67 

However, we are at a juncture where some caution is warranted. The few studies which 68 

quantify animal effects on ecosystem carbon cycling demonstrate the importance of considering 69 

ecological context.  This is because animals can either enhance or reduce ecosystem carbon capture 70 

and storage depending on ecosystem type and the functional role of wildlife species in that 71 

ecosystem (Table 1). Thus, regardless of the intention to rewild to meet carbon storage goals, 72 

biodiversity goals, or both, it is essential to understand how a focal species may impact an 73 

ecosystem’s carbon budget. This involves giving significant consideration to the effects that 74 

animals at different trophic levels can have on individual, population, and community ecological 75 

processes within a specific environmental setting. TRACC also inherently requires increasing the 76 

abundance of wildlife species on the landscape, potentially in competition with people who already 77 
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live there. This raises significant concerns that TRACC could conflict with human livelihoods and 78 

welfare without consideration of people on landscapes and the further commodification of nature 79 

(Seddon et al., 2021). Therefore, as a nature-based solution, TRACC requires an equal emphasis 80 

on understanding and including human communities as part of the solution (Schmitz & Sylvén, 81 

2023).  82 

Here we explain how to understand and balance necessary social, ecological, and social-83 

ecological context dependencies to produce an ethical and scientifically defensible nature-based 84 

solution using TRACC We 1) highlight the context of species, of systems, and of people. We then 85 

2) address the kinds of ethical considerations needed given the potential impacts of trophic 86 

rewilding on people and the value they place on wildlife. We conclude with 3) 87 

suggestions/directions for practitioners interested in trophic rewilding schemes for carbon storage. 88 

We also discuss how to optimize available technologies for appropriate monitoring strategies in 89 

order to better understand how a species impacts the carbon storage of a specific ecosystem. 90 

We focus on examples of terrestrial megafauna (e.g., >45 kg; Martin & Klein, 1989) 91 

because they are among the most studied and most vulnerable animals in terms of their response 92 

to human activities (Atwood et al., 2020; Belote et al., 2020; Dirzo et al., 2014; Ripple et al., 2014). 93 

Consequently, conservation practitioners have given heightened investment and attention to 94 

trophic rewilding of large and charismatic species. This is not to dimmish the critical importance 95 

of considering marine wildlife (Durfort et al., 2022; Saba et al., 2021), large reptiles, and 96 

invertebrates (e.g. arthropods; de Miranda, 2017; Schmitz & Leroux, 2020) for similar purposes. 97 

To that end, the emerging concepts and principles we derive from the terrestrial case studies should 98 

apply to these taxa as well.  99 

 100 
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II. Context Dependency in Rewilding the Carbon Cycle 101 

Determining if rewilding as a nature-based solution, i.e. TRACC, will work is largely 102 

dependent on understanding whether the plan is ecologically and socially feasible. Here we 103 

highlight several of the contexts necessary to consider for successful TRACC projects.  104 

 105 

The Context of the Species  106 

Trophic rewilding focuses on the processes and functions of wildlife species within the 107 

ecosystem they will occupy after translocation, and TRACC expands upon this focus by honing in 108 

on how a species’ attributes and functions specifically impact the carbon cycle. As such, it is an 109 

important prerequisite to consider a species’ functional traits, population demographics, and 110 

population density, as well as the resident animal community assemblage, prior to determining 111 

whether the species should be introduced as a nature-based solution.  112 

Understanding species’ functional traits is critical to understanding its impacts on carbon 113 

cycling because it sheds light on how a species interacts with members of its ecological community 114 

(Figure 3A). Varied hunting or foraging styles determine how individuals impact their community 115 

and ecosystem, primarily by modulating the vegetative structure of the landscape (Bakker et al., 116 

2016). For example, grazers generally consume fast-growing grasses, which can promote shoot 117 

production, thereby increasing carbon capture. In contrast, browsers consume slow-growing 118 

shrubs and trees, which, in some systems, may limit carbon capture (Salisbury et al., 2023). 119 

Additional functional traits such as digestion may shape the quality and quantity of plant types that 120 

are eaten and the ensuing amount of methane released (Clauss et al., 2020) Trampling during daily 121 

movements may compact soil (Schmitz et al., 2018), wallowing can create natural fire breaks 122 
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(Malhi et al., 2022), and migration across landscapes may translocate nutrients essential to plant 123 

growth (Subalusky et al., 2017). 124 

The demographics of a rewilded population can also differentially affect carbon 125 

sequestration even within the same system (Figure 3B). In Kruger National Park, male and female 126 

elephants (Loxodonta africana) had different impacts on local tree dynamics (Abraham et al., 127 

2021) and, at certain densities, male elephants decreased aboveground carbon storage, while 128 

breeding herds had a nonsignificant impact (Davies & Asner, 2019). In deer species, males are 129 

known to consume more woody vegetation than females (Garcia et al., 2023), hence populations 130 

with higher proportions of males could ultimately reduce carbon storage and uptake. Other 131 

demographics (e.g., age, social status) may also impact consumption rates and preferences, 132 

ultimately impacting nutrient deposition and, potentially ecosystem carbon uptake.  133 

Different populations of rewilded animals can turn ecosystems from net carbon sinks into 134 

net sources (Figure 3C). For example, the density of forest elephants (Loxodonta cyclotis) in the 135 

Congo can have negative, positive, and negligible effects on carbon storage depending on species 136 

density: negative effects due to their damaging effect on tree production at high densities, 137 

negligible effects at low densities, and positive due to their enhancement of forest canopy tree 138 

production at medium densities (Berzaghi et al., 2019). In the Serengeti, a 20% reduction of the 139 

wildebeest population shifted the savanna from being a carbon sink to a source because reduced 140 

grazing led to more frequent and intense wildfires (Holdo et al., 2009). Maximizing carbon capture 141 

using rewilded animal populations may require strategic population control, which may seem 142 

antithetical to the goals of conserving wildlife biodiversity (e.g. prioritizing species richness). 143 

Practitioners must decide which species to rewild, what animal density is needed to reach carbon 144 
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capture targets, and the kind of management or stewardship needed to maintain the population at 145 

this density.  146 

Of course, species do not exist or act alone in an ecosystem, and the resident plant and 147 

animal community assemblage must be considered as the rewilded species’ impacts on carbon 148 

uptake and sequestration could be amplified or reduced (Figure 3D). Different mammalian 149 

herbivore assemblages in the Arctic had varying impacts on CO2 fluxes via herbivory (Metcalfe 150 

& Olofsson, 2015). Herbivore community assemblages can also impact soil mixing (Kristensen et 151 

al., 2022), aboveground biomass (Metcalfe & Olofsson, 2015), plant communities (Olofsson & 152 

Post, 2018), and other metrics which impact carbon capture and storage. Further research is needed 153 

to untangle how differing community assemblages, and changes to assemblages, may impact 154 

carbon sequestration.  155 

We add the caveat that applying this ecological understanding nearly always relies on 156 

estimating average species contribution to the carbon cycle, which neglects to account for 157 

intraspecific variation. In other words, the average will not capture variable contributions to the 158 

carbon cycle if trait responses among individuals are not identical (e.g., dependent on 159 

physiological or behavioral states; Bolnick et al., 2011; Ovadia & Schmitz, 2002; Schmitz & 160 

Trussell, 2016;  Sommer & Schmitz, 2020).  161 

 162 

The Context of the System 163 

Implementing trophic rewilding as a nature-based climate solution must also account for 164 

the ecological nuances within ecosystems as a whole and the relationship to the candidate species 165 

for rewilding. These nuances include trophic cascades, community composition, and ecosystem or 166 

habitat type.   167 
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First and foremost, wild animals can have top-down feedback effects on ecosystem 168 

functions via trophic cascades (Figure 2; Figure 3E), in which density and trait-mediated effects 169 

at upper trophic levels can alter the amount of carbon exchanged between plants, soils, and the 170 

atmosphere. These feedbacks arise from a wide range of animal functional roles that propagate 171 

along trophic chains to impact the biophysical properties of ecosystems and the functioning of 172 

plants and soils (Cromsigt et al., 2018; Malhi et al., 2022; Schmitz et al., 2018; Schmitz & Leroux, 173 

2020). Such roles include foraging and space use by carnivores and herbivores that respectively 174 

control animal and plant productivity and abundance; redistributing seeds and nutrients over vast 175 

spatial extents; and trampling, burrowing, and wallowing causing disturbance and compaction. 176 

The effects of these functions are magnified by trophic interactions that can alter the diversity, 177 

abundance, and carbon density of plant communities, fire regimes, methane release from 178 

permafrost, carbon inputs to soil and sediments from fecal and carcass deposition, and microbial 179 

processes and chemical reactions that mediate the retention of soil carbon. But the role a species 180 

plays can differ among different habitats or ecosystem types (Figure 3F). For example, savanna 181 

elephants (L. africana) in the grassland ecosystem of the Serengeti appear to have neutral or 182 

negative effects on carbon storage (Davies & Asner, 2019; Pellegrini et al., 2017; Sandhage‐183 

Hofmann et al., 2021) while the forest elephant (L. cyclotis) in the central African rainforest plays 184 

a significant role in seed dispersal, aboveground biomass and thus aboveground carbon storage 185 

(Berzaghi et al., 2019). 186 

Other ecosystem characteristics such as climate, topography, seasonality, and rainfall 187 

gradient can influence the carbon storage potential of animals (Malhi et al., 2022, Kristensen et 188 

al., 2022). These considerations will be increasingly important under continued climate change 189 

(e.g., changes in seasonality, droughts, floods, etc.). These impacts can be large enough that, if 190 
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ignored, conventional natural climate solutions could either miss opportunities to enhance carbon 191 

capture or fail to meet carbon capture targets (Schmitz & Leroux, 2020).  192 

Ecological community composition is diverse and complex, and it is also necessary to 193 

consider the impacts of carbon beyond the direct management action of large animals (Figure 3G). 194 

For example, soil animal communities are rarely considered in conservation or rewilding projects 195 

despite their known effect on soil carbon turnover and storage (Andriuzzi & Wall, 2018; Filser et 196 

al., 2016). Relatedly, management to improve carbon storage in a system might result in 197 

unintended consequences on the invertebrate community that, in turn, could decrease ecosystem 198 

function. For example, ecosystem changes can indirectly reduce pollinator diversity, leading to a 199 

decrease in plant pollination (Pringle et al. 2021). Management with a singular focus on carbon 200 

capture and storage can encourage monoculture production (e.g., eucalyptus farms) within 201 

ecosystems, thereby maximizing carbon storage but minimizing ecological diversity and function 202 

(Seddon et al., 2021). 203 

 204 

The Social Context 205 

The context dependency within a system is also influenced by variation in human social 206 

(e.g., culture, religion, ethics, politics) and economic context that impacts landscape use (Figure 207 

3H). Human land use can reshape ecological communities with important implications for 208 

ecosystem functioning and conservation efforts, both of which are relevant for rewilding and 209 

carbon capture and storage (Berti & Svenning, 2020; Estes et al., 2011; Schmitz et al., 2018; Suraci 210 

et al., 2021). For instance, regional fragmentation and isolation through fencing or deforestation 211 

can confine animal populations or restrict their movements. The restriction of large-ranging 212 

species will concentrate their functional impacts within a small area and exert a lot of pressure 213 
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compared to individuals of the same species in undisturbed habitats that can operate across larger 214 

ranges. This will have affects across the ecosystem, including the carbon sequestration by plants 215 

(Wall et al., 2021; Xu et al., 2021). Such consideration for how fragmentation and isolation will 216 

impact the carbon cycle is particularly important when considering wildlife connectivity across 217 

private and public lands (Kauffman et al., 2021). Animals can also vary in the directionality of 218 

their response to disturbances based on real or perceived anthropogenic pressures such as 219 

mortality, recreation, and hunting (Kays et al., 2017; Naidoo & Burton, 2020; Smith et al., 2019; 220 

Suraci et al., 2021; Venter et al., 2016; Wilson et al., 2021). For instance, individuals from a large 221 

mammalian species may respond to human disturbance in opposite ways depending on how 222 

frequently they interact with humans (e.g., within a heavily-visited land trust versus a remote area 223 

of a national park) (Bateman & Fleming, 2017; Reilly et al., 2017).  224 

 225 

III. Creating ethical TRACC solutions  226 

Complex, and sometimes differing, ecological contexts and values surround biodiversity 227 

conservation and, subsequently, rewilding and carbon storage. Trophic rewilding to animate the 228 

carbon cycle (TRACC) can only be an appropriate nature-based solutions when the project, at the 229 

bare minimum, does not exclude impacted humans from the decision-making processes, or else 230 

the conserved landscape entirely (Schmitz & Sylvén, 2023; Takacs, 2020). Animal-focused carbon 231 

offset projects, which emulate existing offset projects such as REDD+, risk neglecting human 232 

rights, particularly of local and indigenous communities (Raftopoulos, 2016). Often this is because 233 

the sites designated for carbon credits may have already been allocated and thereby closed off to 234 

human activities or access (Beymer-Farris & Bassett, 2012; Brockington, 2002; Büscher & 235 

Whande, 2007). The critiques of fortress conservation are long (Brockington, 2002; Büscher & 236 
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Ramutsindela, 2016; Goldman & Riosmena, 2013; Hartter & Goldman, 2011);this cannot happen 237 

for rewilding. 238 

Equitable TRACC projects require community involvement and power-sharing (e.g., 239 

Ainsworth et al., 2020; Ernoul et al., 2018). This means embracing and adapting to dynamic social 240 

contexts shaped by human welfare, intrinsic values, local knowledge, sociocultural heritage, and 241 

access to natural resources (Carver et al., 2021; Corlett, 2016; Schulte To Bühne et al., 2022; 242 

Takacs, 2020). Key to this is recognizing and respecting aspects of socio-cultural importance to 243 

local economies (e.g., food and other artisanal production) and balancing trade-offs among 244 

different economic opportunities whenever they arise. Examples include investments in climate-245 

smart farming and compensation schemes for existing economic opportunities that might be 246 

supplanted to allocate landscape space for carbon capture (Boedhihartono et al., 2018; Chami et 247 

al., 2022). Governance structures can support projects by coordinating with communities to ensure 248 

regional carbon finance equity and developing plans to monitor and evaluate the outcome of 249 

rewilding initiatives carried about by communities. 250 

Like all conservation programs, TRACC is inherently ethical and requires all participants 251 

to balance the interests, needs, and functions of humans, animals, and ecosystems. Lee et al., 252 

(2021) outline the kinds of interwoven ethical issues that are at stake in determining the outcome 253 

of rewilding efforts: human rights, animal welfare, environmental justice, intrinsic values, and 254 

ecosystem functionality. To ensure that local communities do not bear the brunt of negative 255 

impacts, Human Rights Impact Assessments, or similar approaches, could be employed as 256 

deliberate measures to link human rights and TRACC endeavors. While human rights assessments 257 

are typically conducted at the local level, policies and management strategies for mitigating 258 
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atmospheric buildup are often implemented regionally, within sub-national jurisdictions such as 259 

states or provinces (Dulal et al., 2012; Venter & Koh, 2012).  260 

It is important to note that many conservation projects often rely on implicit and 261 

unquestioned ethical norms and values (Ferraro et al., 2023), focusing primarily on financial and 262 

environmental cost-benefit implications, rather than considering the broader range of issues 263 

outlined above. This approach fails to recognize conservation and stewardship practices alongside 264 

human virtues, as well as the valuation of animals as purposeful, sentient beings rather than 265 

abstract taxonomic entities (Schmitz & Sylvén, 2023; Sommer & Ferraro, 2022; Wallach et al., 266 

2018). TRACC can adopt an eco-centric perspective, moving away from an anthropocentric lens 267 

(Carver et al., 2021) and ensuring that humans and animals are not treated merely as means to an 268 

end. Effectively navigating these ethical complexities necessitates collaboration with experts in 269 

human and environmental ethics, enabling well-informed and ethically-sound decisions that foster 270 

coexistence between humans and wildlife in a given landscape, rather than imposing 271 

predetermined solutions (Ferraro et al., 2021; Nelson, 2021). 272 

In some cases, rewilding a species into an ecosystem may lead to carbon storage and/or 273 

sequestration with no downside social costs or ethical issues. However, rewilding the same species 274 

into other ecosystems could decrease carbon capture or risk human-wildlife conflict, thereby 275 

requiring trade-off decisions between carbon and rewilding goals. Trade-off decisions require 276 

weighing the marginal carbon benefits (or costs) of rewilding against the socio-cultural and welfare 277 

opportunities for local communities. The decision about whether to proceed with a project requires 278 

the explicit engagement of all partners, including local communities, regional governance, 279 

conservation NGOs, and investors (Ainsworth et al., 2020).  280 

 281 
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IV. A Path Forward  282 

Determining if TRACC will work is dependent upon creating solutions which 283 

simultaneously address biodiversity loss and climate change mitigation and which leverage the 284 

points that we have elaborated upon above: ecological accuracy and the incorporation of human 285 

rights and the inherent value of all involved. After initial assessment and project design, it comes 286 

down to the action itself: actually reintroducing a species.  287 

Yet, how exactly do we go about executing a rewilded carbon cycle? We emphasize that 288 

the question centers upon measuring carbon; projects must track the carbon cycle before, during, 289 

and after the introduction of a species. Blending the ecological and ethical nuances that we describe 290 

above, we contend that longevity and transparency must lay the foundation for such projects. 291 

TRACC must ensure that the introduction of a species fosters long-term, stable carbon storage, 292 

and sequestration amidst balancing socio-ecological contexts. Below, we highlight the technology 293 

that is accessible to achieve this and further describe the research and/or management potential for 294 

carrying out a relevant project. 295 

 296 

Assessing and Monitoring TRACC 297 

Leveraging TRACC for nature-based solutions requires accurate carbon measurements 298 

that, in turn, provide scientifically defensible long-term project outcomes. We emphasize the 299 

necessity for baseline estimates prior to rewilding and measurements following reintroductions in 300 

order to monitor and evaluate the species’ impact on the system. Additionally, monitoring must 301 

assess more than standing plant or animal biomass (as currently emphasized by carbon offset and 302 

rewilding projects, respectively). It must include direct estimates of carbon storage in different 303 

parts of the ecosystem, fluxes between carbon pools through gasses, the projects economic value, 304 
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and its social impacts over time (i.e., it requires estimating net ecosystem carbon balance; Schmitz 305 

et al. 2023). Previous reviews have provided extensive detail as to how to assess and monitor the 306 

movement of nutrients by animals, including impacts on carbon sequestration (Abraham et al., 307 

2022; Ellis‐Soto & Ferraro et al., 2021; Schmitz & Sylvén, 2023; Supplemental Appendix 1). Here 308 

we provide a few new technologies and methods to consider.  309 

Currently, a new fleet of satellites allows us to estimate methane emissions including 310 

TROPOMI with a pixel resolution of 7km2. This has already been used to quantify human methane 311 

emissions from oil-producing basins (Zhang et al., 2020) and livestock (Scarpelli et al., 2020), and 312 

could be used to track large aggregations of wild ruminants. The launch of the Carbon Mapper 313 

satellite in 2023 offers measures of methane and carbon dioxide emissions at fine spatial 314 

resolutions of 30m² (https://carbonmapper.org) and could build upon methodological advances and 315 

algorithms from the TROPOMI mission. Both satellites could be calibrated and validated with in 316 

situ measurements of flux towers and eddy covariance towers. Other available remote sensing 317 

satellite imagery includes nearly globally available Light Detection And Ranging (Lidar) data from 318 

the Global Ecosystem Dynamics Investigation (GEDI) that can provide 25m² resolution insights 319 

into forest structure and above-ground biomass density (Hancock et al., 2019). This will provide 320 

unprecedented opportunities to study how megafauna shape the environment at the landscape scale 321 

(Davies & Asner, 2019). Besides near global LIDAR, local to regional estimates of carbon through 322 

airplane (Asner et al., 2014) and high-resolution satellite imagery (e.g. Planet tasking; Csillik et 323 

al., 2019) could be coupled with species habitat use to estimate the impact of megafauna on the 324 

carbon cycle (sensu Ellis‐Soto & Ferraro et al., 2021). 325 

Satellites are not the only opportunity to quantify faunal impact on the carbon cycle. Eddy 326 

covariance towers are used to measure gas exchange in ecosystems and can allow disentangling 327 
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methane emissions from animals and carbon dioxide exchanges from plant-soil exchange. This 328 

subsequently allows for constructing ecosystem budgets that account for species effects on the 329 

carbon cycle through production of greenhouse gasses. This has already proved successful with 330 

large herbivores methane emissions by coupling atmospheric measurements from eddy-covariance 331 

matrix with animal locations obtained from GPS collars or trap cameras (Dumortier et al., 2019; 332 

Stoy et al., 2021). For instance, recent work was able to obtain hourly, daily, and seasonal ‘methane 333 

footprints’ at 20m² resolution of a herd of American bisons (Bison bison) by combining as 334 

atmospheric conditions measured from eddy covariance, with animal occupancy measured by trap 335 

cameras, bison body mass, and daily hay intake (Stoy et al., 2021). This methodology was even 336 

able to detect the influence of animal behavior (resting, moving, foraging) through the methane 337 

emissions detected from the eddy covariance. A similar methodology expanded using individual 338 

animal locations derived from GPS collars as opposed to estimates from cameras, improving the 339 

spatial accuracy and decreasing methane emissions uncertainty (Dumortier et al., 2021). Further, 340 

such methane footprints obtained from animals can be validated using artificial source experiments 341 

(Dumortier et al., 2019). Such eddy-covariance towers are increasingly reduced in cost, and large-342 

scale networks of flux towers, such as the National Ecological Observatory Network (NEON) sites 343 

or the FLUXNET network (https://fluxnet.org/), could be target areas for detailed studies of 344 

megafauna influence on the carbon cycle through the installation of trap cameras or collaring of 345 

individual animals. Remote sensing from satellite or airplane imagery and eddy covariances could 346 

be used to detect to quantify the contribution of populations, herds, and individual animals, 347 

particularly megafauna; while radar technologies could quantify the contribution of mass 348 

migration of birds and insects on the carbon cycle (Bauer et al., 2019; Dokter et al., 2018; Hu et 349 

al., 2016; Stepanian et al., 2020). However, these technologies can only provide measurements 350 



 

17 

down to the ground surface. Measuring belowground carbon will still require field-based in situ 351 

measurements as belowground biomass carbon can be substantially greater than aboveground 352 

biomass carbon in some ecosystems. 353 

Combining on-the-ground empirical studies with mathematical or statistical modeling 354 

offers a way to rigorously explore the potential climate benefits of rewilding by examining 355 

scenarios involving animals that are key functional drivers of ecosystem carbon capture, as 356 

illustrated by (Berzaghi et al., 2019). Empirically, this can be executed through exclosure plots 357 

that provide controls following species introduction, or enclosure plots that manipulate the 358 

introduced species’ density, etc. (Forbes et al., 2019).  359 

By integrating the suite of species traits, described above, we can develop mechanistic 360 

models of animal movement (Hirt et al., 2018) and estimate predator-prey food web architecture  361 

(Brose et al., 2019; Hirt et al., 2020) that could be expanded into carbon cycle modeling. 362 

Advancements in ecology allow us to estimate species space-use (Jetz et al., 2004), movement 363 

speed (Hirt et al., 2017), and to some extent stoichiometry (Allgeier et al., 2020). Agent-based 364 

modeling provides a means to simulate and anticipate ecosystem processes based on species traits, 365 

density, and management (Ferraro et al., 2022; Somveille & Ellis-Soto, 2022) as well as how 366 

anthropogenic change may alter zoogeochemical impacts (Abraham et al., 2023).  367 

 In conjunction with monitoring and evaluation, reporting ought to be openly accessible in 368 

order to share information about project successes and/or failures. This requires a willingness to 369 

discuss and possibly revise the project to meet the existing goals and targets, or re-engage in design 370 

to refine the goals and targets. Lastly, adaptive management may be needed if project goals and 371 

targets are not being met. It may necessitate altered monitoring, changes in wildlife management, 372 

socio-ecological conflict resolution, or even sunsetting a project that originally seemed feasible 373 
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(which, ethically, should include partners helping local communities identify, develop, and 374 

transition to alternative economic and welfare opportunities). Various levels of governance, 375 

practitioners, and local communities could apply adaptive management (König et al., 2020). 376 

Successful human-wildlife systems, including social buy-in, require the collaboration and 377 

engagement of various stakeholders from practitioners to local residents. 378 

Ultimately, we posit that the strongest pathway to successfully a TRACC is to have a 379 

cyclical, communicative interplay between research and management in order to safeguard 380 

resilient ecosystems and human rights.  381 

 382 

Conclusion 383 

Animating the carbon cycle through rewilding represents a promising way to mitigate 384 

climate change and biodiversity loss. Differentiating itself from broad conservation or broad 385 

rewilding projects, TRACC uniquely and simultaneously requires social buy-in, ecological 386 

baseline estimates, and the introduction of a species into a landscape in which it will likely interact 387 

with humans. This requires research and management to leverage appropriate technology in order 388 

to quantify animal roles in the carbon cycle. Projects must be sensitive to local socio-ecological 389 

contexts—identifying appropriate locations for conserving biodiversity and land towards carbon 390 

capture as well as addressing the needs of people living on the land. Sometimes rewilding 391 

initiatives, climate mitigation, and human welfare will align. At other times they will not be 392 

mutually-reinforcing, requiring reconciliation of difficult trade-offs. Therefore, we caution that 393 

careful consideration and regionally specific project assessment is needed to ethically execute 394 

rewilding schemes. We share the excitement that rewilding to animate the carbon cycle can expand 395 

the geographic scope of natural climate solutions, but ultimately recognize that it is but one of 396 
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many climate stabilization wedges. Like all such wedges, the crux of its optimized potential leans 397 

on a feedback-loop of transparency and accuracy between research and management.  398 
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Figures 405 

 406 
\ 407 
 408 
Figure 1. A theoretical depiction of nature-based solutions which separately prioritize (A) the 409 

composition of target species of interest or (B) carbon storage in the landscape, whereas (C) 410 

TRACC can prioritize both at the landscape scale.  411 

 412 

 413 

 414 

 415 
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 416 

Figure 2. The consideration of a full trophic cascade disentangling the assumption that 417 

organismal biomass or abundance equates to the cumulative effect of carbon storage 418 

mechanisms. Demonstrating using a wolf-deer system (Wilmers and Schmitz 2016), the greatest 419 

carbon uptake is yielded through indirect effects, disproportionate to biomass. From left to right, 420 

increasing the number of trophic levels in a boreal system (A-D) and in a grassland system (E-H) 421 

increases soil carbon storage through indirect effects. Arrows represent direct effects (solid line), 422 

indirect effects (dashed line), negative effects (red), positive effects (black), and magnitude of 423 

effect (arrow thickness).  424 
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 425 

 426 

 427 

Figure 3. Known and potential discrepancies in carbon storage, based on system-specific 428 

contexts: (A) Species’ functional traits, in which grazing or browsing could alter carbon stored in 429 

plant biomass; (B) Population demographics, in which species’ sex can differentially alter the 430 

amount of plant carbon stored (Davies and Asner 2019); (C) Animal density, where the number 431 

of animals can alter soil and tree carbon stored (Holdo et al. 2009); (D) Community composition, 432 

in which presence or absence of certain herbivore or plant species can directly affect plant 433 

carbon storage (Metcalfe & Olofsson, 2015); (E) Trophic role, where presence or absence of a 434 

predator can indirectly affect soil and plant carbon storage (Cromsigt et al., 2018); (F) Ecosystem 435 

characteristics, where system-specific effects, such as habitat type, will determine whether a 436 

species has a positive or negative impact on carbon storage (Wilmers and Schmitz 2016); (G) 437 

Ecological composition, where soil animal communities have known effect on carbon storage in 438 

soil and in the plants (Andriuzzi & Wall, 2018; Filser et al., 2016); (H) Human behavior, where 439 
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the presence or absence of humans, as well as the type of activity occurring on the landscape, 440 

will indirectly impact plant carbon storage ecosystem characteristics. 441 

 442 

 443 

 444 

  445 
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Tables 446 

Table 1. Effects of animal species on ecosystem carbon uptake and storage driven by trophic 447 

impacts, illustrating context-dependency in animal effects. Orange, green, and gray squares 448 

represent net negative, positive, and neutral animal effects on ecosystem carbon budgets, 449 

respectively. 450 

 451 

Animal species and ecosystem1  Animal effects on ecosystem function     452 
__________________________  __________________________________ 453 

 454 
Moose à boreal forest vegetation à soil	 n â primary productivity and biomass, â soil organic 

carbon retention, á wildfire 
	

Wolf à Moose à boreal forest vegetation n á primary productivity, á soil organic carbon 
retention, â wildfire 
 

Elk à prairie grassland vegetation à soil	 n á primary productivity, á soil organic carbon retention 
	

Wolf à Elk à prairie grassland vegetation n â primary productivity, â soil organic carbon retention 
 

Bison à prairie grassland vegetation à soil	 n á primary productivity, á soil organic carbon retention 
	

Wildebeest à savanna-woodland vegetation àsoil n â wildfire, á soil organic carbon retention, á woody 
biomass carbon  	

Savanna elephants à savanna-woodland vegetation n â woodland biomass carbon, á herbaceous vegetation 
carbon á soil carbon retention  	

Forest elephants à tropical forest vegetation n á forest overstory biomass carbon density 
	

Caribou à dry tundra heath vegetation à soil	 n â primary productivity, â soil organic carbon retention 
	

Caribou à boreal forest vegetation à soil n â plant standing stock, á/– soil organic carbon 
retention 
 

Muskox à wet tundra mire vegetation à soil	 n á primary productivity, á soil organic carbon retention 
	

Muskox à dry tundra heath vegetation à soil n â primary productivity, â soil organic carbon retention 
 

Frugivores (primates, tapirs, guans, hornbills, fruit 
bats) à fruits à tropical forest tree diversity 

n á forest tree biomass carbon density 

à = trophic interaction,  á = increase in ecosystem effect, â = decrease in ecosystem effect, – = neutral ecosystem 455 
effect.   456 
1 References for case studies are presented in Supplemental Information. 457 
 458 
 459 

460 
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