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Abstract

Natural and anthropogenic stressors alter the composition, biomass, and nutritional quality of primary

producers and microorganisms, the basal organisms that synthesise the biomolecules essential for

metazoan growth and survival (i.e. basal resources). Traditional biomarkers have provided valuable

insight into the spatiotemporal dynamics of basal resource use, but lack specificity in identifying multiple

basal organisms, can be confounded by environmental and physiological processes, and do not always

preserve in tissues over long timescales. Carbon stable isotope ratios of essential amino acids (δ13C-EAA)

show remarkable promise in identifying and distinguishing clades of basal organisms with unique

δ13C-EAA fingerprints that are independent of trophic processing and environmental variability, providing

unparalleled potential in their application. Understanding the biochemical processes that underpin

δ13C-AA data is crucial however for holistic and robust inferences in ecological applications. This

comprehensive methodological review conceptualises for the first time these mechanistic underpinnings

that drive δ13C-EAA fingerprints among basal organisms and incorporate δ13C values of non-essential

amino acids that are generally overlooked in ecological studies, despite the gain of metabolic

information. We conduct meta-analyses of published data to test hypothesised AA-specific isotope

fractionations among basal organism clades, demonstrating it is phenylalanine that separates vascular

plant δ13C-EAA fingerprints, which strongly covary with their phylogeny. We further explore the utility of

non-essential AAs in separating dietary protein sources of archaeological humans, showing the

differences in metabolic information contained within different NEAAs. By scrutinising the many

methodologies that are applied in the field, we highlight the absence of standardised analytical

protocols, particularly in sample pretreatments leading to biases; inappropriate use of statistical

methods; and reliance on unsuitable training data. To unlock the full potential of δ13C-EAA fingerprints,

we provide in-depth explanations on knowledge gaps, pitfalls, and optimal practices in this complex but

powerful approach for assessing ecosystem change across spatiotemporal scales.
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1. Introduction

Food webs are increasingly impacted by anthropogenic stressors such as accelerated climate change,

biodiversity loss, habitat destruction, and pollution (Hoegh-Guldberg and Bruno 2010, Blanchard et al.

2012, Kȩdra et al. 2015). These stressors can disrupt the natural processes and environmental cycles that

determine the timing, location, and magnitude of primary producer and microbe productivity

(Eker-Develi et al. 2006, Vining et al. 2022). Higher trophic-level organisms rely on suites of biomolecules

- referred to as basal resources - synthesised by primary producers and microbes (basal organisms).

Changes in the abundance and nutritional quality of basal organisms can therefore have far-reaching

implications for the dynamics, structure, functioning and stability of food webs (Nakazawa 2015,

Svanbäck et al. 2015, Kortsch et al. 2015). However, changes in basal organisms and the assimilation of

their basal resources by higher trophic levels occur over intricate spatiotemporal scales and on fine-scale

taxonomic levels (Raubenheimer et al. 2012, McMeans et al. 2015, Chidawanyika et al. 2019). A precise

and consistent approach to tracing the origin of basal resources in food webs therefore facilitates

assessing the vulnerability of species, food webs and entire ecosystems to environmental change

(Moloney et al. 2011).

Among the analytical approaches for tracing trophic transfers (e.g. gut content analysis, metabarcoding,

fatty acid profiling and stable isotope analyses), measuring carbon stable isotope compositions has

emerged as a standard approach for tracing the assimilation of basal organisms to higher trophic levels.

The relative abundance of heavy (13C) to light (12C) carbon isotopes, normalised to the international

standard (Vienna Pee Dee Belemnite, VPDB) and expressed as δ13C per mille (‰) values, are measured

within all carbon-containing biomolecules, i.e. bulk. The values of consumer tissues are then compared

to their potential basal resources. δ13C values are highly suited to trace basal resources because carbon is

abundant, ubiquitous, and δ13C values of basal resources are often habitat or taxon specific. However,

bulk δ13C values of basal resources can vary substantially with the environment (Peterson and Fry 1987,

Casey and Post 2011, Magozzi et al. 2017), which adds complexity to reconstructing basal resource use.

Moreover, bulk δ13C values, as only a single tracer, have a limited ability to distinguish between the

multitude of basal resources in a given ecosystem and contributions from microorganisms are frequently

underappreciated due to the logistical challenge of sampling them in situ (Casey and Post 2011).

To address the constraints of bulk tissue analysis, researchers increasingly analyse δ13C values of

individual biomolecules (Nielsen et al. 2017, Ruess and Müller-Navarra 2019). Basal organisms fix

external carbon to synthesise their own biomolecules. Following ingestion, digestion, and absorption,
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these biomolecules are assimilated into consumer tissues with minimal modification of their core

structure; catabolized for energy; or used in the synthesis of new biomolecules (Boecklen et al. 2011).

Individual fatty acids have proven valuable for tracing basal resources to consumers in modern food

webs (Burian et al. 2020). However, fatty acids are less suited for past basal resource use reconstructions

because of their low concentration and degradation in most structural tissues that persist in

palaeoecological records (Geigl et al. 2004). The δ13C values of the 20 proteinogenic amino acids (AAs)

show considerable promise to identify specific basal resources from primary producers and microbial

organisms. δ13C-AA values can trace their carbon transfer irrespective of environmental conditions

(Larsen et al. 2009, Elliott Smith et al. 2022, Vane et al. 2023), serving as powerful spatiotemporal tracers

of basal resource use. As AAs exhibit stable preservation in fossilised biogenic carbonates such as

dinosaur eggshells, coral skeletons, and fish otoliths or other preserved structural tissues (Abelson 1954,

Hare et al. 1991, Mora et al. 2018, Ma et al. 2021), δ13C-AA values allow for detailed retrospective

inferences of basal resource use by animals across contemporary, paleontological, and geological

records.

Animals can synthesise 11 of the 20 proteinogenic AAs de novo. The non-synthesizable AAs, or essential

amino acids (EAAs, Wu et al. 2014), must be acquired from the diet or supplemented from the gut

microflora. The contribution from gut microflora is thought to be minor for most healthy animals feeding

on nutritionally adequate diets (Fuller and Reeds, 1998). Since EAAs are routed directly from dietary

proteins, their tissue-diet δ13C offsets are negligible (McMahon et al. 2010, 2015b, Takizawa et al. 2017,

Wang et al. 2019a). EAAs have a powerful source diagnostic potential to trace basal resource transfer to

animal biomass as broad taxonomic groups such as algae, bacteria, fungi, and vascular plants each have

characteristic δ13C-EAA patterns: the relative differences in δ13C values between EAAs (Scott et al. 2006,

Larsen et al. 2013, 2015, Lynch et al. 2016, Elliott Smith et al. 2018, 2022, Stahl et al. 2023). Distinct

δ13C-EAA patterns among basal organisms that remain largely consistent across variable physiochemical

conditions and through time have been typically referred to as δ13C-EAA fingerprints (Larsen et al. 2009).

For the metazoan-synthesizable AAs, commonly termed the non-essential amino acids (NEAAs), animals

may rely both on dietary sources and de novo synthesis. However, most NEAAs can be considered

conditionally essential for metazoans, particularly during stages of rapid growth when the rate of

utilisation outpaces the rate of synthesis, constraining normal physiological and metabolic processes

without dietary supplementation (Wu 2009, Eisert 2011, Hou et al. 2015).
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Despite the increasing use of δ13C-AA values in archaeological and ecological food web studies,

appreciation of the mechanistic processes that underpin δ13C-AA values and the δ13C-EAA fingerprinting

approach is limited (Nielsen et al. 2017, Whiteman et al. 2019, Ruess and Müller-Navarra 2019, Yun et al.

2022). Moreover, the wide variety of analytical and statistical methodologies currently in use may be

inhibiting robust applications, and the complementary metabolic and nutritional information concealed

in consumer δ13C values of NEAAs is generally overlooked (δ13C-NEAA, McMahon et al. 2015b). To

progress the field and unlock the full potential of δ13C-AA data, a solid mechanistic understanding of the

underlying biochemistry is required, along with identifying pitfalls and establishing consistent

methodologies. This review provides the first comprehensive framework of the application of carbon

isotopes in AAs for inferring the origin and use of basal resources within food webs. By covering the full

process from biochemical mechanisms and sampling to analysis and interpretation, we identify potential

pitfalls and highlight areas for further investigation. We build a conceptual framework for understanding

the factors influencing δ13C-AA values and establish a standardised terminology in the field (see Table 1).

Postulating on the specific mechanisms that give rise to the discriminatory power of δ13C-EAA patterns,

we explore these hypotheses using a global data compilation. We expand our framework to incorporate

the additional complexities of NEAAs, and demonstrate how inclusion of δ13C-NEAA values can provide

additional insight into spatiotemporal resource use and individual metabolisms. Emphasising the

importance of accurate measurements, we highlight best practices within analytical protocols, and

address the critical issue of correctly applying mixing models for robust quantification of basal resource

use by consumers. With proper use of the wealth of information provided by δ13C-AA values, the specific

drivers of food web productivity and their spatiotemporal dynamics can be explored, providing a

powerful and currently unprecedented way to assess changing ecosystems.

Table 1. Glossary of terminology and associated quantitative measures used in carbon stable isotope

analysis of amino acids

Terminology Definition

Amino acids - Essential (EAA) Proteinogenic amino acids that cannot be synthesised de novo by
metazoans: histidine, isoleucine, leucine, lysine, methionine,
phenylalanine, threonine, tryptophan, and valine.

Amino acids - Non-essential (NEAA) Proteinogenic amino acids that can be synthesised de novo by
(most) metazoans: alanine, arginine, asparagine, aspartic acid,
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cysteine, glutamic acid, glutamine, glycine, proline, serine, and
tyrosine.

Auxotrophs Organisms that lack the capability to synthesise particular
biomolecules de novo (applied here specifically to EAA synthesis,
antonym of prototrophs).

Basal organisms Primary producers and microbes that synthesise suites of
biomolecules de novo from externally sourced (in)organic carbon
(prototrophs), considered to be the base of food webs.

Basal resources The suites of biomolecules (focusing on AAs in this review)
synthesised de novo by basal organisms and assimilated by
consumers for normal physiological functioning.

Basal resource use reconstruction Estimating the proportions of basal resources synthesised by
specific basal organism groups or clades that have been assimilated
into consumer tissues

Facultative EAA-prototrophs Organisms that can synthesise EAAs de novo, but have the capacity
to assimilate externally derived EAAs for normal metabolic
functioning.

Obligate EAA-prototrophs Autotrophs that solely synthesise the EAAs they need solely from
simple inorganic carbon sources fixed through photo- or
chemosynthesis.

Training data A compilation of δ13C-AA values, previously measured external to
the current study, used to characterise basal resources in a study
system.

Trophic Discrimination Factor (TDF) The isotopic offset between a consumer tissue and the assimilated
diet, capturing isotope fractionations due to metabolic processes.

Quantitative Terminology Definition

Acquired 13C-AA data Ratios of 13C to 12C in individual amino acids, uncorrected for
measurement biases and not standardised to VPDB.

Measured δ13C-AA values The VPDB standardised (δ) carbon stable isotope values of AAs,
corrected for measurement protocol biases, that are physically
quantified in a sample.

Baseline δ13C-AA values The measured δ13C values of AAs in basal organism tissues.

δ13C-AA pattern The relative offsets between individual δ13C-AA values within a
sample. For basal resource use reconstructions, typically only the
offsets between EAA are used (δ13C-EAA patterns).

δ13C-EAA fingerprint The minimum δ13C-EAA pattern space that is solely occupied by a
group or collection of similar basal organisms and encompasses the
intragroup variability in δ13C-EAA patterns expressed by those
organisms.
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2. Factors shaping amino acid δ13C values in basal organisms

A thorough knowledge of the metabolic pathways that shape intermolecular 13C distributions is essential

for understanding how and why δ13C-AA patterns in basal organisms vary across the diversity of life. The

rigorous application of δ13C-AA patterns therefore requires the development of a mechanistic

framework, which has so far been lacking (Hayes 2001). While variations between different biosynthetic

pathways have been acknowledged as a key driver in diverging δ13C-AA patterns among taxa (Larsen et

al. 2009), ecological applications of δ13C-AA patterns are still mostly driven by phenomenological

observations (e.g. Stahl et al. 2023). By conceptualising the processes that give rise to δ13C-AA values in

basal organisms, we highlight how specific mechanisms can dominate the relative δ13C offsets of certain

AAs, underpinning the distinction of δ13C-AA patterns between taxa. Explicit definitions for δ13C-AA

terminology are proposed to establish an unambiguous basis for subsequent discussions and

interpretations. By establishing this foundation, we lay the groundwork for further developing the

applications of δ13C-AA in ecological research.

2.1. Conceptualising amino acid δ13C values in basal organisms

Basal organisms are those that can synthesise basal resources de novo, here specifically considered the

full suite of 20 proteinogenic AAs. The ability to synthesise particular biomolecules, such as AAs, is

termed prototrophy (the inability being auxotrophy). The majority of basal organisms, the AA

prototrophs, are autotrophic, relying on photo- or chemosynthesis to fix inorganic carbon for the

synthesis of all their biomolecules, including AAs. However, some basal organisms such as fungi and

bacteria are heterotrophic and obtain organic carbon for both chemical energy and de novo synthesis of

biomolecules. The pathways from external sources of (in)organic carbon to intracellular AA synthesis can

be generalised into two broad categories. The first is the collection of processes involved in the uptake

and conversion of external carbon to internal pools of common precursor molecules, which we refer to

as carbon acquisition. The second is the biochemical reactions that synthesise the specific AAs from

these precursors (Figure 1). Mass-dependent kinetic isotope fractionations associated with these

biosynthetic pathways result in stepwise changes in relative isotopic ratios as either lighter or heavier

carbon atoms diffuse passively, are actively transported, or react in anabolic and catabolic processes at

different rates (Figure 2, Hayes 2001, Fry 2006). The carbon isotope composition of basal resources



9

therefore reflects the summation of all stepwise fractionations from the isotopic composition of the

initial carbon pool to the synthesis of AAs.

Synthesis pathways among AAs are unique, and therefore comprise different summations of kinetic

isotope fractionations (Appendix S1: figures S1a,b). This contrasts with carbon acquisition where total

isotopic fractionation will be reflected relatively equally across AAs due to common pools of precursor

molecules. Basal organisms use various sources of external carbon that have inherent carbon isotope

compositions. Rates of diffusion, transport, and chemical reactions depend on various environmental

factors that cause isotopic fractionation during carbon acquisition. The isotopic composition of external

carbon also depends on various kinetic processes, and therefore will also vary with environmental

conditions. Taken together, the δ13C value of an AA in a basal organism can be broadly formulated as:

δ13𝐶
𝐴𝐴

 ∼ δ13𝐶
𝐸𝑥𝑡.

+ 𝐸𝑛𝑣. × 𝐸𝑥𝑡. + 𝐴𝑐𝑞. + 𝐸𝑛𝑣. × 𝐴𝑐𝑞. + 𝑆𝑦𝑛𝑡ℎ
𝐴𝐴

                                                             [1]

Where δ13CAA is given by the δ13C value of the external carbon, Ext.; plus any modifications to this value

due to environmental effects, Env., dependent on the nature of the external carbon; plus the summed

fractionations associated with carbon acquisition, Acq.; plus any modifications due to environmental

effects on the physiology associated with carbon acquisition fractionation; plus the summed

fractionation associated with synthesis pathway, Synth., which is AA specific (visualised in Figure 1).

Environmental gradients can modify the specific fractionations associated with each AA synthesis

pathway, however these differences will likely be very small compared to the overall average effect of

the environment on physiology and therefore carbon acquisition (Stahl et al. 2023, Larsen et al. 2015,

Figure 3a,b). From [1], the measured δ13C values of AAs in basal organisms therefore depend on the

carbon source, the environment and phylogeny (via their fixation and synthesis pathways). This aligns

with the concept of multiple isotopic baselines in bulk stable isotope approaches that characterise the

base of the food web contextualised with in situ environmental conditions for different production

sources (e.g. Docmac et al. 2017, Søreide et al. 2006). We therefore define measured δ13C-AA values in

basal organisms as baseline δ13C-AA values (Figure 3a).

If we consider the isotopic fractionations of AA biosynthesis as relative differences (i.e. SynthAA averages

to zero) then they can be regarded as a relative ordination centred on their mean value. We denote this

relative ordination of SynthAA specifically as (1|AA) in Figure 1. Conceptually, this means that any
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non-zero average fractionation across AA biosynthesis pathways will be incorporated as part of the

acquisition term, but has the advantage that the collection of AA biosynthesis fractionations can be

considered as a relative ordination that is imposed onto the average baseline bulk (protein) δ13C value of

the basal organism:

[2]𝐴𝑣𝑒𝑟𝑎𝑔𝑒 δ13𝐶
𝐴𝐴

 =  1
𝑛

𝑖=1

𝑛

∑  δ13𝐶
𝐴𝐴

∼  δ13𝐶
𝐸𝑥𝑡.

+ 𝐸𝑛𝑣. × 𝐸𝑥𝑡. + 𝐴𝑐𝑞. + 𝐸𝑛𝑣. × 𝐴𝑐𝑞.

where n is the number of AAs. It follows that the ordination can be determined as:

1|𝐴𝐴( ) =  𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 δ13𝐶
𝐴𝐴

 −  𝐴𝑣𝑒𝑟𝑎𝑔𝑒 δ13𝐶
𝐴𝐴

 =   δ13𝐶
𝐴𝐴

 −  1
𝑛

𝑖=1

𝑛

∑  δ13𝐶
𝐴𝐴

                                      [3] 

The relative offset for each AA is simply the individual baseline δ13C-AA value minus the mean-centred

δ13C-AA value of the basal organism (the non-weighted, within-sample average δ13C-AA value), which we

define as the δ13C-AA pattern (Figure 3b). Expressing δ13C-AA patterns via mean-centring is the standard

approach first introduced by Larsen et al. (2009, denoted as δ13CN). However, an important constraint is

that changes in the combination of AAs results in changes in the absolute offsets in the expressed

δ13C-AA pattern, although not the pairwise AA differences.
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Figure 1. Schematic representation of the sources, processes, and environmental effects that contribute to the δ13C

values of synthesised AAs (basal resources) in two prototrophs - a heterotrophic prokaryote and a photosynthetic

eukaryote. Within the eukaryotic cell, membrane bound organelles are signified by rectangles with dashed lines:

mitochondria (red), and plastids (green) including the chloroplast. Metabolic pathways are based on Chen et al.

(2018), and Gupta and Gupta (2021). Detailed metabolic networks are provided in Appendix S1: figures S1a,b.

Abbreviations: Ala, alanine; Asn, asparagine; Asp, Asparagine; CBB, Calvin-Benson-Bassham; Cys, cysteine; F6P,

Fructose-6 phosphate; G6P, Glucose-6 phosphate; Gly, glycine; Gln, glutamine; Glu, glutamic acid; His, histidine; Ile,

isoleucine; Leu, leucine, Lys, lysine; Met, methionine; Phe, phenylalanine; Pro, proline; Ser, serine; TCA,

Tricarboxylic acid; Trp, tryptophan; Tyr, tyrosine; Val, valine. The illustration was created with BioRender.com.



12

2.2. Isotope fractionations in metabolic networks

While many processes affect measured δ13C-AA values in basal resources, differences in the δ13C-AA

patterns among basal organisms should conceptually arise solely from variations in summed stepwise

isotope fractionations associated with the AA biosynthesis pathways (Figure 1). Figure 2 shows a simple

hypothetical biochemical network, emphasising some of the diverse processes that transpire during

biosynthesis. δ13C values of synthesised biomolecules are underpinned by two factors: the kinetic

isotopic effect of the step processes, and the relative flow rates of reactant replenishments and product

removals (Hayes 2001). Consequently, three distinct mechanisms can alter δ13C-AA offsets and hence the

δ13C-AA patterns in basal organisms: distinct biosynthesis pathways for the same AA; different

modulating enzymes for individual steps within AA pathways; and different flows of pathway reactants

and products, including the synthesised AA product.

For many AAs, multiple synthesis pathways exist across different basal organism taxa. As different

synthesis pathways comprise different steps (e.g. the synthesis of E from B with either C or D as an

intermediate in Figure 2), they result in different δ13C offsets for their respective AAs across taxa. A

notable example are the three aromatic AAs that are synthesised from the shikimate pathway using the

chorismate precursor (Figure 1). Two pathways exist for phenylalanine that differ in the final two

reaction steps. Fungi and bacteria use phenylpyruvate as an intermediate that is converted to

phenylalanine via the transfer of an amine group. In contrast, plants and algae first synthesise the

non-proteinogenic AA arogenate, then modify the side chain to produce phenylalanine. Tyrosine follows

a similar path, with plants and algae using arogenate as an intermediate while bacteria and fungi form

tyrosine from hydroxy-phenylpyruvate. The third AA synthesised from chorismate is tryptophan, a

biochemically complex and expensive pathway that has been evolutionary conserved, involving

homologous reaction steps across the three domains of life (KEGG PATHWAY 2013). Among the aromatic

AAs, it is expected that phenylalanine and tyrosine δ13C offsets in plants and algae may differ from

bacteria and fungi, but not for tryptophan. For biochemically simple AAs such as lysine, separate

anabolic synthesis routes exist: the diaminopimelic acid pathway is used predominantly by algae and

plants, while the α-aminoadipic acid pathway is predominantly used by fungi, with bacteria and archaea

utilising both pathways (Velasco et al. 2002). Within these two broad routes, six major pathways have

emerged among different taxa, giving lysine a particularly high diagnostic potential in δ13C-AA offsets

(Larsen et al. 2009).
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Within seemingly identical biosynthesis pathways, individual steps can be modulated by different

enzymes (enzyme-A vs enzyme-B in Figure 2). Differing enzyme structures and catalytic efficiencies may

cause variations in the kinetic isotopic effects during individual steps of biosynthetic pathways. A prime

example of enzymatic fractionation differences occurs in Rubisco, the enzyme that fixes CO2 in the

Calvin-Benson-Bassham cycle (but is not involved in AA synthesis, Figure 1). Plant and algae Rubisco

(form I) has a larger fractionation (~30‰) than prokaryotic Rubisco (form II; ~22‰, Guy et al. 1993,

Hayes 2001). Across the AA synthesis pathways, diverse classes of enzymes may be used that are general

or reactant-specific, and therefore vary in their isotopic fractionations, contributing to distinct δ13C-AA

patterns among basal organisms. However, 13C kinetic isotope fractionation primarily occurs when the

rate limitation of the catalysing enzyme consists of bond cleaving, formation, or transfers involving

carbon atoms. Consequently, not all catalysed processes will result in an observable 13C fractionation

even if the overall reaction step involves the breaking or formation of carbon-linked bonds. For example,

the synthesis of glutamine from glutamate, a process where an amine group is bound to the end carbon

atom of the glutamate side chain, does not result in 13C fractionation. This is because the rate limitation

occurs during the amine-deprotonation and release of glutamine from the catalysing enzyme, which

involves only nitrogen and hydrogen atoms (Mauve et al. 2016). To accurately predict potential

differences in fractionation rates for specific pathway steps, detailed information about reaction kinetics

is required.

As AA biosynthesis pathways are embedded within larger interconnected metabolic networks,

differences in the upstream supply of reactants and downstream demands of products can result in

asynchronous flow rates between pathway steps. This could lead to differential isotope fractionation if

flow rate differences are substantial. One key mechanism underpinning flow rates is intracellular

compartmentalisation (e.g. the movements of A1, E1 and E2 in Figure 2), with prokaryotes carrying out AA

synthesis in the cytoplasm, whereas eukaryotes additionally synthesise AAs in organelles - involving the

active movement of molecules across intracellular membranes. Clade-specific demands for

proteinogenic AAs as precursors for secondary metabolites, energy-yielding substrates, and metabolic

donors (Appendix S1: figure S1a,b,c) may influence flow rates (e.g the downstream branching of E3 in

Figure 2: increasing demand for F1 will reduce the flow rate to E4). In higher plants, the synthesis of

alkaloid compounds relies on several nitrogenous precursors such as phenylalanine, lysine, and histidine

(Aniszewski 2007). In comparison, algae have very low concentrations of alkaloids and therefore lack this

downstream AA demand (Güven et al. 2010). Similarly, the biosynthesis of phenylpropanoids, the

backbone of lignin in vascular plants, uses phenylalanine as a precursor (Vanholme et al. 2010). If such
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supply and demand flows of AAs are substantial, lineage specific, and consistent then systematic

differences in δ13C-AA patterns emerge.

Differences in the synthesis pathways, modulating enzymes, and flow rates between basal organisms

that result in distinct δ13C-AA patterns are likely expressed at different taxonomic levels. AA synthesis

pathways primarily vary among the broadest taxonomic levels due to the extensive suites of functional

genes required. The major eukaryotic clades of plants, algae and fungi typically only possess a single

synthesis pathway for each AA, with plants and algae often sharing the same pathway. In contrast,

multiple pathways for some AAs are found within bacteria (e.g. 5 of the 6 lysine synthesis pathways) and

to a lesser extent Archaea, following their greater genetic diversity. It therefore can be expected that the

prokaryotic clades express greater variability in their δ13C-AA patterns compared to eukaryotes. Variation

in genetically encoded enzyme structures can occur at lower levels of phylogeny, as they constitute more

limited genetic differences. Enzyme mediated fractionations of 13C can vary substantially (Hayes 2001),

but this variation depends on whether the rate limitation of the specific reaction being mediated

involves carbon atoms (Mauve et al. 2016). Therefore, differences in enzymes may not always result in

δ13C-AA pattern differences between taxa. Differential flow rates in AA biosynthesis pathways are the

most flexible mechanism through which isotope fractionations may differ, as they can be altered by

regulating gene expression (e.g. increasing the number of transmembrane protein channels), and may

occur across the different levels of phylogeny. Substantial demands for AAs to synthesise secondary

metabolites that constitute significant proportions of organismal biomass may dominate trends in

δ13C-AA patterns between phenotypes. Therefore, there is significant potential for δ13C-AA patterns to be

diagnostic of the origin of basal resources from broad to fine levels of phylogeny in basal organisms.
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Figure 2. A simple, hypothetical biochemical network within a eukaryotic cell, highlighting different processes that

lead to isotopic differences in synthesised biomolecules. Focal compounds are denoted by capital letters with

numerical subscripts distinguishing between different pools that may differ in isotopic composition. Secondary

compounds are denoted as Rn in grey. Arrows denote the flow of a compound from one pool to another, with solid

arrows indicating a chemical reaction and dashed arrows a movement of molecules. This illustration was created

with BioRender.com.

3. Discriminating basal resources with δ13C-EAA fingerprints

Although all AAs and their δ13C values can be used to distinguish between basal resources, the nine

canonical EAAs are the most valuable indicators when reconstructing basal resource use in consumers.

The stability of δ13C-EAA values during trophic transfer due to the direct routing of EAAs means that their

relative offsets, and hence the δ13C-EAA patterns of basal resources, the EAA subset of the δ13C-AA

patterns, are also preserved (McMahon et al. 2010, 2015b, Liu et al. 2018, Wang et al. 2019a). Published

δ13C-EAA patterns have already shown the unique ability to discriminate groups of basal organisms, yet

offer limited understanding of the underlying processes and potential taxonomic specificity. To develop

this understanding, we build upon our mechanistic framework laid out in section 2 by compiling and

exploring published δ13C-EAA values of basal organisms at varying levels of phylogeny. We discuss the

potential for direct assimilation of EAAs from the environment by some basal organisms. Based on these

mechanistic considerations, we refine the definition of δ13C-EAA fingerprints and outline their optimal

characterisation.
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Figure 3. The progression from baseline δ13C-EAA values (A) to δ13C-EAA patterns (B) to δ13C-EAA fingerprints (C). A
- The measured δ13C values of six EAAs in the marine diatom Thalassiosira weissflogii, cultured under different
conditions, show how different environmental conditions influence baseline δ13C-EAA values : a) 27°C, b) 18°C, c)
High pH, d) Control, e) UV filter, f) No UV filter, g) Low irradiance, h) High irradiance, i) Low pH, j) Low salinity (mean
and standard deviation for each EAA across treatments given on the right, data from Larsen et al. 2015). B - By
mean-centring the baseline δ13C values within samples, the consistency in δ13C-EAA patterns of T. weissflogii across
environments becomes apparent. C - Comparing the δ13C-EAA patterns of different basal resource groups
determines whether the δ13C-EAA patterns constitute δ13C-EAA fingerprints within a study system (illustrated with
3 EAAs). A basal resource group has a δ13C-EAA fingerprint when that group solely occupies its δ13C-EAA pattern
space, e.g. groups 1 and 2. The specificity of the δ13C-EAA fingerprint can be high if subgroups of the basal resource
(illustrated by branches) occupy unique subspaces within their overall fingerprint, ca. group 1 with group 2.
δ13C-EAA patterns are not considered δ13C-EAA fingerprints if different basal resource groups exhibit overlap in
δ13C-EAA pattern space, e.g. groups 3 and 4.

3.1. The diagnostic potential of δ13C-EAA patterns among basal resources

Five EAAs typically reported across studies are leucine, isoleucine, phenylalanine, threonine and valine.

Of these five, all except phenylalanine share a common biosynthesis pathway across the domains of life:

phenylalanine has two common pathways that are split between plants and algae, and bacteria and

fungi (section 2.2, Appendix S1: figure S1a,b). Although some bacteria and plants can use alternative

isoleucine synthesis pathways (Sugimoto et al. 2021), the rarity of these pathways is unlikely to cause
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divergence in clade specific isoleucine δ13C offsets. Bacteria in general exhibit significant metabolic

redundancy and flexibility in synthesising EAAs (Cotton et al. 2020), but it is difficult to predict how this

influences δ13C-EAA patterns. Based on biosynthesis pathways, phenylalanine emerges as the most likely

candidate to cause consistent divergence in δ13C-EAA patterns between plants and algae, and bacteria

and fungi. In terms of differential flow rates influencing δ13C-EAA patterns, there are two systematic

differences between broad basal organism groups. The first is intracellular compartmentalisation within

eukaryotes that affects the synthesis pathways of the five EAAs (Figure 1), potentially separating bacteria

δ13C-EAA patterns. The second are differences in downstream demands for secondary metabolites. The

synthesis and incorporation of lignin into vascular plant cell walls uses phenylalanine as a monomer

precursor (Vanholme et al. 2010) and therefore may influence plant δ13C-EAA patterns. As lignin is

relatively deplete in 13C compared to other major biomolecules in plant tissues (Benner et al. 1987), its

synthesis should result in an enriched 13C pool of phenylalanine for proteins. In contrast, the cell walls of

other major basal organism taxa do not require significant amounts of the five EAAs (Kottom et al. 2017,

Domozych 2019, van Heijenoort 2001). Taken together, the unique biosynthesis pathways of

phenylalanine, along with the distinct characteristics of intracellular compartmentalization and

downstream demands for secondary metabolites, highlight the complexity of δ13C-EAA patterns across

various life domains. Phenylalanine's divergent synthesis between plants, algae, bacteria, and fungi,

combined with its utilisation in cell wall structures, makes it a central candidate in understanding and

differentiating δ13C-EAA patterns within these groups.

To test the mechanistic expectation of phenylalanine, and explore other lineage specific δ13C-EAA

patterns, we compiled and analysed data of 680 samples from 20 ecological and archaeological studies

(Figure 4, Appendix S2). We applied linear discriminant analysis (LDA), which separates groups by

maximising the differences between groups while minimising within-group variability, providing EAA

specific weightings for group separation. To quantify the degree of group separation, we calculated

pairwise Bhattacharya coefficients (BCs, Bhattacharyya 1946) on the LDA transformed data. BCs are a

general measure of similarity between two multivariate distributions, with 0 indicating no overlap and 1

indicating identical distributions. We observe that plant δ13C-EAA patterns diverge from the other major

basal resource groups, including algae (median overlap of 0.53, Figure 4a), due to increased

phenylalanine δ13C offsets. Bacterial δ13C-EAA patterns also separate from other basal resource groups,

predominantly due to leucine (median overlap with plants of 0.23), while valine δ13C offsets cause some

divergence of fungi. Threonine δ13C offsets contribute little to between basal resource group separation

(Figure 4).
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While algae δ13C-EAA patterns express considerable variation, substructuring can be observed among the

three clades of macroalgae. Brown (Phaeophyta) and red macroalgae (Rhodophyta) δ13C-EAA patterns

appear to separate (median overlap 0.35), but green macroalgae (Chlorophyta) occupy the overlapping

δ13C-EAA pattern space in between. Comparing macroalgae against seagrasses, the only marine vascular

plants, shows that within the same biome, plant-algae separation is still driven by enriched

phenylalanine δ13C offsets. This is similarly the case when contrasting seagrasses with microalgae

(Appendix S2: Figure S2b), where the δ13C-EAA patterns of phytoplankton diverge between freshwater

and marine biomes (median overlap of 0.33). Terrestrial plant δ13C-EAA patterns do not discriminate on

their C3 or C4 photosynthetic carbon fixation systems (median overlap of 0.91, Figure 4c). However,

limited observations suggest separation for CAM plants, here solely represented by two cacti species

from a single study (median overlaps of 0.32 and 0.25 with C3 and C4 plants respectively, Figure 4c). This

is unexpected as CAM physiology affects fractionation during carbon acquisition, and therefore should

only influence the baseline δ13C-EAA values (section 2). Some individual C3 plants express similar

δ13C-EAA patterns to CAM plants (Figure 4c). We explored substructuring of δ13C-EAA patterns within

terrestrial plants using multivariate Bayesian mixed models, as their phylogenetic diversity was well

represented (212 samples across 18 families, Figure 4d, Appendix S3). Approximately half (36-66%) of

the variation in δ13C-EAA patterns in terrestrial plants can be attributed to phylogeny. The cacti CAM

plants closely align with two other arid adapted C3 plant families, Agavoideae and Zygophyllaceae, driven

by increasing isoleucine but decreasing leucine δ13C offsets (Figure 4d). Despite phenylalanine separating

plants from other basal organism groups, phenylalanine along with valine contribute little to δ13C-EAA

pattern substructuring within plants. The contrast between valine and isoleucine is noteworthy as they

have parallel synthesis pathways and therefore observed differences cannot be due to separate reactions

or enzymes.

Taken together, we deduce that δ13C-EAA patterns are predominantly driven by differences in flow rates

of EAAs, particularly for substantial and continuous downstream demands as precursors for biopolymers.

Despite sharing the same biosynthesis pathway, plants and algae separate based on phenylalanine δ13C

offsets, with plant phenylalanine being comparatively enriched in 13C (Figure 4a), even among finer

comparisons between sympatric plant and algal clades (Figure 4b, Appendix S2: figure S2b).

Phenylalanine contributed little to δ13C-EAA pattern variability within vascular plant phylogeny, which is

consistent with the ubiquity of lignin synthesis in this group. The observation that δ13C-EAA pattern

distinctions can be observed not only with phylogeny, but also by ecosystems such as marine versus

freshwater algae (Appendix S2: figure S2b) and similarities between arid climate adapted plants (Figure
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4d), further highlights how consistent phenotypic expressions may contribute to δ13C-EAA pattern

variation. Several other studies have observed δ13C-EAA pattern distinctions between organs of

individual plants, i.e. roots, seeds, and leaves (Lynch et al. 2011, Larsen et al. 2016b, Jarman et al. 2017),

demonstrating that structural differences can underpin δ13C-EAA patterns within the same individual.

Figure 4. Linear discriminant (LD) analysis of mean-centred δ13C-EAA values compiled from the literature (see
Appendix S2). Upper subplot panel: LD scores for individual samples, with distinct symbols denoting each group.
Lower subplot panel: posterior distributions of group pair overlaps, quantified by the Bhattacharyya coefficients
(BC, see Appendix S2), indicating the probability density of degree of overlap in LD scores between groups (0 = no
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overlap, 1 = identical distributions). EAAs considered: leucine (Leu), isoleucine (Ile), valine (Val), threonine (Thr),
and phenylalanine (Phe). Each subplot features the following taxa: A) Heterotrophic bacteria, plants, and
phytoplankton; B) Brown macroalgae, red macroalgae, green macroalgae (represented by Ulva sp.), and seagrasses;
C) C3 plants, C4 plants, and CAM plants, containing the two cacti species Cylindropuntia sp. and Opuntia sp. For
visual clarity, LD weighting coefficients for each EAA were multiplied by 8. D) Modelled mean-centred δ13C-EAA
values (δ13C-EAA patterns) of vascular plants, showing the global average values (right hand panel) and individual
EAA offsets, Δδ13C among the 18 taxonomic (sub)families in the vascular plant dataset. Phylogenetic topology is
plotted on the left hand side. Circles indicate median posterior values, thick bars denote the 50% credible intervals
(CIs) and thin bars the 95% CIs. Average mean-centred δ13C CIs for phenylalanine and valine fall within the median
circles.

3.2. Considerations for the δ13C-EAA patterns of facultative prototrophs

Until now, we presumed that the EAAs that define a basal organism’s δ13C-EAA pattern are exclusively

the result of de novo synthesis. This is true for strictly autotrophic organisms, as they are obligate

EAA-prototrophs. However, basal organisms with the capacity to take up external sources of organic

carbon, i.e. heterotrophy, have the potential to directly assimilate external AAs into their tissues, termed

facultative AA-prototrophy. This is not only limited to heterotrophic bacteria and fungi, but also includes

mixotrophic basal organisms that can both fix inorganic carbon and acquire external organic carbon.

Many algal protists, free-living protozoa and greens plants may be classed as mixotrophs (Matantseva

and Skarlato 2013, Selosse and Roy 2009). If facultative EAA-prototrophs incorporate substantial

amounts of externally derived EAAs, then their in situ δ13C-EAA patterns will not wholly reflect the

carbon fractionation among EAAs of their de novo synthesis. This affects the accuracy of δ13C-EAA

pattern applications tracing the origin of basal resources (Arsenault et al. 2022a), and therefore requires

knowledge on the occurrence, degree, and flexibility of facultative prototrophy in different basal

resource groups.

Assimilating AAs opportunistically from the external environment is energetically efficient compared to

synthesising them de novo (Morrissey et al. 2023), however basal organisms must have the necessary

membrane proteins that are energetically expensive to synthesise and maintain. The capacity for AA

assimilation across heterotrophic bacteria is common but phylogenetically constrained, implying genetic

and phenotypic prerequisites for AA membrane transport proteins (Dang et al. 2022). The energetic cost

of AA biosynthesis is a considerable evolutionary selection pressure for bacteria (Heizer et al. 2006,

D’Souza et al. 2014), suggesting that demand for external AAs will be substantial and highly competitive.

Functional specialisation within soil microbial communities is apparent (Morrissey et al. 2023), with

some bacteria being auxotrophic (Table 1), having lost their biosynthesis capacity for certain AAs and

becoming metabolically dependent on external AA sources (Heizer et al. 2006, D’Souza et al. 2014).
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Conversely, saprotrophic bacteria that undertake biochemical decomposition of complex polymers do

not assimilate appreciable amounts of simple organic carbon compounds including AAs (Dang et al.

2021). Various AA transport proteins occur in fungi (Bianchi et al. 2019), however saprotrophic fungi are

likewise specialised in breaking down and assimilating large insoluble polymers through exoenzyme

secretion (Algora Gallardo et al. 2021, Batista García et al. 2016, Ruiz-Dueñas et al. 2021). This contrasts

with root-associated mycorrhizal fungi that rely on simple carbon compounds from plants, but observed

two-way carbon exchanges imply mixotrophy may occur in fungi-hosting vascular plants (Bolin et al.

2017, Selosse et al. 2016, Firmin et al. 2022), beyond the limited cases of carnivory and hemi-parasitism

(Giesemann and Gebauer 2022, Selosse and Roy 2009). AA membrane transport proteins have been

characterised in several species of plant roots, the prerequisite for direct uptake of external AAs

(Näsholm et al. 2009, Moe 2013). Although mixotrophic protists that phagocytose prey have long been

recognised (Jones 2000, Sanders 1991), uptake of external carbon in the form of simple dissolved

compounds, including AAs, has also been observed to occur in more traditionally viewed autotrophic

microalgal species such as diatoms (e.g. Rivkin and Putt 1987, Tuchman et al. 2006). The potential for

uptake of external biomolecules in these algae and plants likely evolved as an adaptation to nutrient rich

but light-limited, and therefore carbon limited, environments (Selosse et al. 2017).

Examples of facultative prototrophy may therefore be found across basal organism groups. However, the

uptake of external AAs alone may not result in significant AA assimilation into tissues if the external AAs

are preferentially used for other metabolic purposes, or only occurs under certain physiological

conditions. In diatoms, external AA uptake has been observed when cultivated under dark conditions but

occurs with simultaneous increases in oxidation rates, implying external AAs are used to fuel respiration

(Tuchman et al. 2006). Antarctic diatoms can incorporate the carbon of external AAs into their proteins

(Rivkin and Putt 1987), suggesting AA uptake in algae occurs as a physiological response to carbon

limitation when photosynthesis is restricted due to prolonged dark periods. Culturing fungi under very

high AA concentrations led to changes in δ13C-AA patterns, implying incorporation of external AAs

(Arsenault et al. 2022a). Labelling experiments demonstrate however that uptake of external AAs occurs

during exponential but not stationary growth phases in fungi (Martin-Perez and Villén 2015). For

bacteria, specialised adaptations suggest that external AAs will benefit only those species that readily

utilise labile dissolved organic carbon (Morrissey et al. 2023, Dang et al. 2022). Dissolved AAs in soils and

aquatic environments typically occur in low concentrations of 0.01-50 µM and 1-10 µM respectively

(Lytle and Perdue 1981, Kielland 1994, cf. 130-840 µM in “low” AA concentration treatment in Arsenault
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et al. 2022a). This suggests that under most conditions facultative prototrophs do not assimilate enough

external EAAs into their tissues to substantially alter their δ13C-EAA patterns.

While some specific environments may induce high external AA uptake in some basal organisms, the

evidence suggests that this is not a common occurrence. Reflecting on our compiled δ13C-EAA data, we

can exclude the influence of external EAAs influencing δ13C-EAA patterns de facto as bacteria, fungi and

microalgae are predominantly cultured in AA-free media. This ensures that measured EAAs are derived

from the organisms' biosynthetic pathways and not from the culturing substrate (Larsen et al. 2009), and

therefore can be applied for determining basal resource origin. It should be acknowledged that culture

media cannot mimic the complex natural growth environments experienced in situ, especially for

saprotrophic organisms. However, carefully designed cultivation experiments comparing δ13C-EAA

patterns between EAA-free and isotopically labelled EAA media under natural growth conditions could

provide insights into the metabolic dependencies of facultative EAA-prototrophs on external EAAs.

3.3. From δ13C-EAA patterns to fingerprints

The variety of phylogenetic and ecological factors that influence δ13C-EAA patterns prompts the question

how to define the δ13C-EAA fingerprint for a given basal resource. The concept of a "fingerprint" for

δ13C-EAA patterns, as introduced by Larsen et al. (2009) to differentiate between bacterial, fungal, and

plant EAA biosynthesis, has since been applied to a wider range of contexts (e.g. Larsen et al. 2012,

Arthur et al. 2014, Yun et al. 2022). The notable lack of a formal definition of a δ13C-EAA fingerprint likely

contributed to variations in the construction and interpretation of “δ13C-EAA fingerprints”, such as the

use of measured rather than mean-centred δ13C-EAA values (e.g. Besser et al. 2022), or referring to

consumer δ13C-EAA patterns as “fingerprints” (e.g. McMahon and Newsome 2019). Reflecting on the

original purpose of δ13C-EAA fingerprints, which was to trace the contribution of different basal

resources to consumer tissue proteins (Larsen et al. 2009), we explicitly define a “δ13C-EAA fingerprint”

as:

“the minimum δ13C-EAA pattern space that is solely occupied by a group or collection of similar basal

organisms and encompasses the intragroup variability in δ13C-EAA patterns expressed by those

organisms.”
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Here, the ‘uniqueness’ characteristic of a δ13C-EAA fingerprint is qualified by sole occupancy of a basal

organism group in δ13C-EAA pattern space. By limiting it to the minimum occupied space, arbitrary

overlaps between basal resources can be excluded. However, the sole occupancy of δ13C-EAA pattern

space is comparative, and therefore depends on the presence or absence of other basal organisms in an

ecosystem (shown in Figure 3c, basal resource groups 3 & 4) or its relevance to the consumer (section

4.1). A priori understanding of a consumer’s ecology and its ecosystem underpins which basal resource

δ13C-EAA patterns will be defined as δ13C-EAA fingerprints. Therefore, δ13C-EAA fingerprints will be study

and context specific, and may change between studies that include the same basal organisms.

To define groups of similar basal organisms, a flexible framework is needed to accommodate the variety

of studies using δ13C-EAA fingerprints. Phylogenetically closer organisms are expected to express more

similar δ13C-EAA patterns due to genetic constraints associated with AA biosynthesis, as we observed in

broad basal resource groups (Figure 4a,b). Yet, adaptations to particular environments can lead to similar

δ13C-EAA patterns among phylogenetically distant groups, such as arid adapted plants (Figure 4d).

Variation in δ13C-EAA patterns occurs across varying levels of phylogeny, and can be driven by different

EAAs (section 3.1, Figure 3a,b and 4d, Appendix S3: figure S3a). These observations suggest that

δ13C-EAA patterns have the potential to express higher specificity than is acknowledged in the literature,

where broad basal resource groups are characterised (Arthur et al. 2014, Ayayee et al. 2015, McMahon

et al. 2015a, Rowe et al. 2019, Macartney et al. 2020, Wall et al. 2021, Arsenault et al. 2022b, Stubbs et

al. 2022). Valuable phenomenological insights have been provided over the past decade, however, we

propose the development of a framework focused on the metabolic functioning of basal organisms

(section 2) to facilitate predictions of δ13C-EAA pattern distinctions across clades and environments to

complement the current in situ measurements on a study by study basis.

3.4. Optimal characterisation of δ13C-EAA fingerprints

Defining δ13C-EAA fingerprints requires a conscientious approach in basal organism sampling and

analysis. The characterisation of δ13C-EAA fingerprints involves the accurate representation of a

particular basal organism group in an ecosystem, its natural variation, and its relevance to the studied

consumer. For optimally characterising δ13C-EAA fingerprints, the following considerations are important:

● Basal organism samples should accurately represent the taxonomic group under investigation in

the studied ecosystem. This precludes composite samples such as particulate organic matter
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filtrates, microalgal and bacterial mats, or partially degraded materials (detritus) that are

contaminated with faeces, degraded organic matter, bacteria etc. Further, composites average

over a diversity of species, preventing specific characterisation.

● Tissue samples of specialist primary consumers (e.g. zooplankton or herbivorous fishes) are

often used as a surrogate for specific basal resource δ13C-EAA fingerprints (e.g. Skinner et al.

2021). However, sole dependency of a primary consumer on one specific basal resource is

unlikely due to incidental EAA assimilation from other sources (e.g. functionally similar basal

resources, detritus, associated bacteria and meiofauna in macroalgal turfs, Nicholson and

Clements 2023).

● Prior to in situ sampling, systematic characterisation of δ13C-EAA fingerprints in singularly

cultured basal organisms would establish the extent to which basal resources can be subdivided

into clades with similar δ13C-EAA patterns. Field collected samples with a high concentration of a

particular species or clade can be analysed for verification, as some basal resources might

display different δ13C-EAA patterns in situ compared to cultures. For example, δ13C-EAA patterns

of the sub-ice algae Melosira arctica growing in long-chained strands in its natural under-ice

habitat significantly differed from their cultivated form of singular cells (Vane et al. 2023).

● The extent to which unique δ13C-EAA fingerprints can be characterised depends on the number

of EAAs measured in basal organisms and metazoan tissues due to analytical limitations (section

6.1 and 7). In most proteinaceous soft tissues 6-7 EAAs can be measured, but is reduced in

mineralised tissues such as biogenic calcites due to lower EAA concentrations (McMahon et al.

2018, Vokhshoori et al. 2022). It is advisable to reliably measure as many EAAs as possible

(section 7) to increase the discriminatory power of δ13C-EAA patterns.

Directly visualising whether δ13CEAA patterns of select basal organism groups solely occupy their isotopic

space, and therefore are a δ13C-EAA fingerprint (section 3.3, Figure 3c), is not feasible due to the high

dimensionality of the data. Visualising multiple pairwise biplots of mean-centred δ13C-EAA values results

in significant information loss and can be difficult to interpret. Dimension reduction approaches used to

visualise δ13C-EAA patterns include principal component analysis (PCA, which maximises total variation

across the dataset) and LDAs (section 3.1). While LDAs may seem more appropriate to identify

distinctions between δ13C-EAA patterns as it aims to maximise group separation, PCA can outperform

LDA in separating groups when sample sizes are small (Martínez et al. 2001; for a comparison of the two

approaches see Appendix S4). The distinctions between δ13C-EAA patterns can be objectively quantified

with e.g. Bhattacharya coefficients (Bhattacharyya 1946, see section 3.1, Figure 4a,b,c, Appendix S2).
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Quantifying δ13C-EAA pattern distinctions not only improves statistical clarity for defining δ13C-EAA

fingerprints, but facilitates more direct comparisons between studies that measure different suites of

EAAs.

4. Tracing basal resources from a consumer perspective

Organisms consume the basal resources synthesised by basal organisms either directly or indirectly

through their prey. In doing so, they assimilate the baseline δ13C-EAA values, and by extension the

δ13C-EAA patterns, of those basal resources into their own tissues with minimal alteration. Consumers’

δ13C-EAA patterns are a weighted average of the assimilated δ13C-EAA patterns that can be used to

identify the basal organisms that synthesised the basal resources using δ13C-EAA fingerprints. Prior

knowledge of the consumer’s dietary niche is essential to characterise relevant basal resources, and to

determine the extent of the distinction and specificity with which basal resources should be quantified.

While δ13C-EAA fingerprints can trace basal resources to broad taxonomic groups and specific clades of

basal organisms, their effectiveness depends on the research question and inferences become more

nuanced for consumers that partially rely on EAAs biosynthesized by (endo)symbionts. In this section, we

discuss how δ13C-EAA patterns and fingerprints can be applied to robustly infer basal resource use by

consumers.

4.1. Applying δ13C-EAA fingerprints in ecological studies

δ13C-EAA fingerprints can differentiate basal resources across broad taxonomic groups and finer clades

(section 3). However, disentangling these from δ13C-EAA patterns of consumer tissues is challenging,

especially for higher trophic level consumers that acquire basal resources through multiple trophic

transfers. A first step is to determine to which level basal resources should be distinguished. General

questions might involve differentiating between aquatic versus terrestrial basal resources (Larsen et al.

2013, Liew et al. 2019). More complex inquiries can revolve around estimating the proportional use of

multiple basal resources by a consumer, or distinguishing among closely related clades such as

phytoplankton groups (McMahon et al. 2015a, Vane et al. 2023). While characterising basal organisms to

clades is potentially powerful, researchers need to consider when such fine-scale distinctions no longer

inform about the ecological processes of interest. For example, distinguishing between various clades

within phytoplankton will not be informative when phytoplankton make only a minor contribution to

consumer biomass (Vane et al. 2023). After thoroughly characterising δ13C-EAA fingerprints within the
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research framework, their variation has to be evaluated together with the consumer tissue δ13C-EAA

patterns using methods such as biplots and, or PCA/LDAs. If consumer δ13C-EAA patterns fall outside of

known δ13C-EAA fingerprints, this can indicate an unaccounted basal resource or incomplete

characterisation due to limited replication or sampling. Biases during isotopic analysis can also lead to

offsets between consumer and basal resources (section 7). These considerations are important for

reliable quantifications of proportional basal resource use by the consumer (section 8).

Many researchers rely on existing training data sets, i.e. basal resource δ13C-EAA values characterised in

other studies, such as those of Larsen et al. (2013) and McMahon et al. (2016), to infer basal resource

use. Generic training datasets assume that basal resource δ13C-EAA patterns are highly conservative with

broad ecosystem applicability, a questionable assumption at broad taxonomic scales. As elaborated in

section 3, variations within δ13C-EAA patterns of broad taxa such as microalgae and bacteria may be

attributed to finer phylogenetic substructuring or associated with phenotypic structural traits. Within

individual plants, δ13C-EAA fingerprints vary among seeds, roots, and leaves (Lynch et al. 2011, Larsen et

al. 2016b, Jarman et al. 2017), necessitating sampling of specific plant organs that are ingested by the

consumer. Using generic training data therefore introduces variation that is not pertinent to the specific

ecosystem, undermining discrimination between basal resources and distorting the true underlying

δ13C-EAA pattern space that comprises the consumer tissue (Liew et al. 2019, Macartney et al. 2020,

Phillips et al. 2020, Stubbs et al. 2022). Moreover, without proper inter-laboratory calibration, training

data may contain inconsistencies arising from different analytical protocols and errors that are currently

not well-constrained and therefore difficult to account for with calibrations post hoc (section 7). While

researchers often enrich training data with ecosystem-specific δ13C-EAA measurements (e.g. Arthur et al.

2014, Ayayee et al. 2015, Rowe et al. 2019, Macartney et al. 2020, Wall et al. 2021, Arsenault et al.

2022b, Stubbs et al. 2022), for accurate inferences it is advisable to create study-specific δ13C-EAA

fingerprints of relevant basal resources. Moving forward, a δ13C-EAA fingerprint library could streamline

this process, if built on widely accepted international reference materials and standardised

methodologies (section 7). Such a library would be invaluable in addressing large-scale ecological

questions over various spatiotemporal scales.

4.2. Consumers with (endo)symbionts

The direct assimilation of basal resources by consumers can be compounded by the occurrence of

symbiotic relationships. Endosymbionts often supplement hosts with de novo synthesised EAAs,
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particularly when the host specialises on nutrient-poor diets. Examples include aphids and other plant

sap feeding insects with sugar dominated diets (Akman Gündüz and Douglas 2009), or detrital

consumers, such as earthworms, springtails, and termites (Ayayee et al. 2015, Larsen et al. 2016a). EAA

supplementation can vary dynamically depending on dietary availability and digestibility, leading to

trade-offs. For instance, experimentally increasing indigestible fibre content in enchytraeids’ diets

increased EAA supplementation by gut symbionts, but reduced enchytraeid growth (Larsen et al. 2016a).

In marine environments, mixotrophic holobionts such as corals, molluscs, and sponges rely on a complex

community of symbionts in addition to heterotrophic feeding (Skinner et al. 2022, Pita et al. 2018). These

include dinoflagellate algae hosted within coral tissues (Skinner et al. 2022); diverse endolithic

microbiomes associated with the carbonate skeleton, including microalgae, fungi, and bacteria (Pernice

et al. 2020); and epidermal and gastrodermal mucus microbiomes (Fox et al. 2019, Kwong et al. 2019).

Coupled host-endosymbiont δ13C-AA values suggest that endosymbiotic algae play a major role in the

biosynthesis and provisioning of AAs, but transfer of photoassimilates also occurs between endolithic

symbionts and overlying host tissues (Schlichter et al. 1995, Fine and Loya 2002). Yet the biochemical

roles of holobiont symbioses extend beyond AA provisioning, including rapid carbon fixation and

subsequent high-energy biomolecule transfers (Kopp et al. 2015, Tremblay et al. 2012).

Identifying and quantifying EAA contributions to host consumer tissues by symbionts requires the

characterisation of δ13C-EAA fingerprints of both symbionts and host diet. δ13C-EAA patterns in

dinoflagellate endosymbionts of corals can be distinct from the surrounding particulate organic matter, a

proxy for phytoplankton (Fox et al. 2019, Wall et al. 2021) and other free living dinoflagellates (Stahl et

al. 2023). However, similar characterisations are largely missing for other symbionts like those of sponges

(Shih et al. 2020). For microbial gut symbionts, their δ13C-EAA patterns remain to be adequately

characterised, despite the possibility to cultivate gut microbes from model organisms such as Drosophila

(Erkosar et al. 2013). Currently, researchers predominantly rely on training data from disparate terrestrial

bacteria to identify gut microbial EAA supplementation (e.g. Arthur et al. 2014), which may yield

inaccurate quantifications (see section 4.1). Although extensive research is required to capture the full

variation and distinction of δ13C-EAA patterns among different symbiont taxa, an alternative approach

involves estimating these δ13C-EAA patterns from the offsets between δ13C-EAA values of diet and

consumer tissues (Larsen et al. 2016b, Newsome et al. 2020). However, this method requires prior

knowledge of the proportional contributions of each EAA from symbionts to consumer tissues which are

generally poorly constrained. Future studies should also consider the spatiotemporal host-symbiont
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dynamics when attempting to acquire relevant symbiont δ13C-EAA fingerprints. As symbionts are

typically hosted in diverse communities, the optimal characterisation of symbiont δ13C-EAA patterns will

likely be difficult beyond isolating single symbiont species cultures. Nonetheless, with symbiont δ13C-EAA

fingerprints characterised, they could aid in identifying and quantifying changes in EAA symbiont

provisioning to their host.

5. Beyond δ13C-EAA fingerprints

Consumers may rely on a variety of basal resources that do not possess distinct δ13C-EAA patterns and

therefore lack δ13C-EAA fingerprints. For example, researchers might aim to differentiate contributions

from phylogenetically similar understory vs canopy vegetation, or sea-ice microalgae vs pelagic

phytoplankton (de la Vega et al. 2019, Tejada et al. 2020). Spatial or environmental segregation of these

basal resources within the ecosystem (e.g. ice-algae vs. phytoplankton), or differences in carbon fixation

machinery (e.g. C3 vs. C4 plants) can result in disparate bulk δ13C baseline values between basal

organism groups, despite their δ13C-EAA patterns being similar. As measured δ13C-AA values combine the

basal organism AA specific biosynthesis offsets with potentially disparate baselines (section 2.1, Figure

1), opting for measured δ13C-AA data rather than mean-centred δ13C-EAA values in consumers can aid in

differentiating food web contributions in such instances. By applying multivariate analyses to measured

δ13C-EAA data, researchers have distinguished between freshwater algae, marine algae, terrestrial

matter, and detrital material simultaneously in consumers (McMahon et al. 2016, Vane et al. 2018; 2023,

Johnson et al. 2019). Incorporating δ13C-NEAA values could provide further insight into macronutrient

sources and the physiological conditions of animals (Barreto-Curiel et al. 2017). However, drawing such

inferences from δ13C-NEAA values remains challenging and underexplored (Larsen et al. 2022aa) as the

extent to which individual NEAAs reflect metabolic versus dietary sourcing is not yet fully understood.

Here, we provide an overview for integrating full δ13C-AA datasets into ecological studies. We discuss the

factors that influence δ13C-NEAA values in animals by expanding our conceptualisations from section 2,

explore the utility of PCA and LDA for δ13C-AA data analysis, and examine whether individual NEAAs

primarily reflect metabolic or dietary influences.
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5.1. Factors affecting δ13C-NEAA values in animals

While EAAs in consumer tissues must be directly routed from the diet, the NEAAs are a mixture of two

sources: NEAAs that are synthesised de novo by the organism and those assimilated from the diet (ca.

Figure 1 to Figure 5). Carbon for NEAA synthesis comes from various macronutrients, each with its own

unique isotopic composition, associated catabolic pathways, and contribution to NEAA biosynthesis (see

Figure 5 and Appendix S1: Figure S1C for a detailed metabolic network). For instance, lipids and

short-chain fatty acids are generally depleted in 13C compared to proteins and carbohydrates (Deniro and

Epstein 1977, Melzer and Schmidt 1987, Weber et al. 1997). NEAAs directly assimilated from the diet will

have δ13C values mirroring those of the dietary sources; however, they may undergo substantial

metabolic processing, particularly in the splanchnic tissues (e.g., liver, stomach, intestines, etc.), that

could result in isotope fractionations (Caut et al. 2009, Larsen et al. 2022a). Additionally, dietary sourced

AAs may experience fractionation during their catabolic processing within the microbiome of the

abdominal cavity. The body's response to changes in diet quality may vary depending on the specific AAs

involved, as different macronutrients enter varying segments of the central metabolic network

(Appendix S1: Figure S1C). For example, glycine metabolism responds to dietary AA composition whereas

alanine metabolism responds to energy balance and carbohydrate intake rather than to dietary AA

content (Yu et al. 1985).

NEAA deficiency or general caloric restrictions can prompt heightened catabolism (and splanchnic

retention) of certain AAs, making them unavailable for the formation of structural tissues (Neis et al.

2015). In humans, retention rates of dietary EAAs within the abdominal cavity are low, ranging from 20%

to 50% with the exception of threonine, which has a 90% retention rate. Retention rates for dietary

NEAAs tend to be higher, but variable. Differentiating these retention rates between digestive processes

and tissue protein synthesis is complex (Battezzati et al. 1999, Dai et al. 2012). Once dietary NEAAs reach

the liver - the centre of AA degradation and synthesis - they serve various functions, including as building

blocks for proteins and precursors for non-proteinogenic metabolites (Burrin and Stoll 2009, Figure 5).

Excess dietary NEAAs are converted into fat, which can later be catabolized into glycogen as needed.

Although the precise ratio of dietary to synthesised NEAAs in proteinogenic tissues often remains

ambiguous due to fluctuating metabolic demands and catabolic rates, it is feasible to make reasonably

accurate estimates in certain tissues like collagen when considering NEAAs as an aggregated pool

(Hobbie et al. 2017).
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Figure 5. Conceptual schematic incorporating macronutrients (proteins, carbohydrates, lipids), metabolic
processes, and environmental effects that contribute to the δ13C-AA values in animals (ca. Figure 1). Metabolic
processes are divided into macronutrient catabolism, central metabolism including glycolysis and the tricarboxylic
acid (TCA) cycle, and the biosynthesis of the non-essential AAs (NEAAs) that can be utilised for proteinogenic or
non-proteinogenic purposes. All the essential AAs (EAAs) are assumed to be routed directly from dietary proteins
(ΣPMacro = 0). A fraction of the dietary NEAAs may be routed directly to tissue proteins (1 - ΣPMacro), which will have
δ13C values that reflect those of the dietary NEAAs. In terms of the sources and processes affecting δ13C-NEAA
values of tissue proteins, the molecular constituents of each macronutrient have their own initial isotopic
composition, δ13CMacro, and fractionation, Acq.Macro, as they are converted to NEAA-precursors. As the catabolic
networks are different for the three macronutrients (Appendix S1: figure S1C), the effect of environment will likely
induce different physiological responses in isotopic fractionations (Env*Acq.Macro). The contributions of different
macronutrients to NEAA synthesis (ΣPMacro = PProt. + PCarb. + PLip.) may fluctuate with diet composition and covary with
physiological changes such as the accumulation of adipose tissue, reproduction status or muscle catabolism. Tissue
proteins may be catabolised and re-enter the central metabolism. The metabolic pathways are summarised based
on Stryer et al. (2019, see Appendix S1: figure S1C for a detailed metabolic network). Abbreviations: 3-PGA,
3-Phosphoglyceric acid; Ala, alanine; Arg, arginine; Asn, asparagine; Asp, Asparagine; Cys, cysteine; Gly, glycine;
Gln, glutamine; Glu, glutamic acid; Hyp, hydroxyglycine; Pro, proline; Ser, serine; Tyr, tyrosine. The illustration was
created with BioRender.com.
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5.2. Exploring full δ13C amino acid datasets

Many factors encompassing diet, digestive physiology, metabolism, and life history traits influence

δ13C-NEAA values in consumers. Unravelling these complex interactions necessitates a comprehensive

approach, especially when trying to distinguish metabolic from dietary effects. To isolate the factors

contributing to δ13C-NEAA variations, examining data from closely related consumer species or functional

groups can be helpful. This allows for establishing informed assumptions based on shared

characteristicsamong consumers like digestive physiology, metabolism, and life histories (Larsen et al.

2022aa). Intriguingly, the most consistent and robust insights into δ13C-NEAA data have emerged from

human studies when interpreted in concert with measured δ13C-EAA values and δ13C-EAA patterns (Corr

et al. 2005, Choy et al. 2013, Yun et al. 2018, 2020, Johnson et al. 2021). Epidemiological studies have

shown that δ13C-NEAA values in humans can vary with specific food intakes, but have so far explored

only a limited spectrum of human diets (Choy et al. 2013, Yun et al. 2018, 2020, Johnson et al. 2021).

This suggests that δ13C-NEAA variations can deepen our understanding of the complex interplay between

consumer biology, and their diverse dietary sources.

To broaden our perspective on integrating δ13C-NEAA values for understanding resource use, we

assembled archaeological δ13C-AA data from human bone collagen and hair keratin samples, covering a

period of 6,500 years from diverse geographical locations (eight studies, n = 52; see Appendix S4 for

details). This dataset includes δ13C values for five NEAAs (alanine, aspartate/asparagine,

glutamate/glutamine, glycine, proline) and two EAAs (phenylalanine, valine). From contextual

archaeological information, we can presume that these AAs are derived from four major protein sources:

freshwater (FP), marine (MP), terrestrial C3 plants (C3P), and terrestrial C4 plants (C4P). For a subset of

the populations, there is sufficiently detailed archaeological data to make prior assumptions about the

major protein sources in their diets. Individuals from this subset are denoted as ‘known’ individuals. For

a comprehensive discussion on predictive accuracy with different ordination and preprocessing

combinations within the data, see Appendix S4.

To explore how the relative offsets in AAs vary among individuals and populations, we employed PCA on

EAA mean-centred δ13C-AA data (Figure 6-A1 and A2), with results showing relatively strong separation

among the four protein sources. Most AAs align with PC1, which differentiates populations along a

terrestrial (C3P and C4P) - aquatic (FP and MP) axis, while PC2 distinguishes between C3P/C4P and is

primarily driven by the δ13C contrast between proline and aspartate. These distinctions are further
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pronounced by combining measured δ13C values - data that comprises the individual δ13C-AA offsets

combined with the δ13C bulk baselines - with LDA that maximises group separation whilst minimising

intra-group variation. The LDA highlights significant variability in the contribution of different AAs to

group separation within measured δ13C values. Phenylalanine and valine again distinguish between

terrestrial and aquatic resources (Honch et al. 2012, Larsen et al. 2013), while proline and glutamate

separates the C3P group. Glycine plays a key role in differentiating FP from other groups (Corr et al.

2005) whereas alanine and aspartate contributed very little to group separation. Interestingly, Fry et al.

(2023) identified that both alanine and aspartate position specific 13C carboxyl trends are strongly

associated with lipid metabolism across a broad range of animals, including mammals, mollusks, fish,

and crustaceans. This suggests that alanine and aspartate δ13C values are more reflective of an

individual’s metabolic state than of their macronutrient sourcing. Conversely, proline appears to be the

most source diagnostic of the NEAAs, which aligns with the fact that proline has one of the lowest

splanchnic retention rates of NEAAs (~40%). Thus, our meta-analysis of humans suggests that a

combination of metabolic effects in case of asparagine (Figure 6-A1 and A2) and source effects in case of

proline, can separate C3P and C4P sources when δ13C-EAA patterns cannot (Figure 4C). To delve deeper

into the multifaceted factors that drive variability in δ13C-NEAA values, we propose an investigative

tandem of expanded meta-analyses coupled with detailed compound-specific and position-specific

isotope analysis. This comprehensive approach has the potential to dissect the layers of complexity and

identify the precise processes, metabolic activities or the influence of dietary sources, that are

responsible for the variability observed in δ13C-NEAA values in consumers.

The efficacy of using measured rather than mean-centred δ13C-EAA values in multivariate analyses is

closely tied to protein sources stemming from broad biomes - here terrestrial and aquatic. These biomes

can be further divided into types of vegetation (C3 vs. C4) or water bodies (freshwater vs. marine), each

having distinct baseline δ13C values. Incorporating measured δ13C values alongside source-specific

δ13C-AA patterns in multivariate analyses compensates for the other's limitations while maintaining their

strengths. This synergy is most effective when the intergroup variability, the differences in baseline δ13C

values between biomes, is markedly greater than the intragroup variability, or the variation within a

single biome. Case in point is the meta-analysis above involving archaeological human samples, along

with ecological studies by e.g. Vane et al. (2018) and Johnson et al. (2019). These studies all satisfy the

prerequisite conditions for variability, enabling them to successfully differentiate between AA or protein

sources that may have otherwise presented indistinguishable δ13C-EAA fingerprints. While multivariate
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integration of measured δ13C-AA values has proven fruitful under certain conditions, it is important to

consider the limitations of this approach. Baseline δ13C-AA values are sensitive to environmental

fluctuations, making them context-dependent (McMahon et al. 2016, Vane et al. 2023). In situations

where baseline δ13C-AA values show subtle distinctions, a comprehensive sampling strategy becomes

crucial. Seasonal or spatial sampling can help constrain the relevant mixing areas for each protein source,

providing a more stable context for analysis (section 8.3, Vane et al. 2023). This allows for a more reliable

estimation of baseline δ13C values in environments where protein sources within a biome are not sharply

delineated. While rigorous sampling can constrain subtle baseline δ13C differences, this level of detail is

hard to achieve when analysing historical or archaeological samples. These sources often present gaps in

spatiotemporal data, complicating the construction of a robust analytical framework. Constraints such as

limited sample sizes, material degradation, or incomplete records further limit our ability to achieve the

ideal thoroughness achievable in contemporary studies. In these challenging scenarios, auxiliary data like

climatic records or historical documentation may provide complementary information for constraining

protein sources.
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Figure 6. Ordination analyses using δ13C values of alanine (Ala), aspartate/asparagine (Asx), glycine (Gly),
glutamate/glutamine (Glx), phenylalanine (Phe), proline (Pro), and valine (Val) extracted from archaeological
human collagen and keratin samples. Subplots A1 and A2 display the first two principal components, based on

δ13C-AA values centred to the within-sample mean EAA values (Phe and Val). Subplots B1 and B2 show the first two

linear discriminants (LD) based on measured δ13C-AA data. Subplots A1 and B1 categorise individuals according to
their respective populations, while the colour-gradient subplots A2 and B2 illustrate variations in individually

measured mean δ13C-EAA values. The broken lines in the LDA plots indicate the decision boundaries for freshwater
(FP), marine (MP), terrestrial C3 (C3P), or terrestrial C4 (C4P) sources based on a subset of individuals with clear
archaeological and environmental contexts. These ‘known’ individuals are denoted with open grey symbols and
originate from Belize, Brazil, Bulgaria, Greenland, Guatemala, Japan, Serbia, and Romania (data from Honch et al.
2012, Colonese et al. 2014). Populations with less certain diets are plotted with distinctly coloured symbols and
polygons (data from Choy et al. 2010, Raghavan et al. 2010, Mora et al. 2018, Webb et al. 2018, Ma et al. 2021,
Brozou et al. 2022). The Odense and Pica 8 populations are based on tissues from the same individuals that reflect
short-term (rib and hair) or long-term (femur and tendon) dietary histories. See Appendix S4 for detailed sample
information.
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6. Considerations for using archival tissues

Changes in basal resource use can occur both within and between populations, and over seasonal to

millennial scales. Tracking basal resource use through space and time depends on the rate of AA

assimilation in various animal tissues (i.e. tissue turnover rate) and their preservation. Analysing tissues

that vary in their AA assimilation rates can indicate consumer basal resource use covering a few days to

the entire lifetime of the individual (Boecklen et al. 2011). The ability to reconstruct past basal resource

use of individual consumers relies on the preservation and integrity of tissue samples and their δ13C-AA

values over time. Natural and artificial preservation have the potential to extend basal resource use

reconstructions over several thousands of years under certain conditions. In this section, we discuss

tissue characteristics that enable specific basal resource use reconstructions over time and space.

6.1. Temporal resolutions within consumer tissues

The temporal resolution of inferred basal resource use depends on the choice of consumer tissue, as AA

assimilation varies across tissue types. Blood and soft tissues, such as liver and muscle, can be turned

over completely within days to months depending on tissue metabolism, age or species (Boecklen et al.

2011, Thomas and Crowther 2015, Vander Zanden et al. 2015). Many hard and semi-hard tissues such as

bones and ligaments are also remodelled throughout life at different rates varying with age, gender,

physiology, and pathological conditions (Hadjidakis and Androulakis 2006). By analysing different skeletal

bones, basal resource use reconstruction can span a decade or more (Tieszen 1983, Fahy et al. 2017,

Matsubayashi and Tayasu 2019). The complete lifetime can be analysed using additional collagenous

tissues that are metabolically inert and therefore not remodelled after formation (e.g. human dentine,

Brault et al. 2014), reflecting basal resource use during the period of their formation. Inert keratin

excrescences such as hair, nails, and feathers in mammals and birds capture longitudinal basal resource

use over seasons as they grow continuously until replaced during moulting. Other keratin tissues such as

scales and whale baleen grow incrementally and can be used to reconstruct partial life histories. Entire

life histories can be reconstructed from protein incorporated in metabolically inert calcium carbonate

structures such as bivalve shells, coral skeletons, and fish otoliths (Payan et al. 1999, Edeyer et al. 2000,

Borelli et al. 2001, Falini et al. 2015). As these carbonate structures often form visible incremental bands,

temporal subsampling can be performed. Similarly, chitin structures such as cephalopod beaks and

cartilage vertebrae of sharks also grow throughout an individual's lifetime displaying incremental bands

(Cherel et al. 2009, 2019, Magozzi et al. 2021). However, mechanical structures such as cephalopod
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beaks and whale baleen lose material due to wear and therefore their temporal information will be

limited to a certain timespan before collection (Aguilar and Borrell 2021).

The temporal resolution gained from incremental biogenic carbonates, chitin structures, and keratin

excrescences is dependent on their AA concentration, increment width, and size relative to the

sensitivity of the analytical instrument. AA concentrations in shells, fish otoliths and coral skeletons are

low, generally ranging between 0.5 and 2% and therefore require larger sample amounts per

measurement, although proteinaceous corals have naturally high AA contents (Degens et al. 1969,

Williams 2020). Small increment widths in biogenic carbonates may necessitate combining material from

multiple increments and thus reduce temporal resolution. Moreover, AA composition can significantly

differ between species and tissue types; bones have notably high glycine contents while methionine

occurs in low concentrations in many tissues.

6.2 Natural and artificial preservation of tissues

Proteinogenic AAs can withstand high levels of heat, gamma radiation and temperature changes,

therefore their preservation largely depends on whether hard tissues are compromised by AA leaching,

augmentation or bacterial reworking (Grupe 1995, Collins et al. 2002, Iglesias-Groth et al. 2011). Several

degradation indicators such as AA stereoisomer ratios, and stable δ13C-AA and δ15N-AA values and their

offsets suggest that high density carbonate matrices such as egg and bivalve shells remain inert for at

least 10,000 years under favourable conditions (Tuross et al. 1988, Engel et al. 1994, Silfer et al. 1994,

Johnson et al. 1998, O’Donnell et al. 2007). However, unbound protein fractions are prone to leaching

and can disappear within the first 6000 years of an organism’s death (Bada et al. 1999, Ortiz et al. 2018).

External AAs can accumulate on the surfaces of hard tissues and should be removed prior to analysis

(e.g. mechanically, by dilute acid washing, or sonication, Engel et al. 1994). However, this can be

challenging in porous structures such as coral skeletons and bones where external AAs can be deposited

over large internal surfaces (Bada et al. 1999). AAs in lower density matrices such as bones and elastic

tissues do not persist on geological timescales except under extremely favourable conditions as humidity

and temperature shifts accelerate AA degradation by creating micro-fissures and increasing porosity

(Grupe 1995, Maurer et al. 2014). Physical abrasion and leaching can further diminish the protein

content of external hard tissues like feathers and fish scales (Salvatteci et al. 2012). Measuring the

nitrogen content and atomic ratios of carbon to nitrogen is often standard practice to assess protein

preservation in e.g. bones (Brock et al. 2012).
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Soft tissues that readily degrade are best preserved either dried or frozen for extensive time periods.

However, museums and research institutions often preserve specimens in chemical solvents such as

ethanol or formaldehyde solutions. In the short term (<1 year), chemical preservation techniques have

no observable effects on δ13C-AA or δ15N-AA values (Strzepek et al. 2014, Durante et al. 2020), but

alterations have been observed for samples stored for prolonged periods of up to 27 years (Hannides et

al. 2009, Hetherington et al. 2019, Durante et al. 2020, Swalethorp et al. 2020). Beyond this, it is unclear

how solvents affect δ13C-AA values in proteinaceous tissues, but storage over centennial timescales or

heating causes tissue disintegration and loss of AAs to the surrounding solvent (Von Endt 2000, Marte et

al. 2003). It is likely that the preservation chemicals affect tissue integrity by impacting the peptide and

protein bonds. This could lead to unstructured AA leaching into the surrounding fluids in the long term,

affecting δ13C-AA values of the tissue due to mass-based diffusion differences. To fully embrace δ13C-AA

analysis of chemically preserved tissues, further experimental investigations into the potential effects of

chemical preservatives on δ13C-AA values are warranted.

7. Minimising analytical uncertainties in δ13C-AA values

Carbon isotope analysis of AAs poses greater methodological challenges and potential for analytical

errors than bulk stable isotope analysis. Bulk isotope analysis consists of weighing dried tissue that is

then combusted in the elemental analyser, although some samples may require lipid or mineral removal

prior to analysis. The procedures for AA analysis are more intricate as AAs must be extracted and isolated

from the diversity of compounds within the sample (see Figure 7). Isotopic measurement can be done

using a gas chromatograph interfaced to a combustion reactor and isotope ratio mass spectrometer

(GC-IRMS) or with a liquid chromatograph (LC-IRMS). For GC-IRMS, polar charged AAs need to be

chemically modified to enable their evaporation (Silverman et al. 2022). With LC-IRMS, AAs can be

directly analysed after isolation but analytical sensitivity is comparatively low and therefore less

commonly employed (Smith et al. 2009, Dunn et al. 2011). Monitoring the consistency and stability of

compound-specific isotope measurements further requires the extensive use of reference materials.

Since there are diverse approaches to analytical protocols, instrumentation, and referencing between

laboratories that can affect the accuracy of δ13C-AA measurements, here we discuss achieving analytical

consistency and inter-laboratory comparability when measuring δ13C-AA values.
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Figure 7. Analytical protocol workflows for AA stable isotope analysis of different sample types (coloured boxes and
corresponding arrows) contrasted against bulk stable isotope analysis. Broken line arrows and boxes indicate that
the treatment step is not mandatory for all samples.

7.1. Analytical workflow

To assess the stable isotope composition of individual AAs, they must first be extracted and isolated from

other compounds in the sample. Typically, this involves drying and homogenising the samples, followed

by acid hydrolysis where strong hydrochloric acid and high temperatures break down proteins and
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peptides into their individual AAs (Figure 7: step 2 and 3, Enggrob et al. 2019). However, acid hydrolysis

also disrupts other chemical bonds, including within the EAA tryptophan, yielding a complex mixture of

AAs among other organic molecules and salts. The removal of the non-AA fraction, or purification, is

essential as it interferes with later steps in the analytical workflow and isotopic measurements.

Purification steps vary between analytical facilities and depend on the type of tissue analysed and

chemical protocol employed. To analyse AAs in bone collagen, bone carbonate AAs need to be removed

as they are more susceptible to diagenetic processes and have different turnover times than collagen

(Stafford et al 1988, Lambert and Grupe 1993). Thus, bone carbonates are removed by soaking whole

bones in a light acid (Figure 7: step 1, Sealy et al. 2014), while other biogenic carbonates are generally

homogenised, acid hydrolysed, and purified with cation exchange resins (Figure 7: step 5). For samples

rich in secondary metabolites, such as those from soils or plant-algal sources, cation exchange resins may

also be necessary. Large particulates remaining in the hydrolysed samples can be removed with glass

wool filtration, whereas excessive lipophilic compounds can be removed through chemical extractions

(Figure 7: step 4). After purification, samples are dried and internal reference compounds that are

molecularly similar to AAs can be added to account for any potential AA losses or isotope effects (Figure

7: step 6). Before undergoing GC-IRMS analysis, the AAs are chemically modified - known as

derivatization - to make them more volatile and enable chromatographic separation. This process is done

by reacting AAs with reagents that specifically target AA functional groups (Figure 7: step 7). Following

derivatization, it is common to introduce additional internal reference compounds like caffeine with

known isotope values. Once the derivatized AAs are analysed via GC-IRMS, the resulting chromatograms

must undergo quality control and assurance as the automatic AA peak integration may be incorrect and

peaks may overlap (i.e. co-elute; Figure 7: step 9). Co-elution between AAs and non-AA compounds leads

to errors in isotope measurements when an AA peak incorporates another compound’s lighter 12C peak

start or heavier 13C peak tail (Meier-Augenstein 2002, Sessions 2006). Because the derivatization process

incorporates external carbon into the AAs, acquired 13C-AA data need to be corrected using

mass-balance equations and predefined isotope correction factors (Figure 7: step 10, Docherty et al.

2001). The long-term stability of AA carbon isotope measurements and instrument performance should

be monitored by running external reference compounds with known isotope values (Figure 7: step 11).
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7.2. Pitfalls in the analytical workflow

Sample pre-treatments and purification protocols vary widely in their complexity and scope (Figure 7:

step 1, 4, 5), but whether they bias δ13C-AA values is not always known. Acidic treatments and chemical

extractions followed by extensive water rinsing are often employed to remove minerals, urea, and lipids

in animal consumer tissues, despite being discouraged as they lead to large and inconsistent isotopic

measurements (Brodie et al. 2011, Schlacher and Connolly 2014, Pellegrini and Snoeck 2016, Huang et

al. 2023). Such pretreatments may result in the loss of AAs and alter the δ13C-EAA values in consumer

tissues compared to dietary tissues that are often left untreated (see Appendix S5). We compiled 17

controlled feeding studies to highlight the potential isotopic effects of aqueous pretreatments. Data

reveal inconsistent changes in δ13C-EAA values between diets and consumer tissues, ranging from -13 to

12‰, in studies utilising extensive water rinses and acidic pretreatments (Figure 8, Appendix S5). In

contrast, non-aqueous pretreatment studies report values consistently much closer to 0‰ (Figure 8,

Appendix S5). Applying aqueous pretreatments to soft tissue samples may wash away small peptides and

free AAs by dissolving hydrophilic proteins and AAs. While more studies are warranted to investigate this

potential issue, we recommend post-hydrolysis purification methods, such as cation exchange or

solid-phase extraction, as alternatives that are demonstrably less bias prone (McMahon et al. 2010,

Takano et al. 2010, Ohkouchi et al. 2017). This is similarly the case for samples containing calcium

carbonate (CaCO3), which during acid hydrolysis is converted to calcium chloride (CaCl2), a compound

which readily absorbs water. Water-sensitive derivatization reagents, such as acetyl chloride and acetic

anhydride, react with the water and form compounds that can co-elute with the AAs during

chromatography. These issues can be mitigated by using post-hydrolysis purification with cation

exchange resins only, or using water-insensitive reagents (e.g. methoxycarbonyl esterification [MOC],

Walsh et al. 2014, Vane et al. 2018).

Adding exogenous carbon during AA derivatisation requires careful calculation to offset any changes in

δ13C values. While mass-balance equations and predefined isotope correction factors can help, they are

not fail-proof (Figure 7: step 10, Docherty et al. 2001, Takizawa et al. 2020). Using derivatisation reagents

whose δ13C values closely match sample values and ensuring that reactions go to completion helps

minimise errors. Methods like MOC and N-acetyl methylation (NACME) are advantageous in this regard,

as they introduce limited additional carbon and provide stable derivatized AAs that can be stored for

extended periods (Corr et al. 2007, Walsh et al. 2014). Care needs to be taken when drying samples

following derivatisation as drying times can vary substantially between sample types. Yet excessive
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over-drying may lead to the partial evaporation of low molecular weight AAs due to their increased

volatility.

Figure 8. The differences in measured δ13C values for individual EAAs, isoleucine (Ile), leucine (Leu), phenylalanine
(Phe), valine (Val), threonine (Thr), lysine (Lys), methionine (Met), histidine (His), observed between diet and
consumer tissue in 17 controlled feeding studies divided on the use of water-rinsing in the purification of consumer
tissue samples. No distinction is made between the various consumer tissue types (muscle, intestine, heart, liver,
bone collagen, blood plasma, eggshell) or diet qualities (C3/C4 origins, macronutrient composition, and prey
organisms). See Appendix S5 for specific details on individual studies.

7.3. The need for standardisation

Maintaining the integrity of δ13C-AA measurements requires careful oversight, especially for

inter-laboratory consistency and temporal stability. Robust chromatographic practices, such as complete

peak separation and Gaussian peak shapes, are fundamental for accurate isotopic measurements, as

co-elution biases individual δ13C-AA measurements (Meier-Augenstein 2002, Sessions 2006). Monitoring

instrument stability and accuracy, i.e. measurement standardisation, is achieved through the use of

internal and external reference compounds (Meier-Augenstein and Schimmelmann 2019). Internal

references are added directly to the sample (Figure 6: steps 6 and 7) and provide immediate calibration,

track potential isotope effects, and monitor AA losses. Estimating the required concentrations of internal

references to be added can be challenging due to the often uncertain and low AA concentrations in

samples, although sample AA concentrations could be assessed, for example, by GC with Flame
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Ionization Detection (GC-FID, Figure 7: step 8). External references run separately serve as benchmarks

(Figure 6: step 11), and should cover the range of δ13C values encountered in the samples. External

references can be subdivided into two categories: derivatized AAs with known isotopic values (Roberts et

al. 2018, Meier-Augenstein and Schimmelmann 2019) and non-derivatized compounds, e.g. caffeine,

fatty acid methyl esters or n-alkanes. The former account for isotope effects introduced during

derivatization, while the latter calibrate the reference CO2 monitoring gas and provide a long-term

stability check for δ13C values (Schimmelmann et al. 2016).

To address and reduce biases arising from diverse analytical protocols, equipment, and sample matrices

across different research facilities, researchers must implement a practice of thoroughly detailing their

methodological protocols in publications, as proposed by Dunn and Skrzypek (2023). Simultaneously,

there is a pressing need for accessible biological reference materials, part of a wider call in isotope

analysis generally (e.g. Stichler 1995, Gröning 2004, de Laeter 2005). Selecting suitable references for

δ13C-AA analysis is challenging however: the materials must be homogeneous, easy to transport, and

ideally neither hazardous nor biologically active. The availability of such international reference materials

would bolster the reliability and comparability of δ13C-AA data across studies. Standardising

methodologies (Figure 7) would further enhance this, reducing the additional biases introduced by the

array of protocols and chemicals currently in use, improving the inter-comparability of values measured

in different facilities, and enabling a δ13C-EAA fingerprint library (section 4.1).

8. From qualifying to quantifying basal resource use

Consumer tissue δ13C-EAA patterns are a composition of the δ13C-EAA patterns of the assimilated basal

organisms. The analysis of compositional data has a long history, spanning geology with the analysis of

mineral composites (Weltje et al. 1997) to remote sensing where incoming spectra are mixtures of pure

spectral components (Clevers and Zerita-Miller 2008). The statistical framework used to estimate

proportional contributions in compositional data is a linear (un)mixing model (Weltje et al. 1997, Phillips

2012, Parnell et al. 2013). Over the past 20 years, significant development of mixing models has

addressed many issues associated with biological systems. These include complex data structures that

impart variation in basal resource use in individual consumers (Semmens et al. 2009, Stock et al. 2018);

the multitude of potential basal resource combinations that could result in the same δ13C-EAA patterns

(known as under-determined mixing systems, Parnell et al. 2010); and natural variations and
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measurement errors in resources and consumers (Moore and Semmens 2008, Stock et al. 2018). Here

we outline the application of mixing models with δ13C-EAA data, highlighting key considerations,

assumptions and limitations. While several implementations of mixing models are available (Wang et al.

2019b, Cheung and Szpak 2021, Heikkinen et al. 2022), we primarily focus on the MixSIAR package in R

(Stock et al. 2018) due to its flexibility and relatively common use across ecology.

8.1. Consolidating basal resource information

The area bounded by basal organism δ13C-EAA fingerprints constitutes the mixing space: the area

containing all possible consumer tissue δ13C-EAA patterns (Phillips et al. 2014, Smith et al. 2013). The

dimensionality of this mixing space is equal to the number of tracers: the number of EAAs measured. All

potential basal resources that may contribute to consumer δ13C-EAA patterns should be characterised

(see section 3.2), as the proportional contributions of basal resources are not independent of each

other: they must, by definition, sum to one. Missing basal resources is a general problem when resolving

linear mixing systems (Weltje et al. 1997), resulting in inaccurate proportions regardless of the statistical

approach. Consumer δ13C-EAA data falling outside of the mixing space may indicate missing resources.

However, even if consumers fall within the basal resource mixing space, it is still possible that some

utilised basal resources have not been characterised.

While uncharacterised basal resources are problematic, it is important to limit basal resources to only

those that likely contribute to consumer tissues. While it may seem reasonable to include as many basal

resources as possible, an underlying assumption of mixing models is that all included basal resources

contribute to the consumer δ13C-EAA values, even if that contribution is small. Excluding unused basal

resources limits model complexity, aiding model performance, and improves model accuracy by

removing isotopically feasible but biologically unrealistic combinations. Further, statistical artefacts arise

when resolving mixing models with high numbers of basal resources as solutions will tend towards 1/n

for large n. Therefore, it is recommended to limit mixing models to seven or fewer basal resources (Stock

et al. 2018). Following characterisation, any modifications between basal resources and the consumer

tissues need to be defined, known as trophic discrimination factors (TDFs). Although TDFs need to be

considered for many types of tracers (Schulting et al. 2022), they are negligible for δ13C-EAA data.

The natural variation in basal resource δ13C-EAA values needs to be considered in mixing models, but can

be inadequately described when logistical and analytical constraints result in low sample sizes. Although
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uncertainty due to low sample sizes can be incorporated into Bayesian mixing models, it reduces model

precision. Basal resource δ13C-EAA variability could be approximated using well-constrained literature

sources, however differences in methodologies and analytical processes, and the absence of

international reference materials will add additional uncertainties (section 7). Uncertainty in

instrumental measurements is rarely considered when quantifying basal resource use with δ13C-EAA data

(Hopkins and Ferguson 2012; but see Vane et al. 2023). Mixing model frameworks initially developed for

bulk stable isotope analysis are based on data with limited instrumental error (typically 0.1-0.2‰ for

bulk δ13C and δ15N). Analytical uncertainty in δ13C-EAA values can be larger (~1‰) and AA specific, and

should be incorporated into mixing models to ensure uncertainty estimates are not artificially deflated.

8.2. Modelling consumer behaviour

Specific hypotheses regarding consumer basal resource use inform how mixing models are structured.

Factors that contribute to differences in basal resource use between consumers should be incorporated

into the model. Examples include species, sex, size or ontogenetic stage, social status and other traits

that result in different nutritional requirements or limit access to specific dietary items. For example,

body size can limit access to particular habitats or lower social status could restrict access to

nutrient-dense foods such as meat. Hierarchical spatial structuring of consumers such as distinct

subpopulations within larger areas or spatially discrete sampling sites should be considered. Spatial

structure can affect basal resource availability and use, even if preferences are the same among

individual consumers (Semmens et al. 2009), and similarly applies to consumers sampled in different

time periods (e.g. seasons, years).

Bayesian mixing models can incorporate prior information to inform model solutions, for example basal

resource use estimates extracted from mass-balanced food web models (Stock et al. 2018). However,

prior information can be biased (e.g. stomach and scat data towards poorly-digestible prey), and overly

restrict mixing model solutions (Swan et al. 2020). Theoretically, known nutritional limitations such as

macronutrient requirements can be included as prior information where consumers have considerable

diversity in diet quality. However, prior information typically pertains to consumer diet (i.e. the

proportions of prey assimilated) rather than basal resource use, and therefore should be considered

carefully with δ13C-EAA data.
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Error structures are often overlooked in mixing models. For groups of consumers, residual errors in

MixSIAR are modelled as a multiplicative term (called a residual stretch error), rather than Gaussian

noise, that stretches or compresses the variance attributed to model processes (stochastic sampling of

basal resource variation and additional uncertainties, Stock et al. 2016, 2018). This is conducted

separately for each tracer. The ecological justification is that consumers feed many times during basal

resource assimilation, dampening the isotopic variation observed in basal resources. This contrasts with

mixing models that sample basal resource δ13C-EAA values from their distributions only once when

estimating model solutions. Residual stretch errors are therefore expected to take values between 0 and

1 to compress variation due to feeding behaviours. Values approaching zero can be interpreted as an

increase in the number of feeding events reflected in the consumer tissue, synonymous with a slower

tissue turnover rate. Values in excess of one indicate that factors beyond those included in the mixing

model are driving individual variation. For passive trophic behaviours such as sessile filter-feeding or

grazing, the stretch error approach works well (Stock et al. 2016). However, active and selective feeding

modes in motile consumers may violate the assumption of stochastic source sampling across individuals,

inflating residual stretch error estimates. In such instances it may be more appropriate to incorporate

individuals as an additional random effect in the model structure. The drawback of this approach is that

all residual intra-group variation in δ13C-EAA values is solely attributed to differences in individual basal

resource use. In reality, most systems comprise some degree of individual variation in basal resource use,

and other undefined sources of isotopic variation. While the suitability of different error structures can

be explored in terms of model goodness of fit (Cheung and Szpak 2021), emphasis should be given to the

biological interpretations and their trade-offs within the studied system.

8.3. Interpreting mixing model output

Underpinning a mixing model’s ability to accurately estimate basal resource use by the consumer is the

separation between basal resources. It is necessary to first check whether basic model assumptions are

met, the model has converged, and the optimal model structure has been determined (see Phillips et al.

2014). If the δ13C-EAA patterns of two basal resources cannot be distinguished, i.e. are not δ13C-EAA

fingerprints, then this results in a strong negative correlation between the proportional contributions of

those two basal resources and potential bimodality in their posterior distributions (Phillips et al. 2014).

In such cases the proportional contributions of the two basal resources should be combined into a single

group post analysis. Although basal resource distinction is lost, often it will drastically reduce the overall
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uncertainty in proportional contributions (Phillips et al. 2014). Similarity between basal resource

δ13C-EAA patterns is often tested statistically by comparing the mean δ13C-EAA offsets of basal resources

for each AA separately. However, equality of means testing depends on large sample sizes to be robust

(Stock et al. 2018), which is typically not the case for δ13C-EAA data, and does not consider differences in

variances and covariances between basal resources. If required, statistical scrutiny should be conducted

using a multivariate approach (e.g. Bhattacharyya coefficients, Figure 4) that quantifies the similarity of

multidimensional distributions. If two or more basal resources are isotopically similar, it is still

recommended that their proportional contributions be combined post analysis rather than merging

them prior to implementing the mixing model (Stock et al. 2018). In some cases, all basal resources may

exhibit similar means across one or more EAAs. It may seem logical to remove such tracers to reduce

model complexity and aid model convergence. However, users could unintentionally be removing AA

tracers that help mixing models to resolve by reducing information on differences in basal resource

variances or covariances. Increasing the number of EAAs in mixing models maintains or reduces overall

model uncertainty, therefore all available EAAs should be included in mixing models. This has been

demonstrated for δ13C-EAA data with mice fed varying diets, with mixing models including all measured

EAAs providing the most accurate solutions across diets with reduced uncertainties compared to those

using a restricted set of AAs and other statistical approaches (Manlick et al. 2022).

The trade-off in attributing intra-group variability in consumer tissue δ13C-EAA values to

consumer-resource sampling processes (with residual stretch errors) or differences in individual basal

resource use (section 8.2) should be considered carefully. Stretch errors can identify whether one or

more basal resources are insufficiently characterised or indicate other issues with model components,

e.g. analytical uncertainty. Stretch errors slightly greater than one are not necessarily suggestive of poor

model quality: many complex biological and ecological processes impart variability that cannot be

measured or captured in statistical models. However, stretch error values that are much greater than one

can indicate that one or more substantive processes are lacking from the mixing model. If stretch errors

are inflated for many to all of the EAA tracers, then this likely indicates missing but significant driver(s) of

basal resource use from the model structure. If only one or a few EAA tracers have inflated stretch

errors, then more EAA tracer-specific sources of variation need to be identified. This could include a

missing basal resources that significantly differ in δ13C values for the identified EAAs (Vane et al. 2023) or

poorly constrained EAA specific variations. While such situations may be problematic for testing specific

hypotheses, they can be useful in highlighting inadequacies in current knowledge.
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A mixing model’s ability to partition basal resource use with precision ultimately depends on the mixing

space, the positions of basal resources and consumers within it, and their uncertainties. Robustly

quantifying basal resource use can therefore be highly ecosystem-specific. If consumers depend on only

a few, isotopically similar basal resources, then their δ13C-EAA pattern mixing area will be small,

increasing uncertainty in model estimates. This can be exacerbated if other sources of uncertainty, such

as measurement errors for individual EAAs, are large. Small signal to noise ratios in δ13C-EAA data are

reflected in large uncertainties in mixing model solutions, capturing the true uncertainty associated with

disentangling basal resource use. In such instances, using measured δ13C-EAA values may prove fruitful

where strong environmental gradients separate basal resources, but comes with greater logistical

restraints (section 5).

8.4. Considerations when quantifying basal resource use

Quantitative approaches using δ13C-EAA data provide complementary benefits but additional

complexities compared to bulk stable isotope data. δ13C-EAA data are well suited to trace the flow of

basal resource biomass through food webs due to their direct routing into consumer tissues. However,

this contrasts with the theoretical underpinning upon which ecological mixing models were developed:

quantifying proportional contributions of prey-specific biomass assimilated into consumer tissues (i.e.

consumer diet). The nuanced differences between basal resource use and diet need to be considered

during study design, sample collection, and data analysis to avoid erroneous inferences.

The application of extensive training datasets is becoming commonplace in δ13C-EAA studies (e.g.

Arsenault et al. 2022b, section 4.1). However, such training datasets result in inflated variation and

potential bias (mean offsets) in δ13C-EAA patterns, preventing the characterisation of δ13C-EAA

fingerprints compared to in situ sampling (section 4.1 and 7.2). This is highlighted in Figure 9 where we

show how the variability in a training dataset compares to specific in-study sampling of basal resources

in LDA space. Mean δ13C-EAA pattern bias can be observed for several basal resource groups, notably

fungi, and inflated variation means study-specific fingerprints are lost. Mixing models are sensitive to

input data (Bond and Diamond 2011), so applying mixing models with broad training datasets increases

uncertainty in mixing model solutions and could lead to false inferences (Manlick and Newsome 2022).

In some instances, logistical constraints can limit complete basal resource characterisation, necessitating

the use of carefully selected external data. However, while international reference materials are still
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lacking, external data should not be used as a substitute for adequate system sampling when the aim is

to accurately quantify basal resource use.

There are many underlying conditions and assumptions for robust proportional estimations with mixing

models. Consequently, other semi-quantitative techniques have been implemented to resolve mixing

systems, notably bootstrapped LDA-based classifications (e.g. Fox et al. 2019, Skinner et al. 2021,

Arsenault et al. 2022b). Arguments for this approach include a “less rigid framework” regarding

uncharacterised basal resources and multivariate mixing space geometry (Fox et al. 2019, Manlick and

Newsome 2022). Such arguments misconstrue that the “rigid” assumptions are inherent to the Bayesian

mixing model methodology rather than mixing systems themselves. For example, individual consumer

data falling outside of the basal resource mixing space implies an inadequately described mixing system.

This general problem can be masked by LDA dimensionality reduction, but is more noticeable when

implementing Bayesian mixing models. Recent simulations on lake ecosystem data highlight that

significant bias can occur between known basal resource contributions and those estimated using this

LDA approach (Saboret et al. 2023). Moreover, we argue that the perceived limitations of mixing models

should be considered a strength in that they require adequate prior understanding of the ecosystem and

consumer (Makarewicz and Sealy 2015). It is frequently highlighted that mixing models are only as good

as the input data (Phillips et al. 2014), yet they are also only as good as our understanding of ecosystem

processes that can be described using mathematical abstraction.
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Figure 9. LDA plot highlighting the increased variation and mean bias introduced to basal resource δ13C-EAA
patterns when using training datasets (individual data points plus their convex hulls, Figure 4) compared to within
study sampling designs. Data taken from a water flea Daphnia sp. study in Alaskan lakes (Larsen et al. 2013). CAM
plants and extremophile bacteria were excluded as they do not contribute to the study ecosystem (section 3.1).
Within-study collected basal organisms are plotted as triangles, whereas cultured/sampled basal organisms from
other ecosystems are plotted as circles (reported in Larsen et al. 2013 as similar ecosystems). Within-study
freshwater (FW) microalgae consists of a single seston filtrate composite that falls outside of the compilation data,
and is likely a mixture of microalgae and other allochthonous POM.

9. Perspectives on δ13C-AA applications in food web ecology

Carbon stable isotope analysis of AAs represents a considerable development in the analytical tools for

tracing basal resources in food webs. Richly layered δ13C-AA datasets offer detailed insights into the

intertwined trophic, metabolic and environmental processes that obscure interpretations in traditional

bulk stable isotope approaches (Yun et al. 2022). With spatiotemporally consistent δ13C-EAA fingerprints,

coupled with the stability of AAs in well-preserved tissues, reconstructions of consumer basal resource

use can extend into the paleontological record. Baseline δ13C-EAA values incorporate environmental

effects, providing inferences about the basal organism habitat while δ13C-NEAA values extend insights to

include dietary macronutrient content, diet quality, and catabolic processes in consumers. Given the
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diverse metabolic roles of AAs, δ13C-AA data help infer the metabolic processes that underpin cellular

and tissue functioning, unlocking valuable inferences into the dynamic nutrient flows and physiological

responses that shape ecosystems. Diverse aspects of basal resource use in food webs can therefore be

investigated with δ13C-AA data when the underlying mechanisms of δ13C-AA values are sufficiently

understood.

A priori ecological knowledge informs study sampling specificity, and the subsequent robustness of

inferences made from δ13C-AA data. The high taxonomic resolution reflected in the δ13C-EAA patterns of

basal resources is becoming increasingly apparent, notably within plants and algae (section 3.1, Scott et

al. 2006, Larsen et al. 2020, Vane et al. 2023, Stahl et al. 2023). Although exhibiting equally diverse

δ13C-EAA patterns, a lack of data impedes comprehensive analyses of δ13C-EAA pattern specificity within

bacteria and fungi. Further development of the mechanistic underpinning of δ13C-EAA patterns in basal

organisms, as initiated here in sections 2 and 3, would facilitate targeted analyses of discriminatory

resolution. Importantly, ecological distinctions are not necessarily reflected in δ13C-EAA patterns, for

example discerning between fresh and detrital material of basal organisms can be challenging (Vane et

al. 2023) due to δ13C-EAA patterns remaining consistent during tissue necrosis, fragmentation, and

detrital transport (Larsen et al. 2013, Elliott Smith et al. 2022).

Extending beyond discriminating basal organisms and reconstructing basal resource use in consumers,

harnessing the trove of metabolic information embedded in δ13C-AA data relies on a solid mechanistic

understanding of the processes that contribute to individual AA carbon isotope values. While progress

has commenced in recent years (e.g. Larsen et al. 2015, Manlick et al. 2022, Elliot Smith et al. 2022, Stahl

et al. 2023), this has been outpaced by the broad and expanding applications of carbon stable isotope

analyses of AAs in the literature. Viewing δ13C-AA data through a physiological lens can help generate

new hypotheses, such as the synthesis of 13C deplete lignin resulting in relatively enriched δ13C values of

phenylalanine in vascular plants (section 3.1). Furthermore, δ13C-AA data could shed light on the degree

of direct AA incorporation in facultative prototrophs. Culturing basal organisms on AA-free media

establishes the δ13C-AA pattern of purely de novo synthesised AAs, which can be compared to those

sampled in situ, revealing the degree to which external AAs are directly assimilated into the proteins of

facultative AA prototrophs in natural settings. Such insights would detail the biochemical functioning of

saprotrophic communities, disentangle the metabolic roles of heterotrophy in mixotrophs, and could be

facilitated by the development of position-specific stable isotope analyses (Fry et al. 2023).
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Despite the richness δ13C-AA data provides, its increased analytical effort has likely contributed to the

trend of incorporating external training data into study designs, varying from graphical comparisons (e.g.

Stahl et al. 2023) to extensive training data within mixing models (e.g. Arsenault et al. 2022b). Herein

lies, however, the often underappreciated issue of interlab comparisons, a problem that is not unique to

the carbon stable isotope analyses of AAs (e.g. Stichler 1995, Gröning 2004, de Laeter 2005). Direct

δ13C-AA data comparisons would be facilitated by greater standardisation of analytical methodologies

across research facilities (Figure 7). Studies comparing inter-lab methodologies could pinpoint the

specific processes within protocols that cause measurement biases, improving our understanding of

stepwise fractionations associated with specific workflows and redressing issues with incorporating

externally derived data into study designs. Ultimately, δ13C-AA values could be collated into a single,

taxa-specific reference library for future studies, constituting a separate functional role to the wider calls

for a centralised repository for isotope data (Pauli et al. 2017).

The application of δ13C-EAA fingerprints holds immense potential for addressing pressing ecological

questions on changing productivity in food webs. The δ13C-EAA fingerprinting approach affords the

opportunity to explore carbon fluxes across spatiotemporal scales without having to characterise

changes in baseline δ13C-EAA values, offering basal resource characterisation and tracing that is

unparalleled in its specificity and inclusivity. Questions such as whether consumers have adapted to the

anthropogenic changes in their environment by changing specific basal resource use have scarcely been

explored. Similarly, detailed changes in basal resource use across consumer ontogeny, over seasons and

years, or between populations remain yet to be thoroughly explored. Understanding basal resource use

by metazoans and their physiological responses in conjunction with changes in basal resource

abundance, composition, nutritional quality, and the environment provides valuable insights into the

resilience of differing food webs across the world.
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Three detailed figures of metabolic networks in plant, heterotrophic bacteria, and animal cells 

 



 

 

Figure S1A. Amino acid biosynthesis pathways in plants. Simplified schematic overview of the anabolic and catabolic amino acid (AA) 
pathways in plants, using Arabidopsis thaliana as a model species. Based on chemical similarities and precursors, the AAs can be 
categorized into five groups: 1) the glutamate family, originating from alpha-ketoglutarate (α-KG); 2) the aspartate family, originating 
from oxaloacetate; 3) the pyruvate group; 4) the 3-phosphoglycerate group; and 5) the aromatic group, derived from 
phosphoenolpyruvate and erythrose-4-phosphate. Superscript numbers next to each AA indicate its categorization, and filled ellipses 
represent products of the primary biosynthesis pathway. In addition to serving as structural components in proteins, AAs fulfill a wide 
range of biological roles, functioning as metabolites, energy-yielding substrates, and signaling molecules, as indicated by the 
descriptions within the rounded rectangles. Abbreviations: Ala, alanine; α-KG, alpha-ketoglutarate; Asn, asparagine; Asp, Asparagine; 
CBB, Calvin-Benson-Bassham; Cys, cysteine; DAHP, 3-deoxy-D-arabinoheptulosonate 7-phosphate; DMPP, dimethylallyl 
pyrophosphate; GABA, γ-Aminobutyric acid; Gly, glycine; Gln, glutamine; Glu, glutamic acid; His, histidine; Ile, isoleucine; IPP, 
Isopentenyl pyrophosphate, Leu, leucine, Lys, lysine; Met, methionine; P5C, 1-pyrroline-5-Carboxylate; Phe, phenylalanine; Pro, 
proline; PRPP, Phosphoribosylpyrophosphate; RuBisCo, ribulose-1,5-bisphosphate carboxylase-oxygenase; Ser, serine; TCA, 
tricarboxylic acid; Trp, tryptophan; Tyr, tyrosine; Val, valine. The pathways are based on the KEGG PATHWAY database 
(https://www.kegg.jp/kegg/pathway.html). The illustration was created with BioRender.com.  



 

 

Figure S1B. Amino acid biosynthesis pathways in heterotrophic bacteria. Simplified schematic overview of the anabolic and catabolic 
amino acid (AA) pathways in heterotrophic bacteria using Escherichia coli as a model organism. The superscript number next to each 
AA indicates its categorization (see Fig. S1A) and the filled ellipses indicate that it is a product of the main biosynthesis pathway. The 
descriptions inside the rounded rectangles exemplify important non-proteinogenic functions of AAs in E. coli. Abbreviations: Ala, 
alanine; α-KG, alpha-ketoglutarate; Asn, asparagine; Asp, Asparagine; CBB, Calvin-Benson-Bassham; Cys, cysteine; DAHP, 3-deoxy-D-
arabinoheptulosonate 7-phosphate; DMPP, dimethylallyl pyrophosphate; GABA, γ-Aminobutyric acid; Gly, glycine; Gln, glutamine; Glu, 
glutamic acid; His, histidine; Ile, isoleucine; IPP, Isopentenyl pyrophosphate, Leu, leucine, Lys, lysine; Met, methionine; P5C, 1-
pyrroline-5-Carbo xylate; Phe, phenylalanine; Pro, proline; PRPP, Phosphoribosylpyrophosphate; RuBisCo, ribulose-1,5-bisphosphate 
carboxylase-oxygenase; Ser, serine; TCA, tricarboxylic acid; Trp, tryptophan; Tyr, tyrosine; Val, valine. The pathways are based on the 
KEGG PATHWAY database (https://www.kegg.jp/kegg/pathway.html). The illustration was created with BioRender.com.  



 

 
Figure S1C. Anabolic and catabolic AA pathways in vertebrates using Homo sapiens as a model organism. The non-essential AAs 
(filled ellipses) can be grouped according to their association with their main biosynthesis pathways: The glycolytic AAs are synthesised 
from metabolic intermediates (pyruvate, phosphoenolpyruvate) of the glycolytic pathway (in the cytosol) and the tricarboxylic acid 
(TCA) NEAAs are synthesised from intermediates of the TCA cycle (a-KG, oxaloacetate) (in the mitochondria). Glucose and glycerol are 



 

sourced to the glycolytic pathway, and fatty acids (FAs) and short chain fatty acids are sourced to the TCA cycle. The catabolism of 
excess AAs either occurs via gluconeogenesis or ketogenesis. Gluconeogenesis is the synthesis of glucose from non-carbohydrate 
precursors such as the glucogenic AAs (marked with 1) and ketogenesis is the metabolic pathway for producing ketone bodies by 
breaking down fatty acids and ketogenic AAs (marked with 2). A large group of AAs can be catabolized by both processes (marked 3). 
Key roles of the non-essential AAs as precursors in physiological processes other than protein synthesis are indicated within the 
rounded rectangles. Certain non-proteinogenic AAs such as citrulline and ornithine are important intermediaries in various pathways 
involving nitrogenous metabolism. In terms of the macronutrients, carbohydrates primarily serve as an energy source after being 
converted to glucose and then to glycolytic intermediates such as 3-phosphoglycerate and pyruvate before entering the TCA cycle. If 
the supply of carbohydrates exceeds the cell’s immediate energy demand, it is stored in the liver as glycogen or, with the he lp of 
insulin, converted into fatty acids, circulated to other parts of the body and stored as fat in adipose tissue. Some carbohydrates also 
become NEAA building blocks. Proteins get converted to AAs in the digestive system before entering the liver. If the AAs are not used 
to build proteins, they are either catabolised via gluconeogenesis or ketogenesis. Gluconeogenesis is the synthesis of glucose from 
non-carbohydrate precursors such as the glucogenic AAs. Ketogenesis is the metabolic pathway for producing ketone bodies by 
breaking down fatty acids and ketogenic AAs. A large group of AAs can be catabolized by both processes. Lipids are converted to 
glycerol, fatty acids and short chain fatty acids. They are able to create energy in a process called beta oxidation that produces acetyl-
coA. Some acetyl-coA molecules are used for synthesis of structural and functional lipids, and others are used as an energy source in 
the TCA cycle. Like the other macronutrients, fatty acids can also be used as NEAA building blocks. The metabolic pathways are 
summarised based on Frayn and Evans (2016). Other abbreviations: Ala, alanine; Asn, asparagine; Asp, Asparagine; Cys, cysteine; 
GABA, γ-Aminobutyric acid; Gly, glycine; Gln, glutamine; Glu, glutamic acid; His, histidine; Ile, isoleucine; IPP, Isopentenyl 
pyrophosphate, Leu, leucine, Lys, lysine; Met, methionine; P5C, 1-pyrroline-5-Carboxylate; Phe, phenylalanine; Pro, proline; PRPP, 
Phosphoribosylpyrophosphate; Ser, serine; Trp, tryptophan; Tyr, tyrosine; Val, valine. The illustration was created with 
BioRender.com. 
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To compile published δ13C-EAA values of basal resources, we conducted a Web of Science search.  This 

search, which covers data published until the end of 2022 and used a combination of keywords such as 

‘amino acid’, ‘carbon isotopes’, ‘ecology’. Initially, we compiled all the δ13C-EAA values in basal resources 

that were directly measured in the study, and also screened additional references therein. We included 

all studies with available δ13C-EAA values, whether they were published online or obtained by request. All 

studies included in our compilation obtained their δ13C-EAA values through measurements made with a 

Gas Chromatography-Isotope Ratio Mass Spectrometry (GC-IRMS) system. The measurements were 

obtained with different derivatization protocols and in different analytical facilities. However, we did not 

correct for interlaboratory differences due to the lack of international reference materials with known 

δ13C values. As a result, some of the variation in δ13C-EAA values among basal resources may be attributed 

to methodological and analytical differences.  

For comparisons between studies, we limited basal resources to those that were measured for five EAAs: 

leucine, isoleucine, valine, phenylalanine, and threonine. Lysine was not measured in the majority of the 

studies. Measurements of basal resources that were based on composite samples, such as POM, microbial 

mats or zooplankton were omitted to ensure that only those basal resources that were directly measured 

without potential addition of other basal resource traces or detrital materials. This also allowed us to be 

more precise with the assignment of basal resources to particular groupings, from general groupings of 

plants, bacteria, and phytoplankton to subgroupings of C3/C4/CAM plants, freshwater/marine 

phytoplankton, diazotrophy in cyanobacteria, brown/red macrophytes, seagrass, and green macrophytes 

(represented only by Ulva sp. plus one measure of Batophora sp.). Sample taxonomy was standardised 

according to the GBIF backbone (the Global Biodiversity Information Facility, GBIF 2022). 

The discrimination of the baseline δ13C-EAA values in these basal resources were then visualised by using 

a linear discrimination analysis (LDA). LDAs were typically limited to only three basal resource groups 

providing maximal discrimination that can be observed in 2-dimensional plots. In order to estimate the 

overlap between groups, we calculated the Bayesian posterior distribution of the Bhattacharyya 

coefficients (BC, Bhattacharyya 1946) of pairwise groups. The BC is a general statistical measure that 

quantifies the degree of similarity between two multivariate distributions, ranging from 0 (completely 

dissimilar distributions, i.e. no overlap) to 1 (identical distributions, i.e. complete overlap), regardless of 

the dimensionality of the data. This makes it highly suitable for δ13C-EAA data, where the dimensionality 

of the data can vary between studies depending on the number of AAs that can be measured. This means 

measures of overlap can be compared either between studies, or contrasted pre- or post- transformations 

of data (e.g. PCA or LDA dimensionality reduction). In order to estimate the posterior distributions of BC 

for each pair, and therefore the overlaps, we derived Bayesian posteriors for multivariate normal 

distributions of basal group δ13C-EAA patterns (post LDA) using an MCMC approach with the 

“fitMVNdirect” function given in Skinner et al. (2019) with the default settings. This is a generalised, 

dimension-wise, approach analogous to that implemented in the commonly used SIBER package (Jackson 

et al. 2011). The BC was then calculated pairwise for each posterior draw using the “bhattacharyya.matrix” 

function from the fpc package (Hennig 2023). Analyses were conducted in R statistical software version 

4.2.1 (R Core Team 2022). 



Table S2.1. Posterior estimates of Bhattacharyya coefficients for group pairs plotted in Fig. 3 of the 

main manuscript. Q25 and Q75 represent the interquartile range. 

ID pairing min q25 median q75 max 

A Algae vs Bacteria 0.488 0.598 0.631 0.668 0.806 

A Algae vs Fungi 0.773 0.861 0.882 0.900 0.961 

A Algae vs Plants 0.411 0.510 0.531 0.554 0.655 

A Bacteria vs Fungi 0.252 0.421 0.465 0.511 0.693 

A Bacteria vs Plants 0.107 0.201 0.232 0.268 0.447 

A Fungi vs Plants 0.201 0.310 0.343 0.374 0.502 

B Brown algae vs Green algae 0.32 0.47 0.515 0.56 0.725 

B Brown algae vs Red algae 0.17 0.308 0.349 0.391 0.61 

B Brown algae vs Seagrass 0.018 0.084 0.118 0.169 0.556 

B Green algae vs Red algae 0.446 0.635 0.678 0.723 0.885 

B Green algae vs Seagrass 0.002 0.032 0.058 0.101 0.587 

B Red algae vs Seagrass 0.047 0.184 0.232 0.294 0.674 

C C3 vs C4 0.72 0.885 0.911 0.936 0.989 

C C3 vs CAM 0.144 0.28 0.32 0.366 0.614 

C C4 vs CAM 0.045 0.193 0.248 0.315 0.582 

 

Table S2.2. Posterior estimates of Bhattacharyya coefficients for group pairs plotted in Fig. S2. Q25 

and Q75 represent the interquartile range.  

Subplot Pairing min q25 median q75 max 

A Cyanobacteria_D vs Freshwater phytoplankton 0.119 0.333 0.399 0.463 0.709 

A Cyanobacteria_D vs Marine phytoplankton 0.041 0.179 0.243 0.316 0.603 

A Freshwater phytoplankton vs Marine phytoplankton 0.143 0.295 0.341 0.383 0.581 

B Freshwater phytoplankton vs Marine phytoplankton 0.168 0.292 0.332 0.374 0.586 

B Freshwater phytoplankton vs Seagrass 0.042 0.162 0.215 0.288 0.666 

B Marine phytoplankton vs Seagrass 0.02 0.073 0.102 0.143 0.48 

C Bacteria vs Fungi 0.231 0.356 0.396 0.439 0.607 

C Bacteria vs Phytoplankton 0.125 0.23 0.267 0.305 0.48 

C Fungi vs Phytoplankton 0.233 0.349 0.39 0.434 0.643 

D Bacteria vs Macrophytes 0.31 0.449 0.485 0.522 0.682 

D Bacteria vs Plants 0.026 0.068 0.087 0.108 0.244 

D Macrophytes vs Plants 0.255 0.361 0.385 0.411 0.51 



 



Figure S2: Linear discriminant (LD) analysis of basal resources based on mean-centred δ13C-EAA values 
compiled from the literature. Upper subplot panel: LD scores for individual samples, with distinct symbols 
denoting each group. Lower subplot panel: Bhattacharyya coefficients (BC) for group pairs represented as 
density scores, indicating the degree of overlap in LD scores between groups (0 = no overlap, 1 = identical 
distributions). EAAs considered: leucine (Leu), isoleucine (Ile), valine (Val), threonine (Thr), and 
phenylalanine (Phe). Each subplot features the following taxa: A) Freshwater phytoplankton, marine 
phytoplankton, diazotrophic cyanobacteria (Cyanobac_D), and non-diazotrophic cyanobacteria 
(Cyanobac_ND, predicted group); B) Bacteria, freshwater phytoplankton, and seagrasses; C) Bacteria, 
fungi, and phytoplankton; D) Bacteria, macrophytes (macroalgae and aquatic, and plants (comprising C3, 
C4, and CAM). For visual clarity, coefficients for each independent variable were multiplied by 8. See 
sample identities, classifications, and literature sources in Figshare DOI:10.6084/m9.figshare.22852355 
and BC values in Table S2. 
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As described in Section 2 of the main text, δ13C-EAA patterns are expected to vary with phylogeny due to 

lineage specific biosynthetic pathways and enzymatic constraints. In addition there are confounding 

phenotypic expressions observed within taxonomic clades, i.e. clades are on average adapted to live in 

particular environments, that may also potentially influence δ13C-EAA patterns through phenotypic 

expressions that modulate EAA demands, and therefore isotopic fractionations. Although distinctions are 

apparent across broad taxonomic clades (Section 3), current data are too limited to test widely across 

basal organisms whether finer scale distinctions are readily quantifiable, although it is suggested in some 

specific instances (e.g. separation between cultured diatom species, Vane et al. 2023). Here we show 

however that phylogeny, within the relatively well described phylum of Tracheophyta (vascular plants), 

explains considerable variation in individual δ13C-EAA patterns. 

We limited our compilation dataset (in Appendix S2) to vascular plants only. As family was the lowest 

common taxonomic rank identified across all samples, we defined phylogeny from Tracheophyta down to 

family for each sample. Initial taxonomic ranks were extracted from GBIF (the Global Biodiversity 

Information Facility, GBIF 2022). To ensure that residual variation in δ13C-EAA patterns could be 

adequately estimated, we further restricted the dataset to only those families with at least 3 observations, 

resulting in 18 families in total. Family names were cross referenced against the Open Tree of Life (OTL) 

and any families that had broken phylogenies (e.g. are paraphyletic) were reassigned to monophyletic 

subfamily divisions that incorporated all samples from the original family. The phylogenetic subtree of 

these 18 (sub)families was then extracted from OTL (shown in Fig. S3A, using the R package ‘rotl’, 

Michonneau et al. 2016).  

To test whether phylogeny explains variation in δ13C-EAA patterns, we constructed a multivariate, 

phylogenetic mixed effects model in a Bayesian framework, with the five mean-centred EAA δ13C values 

modelled as a response to the random effect of phylogenetic relatedness based on the topology of the 

vascular plant family subtree. The model was run in R (version 4.2.1, R Core Team 2022) using the package 

‘MCMCglmm’ (Hadfield, 2010, model specifics are provided in the supplied R code). Trace plots of the 

chain were checked and showed good model convergence. 

The average δ13C-EAA pattern for a vascular plant is shown in Fig. S3A. Mean-centred threonine values 

are relatively enriched in 13C (median 12.1‰) and leucine relatively deplete (median -8.2‰) compared to 

other EAAs. However, these two EAAs also had the least certainty of their means, shown by the wide 

credibility intervals (CIs), followed by isoleucine. Average phenylalanine and valine had much higher 

certainty, with 95% credibility intervals spanning <1‰. Approximately 50% of the total variation in δ13C-

EAA patterns was attributed to phylogeny (posterior median = 0.51, 95% CI 0.36 to 0.66). Mean-centred 

leucine δ13C values varied the most with phylogeny (mean variance of 9.7, 95% CI 3.0 to 18.5), followed by 

threonine (mean 5.0, 95% CI 0.44 to 11.4) and isoleucine (mean 3.1, 95% CI 0.62 to 6.8), with almost no 

variation expressed in either phenylalanine (mean 0.15, 95% CI <0.01 to 0.65) or valine (mean 0.31, 95% 

<0.01 to 1.6), shown in Fig. S3A. Qualitatively, it can be observed that some families express similar δ13C-

EAA patterns despite being phylogenetically distant from each other. Notably, Fabaceae, the legume 

plants that typically host nitrogen fixing bacteria in their roots, have relatively deplete threonine values 

but relatively enriched leucine values. This matches with the distant sister families Posidoniaceae and 

Hydrocharitaceae, which encompass marine seagrasses and many other aquatic plant species. It can also 



 

be seen that the families Agavoideae, Cactaceae and Zygophyllaceae have similar δ13C-EAA patterns 

marked by relatively deplete leucine but enriched isoleucine and threonine, with representative species 

typically known for being adapted to dry habitats. 

The residual variance - covariance structure is shown in Fig. S3B. Threonine expressed the largest 

individual variation (mean variance 7.35) and negatively co-varied with all other EAAs (all mean 

correlations < -0.39). These negative correlations intuitively make sense as threonine is the most  relatively 

enriched AA (Fig. S3B) and the data are mean centred, therefore increasing values in one AA will be 

accompanied by decreases in the other EAAs. Interestingly, valine and phenylalanine, despite showing 

almost no variation with phylogeny, express considerable individual variances (means of 3.05 and 3.97 

respectively). This implies that mechanisms at the individual level  result in variation in these EAAs rather 

than lineage specific mechanisms. Valine and phenylalanine also negatively covary with each other, likely 

due to the same reasoning as with threonine. Despite having large variations with phylogeny, isoleucine 

and leucine both have limited individual variances, suggesting that within vascular plants, metabolic 

networks involving these two AAs may be less plastic at the individual level. 



 

 

Figure S3A: Modelled mean-centred δ13C values of five EAAs (δ13C patterns) of vascular plants. Global average values (right hand panel) and the 

offsets, Δδ13C, for each EAA (first to fifth panels) among the 18 taxonomic (sub)families in the vascular plant dataset. Phylogenetic topology 

between the 18 families is plotted on the left hand side. Circles indicate median posterior values, thick bars denote the 50% credible intervals (CIs) 

and thin bars the 95% CIs. Average mean-centred δ13C CIs for phenylalanine and valine fall within the median circles. Dashed lines are plotted at 

zero on all panels for clarity. This figure is an enlarged version of the subplot Figure 4D from the main manuscript.



 

 

 

Figure S3B: Residual variance - covariance matrix of modelled vascular plant δ13C patterns. Variances 
(Var) of individual EAAs are plotted along the diagonal with thick borders, covariances (Cov) in the upper 
triangle, and corresponding correlations (Cor) in the lower triangle. Posterior mean values (large text) with 
95% credible intervals (smaller text) are given for each EAA pairing. Posterior mean values that are not 
statistically distinguishable from zero are denoted as n.s.  
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We compiled δ13C-AA data from historical and archaeological human populations with diverse subsistence 

strategies, as reported in eight studies. In two of these studies (Honch et al. 2012 and Colonese et al. 

2014), the archaeological and environmental contexts enabled us to select a subset of populations for 

which we could identify their primary dietary protein sources: freshwater (δ13C-EAA mean: -27.5±1.5‰, 

n=12), marine (-19.4±1.2‰, n=19), terrestrial C3 (-27.1±1.0‰, n=12), and terrestrial C4 (-19.1±2.1‰, 

n=14) proteins. The protein sources for the six populations from the remaining six studies were less 

certain. These populations included individuals from Köpingsvik (bone, Mesolithic and Middle Neolithic; 

Webb et al. 2018); Nancheng (bone, Proto-Shang; Ma et al. 2021); Nukdo (bone, Late Bronze Age; Choy 

et al. 2010); Odense rib (bone, Medieval; Brozou et al. 2022); Odense femur (bone, Medieval; Brozou et 

al. 2022); Pica-8 (hair, Late Intermediate; Mora et al. 2018); Pica-8 (tendon, Late Intermediate; Mora et 

al. 2018); and Uummannaq (bone, 16th and 17th centuries; Raghavan et al. 2010). Two of the studies 

reported δ13C-AA values for different tissue types from the same individuals. We compared two types of 

data preprocessing: measured and EAA mean-centred δ13C-AA data. The former highlights the influence 

of environmental factors on δ13C-AA variations, while the latter emphasises the effect of metabolic 

processes on intermolecular δ13C variability. We applied two ordination techniques, PCA and LDA, to 

assess the relationship between the independent variables (i.e., δ13C-AA values) and the spread of data 

within and between groups with known primary diet protein sources. We then projected the δ13C-AA 

values of individuals with unknown protein sources onto the principal component and linear discriminant 

spaces. To corroborate the correctness of the results, we used mean δ13C-EAA values (phenylalanine and 

valine), with marine and C4 protein groups expected to be more 13C enriched than the freshwater and C3 

protein groups. We employed two different methods to assess the similarity of humans to the four protein 

sources:  

1) For both preprocessing datasets, we compared class probability assignments pθ(x) and likelihood lx(θ) 

functions to predict protein sources in the LDA output. While pθ(x) is best suited for discrete classification 

to a predefined group because it sums to 1, lx(θ) is not normalised to 1 and is therefore less prone to false 

inferences by forcing unlikely classifications. 

2) To measure the similarity of the populations to the protein groups across both preprocessing datasets 

and ordination methods, we calculated Bhattacharyya coefficients, which measure similarity between two 

multivariate probability distributions (see Appendix S2 for statistical details). A coefficient of 0 indicates 

no overlap between the two distributions, while a coefficient of 1 indicates that they are identical. 

PCA captures the direction of maximum variation in the data rather than maximising group separability 

as is the case for LDA. Therefore, variables contributing to intragroup variation have a greater weight in 

PCA than LDA. This is particularly apparent when separating the C3 and freshwater protein groups from 

the C4 and marine protein groups based on baseline δ13C-EAA values. In terms of classifying new 

observations (individuals with unknown protein source), LDA will assign them to the class with the highest 

likelihood, even if it is small. If the highest likelihood is small, the observation has weak similarities to any 

of the predefined classes. The Pica 8 hair individuals exemplify this, as the δ13C values of glycine are 

enriched by ~10‰ compared to glycine in the collagenous Pica 8 samples. This shows that LDA predictions 

can be misleading when the training data are inadequate or fall outside the boundaries of the training 

data. Identifying these observations can be achieved through visual inspection of discriminant scores and 



likelihood estimates. From visual inspection, it is evident that the Pica-8 hair samples fall outside the 

predefined C4 protein group and have much lower likelihoods compared to the tendon samples - see Figs. 

6B1 in the main manuscript and Fig. S4, specific values provided in the metadata overview on Figshare 

Data Repository linked above. In contrast to likelihood estimates, which provide values for single 

observations, Bhattacharyya coefficients (BC) are estimated at the population level, for two compared 

groups, in this case, a human population versus a protein source. The median BC values of Bayesian 

posterior estimates reported in Fig. S4 show that PCA ordination generally produces higher median values 

compared to LDA ordination. This is to be expected as LDA optimises for separation between groups. 

However, these median BC values have limited value for this case study because populations falling within 

the 'mixing-space' of the four protein sources but not overlapping with any of them have low BC values. 

Therefore, it is important to visually inspect the ordination plots when evaluating BC values. Nevertheless, 

many of the trends reported in likelihood estimates also hold true for the BC values. For instance, both 

the Odense (both rib and femur) and Nukdo populations exhibit a much greater overlap with C3 proteins 

in the PCA than in the LDA techniques, underscoring how sensitive these predictions are to the specific 

ordination method used.  

Out of 64 unknown (predicted) individuals, 18 were categorised differently between the two data set 

representations (measured vs. mean-centred) due to the slight structural differences. According to the 

LDA output, most of these individuals likely consumed mixed diets, e.g. Nukdo individuals on C3/marine 

protein (δ13C-EAA mean: -25.9±1.1‰, n=9), or on brackish resources, e.g. the Köpingsvik (-22.1±0.5‰, 

n=5) and Uummannaq (-20.4±0.5‰, n=6) individuals. The measured values for the Uummannaq 

individuals have a marine protein bias, while the mean-centred values have a freshwater protein bias (Fig. 

6 in the main manuscript). For the Odense individuals (femur: -26.3±0.7‰, n=10; rib: -26.2±1.2‰, n=10), 

the measured values categorised all but one femur sample as C3, while the mean-centred data 

categorized 11 in C3, 3 in marine, and 6 in C4 group. The mean δ13C-EAA values and contextual information 

support the predictions based on measured values for the Uummannaq individuals and non-C3 predictions 

of the Odense individuals. The prediction of individuals from the remaining populations (Nancheng, -

15.4±2.2‰, n=12; Pica 8 tendon, -19.3±3.8‰, n=6; Pica 8 hair, -16.4±1.3‰, n=6) are consistent between 

the two data sets with all but one individual clustering with the C4 protein group. The prediction of the 

outlier individual (SE-T3) with the C3 protein group is corroborated by its mean δ13C-EAA value (-26.8‰). 

A visual inspection shows that predictions based on measured δ13C-EAA values are more accurate, as seen 

in Figs. 6B1 and 6D1. For example, the individual (M70) with a mean δ13C-EAA value of -22.1‰ is a clear 

outlier in Fig. 6B1, trending towards the C3 group, while a similar trend is less obvious in Fig. 6D1.  

The data compilation comprises two populations, Pica-8 and Odense, from which it is possible to  infer 

dietary histories from the same individuals thanks to analyses of different tissue types. The earlier dietary 

history of the Pica-8 individuals represented by the tendon samples indicates that the individuals relied 

on different subsistence strategies: Terrestrial C4 (n=4), marine C4 (SI-T74; n=1), and possibly a mixture of 

terrestrial C3 and C4 (SE-T3; n=1). The comparatively higher mean δ13C-EAA values of the hair than tendon 

samples, typically between 1 and 2‰, support that the population became more reliant on C4 protein 

sources. This is particularly true for the SE-T3 whose hair samples were 13C enriched by 8.6‰ compared 

to the tendon samples, which had a mean δ13C-EAA value typical of the terrestrial protein group. We are 



also questioning whether the classification of the SI-T74 and SE-T3 tendon samples to the C4 group is 

correct in part because of their mean δ13C-EAA values are depleted by ~3‰ compared to the the 

remaining Pica-8 individuals and most of the C4 Nancheng individuals. Thus, it appears that the ordination 

and mean δ13C-EAA results do not fully corroborate one another. In terms of inferring dietary histories 

based on collagen only, the ribs of the Odense individuals most likely represent the period after they were 

admitted to a leprosy hospital and the femurs represent earlier periods. As noted by the authors of the 

study, it appears that several individuals increased marine protein consumption after hospitalisation 

(Brozou et al. 2022). For individuals relying on proteins from brackish waters, the predictions of the 

Uummannaq (Raghavan et al. 2010) and Köpingsvik (Webb et al. 2018) populations are in line with modern 

salinity observations showing brackish waters in both locations, but with the protein sources of the 

Uummannaq individuals being more marine-based compared to the Köpingsvik individuals (Holinde and 

Zielinski 2016, Kniebusch et al. 2019). Most Nukdo individuals relied more on marine than C3 proteins 

(Choy et al. 2010).  

Regardless of the preprocessing and ordination methods, both datasets have many similar features in 

terms of the weight and direction of independent variables (Fig. 6B2 vs. Fig. 6D2): Alanine, aspartate, and 

glutamate generally contribute to maximising intragroup variation (Fig. 6C2), and phenylalanine, valine, 

proline, and glycine contribute to maximising intergroup variation (Fig. 6B2 and 6D2). Our study confirmed 

that δ13C of phenylalanine vs. valine separate terrestrial and aquatic resources (Honch et al. 2012, Larsen 

et al. 2013). Like previous studies, we found that phenylalanine relative to valine is more 13C enriched in 

terrestrial than in aquatic protein groups. Among the NEAAs, proline is important for separating the C3 

from the other protein groups. Our analysis could not determine the cause of the 13C enrichment in the 

C3 protein group compared to other groups. However, according to Liu et al. (2018), copepods on a high-

carbohydrate diet exhibited a higher trophic 13C enrichment of proline than anchovies on a high-protein 

diet. The 13C enrichment of glycine is highest in the freshwater protein group and lowest in the C4 protein 

group (Fig. 6B2). The cause of these isotopic effects remains unclear, as they could result from either 

metabolic processes in the food sources or post-ingestive processes. Factors contributing to these effects 

may include the conversion of excess dietary protein into fat and energy, as well as the de novo synthesis 

of glycine. Although alanine and glutamate are relatively uninformative AAs, the terrestrial protein groups 

were significantly more 13C enriched than the aquatic protein groups (P < 0.001). This difference may arise 

from higher carbohydrate consumption in terrestrial protein groups compared to aquatic protein groups. 

Epidemiological studies investigating the δ13C-AA response to high-fructose corn syrup-sweetened 

beverage intake have identified alanine and glutamate as potential markers of carbohydrate intake (Choy 

et al. 2013, Yun et al. 2018, 2020, Johnson et al. 2021). Both NEAAs use pyruvate, a glycolytic intermediate, 

as a precursor, and acetyl-CoA, a product of beta-oxidation, acts as a precursor for glutamate but not 

glycine (see Appendix S1, Fig. S1C). The distinct response of alanine and glutamate to carbohydrate intake 

is likely influenced by the balance of dietary fat to carbohydrate. 

 



 

Figure S4: Comparison of human populations of known diets with those with uncertain diets. The matrix 

plots show the median Bhattacharyya coefficients (0 = no overlap, 1 = identical distributions) indicating 

the degree of overlap in PC (left hand side) or LD (right hand side) scores between human groups (see Fig. 

6 in main manuscript) and their potential dietary protein sources (FP, freshwater protein; MP, marine 

protein, C3P, terrestrial C3 protein; C4P, terrestrial C4 protein). Top panels are based on measured δ13C-

AA data whereas bottom panels are EAA (phenylalanine and valine) mean-centred δ13C-AA values. 
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To investigate the differences in offsets between δ13C-EAA values between diet and metazoan tissues, δ13C-EAA 

values from controlled feeding studies that aimed to study the routing of AAs from different dietary compositions 

to animal tissues with δ13C-AA values were compiled. We searched Web of Science for articles published from the 

beginning of online records until May 2022 using the terms “amino acid”, “carbon isotopes”, “fractionation”.  

While not all feeding experiments aiming to qualify the routing of AAs with carbon isotopes could be found with 

these search terms, references within publications mentioning trophic discrimination of EAAs were additionally 

screened. 

As a result, 17 publications were found that described the measured δ13C-EAA values between animal tissue and 

their specific diet. Analytical and methodological information was extracted from each publication and compiled. 

Extracted analytical information included instrumentation (e.g. GC-IRMS or LC-IRMS) derivatisation method in 

case of GC-IRMS measurements, description of the chemical pretreatments of both consumer and diet tissues. 

Methodology descriptions encompassed consumer species, type of tissue, dietary type or variations, amount of 

days that the diet was fed to the consumer, and how many individual replicate consumer tissues were measured. 

δ13C-EAA values were mainly acquired from tables in the publication, online supplementary materials and data 

repositories, or direct requests to the corresponding author. However, offsets in δ13C-EAA values were gained 

from a graph in Howland et al. (2003) as the request for raw data was unanswered. No corrections to the δ13C-

EAA values between the studies were necessary due to the interest in the offsets in δ13C-EAA values between diet 

and tissue that were measured in the same analytical facility. As not all offsets were presented in a similar manner 

between publications (e.g. δ13C-EAAtissue - δ13C-EAAdiet), some offsets were calculated directly from study data.  
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