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Abstract 34 

Bacteriophages, or phages, are viruses that infect and replicate within bacterial hosts, playing a 35 

significant role in regulating microbial populations and ecosystem dynamics. However, phages 36 

from extreme environments such as polar regions remain relatively understudied due to 37 

challenges like restricted ecosystem access and low biomass. Understanding the diversity, 38 

structure, and functions of polar phages is crucial for advancing our knowledge of the microbial 39 

ecology and biogeochemistry of these environments. In this review, we will explore the current 40 

state of knowledge on phages from the Arctic and Antarctic, focusing on insights gained from 41 

-omic studies, phage isolation, and virus-like particle abundance data. Metagenomic studies of 42 

polar environments have revealed a high diversity of phages with unique genetic characteristics, 43 

providing insights into their evolutionary and ecological roles. Phage isolation studies have 44 

identified novel phage-host interactions and contributed to the discovery of new phage species. 45 

Virus-like particle abundance and lysis rate data, on the other hand, have highlighted the 46 

importance of phages in regulating bacterial populations and nutrient cycling in polar 47 

environments. Overall, this review aims to provide a comprehensive overview of the current 48 

state of knowledge about polar phages, and by synthesizing these different sources of 49 

information, we can better understand the diversity, dynamics, and functions of polar phages in 50 

the context of ongoing climate change, which will help to predict how polar ecosystems and 51 

residing phages may respond to future environmental perturbations. 52 
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Introduction  59 

This review is divided into several sections and subsections starting with a description about 60 

the peculiarities of the Arctic and Antarctic ecosystems including their general effects on 61 

microbial and viral communities (section 1). At first, we discuss challenges associated with 62 

sampling and analyzing phages from polar regions (section 2). This is followed by an overview 63 

of how culture-independent -omics approaches have improved our understanding of viral 64 

communities with a focus on in silico detected cold adaptations exemplified by an in-depth 65 

investigation of auxiliary metabolic genes (AMGs) detected in polar viruses (section 3). Next, 66 

we present highlights and challenges regarding phage cultivation from the Arctic and Antarctica 67 

(section 4). Then, we have an in-depth look at different polar ecosystems, namely marine, sea 68 

ice, atmosphere, freshwater (lakes and cryoconite holes), and soils/peatlands regarding their 69 

viral community structure, abundance, and diversity (section 5). Next, we discuss the ecological 70 

strategies of phages in polar ecosystems and how dispersal shapes viral community 71 

compositions at the poles (section 6). We conclude this review by addressing the major 72 

challenges and knowledge gaps in polar phage research and provide future perspectives (section 73 

7).  74 

 75 

1. A closer look at the Arctic and Antarctica as viral territory 76 

1.1 Characteristics of polar environments  77 

Both polar regions (Antarctica and the Arctic) are characterized by extreme environmental 78 

conditions, such as low temperatures, low nutrient levels, as well as dim light in winter and 79 

high ultraviolet (UV) radiation in summer [1,2]. For at least one day each year, the sun does 80 

not rise or set past the Arctic and Antarctic circles at ~66.57 ° N and S latitude. Covering 81 

approximately 4 % of the Earth's surface [3], these polar regions are defined by their unique 82 

environmental conditions (Table 1). Geographically, the two polar regions differ greatly [4]: 83 

The Arctic Ocean is largely covered in sea ice and is surrounded by the continents of Eurasia 84 
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and North America/Greenland. It is connected to the North Atlantic Ocean by the Greenland-85 

Icelandic-Norwegian seas and to the North Pacific Ocean by the narrow Bering Strait. Warm 86 

water from the North Atlantic Current enters the Arctic between Svalbard and northern Norway 87 

through these passages, while cold polar water leaves the Arctic via Fram Strait and the 88 

Canadian Arctic Archipelago. In contrast, the Antarctic is a continent almost entirely covered 89 

by a massive ice sheet that reaches a height of more than four km. Antarctica is surrounded by 90 

the Southern Ocean, which is bound by the Antarctic Circumpolar Current, an ocean current 91 

that flows clockwise. Within this band, the strong eastward flow of the Antarctic Circumpolar 92 

Current connects each of the ocean basins and permits a global overturning circulation, which 93 

in turn dominates the global transport, e.g., of heat and freshwater. The Antarctic Circumpolar 94 

Current acts as a barrier, preventing warmer waters from the north from reaching the continent. 95 

This fact is contributing to the glacial climate of Antarctica [5]. Only about 2 % of Antarctica 96 

is ice-free polar desert, while the Arctic mainland and islands are covered with polar desert, 97 

tundra, glaciers, and ice caps [3]. There is a high degree of zonality in the southern hemisphere's 98 

high latitudes except for one area, in which this pattern is markedly disrupted: the Antarctic 99 

Peninsula. Topographically and climatically, the environment on the Antarctic Peninsula is 100 

more similar to that in southern coastal Greenland with a rugged alpine topography and summer 101 

air temperatures, which exceed 0 °C at sea level [6]. The Antarctic Peninsula mountain chain 102 

forms a distinct climatic barrier [7]. The Western Antarctic Peninsula (WAP) is generally ∼7 °C 103 

warmer than at similar latitudes and elevations [8], and belongs to one of the most rapidly 104 

warming regions on the planet [9,10]. The extreme continentality in Antarctica results from the 105 

high elevation of the ice sheet and the continent’s isolation from other land masses [11,12]. 106 

Above Antarctica, the air is often poorly mixed, especially in austral winter and spring. This 107 

promotes a colder circumpolar vortex compared with that in the Arctic, and is largely 108 

responsible for the more extensive and intense stratospheric “ozone hole” of southern high 109 

latitudes [12]. The Arctic is highly azonal, with large areas of ice and cold currents off the 110 
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eastern coasts of Asia and North America, and open water stretching far into Arctic latitudes 111 

around the Svalbard archipelago (80 ° N). Climate, plant cover, land ice, and permafrost differ 112 

in similar ways between the eastern and western northern continents [4]. Arctic and Antarctic 113 

marine environments have in common their high latitudes, seasonal light levels, cold air and 114 

sea temperatures, and the presence of sea ice but other physical and biological characteristics 115 

differ between both polar regions [13].  116 

 117 

Table 1: Feature comparison between Southern and Arctic Ocean (modified from [13]). 118 

Feature Southern Ocean Arctic Ocean 

Area 35–38 × 106 km2 14.6 × 106 km2 

Extent of continental shelf Narrow, few islands Broad, extensive archipelagos 

Depth of continental shelf 400–600 m 100–500 m 

Shelf continuity with ocean 
Open to oceans to the 
north 

Open to the south at Fram and 
Bering Straits 

Direction of currents Circumpolar Transpolar 

Upwelling and vertical mixing Extensive Little 

Nutrient availability Continuously high Seasonally depleted 

Seasonality of solar illumination Weak Strong 

Primary productivity Moderate to high Moderate 

Fluvial input to ocean None Extensive 

Salinity at 100–150 m 34.5–34.7 ‰ 30–32 ‰ 

Seasonality of pack ice High Low 

Physical disturbance of benthos by 
large predators Low Extensive 

Physical disturbance of benthos by 
ice scour High Low 

 119 
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Differences in circulation, exchange, and transport of water masses have already influenced the 120 

movement, gene flow, and evolution of species inhabiting these systems. They have resulted in 121 

the formation of a variety of microbial and viral communities, which play a critical role in the 122 

global climate and ecological balance, as well as in the food web [14-16,13].  123 

Diatoms are the major component of the phytoplankton assemblage, but there are regional 124 

differences in community structure and seasonal species succession [13,17]. The dominant flow 125 

of energy is driven by photosynthetic primary production at the surface, followed by sinking 126 

and breakdown of the produced biomass within the benthic microbial loop [13]. Despite 127 

seasonal fluctuations and extreme environmental conditions (i.e., large seasonal changes in 128 

light levels, cold air and sea temperatures), the polar regions contain diverse microbial species 129 

accompanied by bacteriophages, i.e., viruses that infect bacteria, building communities that are 130 

essential components of the present ecosystems [14-16,18]. 131 

 132 

1.2 A general introduction to viruses in polar ecosystems 133 

Viruses are the most abundant biological entities on the planet (reviewed by Suttle [19]), 134 

particularly in the oceans [20,19], which cover ~70 % of the Earth’s surface. The discovery of 135 

high abundances of viruses in aquatic environments three decades ago [21] motivated scientists 136 

to understand their diversity and role in the marine environment [20].  137 

Bacteriophages play key roles in marine ecosystems by controlling microbial community 138 

dynamics, host metabolic status and biogeochemical cycles via lysis of hosts [20,22,19]. In 139 

addition, they shape the genetic diversity of their hosts through lateral gene transfer mechanisms 140 

[23-25,19]. Polar regions that are characterized by low temperature ecosystems do not hamper 141 

viral activity and their potential to infect prokaryotic populations [26,27]. In many polar 142 

ecosystems, especially the Antarctic and glacial ones, microbial communities have few species 143 

of grazers and thus, phage infection can be responsible for a large percentage of prokaryotic 144 

mortality, outcompeting grazing effects [1,28,29]. The role of viruses in ecosystem functioning 145 
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is likely even greater, yet their diversity and the way in which they affect polar communities is 146 

not well understood [1], particularly in nutrient cycling [30,31].  147 

 148 

2. Challenges related to sampling and analyzing phages from polar regions  149 

Sampling and characterizing viruses from polar regions presents several challenges. One major 150 

challenge is the harsh environmental conditions, including extreme cold and low light levels, 151 

which can make it difficult to collect enough biomass for analyses. Additionally, the remote 152 

and isolated nature of polar regions (section 1.1) can make logistics and transportation difficult. 153 

Even for meta-omics approaches where cultivation is not required, the low biomass reduces 154 

bioinformatic analysis [32] and allows the samples to be easily contaminated by inhibitory 155 

substances making interpretation of results difficult. Other contaminating agents may be 156 

already present in the samples, which can inhibit downstream techniques such as polymerase 157 

chain reaction (PCR). For example, Northern peatlands are soil environments that have high 158 

plant biomass due to reduced microbial degradation. The plant biomass often includes humic 159 

substances and other complex carbohydrates, which co-elute with DNA, decreasing the DNA’s 160 

purity and inhibiting downstream processing (section 5.5) [33,34]. 161 

 162 
Another challenge is the limited abundance of bacterial hosts in polar regions due to 163 

environmental conditions, vegetation, and available nutrients [35-37], making it difficult to 164 

identify and isolate new phages (section 4). Furthermore, the phages present in polar regions 165 

may have unique traits, e.g., surface charges, polarities [38,39], making it challenging to study 166 

them using traditional methods. Finally, phages in polar regions could be subjected to different 167 

selective pressures, which could lead to different genetic and structural characteristics, e.g., 168 

different particle sizes and infection dynamics (reviewed in Yau, Seth-Pasricha [18]). For 169 

example, viruses isolated from Antarctic sea ice were able to infect their hosts at freezing 170 
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temperatures (0 and 4 °C), but not at higher temperatures [40]. These characteristics could make 171 

them difficult to isolate (section 4) and characterize bioinformatically (section 3). 172 

 173 

3. Insights from -omics approaches to identify viruses  174 

3.1 The benefits of -omics approaches in polar virology 175 

While this review focuses on phages, we occasionally use the term “viruses” if results are based 176 

on -omics approaches to make clear that not only phages but also archaeal viruses or eukaryotic 177 

viruses could have been targeted by these methods. Metagenomics refers to the process of 178 

extracting genomic material from an environmental sample, revealing the base composition via 179 

sequencing that then can be bioinformatically characterized and thus has revolutionized how 180 

we think about microbes and their viruses. This is because viruses lack universal marker genes 181 

that allow interrogation of virus diversity using targeted gene amplification, instead, signature 182 

genes specific to certain viral groups are sometimes used [41]. Metagenomics captures a wide 183 

array of DNA molecules from different sources, e.g., bacteria, fungi, archaea, and mobile 184 

genetic elements including viruses. Another method critical for viral discovery is 185 

metatranscriptomics, a subfield of metagenomics that focuses on the study of RNA transcripts, 186 

i.e., mRNA, tRNA, and rRNA, rather than DNA from an environmental sample. Transcriptomic 187 

data have allowed an important expansion of the known RNA virosphere [42-44]. Over the last 188 

two decades, a targeted metagenomic approach, called a virome, has been heavily used to 189 

characterize viruses by first processing a sample before DNA extraction [45-47]. The collection 190 

of these approaches is often referred to as “omics” or “meta-omics” and aids to identify new 191 

viruses and learn more about the abundance, diversity, activity (section 5), and ecology (section 192 

6.1) of viruses in different ecosystems. The power and value of these methods is especially 193 

apparent in hard-to-access ecosystems such as the Arctic and Antarctic posing exceptional 194 

sampling challenges (section 2) and from which microbial and viral communities are difficult 195 

to study by cultivation alone (section 4). 196 
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Notably for polar regions, these approaches can identify ancient or preserved viruses or 197 

fragments of their genomes, because the extreme conditions such as low temperatures help to 198 

preserve viral nucleic acids [48]. Meta-omics approaches are finding polar viruses becoming 199 

unearthed as temperatures rise disproportionately in northern latitudes [49,50]. Looking at 200 

AMGs from preserved viruses can moreover aid our understanding of host manipulations by 201 

viruses and the predominant metabolic processes in past times (section 3.2), and how viruses 202 

and hosts have contributed to biogeochemical regimes. Hence, exploring viruses from long-203 

frozen samples allows us to gain insights into ancient virus-host relationships & evolution and 204 

might aid in predicting the emergence of new viruses.  205 

 206 

3.2 AMGs & molecular adaptations of viruses in cold environments  207 

Viruses often carry AMGs, which represent host genes picked up during previous infections 208 

and encode for proteins with important metabolic functions outside of typical viral infection. 209 

AMGs can benefit the host by enabling replication success of the phage with the most popular 210 

example being cyanophages providing more efficient photosynthetic genes to their hosts 211 

thereby promoting primary production [51]. For cold environments, different genomic studies 212 

have shown that viruses possess AMGs that aid host survival in the cold. For instance, Zhong 213 

et al. [52] identified virus-encoded fatty acid desaturase (FAD) genes in Arctic viral populations 214 

derived from metagenomes of sea ice, sea-ice brine, and cryopeg brine. These genes enable 215 

desaturation of cell membrane lipids thereby improving membrane fluidity [53], which allows 216 

a cell to deal with environmental challenges such as exposure to extreme cold and high salinity 217 

stress (reviewed by Beney, Gervais [54],[55]). Phylogenetic clustering of viral with microbial 218 

FAD genes revealed origin of these genes from Bacteroidetes and proteobacterial hosts at least 219 

for sea ice suggesting phage-host transfer for these AMGs, whereas cryopeg-derived viral FAD 220 

gene origin was less traceable. In addition to more FAD encoding viruses, a recent preprint 221 

identified a new AMG in Arctic brine viruses, namely epsG, having a role in biofilm formation 222 
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and extracellular polysaccharide (EPS) production [56]. In subzero brines, microbes were 223 

previously shown to use EPS as cryo- and osmoprotectant [57,58]. According to Alarcon-224 

Schumacher et al. [59], only few viruses from the Southern Ocean carried genes related to cold-225 

adaptation, but among those were homologs of cold-shock proteins, genes with role in 226 

membrane fluidity, cell wall polymer or EPS production, and one antifreeze protein. Cold shock 227 

genes, efflux pump genes, and mercury resistance genes are assets for microorganisms dealing 228 

with cold environments. Relevant protein sequences were found to be carried by Ralstonia 229 

phages, Aeromonas phage (cold shock & efflux pump proteins only), Burkholderia phage, 230 

Enterobacteria phage and Bacteriophage lambda (efflux pump proteins only) from Arctic 231 

glacial ice but not soil (viral) metagenomes [60]. A study on Antarctic Ralstonia phages from 232 

surface snow did not find transduction of beneficial genes [61], suggesting that different 233 

environments (ice vs. snow vs. soil) might be beneficial for establishing phage-host interactions 234 

allowing AMG transfers. AMGs were also detected in Arctic peat soil [62] although this study 235 

was not focused on genes related to cold adaptation. Viral genome fragments contained AMGs 236 

related to carbon utilization, energy generation, use of organic nitrogen, transporters and 237 

miscellaneous. Most abundant were genes for carbon utilization, especially 238 

Glycosyltransferases [62], typical for viruses from Arctic peatlands [63,47]. Another recent 239 

study on an Arctic epishelf lake from Canada reported a viral community linked to several 240 

putative AMGs [64]. One was the sulfur starvation-linked gene tauD, which could mediate host 241 

production under a lack of sulfur, which is often limited in freshwater systems [65] and can be 242 

highly variable in Arctic lakes [66]. This is another good example that prevalence of AMGs 243 

might be very specific to a certain ecosystem. Another described AMG from this study was 244 

patatin-like phospholipase A, likely involved in phospholipid metabolism or cell signaling, 245 

therefore not necessarily a molecular adaptation to the cold but still benefiting the phage, e.g., 246 

during cell wall digestion or build-up of the phage particle [64].  247 

 248 
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Studying phages in frozen states can also help to reveal interesting insights into how ancient 249 

viruses manipulated microbial metabolism. For instance, Antarctic ice cores can be millions of 250 

years old and are a fund of fossil genes and microbes [67,68]. Zhong et al. [69] reported on 251 

AMGs of viruses archived in ~14,400-year-old glacier ice from Guliya ice cap in the far 252 

northwestern Tibetan Plateau. Generally, a common problem with AMGs is that their presence 253 

is often reported after in silico predictions but not experimentally validated nor is AMG activity 254 

confirmed, and thus the biogeochemical relevance often remains unclear. The studies compiled 255 

here, albeit being very few, point towards an important role of phage AMGs for supporting 256 

bacterial life in the cold. However, AMGs seem to occur somewhat ecosystem-specifically, 257 

e.g., AMGs found in polar ice and soil may differ.In addition, how mechanisms such as 258 

dispersal (section 6.2) or dispersal limitation mediate or preclude horizontal transfer of AMGs 259 

across Arctic and Antarctic ecosystems or even between them warrants further research. 260 

 261 

4. Cultivation of phage from the cryosphere  262 

4.1 Synopsis of the merits and successes of phage cultivation 263 

In the age of increasingly powerful ‘omics to characterize phage genomes and activity, it is 264 

reasonable for phage researchers to question whether cultivating phages is worth the substantial 265 

effort required. Cultivation of an isolated phage-host pair requires additional steps to isolate a 266 

host and phage via repeated streaking of isolated plaques after the host is in culture. This may 267 

be especially time consuming for phages and hosts from the cryosphere, which may not 268 

replicate at room temperature and instead require incubation at colder temperatures [70]. 269 

However, some information cannot be inferred solely from ‘omics of environmental samples 270 

(reviewed in Trubl et al. [39]). Infection kinetics, such as adsorption rates, latent period, burst 271 

size, and the balance of lytic to lysogenic infections under different conditions, are most reliably 272 

measured in cultivation [71]. Isolation provides granular detail on phage replication physiology, 273 

which may be of particular interest for cold-adapted phages [72]. Finally, other ecological 274 
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characteristics of phages such as their host ranges and their activity at varying conditions such 275 

as temperature or salinity may be directly measured in cultivation [70].  276 

In recent years detailed genomic, structural, and infection kinetic characterization of phages 277 

have been undertaken from polar cryosphere environments, including soil from Antarctica 278 

[73,74] as well as sea ice from both the Arctic [75-77] and Antarctic [26,40] and a high Arctic 279 

lake [78]. These studies have shown that many cold-adapted phages isolated from sea ice 280 

featured siphovirus or myovirus morphotypes [76,79,75,40] and to a lesser degree short-tailed 281 

podophages [40,78] and filamentous phages, such as f327 isolated on Pseudoalteromonas [77]. 282 

In addition, there seems to be a bias towards successful isolation of new phages from sea ice 283 

(see above) and polar oceans [80], while phage isolates from polar freshwater environments 284 

(e.g., ponds and cryoconite holes), air, snow, melt ponds, and soils are more underrepresented 285 

or missing. Little work has also been done to isolate polar cyanophages. Isolation of Antarctic 286 

cyanophage S-EIV1 infecting polar Synechococcus sp. from freshwaters on Ellesmere Island 287 

(Nunavut, High Arctic Canada) however suggests that these polar phages can be very unrelated 288 

from known Synechococcus phages representing a new evolutionary lineage [78].  289 

In contrast to isolating phage-host systems, it should be noted that phages may be cultured at 290 

the community level, depending on the question of interest. Community-level cultivation of 291 

phages has advantages in capturing the dynamics that arise from a diverse set of populations 292 

and their interactions in their natural environment. Furthermore, it may provide information 293 

without requiring labor-intensive and perhaps psychrophilic phage-destroying methods such as 294 

plaque streaking in a molten agar overlay. For example, community-level stable isotope probing 295 

in incubations of Arctic peat soils have demonstrated active phage-host interactions under 296 

anoxic and sub-freezing conditions over the course of months [62]. 297 

 298 

4.2 Cold-adapted phages and how to cultivate them 299 
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Cultivation of phage-host pairs from the cryosphere presents challenges unique to cold sources, 300 

including the requirements of low detection thresholds for low nutrient and biomass 301 

environments, long cultivation times, and adjustment of classic lab bench techniques for 302 

culturing phages that have traditionally relied on hot agar layers. Both hosts and phages may 303 

be inactive at or destroyed by exposure to high temperatures, and thus must be incubated at 304 

colder temperatures than phage-host pairs from other environments. For instance, one cold-305 

adapted, well-studied phage-host system is Colwellia psychrerythraea strain 34H (Cp34H) and 306 

its phage Colwelliaphage 9A that was isolated from 128-m depth in Franklin Bay, Canadian 307 

Arctic, and replicates between -12 and 8 °C [70,81]. 308 

In addition to having cold incubation storage available, care must be taken not to destroy phages 309 

or their hosts with short-term exposure to hot agar in pouring a soft layer for lawns and plaques 310 

to form in. If the phage or its host cannot sufficiently tolerate the temporary heat shock of 311 

molten agar, alternative media to agar may be tried not requiring heat, or as much heat, to pour 312 

a soft layer on a petri dish. For example, one of these methods is the “silica-gel overlay” 313 

technique [70]. Alternative approaches may also be used, such as growing a phage in culture 314 

and using serial dilution in a 96-well plate, as done to isolate a cyanophage from an Arctic Lake 315 

[78]. 316 

Some bacteria and their phages found in the cryosphere may not be purely cold-adapted but 317 

merely cold-tolerant, and many may grow well at temperatures as warm as +15–20 °C with 318 

tolerance up to 45 °C, even if higher temperatures might impact infectivity [40]. These may be 319 

the low-hanging fruits in the underexplored realm of polar phage-host interactions that may 320 

yield great insight for relatively little adaptation of established and efficient polar phage 321 

isolation and cultivation methods. On the other hand, the truly unique physiology and ecology 322 

advancing science and technology may reside in the adaptations of the true extremophiles and 323 

may merit the additional effort. 324 

 325 
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5. Viral abundance and diversity of different polar ecosystems  326 

Viral abundance, diversity and distribution are important key factors for a better understanding 327 

of ecosystem dynamics. Since bacteria are the most common host organisms in marine systems, 328 

most viruses in the oceans visualized by microscopy as virus-like particles (VLPs) are expected 329 

to be phages [82,19]. In viral ecology, the term VLPs is operationally defined by size and was 330 

established in the context of quantifying phages in environmental samples and is routinely 331 

applied for the enumeration of phages via epifluorescence microscopy [50] and flow cytometry 332 

[83]. On both a microscopic image and a cytogram, fluorescing dots of a certain intensity range 333 

are considered as VLPs. However, this definition may miss some phages such as prophages, or 334 

large viruses and may include non-virus particles such as gene-transfer agents and membrane 335 

vesicles that are erroneously counted as VLPs [84-86]. Therefore, the term VLP is applied to 336 

account for these uncertainties. Each microbial cell is a potential target for a specific viral 337 

subset. Therefore, understanding the variation in viral abundance and its relation to host 338 

abundance requires particular attention to the temporal and spatial scales of environmental 339 

variability and the interactions among viruses and hosts [87]. 340 

 341 

5.1 Viruses from marine ecosystems 342 

Viruses have a significant impact in marine ecosystems where they often exceed bacterial 343 

abundance by one order of magnitude [19], reaching numbers of 105–107 VLPs mL-1. In various 344 

marine habitats such as high-nutrient coastal waters, oligotrophic open ocean [88] and sediment 345 

traps [89], 0.8–4.3 % of bacteria were visibly phage-infected at any given time. Since phages 346 

are dependent on the presence of their host, phage abundance often correlates with microbial 347 

abundance [90,87]. For several marine environments, a relatively constant virus-to-bacteria 348 

ratio (VBR) of 5–10 VLPs per bacterial cell was observed [91]. Different studies also showed 349 

that this relationship is dependent on the type of aquatic ecosystem [92,87], and variation can 350 

be caused by multiple factors like salinity, tide, eutrophication, and temperature [93,94]. Polar 351 
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ocean waters remain under-sampled compared to the temperate ocean. The polar oceans have 352 

lower bacterial production than temperate oceans due to colder temperatures and lower 353 

dissolved organic matter inputs [95], yet we know little about how phages affect their hosts and 354 

the biogeochemical cycles in the polar oceans. The few studies targeting viruses found viral 355 

abundances ranging from 1 × 105 – 2.1 × 107 VLPs mL-1 in Antarctic waters [96-100]. For 356 

studies on the Arctic Ocean, we find a similar abundance range of 1 × 105 – 2 × 107 VLPs mL-357 

1 [101-104]. Seasonal studies find higher VLP abundances during the summer months [101] 358 

and in the polar oceans’ surface microlayer due to increased viral activity [27]. 359 

 360 

Phage-mediated mortality in the central Arctic Ocean ranged between <1–11 % across the 361 

central Arctic Ocean [104]. In contrast, phage infection might be more important in the 362 

Antarctic Ocean, where phage-induced mortality often accounts for more than 15 % of the 363 

bacterial production [97,105,106], and sometimes surpass bacterial production, leading to a 364 

decline in bacterial standing stocks. In the Antarctic, viral mortality strongly increases during 365 

the productive season [105,106,99], which is strongly driven by lysogeny to lytic transition 366 

following high primary productivity [105,106]. Viral lysis impacts Antarctic nano- and 367 

picophytoplankton dynamics indicating differential rates depending on community 368 

composition and size-distribution [107]. Although then phage-mediated mortality rates vary 369 

widely, several studies found evidence that a higher impact of phages can be observed in more 370 

eutrophic compared to oligotrophic waters [97,108,109,96]. This may explain the higher phage-371 

induced mortality in the Antarctic compared to the Arctic Ocean studies. 372 

 373 

Increasing research of viruses through metagenomics has gained more information on viral 374 

community structures in different environments around the world including different polar 375 

ecosystems [110,15,111]. Major viral metagenomic work in polar oceans has been conducted 376 

during the Tara Oceans Polar Circle expedition encompassing 25,000 km around the Arctic 377 
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Ocean in 2013 [15], revealing the Arctic Ocean to be a hotspot for viral diversity. This 378 

contrasted the common belief that the Arctic Ocean was on the lower end regarding viral 379 

diversity [112,113]. Angly et al. [112], whose work was based on pyrosequencing DNA from 380 

purified virions, specifically reported on a decrease in cyanophage numbers in the colder 381 

regions. The more recently established Nordic Sea DNA virome enhanced our understanding 382 

about prevailing phages, with the top three abundant viral populations belonging to 383 

Caudovirales (recently abolished order [114]) namely Pelagibacter phage HTVC008M, 384 

Puniceispirillum phage HMO-2011, and Cellulophaga phage phi38:1 [115]. The study 385 

investigated the influence of water masses on viral community structure and found temperature, 386 

latitude, and the flow speed between two stations being the main influencing factors for shaping 387 

viral communities in the Nordic Seas. In addition, viral abundance was primarily linked to host 388 

cell availability also depending on currents [115]. Furthermore, a comprehensive 389 

metatranscriptomic study recently reported the novel pisuviricot class 27 for Atlantic Arctic 390 

waters, likely infecting prokaryotes and thus representing RNA phages [44]. Like other 391 

freshwater ecosystems [110,116], also the ocean pelagic zone contains many single-stranded 392 

(ss) DNA viruses, as for instance reported for the Barents Sea [117]. Most found ssDNA viruses 393 

in marine ecosystems belong to the Microviridae, Parvoviridae, or Inoviriade family [24,117], 394 

many of them including phages capable of infecting marine hosts including those from polar 395 

environments [118,61,60]. Arctic marine viromes were further shown to contain a high 396 

abundance of prophage sequences [119]. 397 

 398 

At the other end of the world, in the Southern Ocean, where viral diversity in the pelagic upper 399 

ocean is lower compared to lower latitudes [90], a metagenomic investigation unraveled 400 

abundance of temperate viruses around the WAP leading to genetically distinct double-stranded 401 

(ds) DNA viral communities compared to Pacific Ocean viromes [105]. Analysis of viral 402 

diversity from Prydz Bay, Antarctica, found different phage in surface seawater with 403 
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Cellulophaga phages (phi38:1 and phi10:1) and Flavobacterium phage 11b being abundant 404 

among the dsDNA virome, but also Pseudomonas and Vibrio phages [24]. The study further 405 

detected phages including the signatures of the temperate phage isolate Psychrobacter phage 406 

Psymv2 [74] from the Miers Valley in the McMurdo Dry Valleys (South Victoria Land, 407 

Antarctica) in the Prydz Bay viromes, demonstrating interconnection between marine and 408 

terrestrial desert environments [24]. The surface viral community dominated by Caudovirales 409 

clearly differed from the bottom waters (878 m depth), where nucleocytoplasmic large DNA 410 

viruses were more dominant. Similarly, a study from South Scotia Ridge found surface waters 411 

to be dominated by Caudovirales. This research also identified a wide variety of unique, 412 

previously undiscovered terminase large-subunit clades, suggesting the possibility of 413 

previously unknown viral diversity in polar waters. Another study that combined Chile Bay 414 

viromes with viruses found in Southern Ocean metagenomes found Antarctic viral populations 415 

were not found in more temperate waters [59], similar to the findings for Arctic Ocean viral 416 

communities [115,15]. This means that a comprehensive pole to pole viral comparison is still 417 

missing. Southern Ocean viral communities were found to possess specific adaptations to the 418 

polar environment such as genes related to cold shock response (section 3.2) and structural 419 

changes at the protein level increasing chain flexibility of protein secondary structures at lower 420 

temperatures [59]. 421 

 422 

Due to its isolation and limiting opportunities for colonization by non-native species, the 423 

microbial communities and nutrient cycling processes in the Antarctic may be more distinct 424 

and self-contained. Thus, the ecology of organisms including phage population dynamics are 425 

rather influenced by factors stemming from the Antarctic ecosystem than from external sources. 426 

Since the Arctic is more connected to the rest of the world, with numerous land masses and 427 

shipping lanes that can introduce new species and nutrients into the marine environment, this 428 
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could lead to a greater diversity of bacterial hosts in marine waters for phages to infect, as well 429 

as a wider range of nutrient sources that could influence phage populations.  430 

 431 

5.2 Viruses in sea ice  432 

Sea ice represents a significant proportion of polar marine ecosystems, reaching the maximum 433 

coverage during the winter of about 15 × 106 km2 in the Arctic and of 18 × 106 km2 in the 434 

Antarctic [120]. Yet, studies targeting viral activity and distribution in sea-ice environments 435 

remain limited. Nonetheless, some studies have detected some of the highest concentrations of 436 

viruses in the ocean in Arctic sea ice [121], with significant seasonal changes. Spring blooms 437 

show a high variation in abundances ranging from 9 × 106 – 1.5 × 108 VLPs mL−1 [121]. This 438 

study found that the VBR was the highest at the start of the spring bloom when bacterial 439 

production was at its highest. Viral abundances increased at a higher rate than bacteria, reaching 440 

a VBR of 72 [121], highlighting the significance of virus-induced mortality in sea-ice bacterial 441 

communities. 442 

During the autumn freeze-up in Arctic sea ice, a sharp increase in virus numbers and a decrease 443 

in bacterial abundances compared to the underlying water was observed resulting in an 444 

extremely high VBR of 846 [122]. In contrast, a study on North Pole sea ice did not find the 445 

high viral abundances and VBRs observed at lower latitudes [123]. Antarctic sea ice showed 446 

lower virus abundances (6.3 × 106–1.2 × 108 VLPs mL−1) than the underlying water and low 447 

VBR rations for Prydz Bay over a full year [124]. Yet for three latitudinal transects for the Ross 448 

Sea, viral abundances ranging from 9.0 × 106 – 1.5 × 108 VLPs mL−1 and higher VBRs (max 449 

119) were found [125], indicating geographic variability of sea-ice virus activity and 450 

abundance.  451 

Compared with phages from sea water, those from within sea ice preferentially adopted a 452 

lysogenic infection strategy [126]. The temporal freeze-thaw cycle of sea ice influences the 453 

viral abundance dramatically, making it difficult to perform spatial comparisons [40,18]. 454 
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Viruses seem to be enriched in sea ice during its formation compared to the surrounding 455 

seawater, by factors of up to 100 [122,125,121]. Comparatively, many phage isolates were 456 

recovered from Arctic or Antarctic sea ice ([75,77], section 4.1), but to date, only a single study 457 

used metagenomics to investigate viruses from different sections of a sea-ice core derived from 458 

Utqiaġvik, Alaska [52]. The work described a high degree of novelty among sea-ice phages, 459 

AMGs involved in cold survival of the host (section 3.2), and Marinobacter, Glaciecola, and 460 

Colwellia as dominant hosts for the phages. Sea ice often melts into melt ponds, representing a 461 

pool of water that forms on the ice surface. Studies have estimated that melt ponds can cover 462 

up to 50 % of the Arctic sea-ice surface during the summer melt season [127]. However, the 463 

diversity, ecology, and fate of viruses in melt ponds is unknown [128]. Given the heterogeneity 464 

and volume of this polar environment, further research, including metagenomic and 465 

experimental approaches, is needed to unravel the complex interactions between phages and 466 

their bacterial hosts that populate the sea-ice matrix. 467 

 468 

5.3 Viruses in the polar atmosphere 469 

The atmosphere of polar environments has been scarcely investigated regarding its viral 470 

composition, which however applies to most environments, although dispersal potential via the 471 

atmosphere is huge (section 6.2). While marine Antarctic ecosystems are somewhat cut off 472 

(section 5.1), the input of airborne biological material from other continents is likely, e.g., 473 

Antarctica receives airborne particles including pollen and fungi from South America [129]. At 474 

the time of writing this review, < 700 uncultivated viral genomes recovered from air ecosystems 475 

are stored at the IMG/VR database [130], reflecting a big knowledge gap of viruses and 476 

especially phages from atmospheric ecosystems. This is the case despite knowledge about other 477 

microorganisms in air, and the role of aerial dispersal for their biogeography has been noticed 478 

(reviewed by [131,132]). From aquatic surfaces, mainly the surface microlayer, viruses are 479 

typically ejected to air by bursting bubbles [133] and become part of bioaerosols [134]. Since 480 



Phages in polar ecosystems 
 

 19 

viral activity is enhanced in the surface microlayer of the Arctic and Antarctic [27], and 481 

microlayer particles from the central Arctic Ocean during summer were loaded with viral 482 

particles [135], presence of phages in the polar atmosphere near water surfaces is very likely. 483 

Phages were not only found at the air-water interface but also at the air-land interface, for 484 

instance associated with surface snow [61]. It is unknown if they were initially deposited with 485 

the snow and originate from the troposphere. Indicators that would suggest this are dsDNA and 486 

ssDNA viruses being found in clouds [136], viruses being deposited from above the 487 

atmospheric boundary layer [137], and viruses with phage hallmark genes and specific 488 

adaptations to atmospheric residence occurring in rainwater [138]. Even if phages were not 489 

(yet) recovered from the atmosphere of polar ecosystems, they could be present and influence 490 

atmospheric processes. For example, the well-characterized, cold-active Colwellia phage [70] 491 

was tested for ice nucleation activity at ~109 phage particles mL−1 [139]. While it was found to 492 

have little impact in this role, other viruses have ice nucleation potential [140]. Ice nucleation 493 

activity means the formation of ice crystals at temperatures above the freezing point of water, 494 

and ice nucleating particles were detected in surface microlayer and aerosols in the Arctic 495 

[141,142]. The ice nucleation process is worthwhile to study as it can influence the formation 496 

of clouds, precipitation, and thus climate-relevant processes. Because several bacteria such as 497 

Pseudomonas syringae and Pseudomonas antarctica serve as ice nucleators [143,144], phages 498 

could still influence ice formation by infecting and killing ice-nucleating bacteria, or by 499 

encoding AMGs related to ice nucleation (section 3.2), which however remains to be 500 

comprehensively investigated for polar environments. 501 

 502 

5.4 Viral abundance and diversity in polar freshwater environments  503 

Freshwater environments in polar regions can serve as hotspots of microbial and associated 504 

viral biomass and diversity in these environments, where low temperatures can limit liquid 505 

water available for life processes in the soils and glacier surfaces [145-147]. The limited 506 
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availability of nutrients, energy, and dispersal from surrounding environments truncates food 507 

webs in many polar freshwater environments. Without higher trophic levels serving as primary 508 

sources of bacterial mortality, the role of phages may take on greater proportional significance 509 

in structuring microbial communities and accelerating their evolution [148,149,28]. Two types 510 

of polar freshwater habitats where viral abundance and diversity have been studied are lakes 511 

and cryoconite holes. 512 

 513 

5.4.1 Viruses in polar lakes 514 

Viral abundances measured in polar lakes range from 104–108 VLPs mL−1, with higher 515 

abundances in saline lakes, in colder lakes, and at least in Antarctic lakes, with higher available 516 

phosphorus concentrations [150-152,28]. While lower temperature and UV damage reduce 517 

decay rates of viral particles, seasonal changes in viral abundance and composition demonstrate 518 

they are actively infecting and lysing hosts in these environments, and not simply a relic of 519 

dispersal from more biologically active habitats [31,29]. Lysogeny is also a prevalent strategy 520 

in polar aquatic habitats [153,154], especially during the winter, as seen in electron microscopy 521 

and induction incubation experiments [155,28]. When phages do trigger lytic replication, they 522 

require phosphorus, which is a limiting nutrient in many polar lakes [156], although in nutrient 523 

amendment experiments with Arctic lakes and cryoconite water, the phage response to 524 

phosphorus was decoupled from that of bacteria [157].  525 

The morphological and taxonomic diversity of phages in polar lakes have often surprised 526 

researchers, given their low biomass and the isolation especially of Antarctic lakes. A 527 

metagenome of Antarctic lake water’s viral fraction contained what at that time was classified 528 

as 32 different viral families. Many of these communities were more diverse than viral 529 

communities from temperate freshwater or marine sources investigated using similar methods 530 

[31]. A PCR assay for the gp23 protein of Antarctic T4 phage was furthermore conducted on 531 

these samples, and the 30 resulting sequences spanned the breadth of a phylogenetic tree 532 
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constructed using sequences from cultures and environmental PCRs of other terrestrial and 533 

marine environments. A 2015 metagenomic survey of lakes and ponds in Svalbard found they 534 

contained distinctive communities of DNA viruses compared with other environments, which 535 

were most similar – especially at coarser taxonomic scales – to Antarctic lakes [110]. While 536 

most (~ 90 %) of the sequences could not be assigned to any known taxonomy, those that could 537 

were assigned to what at that time were classified as Circoviridae, unassigned ssDNA viruses, 538 

Microviridae, and Nanoviridae. Both studies suggested that ssDNA viruses were more 539 

abundant than dsDNA viruses, at least in certain seasons, even assuming a 100-fold bias of the 540 

Phi29 polymerase for circular ssDNA genomes. Diversity patterns of phages generally follow 541 

trends in their abundance, with greater diversity being observed with microscopy and 542 

metagenomic methods in parts of lakes with greater salinity or greater phosphorus availability 543 

[154,158]. 544 

 545 

5.4.2 Viruses in cryoconite holes 546 

Cryoconite holes are smaller, more dynamic freshwater environments than lakes. They are 547 

meltwater features in the surface of glaciers usually less than a meter in diameter and often less 548 

than a meter in depth [159,145]. They form when sediment blows onto the surface of the glacial 549 

ice and settles into a depression, where the lower albedo of the sediment absorbs solar radiation 550 

and causes it to melt into the ice [160,161]. The sediment melts downward until the radiation 551 

passing through the ice is sufficiently attenuated that not enough warming occurs to continue 552 

melting downward. The sediment and meltwater above remain in approximate equilibrium of 553 

the glacier surface, usually tens of centimeters below the surface [162,145]. Despite their small 554 

size and dynamic conditions, cryoconite holes host actively growing microbial communities 555 

[163], and the viruses that parasitize them [148,164]. Although viral production rates in Arctic 556 

cryoconite holes have been measured as similar to other sediments around the globe, 557 

microscopy-suggested burst sizes were substantially lower (only 2-4 viruses cell-1). This finding 558 
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would imply a high infection rate [149] in agreement with previous results from an Arctic 559 

cryoconite hole and Arctic and Antarctic lake waters [165]. Much like polar lakes, the diversity 560 

of phages in cryoconite holes appears mostly driven by available hosts within their local 561 

environment, but they also show some signs of long-range transport. In Antarctica’s McMurdo 562 

Dry Valleys, the diversity of the major capsid proteins of ssDNA viruses in cryoconite holes 563 

across three glaciers paralleled a well-characterized gradient of biomass and diversity of 564 

microbial communities within those same environments [116]. As in other poorly characterized 565 

polar habitats, their similarity to any other published phage genomes were low overall (< 59 % 566 

amino acid pairwise identity of major capsid proteins). However, some of the phage genomes 567 

were found in holes on glaciers tens of kms away from one another. In a study on cryoconite 568 

holes in Svalbard, the major capsid proteins of T4-like phages were clustered into ten distinct 569 

groups, some of which were also found in nearby marine environments, but others represented 570 

novel sets of distinct phages [166]. Previous work had shown that although the abundance of 571 

phages in cryoconite holes in Svalbard correlated with the abundance of bacteria, transplant 572 

experiments demonstrated that cryoconite phages could also infect hosts from nearby lakes 573 

[148]. And a 2020 study of phage pangenomes in cryoconite holes across glaciers in Svalbard, 574 

Greenland, and the Alps found that of 671 virus genome and genome fragments, 257 viruses 575 

(38 %) were present in two or more of those regions, and 50 were detected in all three [167].  576 

 577 

5.5 Viruses from soil and peatlands  578 

Northern peatlands underlain with permafrost are structurally diverse terrestrial ecosystems that 579 

are rapidly changing due to climate change. These ecosystems are a reservoir of mostly 580 

uncharacterized microorganisms and viruses that have been shown to remain active below the 581 

freezing point in soils with both catabolic and anabolic activities observed [168-170]. Activity 582 

is likely facilitated by a portion of the water remaining liquid at temperatures below 0 °C with 583 

evidence that more than 20 % of the water can remain unfrozen in peat soils incubated between 584 
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−1 and −5 °C [171]. The water is kept in an aqueous state by the high concentration of solutes, 585 

and in peatlands the solutes are derived from organic matter, e.g., humic acids [172,173]. The 586 

environmental conditions, such as low temperatures and plant polymers, shape microbial and 587 

viral community structure, often limiting diversity and abundance compared to warmer 588 

climates. The high organic matter interacts with viruses quite differently from mineral soils and 589 

can make virus separation, enumeration, and diversity estimates difficult [39,33,34]. The few 590 

viral counts in northern peatland soils have targeted double-stranded DNA phages and estimate 591 

VLPs to be on the order of 108 per gram of soil, but enumeration methods of viruses from soil 592 

matrices are highly variable, costly, and laborious. 593 

Antarctic soils are colder and considerably drier than Arctic soils and are devoid of higher 594 

plants. Despite these differences, high spatial heterogeneity was found among dsDNA viral 595 

communities and pH was the most significant ecological driver of the dsDNA viral 596 

communities in the ice-free surface soils [174]. Notably, calcium content was also a significant 597 

ecological driver because calcium ions are related to several essential aspects of viral life, such 598 

as entry into host cells, genome replication, and building new viruses to invade other cells [175]. 599 

Hosts predicted for dsDNA viruses were largely similar to common virus hosts in Arctic soils 600 

— Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes. The main difference from 601 

Arctic soils is the decreased abundance of Acidobacteria, which are known to be sensitive to 602 

organic content and soil pH [176]. 603 

 604 

6. Ecology of polar phages 605 

6.1 Strategies, interactions, and impact of polar phages in the environment 606 

6.1.1 Predominant replication modes 607 

For replication, phages are entirely dependent on the cellular processes within a host’s cells. 608 

Reproduction predominantly occurs by lytic or lysogenic infection [177-179]. Pseudolysogeny 609 

and chronic infections are also thought to be important, although so far less-studied replication 610 
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pathways in polar phages to cope with the low energy, nutrients and host availability of these 611 

ecosystems [1]. Pseudolysogeny describes a phage infection strategy, where the phage nucleic 612 

acid passively resides within a host bacterium and is asymmetrically passed down onto a 613 

daughter cell upon cell division [180,181], while during chronic infections, progeny phage 614 

particles are continuously secreted into the environment without leading to cell disruption. A 615 

lytic infection ultimately leads to the host’s death and release of new virus particles besides the 616 

cellular content. By exerting top-down control, lytic phages have the most immediate impact 617 

on biomass turnover and shaping microbial community structures. A prevalent lytic lifestyle 618 

was found in various polar environments such as freshwater [64,78] or marine habitats [182]. 619 

Contrarily, temperate phages undergo lysogenic infection, i.e., integration of the viral genome 620 

into the host’s chromosome, and establish long-term relationships with their host bacteria that 621 

can be mutually beneficial [183]. During lysogenic infection, phages can have an impact on 622 

their host’s metabolism by regulating their genes and may even confer AMGs that may ensure 623 

the survival of both hosts and viruses ([184,185], section 3.2). Moreover, lysogenic phages can 624 

provide their hosts with immunity against infection by other viruses [186]. In the bacterial cell, 625 

they remain latent in their hosts as prophages for a prolonged period until the lytic reproduction 626 

cycle is triggered.  627 

 628 

The lytic cycle is thought to be favored in productive systems, while lysogeny is suggested to 629 

be the preferred mode for phage propagation during adverse environmental conditions, when 630 

nutrient resources for successful phage progeny production are scarce and access to suitable 631 

hosts is restricted [187,188]. The latter strategy is therefore assumed to be prevalent in polar 632 

environments, supported by a study of Angly et al. [112] finding more prophage-like sequences 633 

in the Arctic than in the other three investigated oceanic regions. As both, the Arctic and 634 

Antarctic are characterized by strong seasonal changes in nutrient, temperature, and light 635 

regimes [101], a switch from a predominantly lysogenic to lytic replication mode was observed 636 
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in some studies, when seasonal changes supported rapid microbial growth and potentially 637 

higher availability of resources promote phage progeny production [189,96,190,155]. 638 

Accordingly, the highest VBRs were observed in Austral summer, reflecting higher burst sizes 639 

and higher rates of lytic infection compared to the winter season [105]. This trend was 640 

accompanied by a shift in phage particle size towards phages with bigger capsid sizes [30]. In 641 

winter, when host abundances were lower, a shift towards lysogenic infections and lower phage 642 

production was observed [105]. However, the environmental cues and mechanisms driving the 643 

lysis-lysogeny decision remain debatable and the trend is not always that clearly decipherable 644 

in a complex environmental matrix. A study in the Arctic pelagic investigating bacterial and 645 

phage dynamics over the course of a year found a contrasting event where phage-mediated lysis 646 

was more important during polar winter when productivity and host cell abundance was low 647 

[191]. The authors however argued that the reason could be either a predominant lytic cycle or 648 

a reduction of virus decay due to diminished UV exposure in the photic zone [191], as the 649 

increase in UV radiation and constant daylight during summer in polar regions may have a 650 

strong influence on virus decay rates [192-194]. 651 

 652 

6.1.2 Growth and survival of polar phages in the environment 653 

Despite the extreme environmental conditions at the poles (section 1.1), polar ecosystems are 654 

characterized by high infection and phage production rates [149,157] that can reach similar 655 

ranges as in productive temperate habitats [155,29] and sediments worldwide [149]. 656 

Active and dynamic phage-host interactions driving the co-evolution of both became evident 657 

by studies elucidating sophisticated defense mechanisms against phage infection for example 658 

in Antarctic hypolith bacterial communities [195] or glacial ice surfaces [196] (section 6.1.3). 659 

While the frequency of visible infected cells is higher than in temperate aquatic regions, 660 

comparatively lower burst sizes, longer latency periods and generally lower VBRs 661 

[42,197,91,190,29] appear to be typical for polar environments. Generally, VBRs ranged from 662 
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mean values as low as 0.10 up to 56.9 [28], reflecting dynamic virus-to-host interactions. While 663 

specialist phages can only infect a limited number of phylogenetically close hosts, phages 664 

capable of infecting hosts from different prokaryotic phyla are considered as generalists. 665 

Typically, being a generalist can be advantageous in habitats where the presence of suitable 666 

hosts may be more limited such as at the poles. With the limited number of studies, it is difficult 667 

to draw general conclusions. The overarching trend of studies of diverse habitats however such 668 

as Antarctic lake systems [198], Arctic soil peat [62], Arctic glaciers [148] and polar oceans 669 

[81] infer that polar phages tend to have broader host ranges regarding even higher phylogenetic 670 

levels with some exceptions [40]. 671 

 672 

6.1.3 Ecological consequences of phage infections for microbial evolution, 673 

community dynamics and biogeochemical cycles 674 

As polar systems are characterized by truncated food webs with low predation pressure from 675 

metazoans, phages are thought to have an even higher influence on bacterial dynamics than in 676 

temperate regions [14,199,200,18]. More so, the strong link between phages and their hosts that 677 

is observed in a wide range of investigated polar habitats is thought to be a key driver of the 678 

remarkably high microbial diversity in polar regions [1]. Studies conducted in various polar 679 

environments showed a major influence of phages on bacterial dynamics and carbon cycling 680 

[190,152,28,18]. In sea ice, phages and bacteria are concentrated into the brine inclusions 681 

promoting intense phage-host interactions [201]. Host organisms can build resistance to phage 682 

infections via multiple mechanisms such as cell-surface modifications ([202,203]), while 683 

phages co-evolve along with their hosts to overcome the newly emerging barriers, increasing 684 

the phenotypic and genetic diversity and driving co-evolution of both (reviewed by Koskella, 685 

Brockhurst [204]). During viral infection, host genomes can integrate pieces of invading mobile 686 

genetic elements as spacer sequences in so-called clustered regularly interspaced short 687 

palindromic repeats (CRISPR) arrays that can be gradually expanded with each new infection 688 
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event [205-208]. By doing so, the CRISPR-Cas system functions as a prokaryotic immune 689 

system by providing a historical record of previous phage infections and degrading the intruding 690 

phage genetic material [209,210]. CRISPR arrays can be used as a culture-independent tool to 691 

bioinformatically investigate phage-host interactions [211,60]. However, psychrophilic and 692 

psychrotolerant microorganisms tend to disfavor CRISPR defense systems [212], which is 693 

linked to potentially higher viral diversity in colder environments [31] and to the higher fitness 694 

costs associated with maintaining these mechanisms in these very energy-restricted 695 

environments [213]. This could make the CRISPR system less suitable to study phage-host 696 

interactions in polar environments. However, the investigation of CRISPR spacers in 697 

metagenomes elucidated an enormous variety of unique CRISPR spacers in Flavobacteria of 698 

Antarctic snow samples [214]. Insights from CRISPR spacer-protospacer matches revealed a 699 

dynamic and ongoing interaction between host and phages of Antarctic hypolith communities 700 

during periods where ice was melted [195] and showed a history of numerous viral attacks in 701 

the genomes of Arctic cyanobacterial Nostoc strains, underlining their importance for nitrogen 702 

cycles [215]. Overall, these findings underline the potential that metagenomic analysis of 703 

CRISPR spacer-protospacer matches may have for understanding phage-host interactions in 704 

polar environments.  705 

 706 

As an important and active component of polar ecosystems, phages influence microbial 707 

population dynamics and processes [216,217]. The effect of phages on the microbial 708 

communities are spatially and temporally changing and vary in the different ecosystems 709 

[218,1,105]. Besides immediately influencing community compositions via viral lysis, phages 710 

can affect their host’s ecology due to the release of host cellular material into the environment 711 

that can be substrate for growth of other microbial populations. This shortcut in the food web 712 

that channels substrate and energy in the form of lysed organic material away from higher 713 
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trophic levels back to heterotrophic prokaryotes is called “viral shunt” and represents an 714 

important contributor to diversity and rapid nutrient regeneration [149,219-221]. 715 

The concomitant release of organic matter provides nutrients to the severely nutrient-restricted 716 

polar ecosystems and supports ecosystem productivity as primary production is often limited 717 

by nitrogen and phosphorus limitation in the Arctic [222] as well as iron in the Southern Ocean 718 

[223]. For example, phage-mediated lysis of bacteria was estimated to contribute up to 69 % of 719 

carbon to the dissolved organic carbon pool [29]. Released nutrients via the viral shunt fuel 720 

surrounding organisms [149,219], again influencing microbial community structures. For 721 

instance, during a shift from spring to summer, a phage-induced reduction of 722 

Gammaproteobacteria abundances was observed with a simultaneous increase of Flavobacteria 723 

due to the released nutrients around the WAP [105]. 724 

 725 

6.2 Dispersal of viruses to and from the poles  726 

Considering the geographical isolation of the Arctic and Antarctic continents and prevailing 727 

harsh conditions, microbial dispersal can be assumed to be overall highly restricted. However, 728 

several studies demonstrated the contrary with aeolian processes mediating microbial transport 729 

even on a global scale [224], which might however work selectively for certain phyla [225,224]. 730 

It follows that biogeography and dispersal of cold-adapted phages are further interesting aspects 731 

to investigate, e.g., to understand transmission of AMGs, microbial evolution and restructuring 732 

of microbial communities in the dispersal destination of the phage. Recent work found that 733 

culturable bacterial strains with identical 16S rRNA genes were found on both poles on Earth, 734 

but despite the early hypothesis that “everything is everywhere” [226,227] invoking a lack of 735 

dispersal limitation, no fully identical bacterial genomes were detected on both poles [228]. 736 

While such dispersal limitation for marine bacteria was confirmed by modeling [229], for 737 

viruses, it is long known that nearly identical viral genomes occur in different places of the 738 

world [82,230], suggesting that viruses are widely distributed, and/or genetic exchange happens 739 
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between viruses from very different environments. One study reported on the bipolar 740 

distribution of several viral lineages implying connectivity of viral communities on a global 741 

scale [110]. While Antarctic and Arctic viromes were mainly dominated by different viral 742 

species, circular contigs of highly similar (>90 % sequence similarity) ssDNA viruses were 743 

found on both poles, suggesting that viruses, compared to bacteria [228], indeed have global 744 

dispersal capacity [110]. In agreement with that, similar phage genomes with identical single-745 

nucleotide polymorphism and related to the bacterial host Ralstonia were recovered from 746 

Antarctic surface snow of three stations and a seawater sample from the WAP separated by 747 

>5,000 km [61]. Their distribution indicates that air-mediated dispersal works over long 748 

distances even under the extreme conditions present on the Antarctic continent and that 749 

dispersal is probably governed by westward drift mediated by the prevailing Southern 750 

Hemisphere westerly winds. Considering the smaller sizes of viruses and their likely longer 751 

atmospheric residence times [137] and given that small aerosols remain unsettled in air for 752 

longer (reviewed by Gralton et al. [231]), widespread or even pole-to-pole viral dispersal via 753 

the atmosphere could be more probable than for prokaryotic hosts, supporting the above 754 

presented findings. DNA and RNA viruses including phage sequences were additionally found 755 

in different Antarctic animal feces [232], with most viruses including phages being detected in 756 

feces originating from migratory birds, suggesting that birds could contribute to phage 757 

distribution. Anthropogenic dispersal of phages is another likely scenario, for instance because 758 

humans invade isolated ecosystems on icebreakers, research and transport vessels, aircrafts etc., 759 

increasing the chances for transferring microbes and viruses from lower latitudes to polar 760 

ecosystems. The risk of man-made species transmission is known [233] and has for instance 761 

led to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreaks in Antarctica 762 

[234], but comprehensive investigations about the effects on phage dispersal are missing to 763 

date. Since the study of phage dispersal across the Antarctic continent as a typical 764 

extraterrestrial analogue has important implications for space exploration, forward 765 
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contamination, and planetary protection measures [61] and given the growing field of 766 

astrovirology (reviewed by Trubl et al. [235],de la Higuera, Lazaro [236]), more work in this 767 

direction can be expected in the future. 768 

 769 

7. Major challenges, knowledge gaps and future perspectives in polar phage research 770 

7.1 Major challenges in polar phage research 771 

The advances of knowledge on microbes and viruses from polar ecosystems is comparatively 772 

slow, mainly due to limited accessibility of these ecosystems but also due to the low biomass 773 

(Figure 1). In addition, logistical challenges result from polar regions being remote and often 774 

difficult to access, with harsh environmental conditions and limited infrastructure. Transporting 775 

equipment, personnel, and samples to and from these regions can be difficult and costly, which 776 

can limit the frequency and duration of research expeditions. Moreover, the limited cultivation 777 

success of phages and their hosts leads to few available model organisms preventing to study 778 

polar phage-host interactions in more detail. Temperatures near the surface of the Earth will 779 

rise faster in the polar regions if greenhouse gas concentrations continue to rise over the next 780 

century. In turn, these changes will have serious implications for the cryosphere, oceanic and 781 

atmospheric circulations, marine and terrestrial environments, and indigenous people in the 782 

Arctic [237,238]. It is virtually certain that global mean sea level will continue to rise over the 783 

21st century [237]. However, there is uncertainty about the extent to which ongoing 784 

environmental changes will affect viral and microbial communities, their genomic 785 

individualities, and their implications for biogeochemical cycles and the food web [239], e.g., 786 

a study by Boras et al. [182] showed that sea-ice melt has a strong influence on bacterial carbon 787 

fluxes towards the higher trophic levels. While ice melting is progressing, the amount and type 788 

of viruses that are released into the environment as well as the chance to be further infective 789 

(“the frozen zombies”) are not yet fully understood [240-243]. Research on glacial ice has 790 

confirmed that phages can maintain their stability in meltwater on the surface of glaciers, 791 
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suggesting that viruses that are released during melting, may continue to function as they are 792 

carried downstream [196]. On the other hand, it is conceivable that by shifting climate zones 793 

and the resulting migration of invasive species towards the thawing poles, new phages will be 794 

introduced to these environments (reviewed by Cowan et al. [244]) and could for example carry 795 

foreign AMGs or bypass defense mechanisms of native microorganisms. In doing so, invasive 796 

phages could have an impact on the flow of biomass and energy within these systems. 797 

Finally, polar regions are ecologically sensitive and culturally significant areas, with unique 798 

indigenous communities and delicate ecosystems. While accessing and conducting research in 799 

these regions is strictly regulated by legally binding international regulations to conserve these 800 

ecosystems, the human footprint on polar environments is detectable and expected to increase 801 

[245-247]. Major threats include habitat damage [246], pollution (reviewed by Tin et al. [248]), 802 

the introduction of invasive species [249] and the spread of antibiotic resistant microorganisms 803 

[245-247] to name a few. Expanding research efforts for example in Antarctica [247] 804 

necessitate obtaining appropriate permits and adhering to the environmental regulations to 805 

minimize the impact of research activities. Furthermore, seeking a more efficient and reciprocal 806 

communication with policy makers, effective environmental impact assessments and a 807 

continuous development of environmental protection measures as joint effort to preserve this 808 

unique yet vulnerable habitat is crucial in the face of continuous expansion of human impact 809 

and climate change [250,251].810 
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 811 

Figure 1: Summary figure on phage studies from six different polar ecosystems of the Arctic and Antarctic. Depicted are the ocean, freshwater, sea 812 

ice, cryoconite holes, soils/permafrost, and the atmosphere. Symbols represent studies involving polar phage isolates/cultivation (test tube), genomic 813 

analyses (DNA helix), and other studies (viral abundance, infection, and induced mortality). The symbols show the minimum number of studies 814 

published per ecosystem with three different size categories: small icon: ≥ 1 study, medium size: ≥ 5 studies, large size: ≥ 10 studies. Icon size was 815 
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based on combined findings from independent literature research conducted by two of the authors. Two boxes point out the major challenges and 816 

knowledge gaps in polar phage research as further addressed in section 7.1 and section 7.2, respectively. The penguin and polar bear represent the 817 

Antarctic and Arctic, respectively, and normally do not live together in the same environment. 818 
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 819 

7.2 Major knowledge gaps in polar phage research 820 

While conducting literature research for this review, we identified several major knowledge 821 

gaps in polar phage research (Figure 1). Climate change and associated ecosystem loss is 822 

threatening the definition of the status quo, i.e., the generation of a baseline understanding of 823 

current phage abundance, diversity, and activity. This makes it also difficult to establish 824 

meaningful comparisons and interpret results. Long-term monitoring efforts and 825 

comprehensive baseline data collection are necessary to understand the dynamics of phage 826 

populations in polar regions. Today, there are several ocean time series data, collected from 827 

Arctic regions by the FRAM Observatory project [252], allowing us to describe the dynamics 828 

of prokaryotes over time regarding changing environmental conditions [253,254], but such 829 

monitoring projects are generally sparse for viruses, especially in polar regions. We also found 830 

that several ecosystems are particularly understudied regarding their viral content (Figure 1), 831 

with most insights being derived from aquatic ecosystems and least from the atmosphere. 832 

Due to the many challenges mentioned in section 7.1 and Figure 1, interactions between phages 833 

and their host bacteria in polar regions are not well characterized. Understanding the dynamics 834 

of phage-host interactions in polar ecosystems, including the factors that influence phage 835 

infection rates, host resistance mechanisms, and the role of phages in shaping bacterial 836 

communities, is crucial to elucidate the ecological and evolutionary impacts of phages in these 837 

extreme environments. More comprehensive genomic studies, including viral metagenomics 838 

and comparative genomics, could provide valuable insights into the genetic makeup and 839 

functional potential of phages in polar regions. One major problem is the high number of 840 

unexplored viruses representing a vast reservoir of genetic information that remains largely 841 

unknown and poorly understood, e.g., due to missing reference genomes in public databases, 842 

which limits our understanding of viral diversity, ecology, and evolution. Besides missing 843 

insights from -omics, the lack of information comprehends capturing the extensive diversity of 844 
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viruses that have not yet been identified, cultured, or characterized using traditional laboratory 845 

methods due to the many challenges associated with cultivation as mentioned above. Especially 846 

the rare virosphere, to which we count psychrophilic viruses, viruses of low abundance, viruses 847 

with novel genetic features and limited representatives in public databases, rare or endemic 848 

viral species need more attention by using state-of-the-art molecular tools, metagenomics, 849 

single-virus genomics, and other advanced techniques. Further research is needed to fully 850 

characterize and understand phages in polar regions and their ecological roles in these unique 851 

but extreme ecosystems.  852 

 853 

7.3. Future perspectives  854 

Our review shows that phage investigations from the Arctic and Antarctic are overall scarce. 855 

This includes regions, which are completely unexplored such as the Central Arctic Ocean and 856 

large parts of the Southern Ocean (not covered by the Tara Oceans Polar Circle expedition [15]) 857 

but also long-term monitoring could be improved. Recent expeditions such as the MOSAiC 858 

expedition between September 2019 and October 2020 as well as Synaptic Arctic Survey 2021 859 

conducted sampling for (viral) metagenomics in the Central Arctic Ocean up to the North Pole 860 

[255,256] and will hopefully extend our knowledge about phages from these remote regions in 861 

the near future. 862 

The Arctic region is warmer and more accessible compared to the Antarctic, and therefore 863 

easier to monitor and sample. Likewise, as global temperatures and the human population 864 

continue to rise, the Arctic will likely become prime land for mining, agriculture, and urban 865 

development [257,50]. These human influences will change the Arctic landscape further 866 

increasing permafrost thaw, altering native vegetation, and native microbial and viral 867 

community structures. Although disease outbreaks caused by viruses from thawing permafrost 868 

have not occurred yet, these viruses are detectable in permafrost [258], and there have been 869 

outbreaks from other human pathogens, e.g., anthrax [259]. There will likely be increased 870 
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outbreaks of viral plant pathogens [260,261], as we introduce non-native plants, and these 871 

changes will extend to soil communities. There is already evidence of increased microbial and 872 

phage diversity with thaw [63,262,47,37], and virus-host dynamics will continue to change with 873 

global warming [263]. In polar regions, it was shown that the predominant life cycle of 874 

temperate phages switches to a more lytic one with increasing temperatures and more favorable 875 

environmental conditions (section 6.1). Global warming may extenuate the dominance of the 876 

lysogenic phage cycle towards the lytic mediated one, with consequences for the full ecosystem. 877 

In section 3.2, we summarized work describing AMGs being related to cryosurvival. If 878 

environmental conditions at the poles become more moderate with climate change, AMGs 879 

involved in cold adaptation could lose their function and be replaced. Warmer temperatures and 880 

increased precipitation frequency and volume could also influence phage dispersal and 881 

migration patterns, potentially resulting in shifts in phage distribution across polar ecosystems 882 

and enhanced dispersal to temperate regions. This could impact the overall phage community 883 

structure and function in these regions and around the globe. In addition, bacterial populations 884 

may shift with warming, leading to changes in the availability and composition of phage hosts. 885 

This could result in changes in phage diversity, host specificity, and infection dynamics, which 886 

may impact phage populations in polar regions. 887 
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