
1 
 

 1 

TITLE: Assessing giant sequoia mortality and regeneration following high severity wildfire  2 

 3 

Authors: David N. Soderberg1, Adrian J. Das1, Nathan L. Stephenson1, Marc D. Meyer2, Christy 4 

A. Brigham3, and Joshua Flickinger3 5 

1U.S. Geological Survey, Western Ecological Research Center, Sequoia and Kings Canyon Field 6 

Station, Three Rivers, CA 93271, USA. 7 

2USDA Forest Service, Southern Sierra Province Ecology Program, Bishop, CA 93514, USA. 8 

3Sequoia and Kings Canyon national parks, Division of Resources Management and Science, 9 

Three Rivers, CA 93271, USA. 10 

Corresponding author: David N. Soderberg (email: dsoderberg@usgs.gov). 11 

Open Research: Data are not yet provided because they are currently under review as part of the 12 

USGS data release program. After acceptance of this manuscript by the journal and before 13 

publication, data will be archived in ScienceBase.   14 

mailto:dsoderberg@usgs.gov


2 
 

ABSTRACT 15 

Fire is a critical driver of giant sequoia (Sequoiadendron giganteum [Lindl.] Buchholz) 16 

regeneration. However, fire suppression combined with the effects of increased temperature and 17 

severe drought have resulted in fires of an intensity and size outside of the historical norm. As a 18 

result, recent mega-fires have killed a significant portion of the world’s sequoia population (13 to 19 

19%), and uncertainty surrounds whether severely affected groves will be able to recover 20 

naturally, potentially leading to a loss of grove area. To assess the likelihood of natural recovery, 21 

we collected spatially explicit data assessing mortality, crown condition, and regeneration within 22 

four giant sequoia groves that were severely impacted by the SQF- (2020) and KNP-Complex 23 

(2021) fires within Sequoia and Kings Canyon national parks. In total, we surveyed 5.9 ha for 24 

seedlings and assessed the crown condition of 1140 trees. To inform management, we used a 25 

statistical methodology that robustly quantifies the uncertainty in inherently ‘noisy’ seedling data 26 

and takes advantage of readily available remote sensing metrics that would make our findings 27 

applicable to other burned groves.  28 

A loss of giant sequoia grove area would be a consequence of giant sequoia tree mortality 29 

followed by a failure of natural regeneration. We found that areas that experienced high severity 30 

fire (above ~800 RdNBR) are at substantial risk for loss of grove area, with tree mortality rapidly 31 

increasing and giant sequoia seedling density simultaneously decreasing with fire severity. Such 32 

high severity areas comprised 17.8, 142.0, 14.6, 1.6 hectares and ~90%, ~14%, ~53%, and ~27% 33 

of Board Camp, Redwood Mountain, Suwanee, and New Oriole Lake groves, respectively. In all 34 

sampling areas, we found that seedling densities fell far below the average density measured 35 

after prescribed fires, where seedling numbers were almost certainly adequate to maintain giant 36 

sequoia populations and postfire conditions were more in keeping with historical norms. 37 
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Importantly, spatial pattern is also important in assessing risk of grove loss, and in two groves, 38 

Suwanee and New Oriole Lake, the high severity patches were not always contiguous, 39 

potentially making some areas more resilient to regeneration failure due to the proximity of 40 

surviving trees. 41 

Keywords: giant sequoia, Sequoiadendron giganteum, high severity wildfire, tree mortality, fire 42 

effects, natural regeneration, restoration management 43 

 44 

  45 
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INTRODUCTION 46 

Throughout western North America, changes in land use patterns combined with the 47 

effects of severe drought – specifically, over a century of fire exclusion and large-scale tree 48 

mortality events – have led to shifts in forest structure and fire regimes throughout fire-prone 49 

forest ecosystems (Stevens et al., 2017, Parks & Abatzoglou, 2020, Hagmann et al., 2021). A 50 

resultant increase in ground and standing fuels, coupled with increasing temperatures and aridity, 51 

have facilitated an increase in wildfire-affected landscapes across the western United States 52 

(Westerling, 2016), with profound fire-induced changes within forest ecosystems of California 53 

(Safford et al., 2022). 54 

In recent years, the southern Sierra Nevada mountains of California have been impacted 55 

by multiple fires of large extent that contained large patches that burned at high severity (Steel et 56 

al., 2022). Two of the largest recent fires within the southern Sierra Nevada, the SQF- fire of 57 

2020 and the KNP-Complex fire of 2021 (hereafter referred to as the “SQF” and “KNP” fires) 58 

had cumulative burn areas of ~106,000 hectares, of which ~47,000 hectares were classified as 59 

‘high severity’ ( MTBS; www.mtbs.gov). While fire is an important and natural process in fire-60 

adapted forest communities such as those in the Sierra Nevada (Stephens et al., 2007) – 61 

facilitating important ecosystem functions such as fuels reduction, landscape heterogeneity, and 62 

regeneration – large patches of high severity fire are not typical for mixed conifer forests and can 63 

lead to deleterious ecological outcomes, such as reduction of seed source, biodiversity, and 64 

wildfire and climate resilience (Cova et al., 2022). Large wildfires are not absent from the fire 65 

records of California forests, but the severity and scale of recent fire events have been outside the 66 

historical range of variation (Keeley & Syphard, 2021, Safford et al., 2022, Stephens et al., 67 

2022). As such, these fires have had negative impacts on forest structure and ecosystem services, 68 

http://www.mtbs.gov/
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including for species of special interest such as the giant sequoia (Sequoiadendron giganteum) 69 

(Shive et al., 2022). 70 

Giant sequoia has a limited distribution, covering ~11,000 hectares in ~70 groves across 71 

the western slope of the Sierra Nevada (Stephenson & Brigham, 2021), much of which resides 72 

within the boundaries of Sequoia National Park, CA (Hart, 2023). Due to their tremendous size, 73 

longevity, and limited distribution, these charismatic macro-flora have inspired much public 74 

admiration and been central to the designation of state parks, national monuments, and national 75 

parks (Stephenson, 1996). Specifically, they were instrumental in the enabling legislation for 76 

Sequoia and Kings Canyon national parks and are a focal resource in the parks’ mission to 77 

“...preserve unimpaired the natural and cultural resources and values of the national park 78 

system…” (National Park Service Mission Statement). 79 

Historically, southern Sierra Nevada wildfires tended to burn at low to moderate 80 

severities, interspersed with small patches (<0.1 ha to a few hectares) of high-severity fire 81 

(Stephenson et al., 1991, Stephenson, 1994, Stephenson, 1996), with a mean fire return interval 82 

of ~15 years (Swetnam et al., 2009). Giant sequoia possesses a number of adaptations to fire, 83 

including thick fire-resistant bark and semi-serotinous cones (Hartesveldt et al., 1975, Harvey et 84 

al., 1980). Regeneration is abundant following fires, and especially within small gaps created by 85 

local high severity fire, as the combination of exposed, friable mineral soil, canopy light 86 

penetration, and seed release from semi-serotinous cones facilitates high levels of germination 87 

(Hartesveldt et al., 1975, Harvey et al., 1980). Fire is a critical component for large-scale seed 88 

release, with the heat pulse from a fire killing and opening cones (Hartesveldt et al., 1975, 89 

Harvey et al., 1980). However, such seed release is predicated on episodic pulses of heat rather 90 

than direct consumption of canopy and cones by fire. Such direct burning of the forest canopy 91 
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(crown fire) is a phenomenon that has been observed in high-severity burn areas within recent 92 

catastrophic wildfires, and at the individual tree scale is referred to as ‘torching’. Indeed, post-93 

fire observations within large patches of recent high-severity wildfire (NPS communications) 94 

suggest low levels of regeneration for giant sequoia that are potentially not commensurate with 95 

grove reestablishment and resilience to future fire events. Generally, regeneration of giant 96 

sequoia in large, high-severity patches is not yet well understood. Thus, given the high level of 97 

mortality reported in Sierra Nevada giant sequoia groves within recent years (~13-19% of ‘large’ 98 

[>4ft. diameter] giant sequoias; Stephenson & Brigham, 2021, Shive et al., 2022) – a situation 99 

that is likely anomalous as giant sequoia is a fire-adapted species that can live for thousands of 100 

years (Stephenson 2000, Sillett et al. 2015) and is in substantial contrast to more conservative 101 

mortality estimates from previous prescribed burns, wildfires, and tree-ring records (Stephenson 102 

1996) – there is uncertainty around whether large areas of high-severity fire impacted groves will 103 

naturally regenerate to a state resembling their pre-fire structure (Figure 1).  104 

Natural resources managers are currently tasked with deciding whether to replant areas of 105 

groves where natural recovery without intervention is uncertain. To help inform this decision 106 

making, we collected data on regeneration, tree mortality, and tree fire damage in four groves 107 

recently affected by the SQF and KNP fires. Importantly, all these groves are candidates for 108 

intervention. Our goal was to assess overall, postfire giant sequoia regeneration within our 109 

sampled areas and to develop predictive models of regeneration as a function of neighborhood 110 

metrics of scorched crown volume and a remotely sensed metric of fire burn severity -- RdNBR 111 

(relativized differenced normalized burn ratio; Miller & Thode, 2007). We predicted that giant 112 

sequoia regeneration would decline nonlinearly with high severity classified values of RdNBR, 113 

corresponding with an increased percentage of giant sequoia crown torch (consumption by fire) 114 
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and decreased percentage of crown scorch (intact crown killed by heat) that would reduce the 115 

available supply of viable giant sequoia seeds. This would result in some severely burned grove 116 

areas with low probabilities of mean regeneration meeting critical thresholds of concern (i.e., low 117 

probability of meeting seedling densities deemed adequate for successful natural regeneration). 118 

Our models allowed us to use our mechanistic understanding of giant sequoia ecology and 119 

regeneration to estimate seedling densities within large, contiguous high burn severity areas and 120 

subsequently scale those predictions across high severity burn areas of recently fire-affected 121 

groves.  122 

 123 

METHODS 124 

Study area 125 

The California Sierra Nevada contains ~70 known giant sequoia groves, with ~40% of 126 

giant sequoia grove area within the footprint of Sequoia and Kings Canyon (SEKI) National 127 

Parks. In this study, we surveyed within four groves that experienced large areas of high severity 128 

fire during the 2020 SQF (Board Camp grove) and 2021 KNP (Redwood Mountain, Suwanee, 129 

and New Oriole Lake groves) wildfires (Figures 1,2). 130 

 131 

Seedling sampling 132 

To survey post-fire regeneration, we placed plots throughout the Board Camp, Suwanee, 133 

and New Oriole Lake groves and within high severity burn regions of Redwood Mountain Grove 134 

(areas with >75% basal area loss, Rapid Assessment of Vegetation Condition after Wildfire 135 

(RAVG) 2022; https://burnseverity.cr.usgs.gov/ravg/) using the Generalized Random 136 

Tessellation Stratified (GRTS) algorithm (Stevens & Olsen, 2004) with an equal probability 137 
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stratified sampling design (Figure 2). We used RAVG initial assessment (generally ≤45 days 138 

after fire containment) data based on the relative differenced normalized burn ratio (RdNBR; 139 

Miller & Thode, 2007) for the sampling design because extended assessment data (growing 140 

season following the fire) was not available before sampling commenced. However, the two 141 

metrics are largely consistent (Miller & Quayle, 2015). Plots in Redwood Mountain were limited 142 

to high severity areas because the large size of the grove made a full sampling impractical and 143 

high severity areas were of greater concern to resource managers based on previous studies of 144 

postfire conifer regeneration in Sierra Nevada mixed conifer forests (Shive et al., 2018). We 145 

surveyed plots in the 2021 SQF fire-affected Board Camp grove on April 27-28, 2022. We 146 

surveyed the 2022 KNP fire-affected Redwood Mountain, Suwanee, and New Oriole Lake 147 

groves within a 6-week span on Sept. 1-7, Sept. 25 – Oct. 5, and Oct. 12, 2022, respectively. 148 

During field sampling, plot locations were found and recorded with a high-accuracy GPS device 149 

(Javad Triumph-2, Eos Arrow Gold GNSS Receivers). 150 

At each site, we tallied seedlings within fixed radius plots (Board Camp: 17.84m radius, 151 

1/10thha, 20 plots; Redwood Mountain: 11.35m radius, ~1/25thha, 45 plots, 17.84m radius, 152 

1/10thha, 1 plot; Suwanee: 11.35m radius, ~1/25th ha, 30 plots; New Oriole Lake Grove: 11.35m 153 

radius, ~1/25th ha, 20 plots; total sampled area: ~6 hectares). Generally, a plot radius of 11.35m 154 

was used, with an increased radius of 17.84m used when seedling counts were sparse (i.e., 155 

entirety of Board Camp grove, when ≤2 seedlings were counted within initial 11.35m plot). Any 156 

tree less than 1.37m in height was considered a seedling, though no seedlings in these surveys 157 

exceeded 30cm tall. Given that (1) sequoias very rarely regenerate without fire (Harvey et al., 158 

1975, Shellhammer & Shellhammer, 2006), (2) severe fire likely killed all existing seedlings, 159 

and (3) the small stature of all the seedlings counted, we were confident that all seedlings had 160 
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recruited postfire. In Board Camp, since sampling occurred two years after the fire, existing 161 

seedlings could have established in the first year after fire (first cohort seedlings) or in the second 162 

year after fire (second cohort seedlings). At Board Camp, we distinguished between cohorts 163 

based on the presence of cotyledon leaves, which can still be found on seedlings for some time 164 

after establishment. Based on the lack of cotyledon leaves on any Board Camp seedlings we 165 

observed, we found no evidence of second cohort seedlings in the Board Camp grove despite a 166 

robust sampling effort.  167 

 168 

Tree mortality and crown damage sampling 169 

We took advantage of an existing spatially explicit giant sequoia stem map (Sequoia Tree 170 

Inventory 1973; ‘STI’) with individual tree attribute data (e.g., diameter at breast height) to 171 

assess post-fire giant sequoia tree damage and mortality. We conducted a full survey of all 172 

mapped giant sequoia trees within Board Camp, Suwanee, and New Oriole Lake groves. In 173 

contrast, within the large Redwood Mountain grove, tree mortality and damage data were 174 

recorded only for giant sequoias within 50m of study plot centers. For each tree in the survey, we 175 

recorded the tree status (live/dead) and % of its crown that was live, scorched, or torched. We 176 

defined foliage as ‘live’ if green, ‘scorched’ if dead and brown (presumably killed from fire heat 177 

pulse), and ‘torched’ if foliage was blackened from fire char or missing (e.g., blackened, bare 178 

branches) but presumably consumed during the SQF or KNP fires.  179 

We estimated crown volumes (m3) for each giant sequoia in our dataset using diameter 180 

values from STI and an allometric equation relating tree diameter to crown volume (m3) (Sillett 181 

et al., 2019, see Appendix S1: Figure S1). To calculate crown volume of live, scorched, and 182 

torched foliage, we multiplied the estimated individual tree crown volumes by the recorded 183 
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proportion of crown that was live, scorched, or torched. To calculate ‘neighborhood’ crown 184 

volumes of live, scorched, or torched canopies, respectively, we summed all tree crown volume 185 

estimates for all giant sequoia within the 50-meter radius ‘neighborhood’ (wherein a majority of 186 

the seed rain contribution from a large giant sequoia will fall, see Clark et al., 2021), of a study 187 

plot centroid. 188 

 189 

Fire Perimeters and Burn Severity  190 

Burn area boundary polygons and spatially explicit severity raster data (e.g., RdNBR 191 

values) for the SQF and KNP fires were sourced from Monitoring Trends in Burn Severity 192 

(MTBS; www.mtbs.gov). MTBS raster datasets are generated from Landsat (TM/EMT+/OLI) 193 

image data which is acquired at a spatial resolution of 30 meters. MTBS vector datasets (burn 194 

scar boundaries) are delineated from imagery and burn severity index data at a map scale of 195 

1:24,000 to 1:50,000. Within Board Camp, Suwanee, and New Oriole Lake groves, our plots fell 196 

within high severity patches roughly in proportion to the total high severity area in the given 197 

grove (high severity: BOCA - ~92% area, 90% plots; SUWA - ~40% area, 37% plots; NEOL - 198 

~46% area, 50% plots). As noted above, our study locations within Redwood Mountain grove 199 

were specifically chosen within high severity burn areas (high severity ~28% area, 100% plots). 200 

 201 

Statistical Analysis 202 

To estimate the seedling densities (SDens) at each surveyed giant sequoia grove, we fit 203 

an intercept-only negative binomial count model (Eq.2 without parameters). This is conceptually 204 

equivalent to a simple average, although using a negative binomial distribution to determine the 205 

density is more appropriate for count data and our Bayesian methodology also allowed us to 206 

http://www.mtbs.gov/
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directly describe the uncertainty in our estimate as a probability distribution (Figure 3, Table 1), 207 

where the quantifiable uncertainty can be used to calculate the probability of the true mean being 208 

above or below specified values (see Tables 1,2). 209 

To assess the spatial relationship between ground measurements and a remote-sensed 210 

measure of burn severity, we applied a negative binomial generalized additive model (GAM) to 211 

estimate seedlings densities as a function of the burn severity metric ‘RdNBR’ (see Miller & 212 

Thode, 2007) (Eq. 2). As seedling densities are considerably influenced by mortality rates over 213 

time, we fit a separate model for data from groves affected by the 2020 SQF (i.e., Board Camp 214 

grove) and the 2021 KNP fires (i.e., Redwood Mountain, Suwanee, and New Oriole Lake 215 

groves) (Figure 4). 216 

To assess the relationship between our ground-based measurements of giant sequoia 217 

crown conditions, we used negative binomial generalized linear models (GLM) to assess the 218 

relationship between seedling density and ‘neighborhood’ crown volumes of live (CVL), 219 

scorched (CVS), and torched (CVT) foliage (aggregate live, scorched, and torched crown 220 

volumes within a 50m radius of plot center) as a function of RdNBR (Eq. 2, Figure 5). Crown 221 

volumes of individual giant sequoias were calculated using an allometric equation derived from 222 

Sillett et al., (2016) (Eq. S1, Figure S1), with individual crown volumes of live, torched, and 223 

scorched foliage proportionally allocated based on our field measurements.  224 

Additionally, given our mechanistic assumptions of giant sequoia cone semi-serotiny and 225 

observed relationship between regeneration and heat pulse induced crown scorch (i.e., ‘CVS’, 226 

see Harvey et al., 1980), we assessed the relationship between neighborhood crown volume 227 

scorch and RdNBR to bridge the mechanistic rationale underpinning an association between 228 

seedling density and RdNBR using the same GLM approach described above (Eq. 3 Figure S2).   229 
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Our models are structured with normal prior distributions and are described as follows: 230 

𝑦𝑖 ~ NB(m,q)                                                             (1) 231 

where yi, is the seedling count for the ith observation and m and q are the mean and the 232 

shape parameter of the negative binomial distribution, respectively. The mean parameters are 233 

related to the variables Xi (i.e., SDens, CVL, CVS, CVT, RdNBR) for ith observations via the 234 

following link function: 235 

                                                            log(𝑚𝑖) = α + log(𝑇𝑖) + (𝑋𝑖)β + 𝑒𝑖                                           (2) 236 

                                                                 𝐶𝑉𝑆𝑖 = α + (𝑅𝑑𝑁𝐵𝑅𝑖)β + 𝑒𝑖                                                (3)                                        237 

where log(𝑇𝑖) is an ‘offset’, which corrects for the variation in surveyed area amongst ith 238 

observations, α is the intercept, β is the parameter estimate, and 𝑒𝑖 is the residual error associated 239 

with the ith observation. 240 

The model parameters were drawn from normal distributions centered around the mean 241 

and estimated variances of our data. Specifically: 242 

                                                 μ𝑆𝐷𝑒𝑛𝑠𝑖 ~ Normal (μ𝑆𝐷𝑒𝑛𝑠, 𝑆𝐷𝑒𝑛𝑠σ2)                                      (4) 243 

                                                     μ𝐶𝑉𝐿𝑖 ~ Normal (μ𝐶𝑉𝐿, 𝐶𝑉𝐿σ2)                                              (5) 244 

                                                     μ𝐶𝑉𝑆𝑖 ~ Normal (μ𝐶𝑉T, 𝐶𝑉𝑇σ2)                                             (6)  245 

                                                     μ𝐶𝑉𝑇𝑖 ~ Normal (μ𝐶𝑉𝑆, 𝐶𝑉𝑆σ2)                                              (7) 246 

                                               μ𝑅𝑑𝑁𝐵𝑅𝑖 ~ Normal (μRdNBR, RdNBRσ2)                                    (8)  247 

 The model parameters were given normal, diffuse priors with wide distributions. 248 

Specifically:  249 

                                μSDens, μCVL, μCVS, μCVT, μRdNBR ~ Normal (0,1000)                         (9) 250 

With the exception of the variance parameters, which were given a modest, Student-t 251 

prior distribution: Specifically: 252 
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                              SDensσ2, CVLσ2, CVSσ2, CVTσ2, RdNBRσ2 ~ Student-t (0,3)                      (10) 253 

We conducted all analyses in R version 4.3.2 (R Core Team 2022) by computing 254 

Bayesian parameter estimates via Markov chain Monte Carlo (MCMC) sampling. Statistical 255 

package “rstanarm” (Goodrich et al., 2022, Stan Development Team 2023) was used to compute 256 

4 MCMC chains for 2,000 iterations, discarding the first 1,000 iterations as burn-in and sampling 257 

each iteration thereafter. All models were checked graphically for convergence and Rhat (r̂) 258 

values (i.e., the Gelman–Rubin convergence diagnostic (Gelman & Rubin, 1992)), a ratio of 259 

variation within and between MCMC chains, were less than 1.01, indicating thorough MCMC 260 

sampling and convergence of the posterior distributions. 261 

Using Bayesian MCMC estimates, a median estimate and quantified uncertainty were 262 

derived for each model parameter. The median estimate (ME) and 90% Bayesian credible 263 

intervals were then calculated as the median model parameter, bounded by the range of values 264 

indicating the equal-tail 90% credible interval of the true parameter estimate. The marginal 265 

probability (MP) is the probability that the mean estimate of a parameter (e.g., slope coefficient 266 

for the relationship between a response and predictor variable) is statistically different (greater or 267 

less than) than zero. MP was estimated by calculating the total number of parameter MCMC 268 

estimates greater (or less) than the test comparison (e.g., ‘0’), divided by the total number of 269 

MCMC estimates. To provide a reference for managers, we also used MP to compare seedling 270 

densities estimated in this study with those estimated from seedling data collected after 271 

prescribed fires (Stephenson et al., in prep). 272 

 273 

RESULTS 274 

Seedling Overview    275 
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Our seedling surveys covered ~10.0%, ~4.3%, and ~5.5% of the total area in Board 276 

Camp, Suwanee, and New Oriole Lake groves, respectively. Within the much larger Redwood 277 

Mountain grove, ~1.5% of the high burn severity area was surveyed. Within the 20 plots in the 278 

SQF (2020) fire affected Board Camp grove, we counted 3221 seedlings across ~2.0 ha of 279 

census area. None of the seedlings were identified as second cohort (germinated the second year 280 

following fire), strongly suggesting very little additional regeneration in the second year after the 281 

fire. Within the 46 plots in Redwood Mountain grove, we counted 19282 seedlings across ~1.9 282 

ha of the ~350ha of high severity burn area. Within the 30 plots in Suwanee grove, we counted 283 

14239 seedlings across ~1.2 ha. Within the 20 plots in New Oriole Lake grove, we counted 284 

13025 seedlings across ~0.8 ha (Table 1). In general, seedling surveys within the KNP (2021) 285 

affected Redwood Mountain, Suwanee, and New Oriole Lake groves yielded substantially higher 286 

numbers than those at Board Camp, as expected given that Board Camp only had first cohort 287 

seedlings that had experienced at least an additional 6 months of exposure to mortality. 288 

 289 

Estimating overall seedling densities 290 

To provide conservative comparisons, we contrast second cohort reference densities 291 

presented in Stephenson et al., (in prep) with giant sequoia seedling densities measured within 292 

Board Camp, high burn severity portions of Redwood Mountain, Suwanee, and New Oriole Lake 293 

groves. For the SQF (2020) affected Board Camp grove, the modeled median of the probability 294 

distribution for seedling density was 1609 with a 90% credible interval (CI) of 1749 to 4709 295 

seedlings/ha. For comparison, the estimated mean seedling density in the first year after 296 

prescribed fire (Stephenson et al., in prep) was 173742 (90% CI: 73468 – 605985) seedlings/ha 297 

with median second cohort seedling densities of 39562 (90% CI: 16357 – 133134) seedlings/ha. 298 
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We found the marginal probability of Board Camp seedling densities being equivalent to those 299 

the second year after prescribed fire was <0.1%.  300 

For the KNP (2021) affected high burn severity area of Redwood Mountain, the modeled 301 

median of the probability distribution for seedling density was 10541 (90% CI: 7412 – 15678 302 

seedlings/ha), with a marginal probability of Redwood Mountain seedling densities being 303 

equivalent to those the second year after prescribed fire of 1.1%. Within Suwanee grove, the 304 

median of the probability distribution for seedling density was 11769 (90% CI: 7487 – 20000 305 

seedlings/ha), with a marginal probability of Suwanee seedling densities being equivalent to 306 

those the second year after prescribed fire of 2.4%. Within New Oriole Lake grove, the median 307 

of the probability distribution for seedling density was 16988 (90% CI: 9595 – 35181 308 

seedlings/ha), with a marginal probability of New Oriole Lake seedling densities being 309 

equivalent to densities the second year after prescribed fire of 11.2%. 310 

 311 

Estimating local seedling densities 312 

We found that seedling densities increased with increasing volume of ‘neighborhood’ 313 

crown scorch. The relationship was ‘noisy’ (see Appendix S1: Figure S2), but, for both fires, 314 

marginal probabilities strongly suggest the relationship is real (100% and 93.8% marginal 315 

probability of the parameter being greater than 0 for the SQF and KNP fires, respectively). This 316 

result is consistent with scorched giant sequoia crowns having intact, heat-killed cones that 317 

release abundant viable seed, thus yielding higher local seedling densities (see Introduction and 318 

Discussion). We also found that across groves the volume of scorched foliage decreased (97.8% 319 

marginal probability of being <0) and the volume of torched foliage increased (99.9% marginal 320 

probability of being >0) with increasing RdNBR (Figure 5), indicating that RdNBR was 321 
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sensitive to an increasing percentage of torched foliage (i.e., as fire severity increased more of 322 

the crown was directly consumed by fire, leaving less scorched foliage and cones).  323 

Not surprisingly, we also found a strong relationship between seedling density and 324 

RdNBR in both the SQF (2020) affected Board Camp and KNP (2021) affected Redwood 325 

Mountain, Suwanee, and New Oriole Lake groves (Figure 4), with seedling densities and the 326 

variability in seedling densities decreasing with increasing RdNBR. In general, across our 327 

sampled range, the probability of seedling densities reaching the average levels seen the second 328 

year after prescribed fires is very low, with the occurrence of any plots with relatively high 329 

seedling densities dropping noticeably for RdNBR values above 800 in Board Camp and above 330 

1100 in the other groves (Figure 4, Table 2). For our fitted seedling density to RdNBR 331 

relationship within Board Camp grove, we excluded one outlier plot that had a very high density 332 

of seedlings in an area with a relatively low volume of local crown scorch and a relatively high 333 

value of RdNBR. This outlier, and high degree of data variance or ‘noise’, generally suggests 334 

additional mechanisms beyond local crown scorch that can affect seedling occurrence (see 335 

Discussion), but our data indicate that such mechanisms, while almost certainly causing an 336 

increase in variability, rarely result in high seedling densities in areas of very high severity fire 337 

(Figure 4).  338 

 339 

Grove-level tree mortality  340 

We completed a full survey of tree mortality and crown fire damage at Board Camp, 341 

Suwanee, and New Oriole Lake groves, and within 50m of each study plot center in Redwood 342 

Mountain grove. Tree mortality was 81.0% (230/284), 43.6% (144/330), and 43.1% (28/65 343 

within the entire grove areas of Board Camp, Suwanee, and New Oriole Lake groves, 344 
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respectively. However, within the high burn severity portions of each grove (>640 RdNBR, see 345 

Miller & Thode, 2007), tree mortality rates were much higher – 91.4% (169/185), 60.6% (60/99), 346 

76.7% (23/30), and 90.5% (417/461) of Board Camp, Suwanee, New Oriole Lake, and Redwood 347 

Mountain groves. We found a very strong relationship between RdNBR and tree mortality 348 

(Figure 5), and, as expected, mortality was high across the high severity zones. Specifically, 349 

across all groves the majority of sampled plots within areas of ~800 or greater RdNBR had 0 350 

surviving sequoias and/or the ‘neighborhood’ volume of live foliage dropped precipitously to 351 

near 0 (e.g., a single live ‘neighborhood’ giant sequoia with 10% remaining live foliage) (Figure 352 

5). This relationship, combined with the negative relationship between RdNBR and seedling 353 

density, allows us to produce a RdNBR-based heat-map (Figure 6) indicating areas with a high 354 

probability of both complete tree mortality and low levels of regeneration (Figures 4,5). 355 

 356 

DISCUSSION 357 

A permanent or long-term loss of giant sequoia grove area would be a consequence of 358 

giant sequoia tree mortality followed by a failure of natural regeneration. In that context, our 359 

results suggest that areas that experienced high severity fire in both the SQF-affected Board 360 

Camp grove and KNP-affected Redwood Mountain, Suwanee, and New Oriole Lake groves 361 

appear to be at substantial risk for loss of grove area. Mortality was very high in the high burn 362 

severity patches in all groves sampled, and high severity areas comprise 17.8 hectares and ~90% 363 

of the grove area in Board Camp and 142.0, 14.6, 1.6 hectares and ~13.5%, 52.7%, and ~27.0% 364 

of Redwood Mountain, Suwanee, and New Oriole Lake groves, respectively. Furthermore, our 365 

data (sampled grove-wide at Board Camp, Suwanee, and New Oriole Lake, and in high severity 366 

areas in Redwood Mountain) indicate that overall seedling densities likely fall far below those 367 
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typically seen the second year after prescribed fire (Table 1 and Stephenson et al., in prep), 368 

where regeneration was almost certainly adequate to maintain giant sequoia populations (York et 369 

al., 2013) and postfire conditions were more in keeping with historical norms (Stephenson 1996).  370 

More in-depth analyses suggest risk of regeneration failure increased with increasing fire 371 

severity, likely as a function of reduced seed availability due to direct consumption of cones 372 

during the fire. In Board Camp grove, mortality and high probability of regeneration failure 373 

covered much of the northern and eastern part of the grove (Figure 6). For Redwood Mountain, 374 

areas at highest risk for grove loss occurred mostly in the southern part of the grove. Within 375 

Suwanee and New Oriole Lake groves, inadequate natural regeneration and loss of parent seed 376 

trees was not as severe, comparatively, but still showed a substantial risk of some grove area loss 377 

in several portions of Suwanee and the northern and southern extents of New Oriole Lake 378 

(Figure 6). Importantly, the pattern of tree mortality in Suwanee, and to a lesser extent New 379 

Oriole Lake, was less contiguous—often leaving some live and mature giant sequoia trees in or 380 

near high severity patches. In such cases, regeneration failure should be less likely to lead to 381 

permanent loss of grove area, as existing seed trees remain as a source of replenishment after 382 

future fires – so long as those fires are in keeping with the heterogeneous, mixed-severity fire 383 

regimes within which giant sequoias evolved. 384 

As is common with regeneration data, there is considerable variability or ‘noise’ in the 385 

dataset. This argues strongly for robust data collection (e.g., we collectively surveyed nearly 6 ha 386 

of territory using a robust spatial sampling design) and use of statistical methods well-suited for 387 

characterizing uncertainties in an easily interpretable manner. For example, Figures 3, 4, and 5 388 

illustrate how data depth and inherent variability affect the confidence in our estimates. 389 
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Nevertheless, it is clear that natural regeneration is very unlikely to reach historical numbers in 390 

any of the sampled areas.  391 

 392 

Mechanisms 393 

  We hypothesized, based on previous research, that seedling densities would in part be a 394 

function of the availability of seeds from giant sequoia cones killed by a heat pulse into the 395 

crown, as such cones are known to be an important source of seed release postfire (Stark, 1968, 396 

Hartesveldt et al., 1975, Harvey et al., 1980). Due to the great height of giant sequoia tree 397 

canopies, there was no practical way to count cones directly. We therefore further hypothesized 398 

that scorched foliage—foliage killed by a heat pulse into the crown—should be associated with 399 

heat-killed cones, and therefore, subsequent seedling densities. Though the relationships have 400 

substantial inherent variability, our results were generally consistent with this hypothesis (Figure 401 

4, Appendix 1: Figure S2), with our remote sensing analysis providing further support (see 402 

below).  403 

  The noise in the scorch-seedling density relationship is likely the result of a variety of 404 

factors, including tree-to-tree variation in cone crops among sequoias, as well as inherent error in 405 

our dbh-based crown volume allometry and in visual estimations of crown conditions from 406 

ground observations. This may explain why the relationship between RdNBR and seedling 407 

density (Figure 4) was less noisy than relationships derived from ground-based measures 408 

(Appendix 1: Figure S2). In addition, our approach assumed crown scorch volume was linearly 409 

related to heat-killed cones, an assumption that may not hold in practice, and our method would 410 

also not capture tree-to-tree variability in cone load, which can be substantial (Sillett et al., 411 

2019). Finally, and perhaps most importantly, there are additional ecological ‘filters’ between 412 
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seed fall and seedling establishment—with a variety of factors that might weaken the 413 

relationship between local seed production and local seedling establishment (see ‘Uncaptured 414 

Mechanisms’). 415 

 416 

Extrapolating within and across groves using remote sensing 417 

Our analysis supports the hypothesis that greater scorched crown volume results in 418 

increased seed rain, and therefore, higher seedling densities (Appendix 1: Figure S2). In addition, 419 

our results show that, within high severity areas (RdNBR>640), RdNBR values reflect the level 420 

of crown scorch and torch (Figure 5). As noted above, the relationships between RdNBR and 421 

seedling density were in fact less noisy than those developed using ground-based measures 422 

(Figure 4, Appendix 1: Figure S2). Since the majority of our data were collected in areas 423 

classified as having experienced high severity fire (i.e., most if not all of the standing trees were 424 

killed in the fire), relatively lower RdNBR values in the context of our samples meant that dead 425 

trees had retained more scorched foliage while higher RdNBR values indicated that an increasing 426 

percentage of the crowns, and therefore cones, had been torched (i.e., consumed directly by fire).  427 

In short, our results indicate that RdNBR can be used to estimate seedling density within 428 

high severity areas of Board Camp, Redwood Mountain, Suwanee, and New Oriole Lake groves. 429 

Similarly, RdNBR was highly effective at detecting adult giant sequoia mortality (Figure 5) 430 

within all sampled groves. Given that RdNBR is a standardized measure used across fires, one 431 

would expect these relationships to be effective across other burned groves. This suggests 432 

RdNBR—taken as a continuous variable rather than by broad fire severity categories—is a 433 

powerful tool for assessing the adequacy of sequoia regeneration in any giant sequoia grove after 434 

a wildfire. 435 
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Using RdNBR to estimate giant sequoia regeneration densities does have limitations. 436 

RdNBR values can be influenced by shadows, clouds, and other atmospheric disturbances (Hoy 437 

et al., 2008, Verbyla et al., 2008, Fassnacht et al., 2021). Also, as RdNBR does not distinguish 438 

between giant sequoias and other canopy vegetation, spectral changes in other parts of the 439 

canopy and/or understory could give misleading results. For example, RdNBR from a relatively 440 

open patch dominated by shorter canopy trees or shrubs and possessing relatively few giant 441 

sequoias might indicate a high severity burn even if the fire did not do substantial damage to 442 

taller giant sequoias. Additionally, RdNBR-derived estimates of giant sequoia regeneration 443 

densities are highly variable at lower values (<640), leading to greater uncertainty in densities in 444 

low to moderate severity burn patches – although, arguably, these areas are of less concern to 445 

resource managers since canopy tree mortality is lower. Finally, other factors particular to a 446 

given fire and time period might affect the relationship between RdNBR and seedling densities 447 

(see ‘Large-scale and anomalous drivers of regeneration’). For these reasons, we strongly 448 

suggest pairing RdNBR-based regeneration estimates with field validation to provide more 449 

reliable estimates of post-fire giant sequoia regeneration densities for a given fire and year. For 450 

example, how might these relationships change in relatively large groves that burned primarily at 451 

high severity? How do differences in local factors (see ‘Uncaptured Mechanisms’) scale for 452 

groves with different topographic profiles? 453 

 454 

Uncaptured Mechanisms 455 

There are mechanisms beyond local crown scorch that can affect interannual seedling 456 

abundances within and between giant sequoia groves. In addition to among tree variation in seed 457 

release, variability in abiotic factors such as topography (Marsh et al., 2022), soil characteristics 458 
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(Gates, 1982, Certini, 2005), fuels-mediated microsites (Gray & Spies, 1997), local climates 459 

(e.g., aspect-driven) (Helgerson, 1990, Wolf et al., 2020) and moisture conditions (Stielstra et al., 460 

2015)  can either facilitate or impede germination success – especially during the summer 461 

immediately following wildfire when seedlings are most vulnerable to abiotic stressors 462 

(Hartesveldt & Harvey, 1967, Harvey et al., 1980).  463 

Anecdotal observations by our field crews indicated that high density patches of 464 

seedlings within a plot often occurred within watercourse bottlenecks which function as moist 465 

deposition sites for seeds caught in water runoff. In addition, high density patches were common 466 

within soil compressions where a log was partially or fully combusted (see Harvey et al., 1980), 467 

suggesting that pre-fire fuels can mediate post-fire seedling densities. Such mechanisms likely 468 

help explain the substantial variability in seedling occurrence, even in areas which otherwise 469 

appeared to have enough crown scorch to result in higher levels of seed release, and subsequent 470 

high seedling densities. Importantly, these highly local effects might also have bearing on the 471 

eventual success of maturing seedlings. For example, there is reason to question the viability of 472 

even high-density patches of seedlings that occur near creek bottoms, as such areas are likely to 473 

experience substantially increased stream flow, and subsequent mortality of initially established 474 

seedlings, in high precipitation years.  475 

Our data also indicate that – on rare occasions – patches of high seedling densities can 476 

occur even when local crown conditions indicate otherwise. For example, one of the sampling 477 

plots in the Board Camp grove had a particularly high seedling density, having more than double 478 

(~2.2x) the count of any other plot, despite local crown scorch and RdNBR values indicating that 479 

the availability of seeds should have been limited. Plausible explanations include the transport of 480 

seeds from an area with higher seed production via seasonal stream flow and upslope seed rain 481 



23 
 

dispersal. The Board Camp grove is on a particularly steep slope (mean slope within grove: 482 

27.7°) and is riddled with numerous drainages. Our ‘outlier’ plot was located within one of these 483 

drainages (mean slope within plot: 34.4°) and downslope of trees with enough remaining 484 

scorched crown volume to have potentially produced large numbers of viable seeds. 485 

   486 

Large-scale and anomalous drivers of regeneration  487 

Our results suggest that the burn severity metric RdNBR can be predictive of giant 488 

sequoia seedling densities following wildfire. However, in addition to small-scale drivers 489 

facilitating regeneration success, the magnitude of the relationship between burn severity and 490 

seedling densities can be additively – and perhaps substantially– influenced by variation in more 491 

global conditions such as trends in regional climate (see Avery et al., 2023) and their potential 492 

interactions with giant sequoia ecology (Harvey et al., 1980). A recent climate assessment 493 

encompassing all giant sequoia groves within Sequoia and Kings Canyon national parks 494 

(Stephenson et al., in prep) found that the meteorological summers (June, July, August) 495 

following the SQF and KNP wildfires were anomalously hot and dry, suggesting that seedlings 496 

that germinated in 2021 and 2022 – in the summers following the 2020 SQF and 2021 KNP 497 

wildfires – were subject to the 1st and 3rd hottest (mean °C), and 1st and 2nd driest (Palmer 498 

Drought Severity Index, PDSI; Palmer, 1965) summers within the 121-year record.  499 

Moreover, seed trap data from giant sequoia groves within Sequoia National Park 500 

(Wright et al., 2021), along with NPS communications, suggest there was a region-wide seed 501 

release event (non-masting) before the KNP wildfire, with ~10x increase in giant sequoia seed 502 

fall relative to the annual mean of the prior 22 years (Stephenson et al., in prep). While giant 503 

sequoias release viable seed year-to-year (Harvey et al. 1980, van Mantgem et al., 2006, Wright 504 
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et al., 2021), possibly triggered by the ambient feeding of Cerambycid beetles (Phymatomes 505 

nitidus) and/or squirrels (e.g., Tammiasciurus douglasii) (Harvey et al., 1980), such an uptick in 506 

seed release in the absence of fire-related stimuli is unprecedented. While causal mechanisms of 507 

the seed release event are unknown, the extreme heat and aridity of the 2020 and 2021 508 

meteorological summers may have induced a physiological response to release seed en masse. 509 

Moreover, the mid-summer seed release in the absence of fire-mediated bare mineral soil would 510 

not favor germination (Hartesveldt & Harvey, 1967, Stohlgren, 1993) and may have caused the 511 

depletion of a significant portion of the seed stock before the ensuing KNP wildfire.  512 

Given the extremely hot and dry climate window, when post-fire seed stock may have 513 

been low, postfire seedling densities in the groves sampled here could be relatively low 514 

compared to what might be found in cooler and wetter conditions and absent a prior large-scale 515 

and likely unproductive seed release. As such, as noted above, it is important that any remote 516 

sensing analysis is paired with robust ground data collection to provide an accurate 517 

quantification of giant sequoia postfire regeneration after a given fire. 518 

That said, we would expect RdNBR to remain a useful planning tool, regardless of other 519 

factors. RdNBR should still be indicative of increasing giant sequoia mortality. In addition, the 520 

metric should still have a relationship with tree scorch and torch, and therefore, local seed 521 

availability. In other words, for any fire, we expect increasing RdNBR, at least within the range 522 

of high severity, will be associated with increasing risk of grove area loss, with only the degree 523 

of that risk varying with other conditions.  524 

 525 

Assessing long-term resilience 526 
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 While assessing seedling densities and the drivers of post-fire regeneration is important 527 

for understanding the immediate trajectory of potential grove recovery, natural resource 528 

managers are also understandably concerned with long-term grove resilience (DeRose & Long, 529 

2014). Arguably, one of the best indicators of such resilience is the retention of seed-producing 530 

trees—which allow for ‘second chances’ when a given regeneration cohort fails.  531 

   For example, high burn severities can facilitate conditions favorable for seed release and 532 

soil conditions for germination – while simultaneously killing a large proportion of the seed 533 

producing parent trees, resulting in a lack of resilience to future disturbance. Figure 4 shows that 534 

high levels of postfire seedling germination can occasionally occur within high burn severity 535 

areas (~800 RdNBR), while Figure 5 indicates that, at around the same RdNBR, the volume of 536 

remaining live foliage and the probability of remaining live sequoias drops precipitously to near 537 

zero. Given the decades of maturation required for sequoias to produce seed (Harvey et al., 1980; 538 

see Sillett et al., 2019, Clark et al., 2021), large grove areas with high levels of seedling 539 

germination but low levels of remaining live seed trees may not be resilient to near-term natural 540 

disturbances (e.g., fire, drought, high precipitation). Even in typical conditions, natural 541 

regeneration is subject to very high mortality, especially compared to nursery-grown seedlings, 542 

which tend to survive at much higher rates, in part because they are planted at a maturation stage 543 

which is less vulnerable to mortality from desiccation or erosion (York et al., 2007, Ouzts et al., 544 

2015, Marsh et al., 2021). 545 

The location and size of fire-caused gaps in the context of the broader grove is also an 546 

important consideration. Giant sequoia seedling germination and survivorship have been 547 

associated with canopy gaps (Harvey et al., 1980, Stephenson et al., 1991, Demetry, 1995, Meyer 548 

& Stafford, 2011, York et al., 2011); however, it is uncertain whether this association holds for 549 
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the large canopy gaps produced by the large high severity burn areas of recent fires (e.g., Cova et 550 

al., 2022). Fire-produced gaps can facilitate germination and survivorship (Hartesveldt et al., 551 

1975, Harvey & Shellhammer, 1991, Shellhammer & Shellhammer, 2006) through increased 552 

understory light penetration, exposed mineral soil, and removal of shade-tolerant competitors 553 

from the forest understory (Harvey et al., 1980, Stephenson, 1994). However, larger gaps (e.g., 554 

more than a few hectares) contain areas considerably distant from the bulk of the seed shadow of 555 

living sequoias (Clark et al., 2021), with these larger areas potentially experiencing a more 556 

severe set of environmental conditions (e.g., reduced snow retention, see Stevens, 2017, Smoot 557 

& Gleason 2021) that may have a negative, rather than positive, effect on giant sequoia seedling 558 

germination and establishment. Moreover, gaps created at the edge of a grove boundary have less 559 

perimeter adjacent to sequoias relative to gaps created internal to the grove boundary and are less 560 

likely to receive giant sequoia seed. In short, deciding whether or not to plant after a fire involves 561 

a nuanced assessment of seed tree mortality, post fire regeneration, probability of long-term 562 

seedling survival, topography, and their spatial characteristics.  563 

 564 

Informing Management 565 

Giant sequoias present an interesting case study of how management challenges can 566 

evolve through time and how science informs decision making. Decades ago, robust research on 567 

giant sequoias led to the realization that over a century of fire suppression had resulted in 568 

regeneration failure across much of the species’ natural range (Kilgore and Biswell, 1971, 569 

Harvey et al., 1980, Stephenson, 1994). This led managers to implement prescribed burning 570 

programs to try to restore historical conditions and encourage more giant sequoia recruitment 571 

(Stephenson, 1996). Ultimately, many groves were not reached by these programs. Now, groves 572 
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that haven’t burned in well over a century are experiencing fires of a severity well outside the 573 

historical norm, and our research suggests that such fires have a substantial probability of 574 

resulting in loss of grove area. In other words, managers may now be asking whether giant 575 

sequoia conservation might best involve,  not only prescribed burning, but also planting. As such 576 

novel conditions occur, managers often have an increased need for real time data and 577 

comparisons with past conditions to inform management decisions. 578 

In deciding whether to intervene, managers may balance agency management goals, 579 

directives, and budgets against the risk of permanent giant sequoia grove loss, and they may have 580 

only limited time to do so, as growth of shrubs in high severity burn patches could rapidly make 581 

proposed replanting areas inaccessible. For an agency like the National Park Service, especially 582 

managing within designated wilderness areas, this may include balancing goals and directives to 583 

maintain giant sequoia groves unimpaired for future generations with a desire to minimize 584 

human intervention. This decision-making is complicated by the fact that there is not enough 585 

information to set a precise minimum threshold that will guarantee regeneration success, and, 586 

even if there were, the inherent uncertainty in sampling seedling densities will always leave 587 

uncertainty in whether any given threshold has actually been met. 588 

Traditional statistical approaches, which test mean estimates against a particular 589 

threshold at an arbitrary level of confidence, are not ideally suited to such situations. First, in a 590 

circumstance without definitive thresholds, managers are best served by approaches that allow 591 

simultaneous consideration of a variety of potential thresholds that can be determined based on 592 

the management context (e.g., the level of seed tree mortality or the degree of public resistance 593 

to intervention). Furthermore, in a conservation context, managers are more likely to ask, ‘What 594 
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is the probability that there are plenty of seedlings?’ rather than ‘Can I prove with 95% 595 

confidence that my seedling densities are not high enough?’  596 

In this study, we used a Bayesian statistical framework that allows us to assess 597 

probabilities of meeting any given management-relevant threshold (see Stephenson et al., in 598 

prep) while also explicitly quantifying the uncertainty (which is affected both by data variability 599 

and richness). Moreover, Bayesian modeling offers a more flexible and interpretable tool for 600 

managers to use in the context of conservation, where decision making can be inherently 601 

subjective and challenging. Such an approach allows managers to explore a range of risk 602 

tolerances. For example, do we only want to intervene if there is less than a 25% probability that 603 

regeneration that the mean seedling density falls above the threshold for successful regeneration, 604 

or would we choose a higher threshold because we consider the consequences of regeneration 605 

failure and the lost opportunity to act within the natural regeneration window of giant sequoia 606 

too great? Decisions regarding what risk level to set can involve tradeoffs between costs of 607 

action versus costs of inaction made in the context of agency mandates, law, policy, and budgets. 608 

Having clearly identified probabilities regarding whether the mean is likely to meet an identified 609 

target can be very helpful in these contexts. Managers may find this level of explicit risk analysis 610 

helpful in tackling these difficult conservation and management decisions.    611 

 612 

Conclusion 613 

Increasingly, forests in the Sierra Nevada are experiencing wildfires well outside the 614 

historical norm, with such fires affecting vast landscapes and potentially leading, without 615 

intervention, to permanent changes in vegetation composition and structure (Safford and Stevens 616 

2017). Managers are faced with responding to these events and deciding whether to intervene —617 
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often with only short windows in which action can be implemented practically and in the face of 618 

enormous uncertainty and public concern. Such circumstances demand robust data collection 619 

efforts combined with analyses designed to quantify uncertainty in a way that is usable and 620 

informative for managers who must make pragmatic assessments about whether to act.  621 

Here, we assessed post-fire regeneration within four different giant sequoia groves 622 

significantly affected by the SQF- (2020) and KNP-Complex (2021) fires. We found significant 623 

spatial relationships between giant sequoia seedling densities, neighborhood crown conditions, 624 

and the remotely-sensed burn severity metric, RdNBR – and used those relationships to scale 625 

predictions of giant sequoia mortality and regeneration across unsampled grove areas along a 626 

gradient of high burn severity. To help inform natural resource managers, we developed a 627 

Bayesian probabilistic modeling approach that directly quantifies the uncertainty surrounding 628 

modeled estimates of post-fire regeneration that could potentially be scaled across groves and 629 

different fires.  630 

Overall, this study advances our understanding of giant sequoia ecology, and provides a 631 

statistical tool for informing management decisions regarding postfire restoration following 632 

severe, large wildfires. Going forward, if we to are gain a deeper understanding of giant sequoia 633 

regeneration in this new era, we will need to tease apart the relationships that drive high 634 

heterogeneity of seed germination on the landscape and gain a far better handle on the likely 635 

survivorship of such seedlings in the long-term. 636 

  637 
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FIGURES 828 

 829 

Figure 1. A) Fire-killed giant sequoias (Sequoiadendron giganteum) and other conifers in the 830 

Board Camp Grove, Sequoia National Park. B) Ground view of giant sequoia and other conifers 831 
in the Board Camp Grove, Sequoia National Park. Note the fire-killed ‘monarch’ giant sequoia 832 
(~500cm diameter at breast height) in the foreground. C) Cluster of fire-killed giant sequoias in 833 

Redwood Meadow Grove. Photo Credits: (A) Tony Caprio, NPS; (B,C) David Soderberg, 834 
USGS.  835 

Figure 2. Study plot locations (red circles, triangles*) within Board Camp, Redwood Mountain, 836 

Suwanee, and New Oriole Lake giant sequoia (Sequoiadendron giganteum) groves within 837 
Sequoia and Kings Canyon national parks, CA**. Locations were drawn using the Generalized 838 
Random Tessellation Stratified (GRTS) algorithm (Stevens & Olsen, 2004) using an equal 839 

probability stratified sampling design within the entirety of Board Camp, Suwanee, and New 840 
Oriole Lake groves, but confined to the ‘high’ burn severity (>75% basal area loss; see Rapid 841 
Assessment of Vegetation Condition after Wildfire (RAVG); 842 

https://burnseverity.cr.usgs.gov/ravg/) regions of Redwood Mountain grove. RdNBR-categorized 843 
burn severity raster pixels are presented in greyscale (white = low severity, <25% basal area loss; 844 
light and dark grey = moderate severity, 26-75% basal area loss; black = high severity or 845 

unburned, >75% basal area loss).   846 
* Plots in Board Camp, Suwanee, and New Oriole Lake groves are scaled to represent the actual 847 

area surveyed. Plots in Redwood Mountain grove (triangles) are, for visibility, scaled larger than 848 
their actual sizes. 849 

** Redwood Mountain map includes US Forest Service and state land that was not part of our 850 
sampling area.  851 

Figure 3. Predicted mean regeneration (seedlings/hectare) for groves affected by the 2021 KNP-852 

Complex (i.e., Redwood Mountain, Suwanee, and New Oriole Lake groves) and 2020 SQF-853 

Complex fires (i.e., Board Camp). For each sampled grove, the probabilities of the true mean 854 

regeneration density (i.e., seedlings/ha) being larger than specified seedling counts are shown 855 

(see Table 1). Bayesian 90% credible intervals are highlighted in grey. 856 

Figure 4. Top panels: predicted mean regeneration (seedlings/hectare) for groves affected by the 857 

2021 KNP-Complex (i.e., Redwood Mountain, Suwanee, and New Oriole Lake) and the 2020 858 

SQF-Complex fires (i.e., Board Camp) as a function of RdNBR values (first row). Bottom 859 

panels: predicted mean regeneration densities (seedlings/ha) at specified RdNBR values (see 860 

Table 2).  861 

Figure 5. Neighborhood crown volumes (within 50 meters of plot center) of giant sequoia live, 862 

scorched, and torched foliage as a function of remote-sensed derived RdNBR values. Individual 863 

tree crown volumes were calculated using allometric equations derived from Sillett et al., 2019 864 

measurements (see Appendix S1: Equation S1) and calculated using observed crown proportion 865 

of live, scorch, and torch and location data from this study.  866 

Figure 6. Giant sequoia stem map and categorized RdNBR areas for surveyed groves – Board 867 

Camp, Redwood Mountain, Suwanee, and New Oriole Lake Groves, Sequoia and Kings Canyon 868 
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national parks, CA. Mapped giant sequoias are color coded by live/dead status: Black = live, 869 

white = dead (individual giant sequoia within Redwood Mountain not visualized due to grove 870 

size). Grove regions with RdNBR values > 800 are colored in red, with increasingly dark color 871 

tone with increasing RdNBR values. 872 

  873 
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Figure 3 879 
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Figure 4  881 
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Figure 5 883 
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TABLES 886 

Table 1. Mean regeneration densities and Bayesian probabilities of mean regeneration densities 887 

meeting (i.e, are greater than or equal to) the specified seedlings/hectare for each grove. See 888 

Methods – Statistical Analysis for details. Probabilities that are <10% are highlighted in grey.  889 

  Raw  

data 

Bayesian probabilities (italics) of mean regeneration densities 

meeting specified seedlings/hectare (bold) for each grove 

Fire/year Grove                                               Seedlings/hectare     

SQF 

2020 

  Mean 1000  2000  3000  4000  5000  6000  8000 10000 12000 

Board Camp   1611 87.7  41.6  18.5  9.8  5.7  3.4  1.5 0.8 0.5 

    8000  10000  12000  14000  16000  18000  20000 25000 30000 

KNP 

Complex 

2021 

Redwood Mountain*  10363 90.0  60.0  28.8  9.8  4.1  1.6  0.5 <0.1 0 

Suwanee 11435 92.0 72.2 47.3 27.8 15.6 8.6 5.0 1.4 0.5 

New Oriole Lake 16080 98.5 93.7 83.3 70.5 56.9 43.7 33.6 17.3 9.2 

* Redwood Mountain plot locations were restricted to areas of high burn severity (RdNBR >640) 890 

  891 
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Table 2. Bayesian probability estimates of mean regeneration densities as a function of RdNBR 892 

(relativized differenced normalized burn ratio; Miller & Thode, 2007). See Methods for details. 893 

Probability estimates represent the probability of meeting (greater than or equal to) the specified 894 

seedlings/hectare for a given RdNBR value. Probabilities that are <10% are highlighted in grey. 895 

  Bayesian probabilities (italics) of mean regeneration 

densities meeting specified seedlings/hectare (bold) as a 

function of RdNBR values 

Fire/year Grove  RdNBR  Seedlings/hectare  

 

 

 

SQF 

2020 

  

 

 

Board Camp 

(w/o outlier*)  

  

 
1000  2000  3000  4000  5000  6000  

800  45.8 14.9 6.8 3.7 2.1 1.5 

850  29.0  7.5 2.9 1.6 0.9 0.5 

900  17.4  4.2 1.7 0.8 0.5 0.2 

950  12.2 3.1 1.3 0.7 0.4 0.2 

1000  10.0 2.9  1.3 0.8 0.4 0.2 

1050  10.5 2.9 1.4 0.7 0.5 0.3 

1100 10.2  3.2 1.5 0.8 0.5 0.4 

   

  

Redwood 

Mountain - 

Suwanee - 

New Oriole Lake 

(combined**) 

 
8000  10000  12000  14000  16000  18000  

 

 

KNP 

Complex 

2021 

800 99.7 97.4 88.5 73.4 55.1 38.4 

850 99.4 94.7 80.6 59.2 39.1 24.5 

900 97.5 84.6 60.8 36.6 21.0 11.4 

950 90.5 64.2 35.9 17.9 8.2 3.8 

1000 74.5 38.2 16.3 6.0 2.3 0.9 

1050 45.7 15.6 4.7 1.3 0.4 0.1 

1100 17.0 3.6 0.8 0.2 <0.1 <0.1 

* Model estimates calculated with outlier removed. See Figure 5 for all data visualization. 896 
** Model estimates calculated within areas of high severity (RdNBR >640). 897 
  898 
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APPENDIX S1 899 

 900 

We used a negative binomial count model to calculate estimates of the relationship 901 

between diameter breast height (cm) and crown volume (m3) based on data published in Sillett et 902 

al., 2019 (Figure S1). The median estimate for the modeled relationship is described with the 903 

following: 904 

                                   log(y) = 6.953 + 0.00547*(diameter in centimeters)                               (S1) 905 

and was used as an allometric equation for estimating crown volumes for the giant sequoia 906 

assessed within our study. 907 

In addition, we calculated estimates of the relationships between regeneration density 908 

(seedlings/hectare) and neighborhood crown volume scorch (first row) and neighborhood crown 909 

volume scorch and RdNBR (second row), separating analyses by groves that were affected by 910 

different fires/years (column 1: KNP-complex [2021] affected Redwood Mountain, Suwanee, 911 

and New Oriole Lake groves); column 2: SQF-complex [2020] affected Board Camp grove) 912 

(Figure S2). Models were checked graphically for convergence and the Rhat (r̂) value was equal 913 

to 1. See Methods: Statistical Analysis for details.  914 

 915 

  916 

 917 

 918 

 919 
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 920 

Figure S1. Modeled relationship between giant sequoia (Sequoiadendron giganteum) diameter at 921 

breast height (cm) and crown volume (m3) based on data published in Sillett et al., 2019.  922 

 923 

 924 
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 925 

Figure S2. Visualizing the relationships between regeneration density (seedlings/hectare) and 926 

neighborhood crown volume scorch (top panel) and neighborhood crown volume scorch and 927 

RdNBR (bottom panel). Analyses are separated by groves that were affected by different 928 

fires/years (column 1: KNP-complex [2021] affected Redwood Mountain, Suwanee, and New 929 

Oriole Lake groves); column 2: SQF-complex [2020] affected Board Camp grove).  930 


