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Abstract

Natural and anthropogenic stressors are spatiotemporally complex, having indirect effects on the

composition and biomass of organisms at the base of a food web, and their availability and nutritional

quality. Because basal organisms synthesise the biomolecules essential for metazoan growth and survival

(i.e. basal resources), understanding the connections between basal resources and consumers across

diverse time scales is needed to fully comprehend their impact on food webs. Traditional approaches

using bulk stable isotope ratios have provided insight into basal resource use, but lack specificity in

identifying multiple basal resources and their transfer through ecosystems. The development of

compound-specific stable isotope analyses now allows researchers to trace the trophic transfer of

specific biomolecules. This paper provides an overview of the advances and challenges associated with

tracing basal resources with carbon stable isotopes in amino acids (δ13C-AA). We develop a conceptual

framework for understanding the mechanistic underpinning of δ13C-AA values. Subsequently, formal

definitions of associated terminologies that have so far been lacking in the literature are proposed. We

empirically highlight the diagnostic ability of the relative offsets between δ13C values of essential amino

acids, termed δ13C-EAA patterns. As these offsets remain largely unaltered during trophic transfer and

across varying environments, they can be used as fingerprints to trace spatiotemporal shifts in basal

resource use within food webs. Given the stable preservation of amino acids in many metazoan tissues,

δ13C-EAA fingerprints can provide insights into basal resource use in food webs from geological history

through to the contemporary. The added value of non-essential amino acids as metabolic biomarkers are

explored and demonstrated in an archaeological context. We provide thorough overviews of the

analytical and statistical methodologies involved in making robust inferences in food web studies. The

constraints and pitfalls of δ13C-AA data are discussed, such as issues with basal resource specificity, de

novo synthesis, and problems with large compilation datasets. Taken together, δ13C-AA values provide a

powerful tool for understanding the specific use of basal resources in food webs on various

spatiotemporal scales, but careful consideration and characterization of basal resources is necessary to

ensure accurate estimations of proportional use.
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1. Introduction

Food webs are increasingly affected by anthropogenic stressors such as rising CO2 levels, climate change,

biodiversity loss, habitat destruction, and pollution (Hoegh-Guldberg and Bruno 2010, Blanchard et al.

2012, Kȩdra et al. 2015). These stressors cause a decline in the diversity and biomass of metazoan

species within food webs, which in turn threaten the ecosystem services they provide (Verity et al. 2002,

Hondorp et al. 2010). Organisms at higher trophic levels rely on a suite of biomolecules - referred to as

basal resources - synthesised by primary producers and microbes. Assessing basal resource use across a

food web requires careful consideration of intricate spatial and temporal variations (Pauly and

Christensen 1995, Bolnick et al. 2003, Moloney et al. 2011, Dall et al. 2012, Raubenheimer et al. 2012,

Chidawanyika et al. 2019). Several physiochemical factors determine the timing, location, and

magnitude of basal resource production, including natural cycles of environmental phenomena

(Eker-Develi et al. 2006, McMeans et al. 2015, Vining et al. 2022). However, anthropogenic stressors can

disrupt these cycles and processes leading to far-reaching implications for the dynamics, structure,

functioning and stability of food webs (Nakazawa 2015, Svanbäck et al. 2015, Kortsch et al. 2015).

Therefore, understanding how different organisms use basal resources across spatiotemporal scales is

critical for assessing the vulnerability of species, food webs and entire ecosystems to environmental

change.

The primary approach for tracing trophic transfer of carbon from basal organisms involves measuring the

relative abundance of carbon stable isotopes within all carbon-containing biomolecules - i.e. bulk - and

comparing consumer tissues to their potential basal resources. This is done by measuring the relative

abundance of heavy (13C) to light (12C) carbon, normalised to the primary international standard (Vienna

Pee Dee Belemnite, VPDB), and expressed as δ13C per mille (‰) values. In addition to carbon, the

isotopic ratios of other elements can provide valuable insights into the ecological and environmental

factors influencing the use of basal resources. For instance, the isotope ratios of oxygen can reflect water

source and metabolic processes (Soto et al. 2013). Sulphur isotopes can indicate marine versus terrestrial

dietary inputs due to the difference in sulphur isotope ratios between marine and terrestrial

environments (Yamanaka et al. 2015). Zinc isotopes can provide insights into the nutritional and trophic

status of an organism (McCormack et al. 2021), and strontium isotopes can provide information about

the geographical origin of food and water, as the ratio of ⁸⁷Sr to ⁸⁶Sr varies with geology (Britton et al.

2022). Radiocarbon concentrations (Larsen et al. 2018) and gut content DNA metabarcoding (Casey et al.

2019) can also contribute unique and complementary insights into the use of basal resources. Among
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these tracers, δ13C values are highly suited to trace basal resources because carbon is abundant,

ubiquitous, and δ13C values of basal resources are often habitat or taxon specific. For example,

microalgae from benthic and pelagic habitats tend to have distinct δ13C values (Guiry 2019), and the

mode of carbon acquisition, e.g. plants with C3 and C4 photosynthetic pathways, likewise result in distinct

δ13C values (O’Leary 1988). However, it is important to note that bulk δ13C values of basal resource

tissues can vary substantially with the environment (Peterson and Fry 1987, Hayes 2001, Tamelander et

al. 2009, Casey and Post 2011, Magozzi et al. 2017). This variability can complicate the process of

retrospective basal resource reconstruction when isotopic baseline information is unavailable. Moreover,

bulk δ13C values, as only a single tracer, have a limited ability to distinguish between the multitude of

basal resources in a given ecosystem. Contributions from microorganisms are frequently

underappreciated, largely due to the logistical challenges associated with isolating and sampling them in

sufficient quantities from their natural habitats (Casey and Post 2011).

To address the constraints of bulk tissue analysis, researchers increasingly analyse δ13C values of

individual biomolecules (Nielsen et al. 2017, Ruess and Müller-Navarra 2019). However, interpreting δ13C

values of biomolecules is more complex due to many specific biomolecular processes that can cause

fractionation and mixing of isotopes. Primary producers and microbes fix (in)organic carbon (e.g., CO2 or

HCO3
-) into endogenous biomolecules that, once absorbed, can subsequently be incorporated in the

tissues of heterotrophs with little or no modification of their carbon skeletons; catabolized for energy; or

used in the synthesis of new organic biomolecules (Boecklen et al. 2011). Focusing on individual fatty

acids has proven valuable for tracing basal resources to consumers in modern food webs (Burian et al.

2020). Nonetheless, fatty acids are less suitable for past basal resource reconstructions because of their

low concentration and degradation in most structural tissues that tend to persist in palaeoecological

records (Geigl et al. 2004). Contrastingly, the δ13C values of the 20 proteinogenic amino acids (AAs) show

considerable promise to identify specific basal resources from primary producers to microbial organisms.

δ13C-AA values can trace their carbon transfer irrespective of environmental conditions(Larsen et al.

2009, Elliott Smith et al. 2022, Vane et al. 2023). AAs, due to their stability in well-preserved metazoan

tissue proteins, serve as powerful spatiotemporal tracers of basal resource use.

Animals can synthesise 11 of the 20 proteinogenic AAs de novo. The non-synthesizable AAs, traditionally

termed the essential amino acids (EAAs) (Wu et al. 2014), must be acquired from the diet or

supplemented from the gut microflora. For most healthy animals feeding on nutritionally adequate diets

the contribution from gut microflora is thought to be minor (Fuller and Reeds, 1998), although such
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contributions can play an important role in supplementing the nutrition of detritivores. Since the EAAs

are typically routed directly from dietary proteins, their tissue-diet offsets δ13C values are negligible

(McMahon et al. 2010, 2015b, Takizawa et al. 2017, Wang et al. 2019a). For the metazoan-synthesizable

AAs (the non-essential amino acids, NEAAs), animals rely both on dietary sources and de novo synthesis.

Although NEAAs can be synthesised de novo by animals, almost all of them can be considered

conditionally essential, particularly during stages of rapid growth when the rate of utilisation outpaces

the rate of synthesis. Regardless of the varying demands for NEAAs across different ontogenetic stages,

physiological and metabolic processes in general are constrained without dietary supplementation (Wu

2009, Eisert 2011, Hou et al. 2015).

Lineage-specific pathways and associated carbon fractionation during the synthesis of EAAs in basal

organisms contribute to the source diagnostic potential of EAAs to identify and trace basal resource

transfer to animal biomass. Broad taxonomic groups such as algae, bacteria, fungi, and vascular plants

each have characteristic δ13C-EAA patterns, i.e. the relative differences in δ13C values among a set of

EAAs, that remain largely consistent across variable physical conditions, chemical conditions, and across

time (Scott et al. 2006, Larsen et al. 2013, 2015, Lynch et al. 2016, Elliott Smith et al. 2018, 2022, Stahl et

al. 2023). Distinct δ13C-EAA patterns among basal organisms have been typically referred to as δ13C-EAA

fingerprints (Larsen et al. 2009). Interpreting consumer δ13C values of the NEAAs (δ13C-NEAA) is more

challenging as they can be directly routed from the dietary proteins to consumer tissue or synthesised de

novo from various digested dietary macronutrients, i.e., carbohydrates, lipids, and proteins (McMahon et

al. 2015b). Despite these caveats, the NEAAs are increasingly used to reconstruct past human diets (Corr

et al. 2005, Webb et al. 2017) and understand macronutrient sourcing and routing in aquatic animals

(Larsen et al. 2022). AAs, owing to their stability in fossilised materials, like dinosaur eggshells (Zhao et

al. 1993) and Pleistocene mollusk shells (Abelson 1954), serve as valuable time capsules. Archives of

biogenic carbonates (i.e. coral skeletons, fish otoliths, shells, bones) and other forms of preserved

structural tissues hold a vast, yet often untapped potential for retrospective basal resource assessments

over thousands of years (Hare et al. 1991, Mora et al. 2018, Tomé et al. 2020, Ma et al. 2021). These

assessments could be achieved with δ13C-EAA fingerprints due to their apparent spatiotemporal stability.

However, methodological and post-analysis approaches for using δ13C-AA values to estimate basal

resource utilisation are diverse and lack standard protocols. Additionally, the use of terminology since

the introduction of the concepts of δ13C patterns and fingerprints over 15 years ago (Scott et al. 2006,

Larsen et al. 2009) has been inconsistently applied throughout the literature.
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In this review, we provide an in-depth synthesis of the diverse aspects of inferring basal resource AA use

by metazoans via the application of carbon isotopes in AAs. While the focus primarily lies on the EAAs,

the added value of NEAAs is also explored. We conceptualise AA biosynthesis pathways in basal

organisms that determine their respective δ13C-AA values, and explicitly define associated terminology. A

glossary of terminology commonly used throughout this review is provided in Table 1. Literature data are

compiled from ecological and archaeological studies to explore the extent to which δ13C-EAA patterns

can consistently discriminate specific basal resources, the potential mechanisms underlying these

patterns, and how δ13C-EAA fingerprints can be characterised. Tilting to a consumer perspective, we

detail ways that δ13C-EAA fingerprints can be applied to assess EAA sourcing from pure basal resource

origins. Acknowledging the limitations of δ13C-EAA fingerprints, we suggest the inclusion of δ13C-NEAA

values alongside baseline δ13C-EAA values in inferring resource use. We also outline the time scales that

are represented by different archival faunal tissues, and how their δ13C-AA values are best preserved. As

reliable measurements of δ13C-AA values are paramount, we highlight best methodological practices and

analytical protocols. We elaborate on the quantitative analyses of δ13C-EAA data used to estimate

proportional basal resource use by consumers. Finally, we outline the current application of AA carbon

isotopes in food web studies, and contemplate future directions for this field. This review serves as a

comprehensive, step-by-step guide on the use of δ13C-AA data, covering everything from sampling and

analysis to interpretation. The review aims to support the growing use of this method for tracing EAA

flow from basal resources through food webs.

Table 1. Glossary of terms

Term Definition

Amino acid (AA) The 20 proteinogenic amino acids

Amino acid carbon
skeletons

The core structure of the molecule that remains after the amine (-NH2) and carboxyl
(-COOH) groups, which define the molecule as an amino acid, are removed

Analytical accuracy The absence of bias in measurements of δ13C-AA values, achieved through
calibration to a reference value (section 7.2)

Analytical precision Consistent measurements of δ13C-AA values over extended time periods on an
analytical instrument (section 7.2)
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Analytical uncertainty The variation in individual δ13C-AA values measured in an AA standard during the
entire analytical period in which the studied tissue samples are measured, typically
reported as standard deviations (section 8.1)

Basal organisms Primary producers and microbes that have the ability to synthesise suites of
biomolecules de novo from externally sourced, simple (in)organic carbon. They are
considered to be the base of food webs (section 2.1)

Basal resources The suites of biomolecules (focusing on the suite of AAs in this review) synthesised
de novo by specific basal organisms that are assimilated by consumers as a whole or
for components in constructing their own biomass (proteins etc., section 4)

Baseline δ13C-(E)AA
values

The measured δ13C values of basal organism tissue (E)AAs that are formed by a
combination of external and internal physiochemical processes. These processes
include initial δ13C values of external carbon sources (and drivers thereof), internal
fractionation by acquisition modes, and individual AA biosynthetic pathways (section
2.1 and Fig. 1). Baseline δ13C-AA values can be produced in natural environments as
well as artificial laboratory settings (such as in laboratory controlled cultivation
environments), however, only natural baseline δ13C-AA values can be directly used in
food web analyses. Defined from a consumer perspective, only EAAs are used for
tracing basal resources in a food web as they cannot be synthesised de novo by
consumers and have negligible trophic fractionation (see TDF, section 3 intro)

Diazotroph Bacteria or archaea that are able to fix nitrogen gas (N2) into biologically more usable
forms, e.g. ammonium (NH4

+, section 3.1)

Essential Amino Acid
(EAA)

The nine amino acids (leucine, isoleucine, valine, phenylalanine, threonine, lysine,
methionine, tryptophan, and histidine) that cannot be synthesised de novo by
metazoans, or consumers in a food web

Error propagation The enlargement of deviations in measured δ13C-AA values due to errors introduced
into analytical processes (section 7.2)

Facultative EAA
prototrophs

Organisms that utilise organic carbon sources for biomolecular building blocks to
synthesise EAAs de novo, but may also assimilate EAAs from external sources for
normal metabolic functioning (section 3.2)

Isotopologues Molecules with the same chemical formula and bonding arrangement of atoms, but
at least one atom has a different number of neutrons than the parent: the same
molecule with a different isotopic composition and/or arrangement

Measured δ13C-AA values The δ13C-AA values that are physically quantified in a sample

Obligate EAA prototrophs Autotrophs that synthesise the EAAs they need solely from simple inorganic carbon
sources through photo- or chemosynthesis (section 3.2)
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Retrospective basal
resource reconstruction

The estimation of the proportions of basal resources synthesised by specific basal
organism groups or clades that are assimilated into consumer tissues during their
unique turnover or incorporation periods. As AAs are conserved in well-preserved
consumer tissue remains, these estimations can extend over geological,
archaeological and historical timescales, complementing contemporary retrospective
reconstructions.

Training data set A compilation of δ13C-EAA values, previously measured external to the current study,
to characterise basal resources in a study system (section 4.1)

Trophic Discrimination
Factor (TDF)

The isotopic offset between a consumer tissue and the assimilated diet, accounting
for the summation of isotopic fractionations of atoms across the various metabolic
processes from digestion and uptake through to tissue synthesis. Although typically
constrained, TDFs can vary by consumer species, consumer tissue type, physiological
status, diet quality, element (e.g. carbon or nitrogen), and biomolecule (for
compound-specific isotope analyses)

Under-determined
mixing system

A system with a multitude of potential basal resources that can be combined in
various proportions yet still result in the same δ13C-EAA patterns (section 8.1).
Mathematically, this occurs when the number of basal resources is greater than the
number of tracers (data dimensionality: here, number of EAAs) plus one

δ13C-AA data The overarching term pertaining to measured δ13C-AA values, baseline δ13C-(E)AA
values, δ13C-(E)AA patterns and δ13C-EAA fingerprints, and/or δ13C-NEAA values

δ13C-EAA fingerprint The minimum δ13C-EAA pattern space that is solely occupied by a group or collection
of similar basal resource organisms and encompasses the intragroup variability in
δ13C-EAA patterns expressed by those organisms (section 3.3)

δ13C-(E)AA pattern The relative offsets between individual δ13C-(E)AA values in a sample, extracted by
centring individual values to the within non-weighted sample mean of measured
δ13C-(E)AA values. For basal resources, this can be done for all AAs measured, but is
restricted to EAAs for food web studies (section 3). As basal resource δ13C-(E)AA
patterns are relatively consistent, they can also be obtained from artificial baseline
δ13C-AA values obtained from basal organisms in cultivation. For consumer
organisms, the pattern is restricted to centring the set of EAAs only as these are
directly routed from the diet with little modification (section 4.1)

2. Factors shaping amino acid δ13C values in basal resources

Organisms can be classified based on their AA metabolism: those that can synthesise all proteinogenic

AAs de novo, and those that cannot. The majority of basal organisms are autotrophic and rely on

photosynthesis or chemosynthesis to fix inorganic carbon into biomolecules such as amino acids, organic
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acids, saccharides, and lipids (i.e. basal resources). However, some basal organisms, such as

heterotrophic bacteria and fungi, can harness organic carbon sources for chemical energy and simple

biomolecular building blocks. The synthesis of all AAs de novo in basal organisms, regardless of the

energy source and mode of carbon acquisition, involves numerous biochemical reactions and

movements of molecules that alter the distribution of 13C and 12C. Mass-dependent kinetic isotope

fractionations (KIFs) associated with these processes result in stepwise changes in relative isotopic ratios

as either lighter or heavier carbon atoms diffuse passively, are actively transported, or react in anabolic

and catabolic processes at different rates (Box 1, Fry 2006). The isotopic composition of AAs in basal

resource tissues therefore reflects the summation of all stepwise fractionations from the isotopic

composition of the initial carbon pool. Here, we conceptualise these mechanisms of AA de novo

synthesis on a cellular level for basal organisms and address how biochemical pathways affect the ratios

of heavy to light carbon atoms in AA carbon skeletons. In doing so, we propose explicit definitions for

δ13C-AA terminology.

2.1. Conceptualising amino acid δ13C values

The pathways from external sources of (in)organic carbon in the environment to intracellular AA

synthesis can be generalised into two broad categories. The first is the collection of processes involved in

the uptake and conversion of external carbon to internal pools of common precursor molecules, which

we refer to as carbon acquisition. The second is the collection of biochemical reactions, or the

biochemical network, which synthesises the specific AAs from the precursor metabolites (Fig. 1).

Synthesis pathways among AAs are unique, and therefore comprise different summations of kinetic

isotope fractionations (Appendix S1: Figure S1A-B). This contrasts with carbon acquisition where,

generally, total isotopic fractionation will be reflected equally across all AAs due to the common pool of

carbon. The combined effects of carbon acquisition and AA synthesis will fractionate the stable isotopes

of the initial external carbon. Basal organisms can use various forms of external carbon sources, each of

which will have its own inherent carbon isotope composition. Rates of diffusion, transport, and chemical

reactions depend on various environmental factors, which will cause the isotopic fractionation during

carbon acquisition to vary. Furthermore, as the isotopic composition of external carbon sources will also

depend on various kinetic processes, the external carbon isotope composition will also vary with
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environmental conditions. Taken together, the δ13C value of an AA in basal resources can therefore be

broadly formulated as:

δ13𝐶
𝐴𝐴

 ∼ δ13𝐶
𝐸𝑥𝑡.

+ 𝐸𝑛𝑣. × 𝐸𝑥𝑡. + 𝐴𝑐𝑞. + 𝐸𝑛𝑣. × 𝐴𝑐𝑞. + 𝑆𝑦𝑛𝑡ℎ
𝐴𝐴

                                                            [1]

Where δ13CAA is given by the δ13C value of the external carbon source, Ext.; plus any modifications to this

value due to environmental effects, Env., dependent on the nature of the external carbon source; plus

the summed fractionations associated with carbon acquisition, Acq.; plus any modifications due to

environmental effects on the physiology associated with carbon acquisition fractionation; plus the

summed fractionation associated with synthesis pathway, Synth., which is AA specific (visualised in Fig.

1). While environmental gradients may also specifically modify the fractionations associated with each

AA synthesis pathway, these relative differences will likely be very small compared to the overall average

effect of the environment on physiology, and therefore carbon acquisition (Stahl et al. 2023, Larsen et al.

2015, Fig. 2), represented here as Env. x Acq.

From [1], the measured δ13C values of AAs in basal organisms depend upon the carbon source, the

environment and their phylogeny (via their fixation and synthesis pathways, see section 2.2. below). This

aligns with the concept of multiple isotopic baselines in bulk stable isotope approaches, that characterise

the base of the food web contextualised with in situ environmental conditions for different production

sources (e.g. Docmac et al. 2017, Søreide et al. 2006). We therefore define measured δ13C-AA values in

basal organisms as baseline δ13C-AA values.

If we consider the fractionations attributable to AA biosynthesis only as relative differences (i.e. SynthAA

averages to zero) then they can be regarded as a relative ordination centred on their mean value. We

denote this relative ordination of SynthAA specifically as (1|AA) as in Fig. 1. Conceptually, this means any

non-zero average fractionation across AA biosynthesis pathways will be incorporated as part of the

acquisition term. This has the advantage however that we can now consider the collection of AA

biosynthesis fractionations as a relative ordination that is imposed onto an average baseline bulk

(protein) stable isotope value within the basal resource:

[2]𝐴𝑣𝑒𝑟𝑎𝑔𝑒 δ13𝐶
𝐴𝐴

 =  1
𝑛

𝑖=1

𝑛

∑  δ13𝐶
𝐴𝐴

∼  δ13𝐶
𝐸𝑥𝑡.

+ 𝐸𝑛𝑣. × 𝐸𝑥𝑡. + 𝐴𝑐𝑞. + 𝐸𝑛𝑣. × 𝐴𝑐𝑞.
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where n is the number of AAs. It follows that the ordination can be determined as:

[3]1|𝐴𝐴( ) =  𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 δ13𝐶
𝐴𝐴

 −  𝐴𝑣𝑒𝑟𝑎𝑔𝑒 δ13𝐶
𝐴𝐴

 =   δ13𝐶
𝐴𝐴

 −  1
𝑛

𝑖=1

𝑛

∑  δ13𝐶
𝐴𝐴

 

In this equation, the offset for each AA is simply the mean-centred δ13C-AA value (the non-weighted,

within-sample average δ13C-AA value) subtracted from individual baseline δ13C-AA values of the basal

organism, which we define as the δ13CAA pattern. Expressing δ13C-AA patterns via mean-centring has been

the standard approach introduced by Larsen et al. (2009, denoted as δ13CN). However, an important

constraint in this method is that changes in the suite of AAs considered will result in changes in the

absolute, although not the relative, offsets in the expressed δ13C-AA pattern. Therefore for direct

comparisons between datasets, the same suite of measured AAs is required. Recentring to the

within-sample mean is not the only way to represent the δ13C-AA pattern: the ordination can also be

expressed, for example, by centring data to the δ13C value of one specified AA. However, centring data to

only a single AA will mean the expressed δ13C-AA pattern will be sensitive to variations in that particular

AA (e.g., analytical deviations and natural variations in fractionation).



13

Figure 1. Schematic representation of the sources, processes, and environmental effects that contribute to the δ13C

values of AAs in photosynthetic eukaryotes and heterotrophic prokaryotes. In this paper, AA production from these

basal organisms are denoted as basal resources. Within the eukaryotic cell, membrane bound organelles are

signified by rectangles with dashed lines: the rounded red rectangle signifies the mitochondrion, and the green

rectangles signify plastids including the chloroplast. The remaining cell lumen is the cytosol. The metabolic

pathways are summarised based on Chen et al. (2018), and Gupta and Gupta (2021). Detailed metabolic networks

are provided in Figs. S1A-B. Abbreviations: Ala, alanine; Asn, asparagine; Asp, Asparagine; CBB,

Calvin-Benson-Bassham; Cys, cysteine; F6P, Fructose-6 phosphate; G6P, Glucose-6 phosphate; Gly, glycine; Gln,

glutamine; Glu, glutamic acid; His, histidine; Ile, isoleucine; Leu. leucine, Lys, lysine; Met, methionine; Phe,
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phenylalanine; Pro, proline; Ser, serine; TCA, Tricarboxylic acid; Trp, tryptophan; Tyr, tyrosine; Val, valine. The

illustration was created with BioRender.com.

2.2. Isotope fractionation in metabolic networks

As outlined above, measured δ13C-AA values of basal resources will be broadly determined by external

carbon sources and their acquisition, mixing and isotopic fractionation of carbon isotopes in precursor

molecules, and AA biosynthesis pathways (Fig. 1). Many of these different processes and reaction steps

are highlighted in Box 1, which shows a hypothetical biochemical network where reactants and products

are continuously added, removed, and isotopically altered due to unidirectional KIFs. During biochemical

reactions and transport, resultant δ13C values of biomolecules are determined by two factors. The first is

the flow rates (f) of reactant replenishment and product removal. The second is the kinetic isotopic

effect (ε), where the fractionation factor is equal to the ratio of the isotope-specific rate constants. While

real-world biochemical networks are far more complex than the schematic representation in Box 1,

appreciation of the broad mechanisms determining δ13C-AA values can help to develop testable

hypotheses and elucidate the potential of δ13C-AA patterns for identifying basal resources.

On a cellular level, ε is associated with differing enzyme and protein structures that modulate the various

biochemical reactions and facilitate active and passive transport of metabolites in and out of the cell.

Therefore, carbon fractionation along AA biosynthetic pathways should vary among major phylogenetic

lineages because different synthesis pathways have evolved to fulfil unique metabolic needs. These

different pathways will be modulated by different enzymes resulting in variable cumulative

fractionations. Generally, the most biochemically expensive AA pathways involving multiple biosynthetic

steps are expected to be evolutionarily conserved. For example, tryptophane, which is one of the most

biochemically complex AAs, involves homologous enzymes across the three domains of life (KEGG

PATHWAY 2013). In contrast, the comparatively simpler lysine has two different anabolic routes. One is

the diaminopimelic acid pathway used by algae, plants, most bacteria, and some fungi and archaea, and

the other is the α-aminoadipic acid pathway used by most fungi, some algae and archaea (Velasco et al.

2002). AAs with lineage-specific anabolic routes such as lysine are more likely to be informative of

biosynthetic origins (Larsen et al. 2009). Interestingly however, even if AA biosynthetic pathways have

similar steps across phylogenetic lineages, fractionations may still change due to modifications of the

enzymes and metabolic branching points involved.
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Asynchronous flow rates (f) of metabolites can also lead to fluctuating δ13C values of AAs. In Box 1, this is

highlighted by the two chemically similar branched pathway reactions. One reaction occurs within the

original cell while the other takes place outside the cell following reactant transport. Similarly, internal

compartmentalization within eukaryotic cells may result in separate pools of reactants with different

δ13C values (Hayes 2001). Proteinogenic AAs, as well as being used to build proteins, have multiple

non-proteinogenic roles. These include precursors for lineage-specific signalling molecules,

energy-yielding substrates, and metabolites that are also likely to affect carbon fractionation (Appendix

S1: Figure S1A-C). Significant systematic differences in flow rates across phylogeny due to varying

metabolic demands of AAs (or intermediates in their synthesis pathways) in basal organisms may

therefore result in different fractionations during AA biosynthesis. Some metabolic pathways are lineage

specific. For example, the synthesis of alkaloids, a group of compounds found almost exclusively in

terrestrial plants, relies on several nitrogenous precursors such as phenylalanine, lysine, and histidine

(Aniszewski 2007). In comparison, algae have very low concentrations of flavonoids and alkaloids (Davies

et al. 2020, Güven et al. 2010). Biosynthesis of phenylpropanoids, which serve as the backbone of lignan

and flavonoid biosynthesis in land plants, uses phenylalanine as a precursor while lignin cannot be

synthesised by algae except some Rhodophyta (red algae) (Martone et al. 2009). Macroalgae, including

Rhodophyta, Chlorophyta (green algae) and Ochrophyta (class Phaeophyceae, brown algae), produce a

range of compounds not found in land plants. Examples are the mycosporine-like amino acids that, like

the aromatic AAs phenylalanine and tyrosine, are biosynthesised in the shikimate pathway (Llewellyn et

al. 2020). A range of microorganisms from heterotrophic bacteria and cyanobacteria to fungi also

produce these mycosporine-like amino acids (Geraldes and Pinto 2021). Bacteria possess a pure

monomeric protein array covering their surface, the S-layer, often involving dedicated secretion systems,

that may also represent significant downstream demands of particular AAs, altering synthesis flow rates

(Silhavy et al. 2010, Fagan and Fairweather 2014).

The relative importance of enzyme mediated KIFs compared to differential flow rates in AA biosynthesis

pathways in underpinning δ13C-AA values, and therefore basal resource δ13C-AA patterns, is currently

unclear. While it may seem initially that ε will heavily constrain δ13C-AA patterns due to genetic

limitations, large differences in flow rates due to varying down-stream demands of AAs could potentially

explain the majority of variation in δ13C-AA patterns. The δ13C-AA patterns should therefore reflect both

genetic constraints and phenotypic expressions. Therefore, δ13C-AA patterns have the potential of high

specificity across the diversity of basal organisms inhabiting varying environments. Baseline δ13C-AA

values will not only reflect the drivers of δ13C-AA patterns, but also impose the variability due to the
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environment and its interactions with biology on the distribution of heavy to light carbon isotopes in

AAs.

Box 1 Isotopic mixing and fractionation

Simplified model of isotopic mixing and fractionation in a series of hypothetical reactions in a eukaryotic cell with

organelles (rounded rectangles with broken line borders). Capital letters signify particular compounds, and the

subscript numbers indicate compound subpools. Movement and reaction of compounds are indicated by

numbered arrows, with broken line arrows indicating that there were no isotopic effects associated with the

reaction or movement. In the line plots, stable isotope values of carbon (δ13C) are shown as a function of the

relative flow (fx) of a transfer or reaction and associated fractionation (εx). Subplots below their associated reaction

step highlight how changing flow rates will influence the resultant δ13C values, with vertical lines and columns

indicating the flow rates indicated in the main plot. The first products to enter the hypothetical biochemical

network are the two isotopologues A1 and A2 (molecules that differ only in their isotopic composition) that mix to

form the isotopologue A3, whose δ13C value is determined by the relative proportion of A1 and A2 (p1). A3, is then
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converted to B1 in a reaction that fractionates against the heavier isotope by 1.5‰. To maintain mass balance, the

remaining A3 that is transported to another cell compartment is enriched by 8.5‰. The greater the flow rate from

A3 to B1 the greater the 13C enrichment of A4 (p2). The final fate of isotopologue A4 is twofold: One fraction is

converted into product D1 and the other fraction, A5, is transported out of the cell. Although there is no transport

fractionation here, A5 becomes slightly depleted relative to A4 because the reaction that uses A4 to form D1

fractionates against the heavier isotope (p3). In some cases, physical transport is associated with isotope effects as

illustrated by the transport of intracellular B1 to extracellular B2. In the case of passive transport, fractionation is

caused by mass dependent diffusion, while fractionation during active transport can be caused by cell membrane

transporters. Here, transport of B1 to extracellular B2 fractionates against the heavier isotope by 0.75‰. When

there is a complete conversion of a reactant to a product, in this case B3 to C, the isotope composition of both

reactant and product must match each other. Varying metabolic flux patterns (i.e. reactions are not maintained at

steady state) will result in shifts in the isotopic values of both reactants and products. The dynamic flux patterns for

the pathways on the left (reactions 1-11) and right (reactions 12-15) sides differ from one another resulting in the

D1 pool expanding and contracting. In the downstream branched pathway I with D1 as a precursor, the isotopic

values of E1 and the residual pool D2 are affected by varying flow rates and isotopic fractionation associated with

reaction 12 (p4). When the residual pool D2 is transported out of the cell, it becomes a precursor for similar

reactions to that of the previous branched pathway. In this hypothetical example, the isotopologues E2 and D3 are

more 13C enriched compared to E1 and D2 respectively, because of the isotopic fractionation associated with

reaction 12 (p4 & p5). The illustration was inspired by Hayes (2001) and Hobbie and Werner (2004), and created

with BioRender.com.

3. Discriminating basal resources with δ13C-EAA fingerprints

The use of basal resources by metazoans in a food web is most reliably traced with the EAAs because

they cannot be biosynthesised de novo by metazoans. The nine canonical EAAs (leucine, isoleucine,

valine, phenylalanine, threonine, lysine, methionine, tryptophan, and histidine) are valuable indicators of

the basal resources that sustain a food web because the measured δ13C-EAA values in consumer tissues

reflect those of the basal resources, as the carbon skeletons of EAAs are conserved through trophic

transfers (McMahon et al. 2010, 2015b, Liu et al. 2018, Wang et al. 2019a). By mean-centring the

baseline δ13C-EAA values in basal organisms, we obtain consistent δ13C-EAA patterns that can be traced

into the food web (Fig. 2). The ability to trace and distinguish basal resources using δ13C-EAA patterns is

dependent on measuring the same group of EAAs in both the basal resource and the metazoan tissues.

However, there are analytical limitations such as sample amount, protein content, relative EAA
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composition, retrieval from tissues (in case of tryptophan degradation during acid hydrolysis), and

detection limits that impose barriers on the number of δ13C-EAA values that can be measured for a given

tissue sample. It is advisable to measure as many EAAs as possible because it increases the potential

discriminatory power of δ13C-EAA patterns. Initially, unique and consistent basal resource δ13C-EAA

patterns for a given large taxonomic grouping (bacteria, plant, microalgae) that were distinct from

another were termed a δ13C-EAA fingerprint (Fig. 3, Larsen et al. 2009). More than a decade after the

term δ13C-EAA fingerprint was introduced by Larsen et al. (2009), the specificity and sensitivity of

δ13C-EAA fingerprints separating basal resources at different taxonomic levels remains largely unknown.

In this section, we collate published δ13C-EAA data of basal resources to investigate how δ13C-EAA

patterns can help us identify basal resources. We further reflect on the possible underlying mechanisms

that cause δ13C-EAA patterns, building on our conceptualisation in section 2, i.e. fractionation associated

with EAA biosynthesis versus their down-stream demand in metabolic networks (Appendix S1: Figure

S1A-B). Lastly, we refine the definition of what constitutes δ13C-EAA fingerprints, and discuss the optimal

characterisation of δ13C-EAA patterns.

Figure 2. Example of baseline δ13C-EAA values (A) of isoleucine, valine, leucine, lysine, phenylalanine, and threonine

in marine diatom Thalassiosira weissflogii cultured under different physical conditions by Larsen et al. (2015). By

mean-centring the baseline δ13C values within a sample, the δ13C-EAA patterns are obtained (B). Different
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treatments used were A) 27°C, B) 18°C, C) High pH, D) Control, E) UV filter, F) No UV filter, G) Low irradiance, H)

High irradiance, I) Low pH, J) Low salinity. The mean and standard deviation (SD) of all individual δ13C-EAA values

(baseline and mean-centred) are given in the right hand box to indicate their variation in baseline δ13C-EAA values

and δ13C-EAA patterns.

Figure 3. A schematic illustration of the discrimination in basal resources with the δ13C-EAA fingerprint concept.

Basal resources are separated into defined groups a priori, typically based on the phylogenetic relatedness and/or

the ecological functioning of the measured basal organisms within the studied ecosystem. Mean-centred δ13C

values of EAAs define the δ13C-EAA pattern space of the basal resources, with dimensions equal to the number of

EAAs (3 shown for illustrative purposes). A basal resource group is considered to have a δ13C-EAA fingerprint when

that group solely occupies its δ13C-EAA pattern space, e.g. basal resource groups 1 and 2. The specificity of the

δ13C-EAA fingerprint can be high if subgroups of the basal resource (illustrated by branches) occupy unique spaces

within their overall basal resource group fingerprint, demonstrated by basal resource group 1. Conversely, the

δ13C-EAA fingerprint is considered unique only for the group as a whole if subgroups show overlap within the

δ13C-EAA pattern space that they occupy, e.g. basal resource group 2. δ13C-EAA patterns cannot be considered

δ13C-EAA fingerprints if basal resource groups exhibit overlap in the δ13C-EAA pattern space that they occupy, as

shown by basal resource groups 3 and 4.
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3.1. The diagnostic potential of δ13C-EAA patterns among basal resources

By shedding light on the mechanisms that underlie variations in δ13C-EAA patterns, we can gain a better

understanding of how to characterise basal resources in specific ecosystems. Here, we evaluate the

diagnostic potential of basal resource δ13C-EAA patterns by compiling δ13C-EAA values of isoleucine,

leucine, phenylalanine, threonine, and valine measured in 20 ecological and archaeological studies (Fig.

4A-D, see Appendix S2 for compilation criteria). Using linear discriminant analysis (LDA), we explore the

ability of δ13C-EAA patterns to distinguish among and within large taxonomic groupings based on

previously observed distinctions and their co-occurrence in ecosystems relevant to consumers. It is

worth noting that currently, there is no correction for interlaboratory differences of measured δ13C-EAA

values. However, our analyses demonstrate that δ13C-EAA patterns can broadly distinguish among

heterotrophic bacteria, eukaryotic phytoplankton, and terrestrial plants across ecosystems. The overlap

between bacteria and plants is the smallest with a median overlap of 0.08, while the overlap between

bacteria and phytoplankton is the greatest with a median overlap of 0.38 (Fig. 4A). Additionally, there are

distinguishable patterns among other broad groups, such as fungi versus phytoplankton (median overlap

of 0.23; Fig. S2B). Discrimination between heterotrophic bacteria and macrophytes is relatively weak due

to the extensive variability that exists in the δ13C-EAA patterns within each of these groups (median

overlap of 0.49; Appendix S2: Figure S2C). Within phytoplankton, we observe separation between

freshwater and marine phytoplankton (median overlap of 0.36, Fig. 4B) that span two kingdoms,

Chromista and Plantae. Within the monophyletic group cyanobacteria, δ13C-EAA patterns are much more

variable for diazotrophic species (those that can fix nitrogen), compared to non-diazotrophic

cyanobacteria, whose δ13C-EAA patterns occupy only a small subset of the cyanobacteria δ13C-EAA

pattern space (Fig. 4B, McMahon et al. 2015). Within aquatic macrophytes, observed differences in

δ13C-EAA patterns can be linked to phylogenetic clades (Fig. 4C). Seagrasses (Plantae phylum

Tracheophyta) showed minimal overlap with the three macroalgal clades (median overlaps of 0.12, 0.23

and 0.06 with brown, red and green algae respectively). While brown macroalgae (Phaeophyta in the

Chromista kingdom) and red macroalgae (Plantae phylum Rhodophyta) also appear to separate (median

overlap 0.35), green macroalgae (Plantae phylum Chlorophyta) occupy the overlapping intermediate

δ13C-EAA pattern space between the two (median overlaps of 0.52 and 0.68 respectively; Fig. 4C). The

δ13C-EAA patterns of the monophyletic red macroalgae (Plantae phylum Rhodophyta) express greater

intragroup variation compared to other macrophyte groups (Fig. 4C). This increased variation could be
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attributed to the larger species diversity in the data compilation for Rhodophytes. Land plant δ13C-EAA

patterns (Plantae phylum Tracheophyta) do not discriminate on their C3 or C4 photosynthetic carbon

fixation systems (median overlap of 0.91, Fig. 4D). However, limited observations suggest potential

separation for CAM plants, here solely represented by two cacti species, Cylindropuntia sp. and Opuntia

sp., from a single study (median overlaps of 0.32 and 0.25 with C3 and C4 plants respectively, Fig. 4D).

This is unexpected as CAM physiology affects only the carbon acquisition, and therefore conceptually

should only influence the baseline δ13C-EAA values, not the carbon fractionation during AA biosynthetic

pathways (section 2). Yet, we also observe that some individual C3 plants express similar patterns to

those of the CAM species (Fig. 4D). Further multivariate modelling of vascular plant δ13C-EAA data

reveals that, overall, approximately 50% of the variation in δ13C-EAA patterns can be attributed to

phylogeny (Appendix S3: Figure S3A-B) and further, the cacti CAM plants closely align with two other arid

adapted C3 plant (sub)families, Agavoideae and Zygophyllaceae (represented by Yucca elata and Larrea

tridentata respectively, see S3 for details). In some studies, even finer distinctions in δ13C-EAA pattern

distinctions have been observed between organs of individual plants, i.e. roots, seeds, and leaves (Lynch

et al. 2011, Larsen et al. 2016b, Jarman et al. 2017) as well as among marine phytoplankton clades

(Larsen et al. 2020, Vane et al. 2023, Stahl et al. 2023).



22

Figure 4. Linear discriminant (LD) analysis of basal resources based on mean-centred δ13C-EAA values compiled

from the literature. Upper subplot panel: LD scores for individual samples, with distinct symbols denoting each

group. Lower subplot panel: posterior distributions of group pair overlaps, quantified by the Bhattacharyya

coefficients (BC, see supplementary S2)., for group pairs represented as density scores, indicating the degree of

overlap in LD scores between groups (0 = no overlap, 1 = identical distributions). EAAs considered: leucine (Leu),

isoleucine (Ile), valine (Val), threonine (Thr), and phenylalanine (Phe). Each subplot features the following taxa: A)

Heterotrophic bacteria, plants, and phytoplankton; B) Freshwater phytoplankton, marine phytoplankton,

diazotrophic cyanobacteria (Cyanobac_D), and non-diazotrophic cyanobacteria (Cyanobac_ND, predicted group); C)
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Brown macroalgae, red macroalgae, green macroalgae (represented by Ulva sp.), and seagrasses; D) C3 plants, C4

plants, and CAM plants, containing the two cacti species Cylindropuntia sp. and Opuntia sp. For visual clarity, LD

weighting coefficients for each independent variable were multiplied by 8. See sample identities, classifications,

and literature sources and BC values see Appendix S2.

Based on the available evidence, separation in δ13C-EAA patterns can be attributed to both phylogeny

and phenotypic factors (section 2.2). As highlighted, many δ13C-EAA pattern distinctions are not based on

phylogeny but other factors that affect phenotype such as biomes e.g. freshwater vs. marine, tissue type,

and diazotrophy. Further insight into the potential drivers behind these separations may be deduced

from the specific EAA weightings in the LDAs of the compiled δ13C-EAA patterns (Fig 4A-D). We observe

that predominantly higher mean-centred phenylalanine δ13C values discriminate terrestrial plant

δ13C-EAA patterns from those of bacteria and phytoplankton (Fig. 4A). The same occurs for seagrasses,

the only flowering plant in the marine environment that are also distinguished from freshwater/marine

phytoplankton and other macrophytes with phenylalanine (Fig 4C, Appendix S2: Figure S2A).

Phenylalanine is a precursor for lignin, a structural organic polymer providing rigidity in vascular plant

cells, typically concentrated in wood and bark (Labeeuw et al. 2015). As highlighted in section 2,

significant downstream demand for an EAA can produce a 13C enriched EAA carbon skeleton. Associated

extracellular transport of the EAA can preferentially incorporate the lighter 12C EAA carbon skeletons into

the polymer leaving a 13C enriched EAA pool to be incorporated into proteins. Lignin is known to be

relatively deplete in 13C compared to other major biomolecules in vascular plant tissues (Benner et al.

1987). Varying concentrations of lignin produced in a photoautotrophic organism (Klap et al. 2000,

Pempkowiak 2020) or its organs could therefore affect phenylalanine δ13C values in proteins (e.g.

enzymes, hydrolyzable structural tissues that include the complete EAA molecular structures) that draw

from the same phenylalanine pool as for lignin polymers. These hydrolysable biomolecules that include

AA are the ones measured for δ13C-EAA values, not the lignin itself, which is not susceptible to acid

hydrolysis and does not include complete phenylalanine carbon skeletons. Lignin has been measured in a

few red macroalgae (Martone et al. 2009, Espiñeira et al. 2011), and could offer an explanation why

some rhodophyte δ13C-EAA patterns align more closely to those of seagrasses compared to other algal

clades (Fig. 4C). However, the rhodophytes in our compilation have not been described for lignin content

in the literature. It is possible that differences in δ13C-EAA patterns between plant organs could be

explained by the fact that phenylalanine is an important precursor to flavonols (Lepiniec et al. 2006),

which are produced and accumulated in most seeds and grains. However, this hypothesis requires
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further testing to confirm its validity. It is interesting to note that our analysis of compiled δ13C-EAA data

for the vascular plant phylum showed that mean-centred δ13C phenylalanine values contribute minimally

to variations in δ13C-EAA patterns with respect to phylogeny (Appendix S3: Figure S3B). Observed

within-plant groupings were based on mean-centred isoleucine, leucine, and threonine δ13C values that

clustered plant species that exhibit significant structural adaptations to arid habitats.

Thus, we propose that consistent and substantial non-proteinogenic demands for specific EAAs (or their

intermediates along individual EAA synthesis pathways) that vary between basal organism groups

contribute to differential carbon isotope fractionation observed in EAAs. If the biosynthesis of these

polymers is a spatiotemporally consistent phenotypic characteristic of a particular basal organism, it can

result in δ13C-EAA patterns that are distinguishable from those of other basal organisms. This contrasts

with smaller, variable, and stochastic EAA demands in response to short-term environmental fluctuations

(e.g. plant defence, thermal stress responses). Further, we speculate such downstream demands may

substantially influence relative fractionation patterns compared to variable carbon fractionation by

different synthesis pathways and enzyme structures between basal organism clades. This deduction is

supported by observations that many enzymes along with their corresponding transcription genes

involved in the de novo biosynthesis pathways of EAAs are relatively conserved among photoautotrophic

basal organisms such as vascular plants, macroalgae, and eukaryotic microalgae (Appendix S1: Figure

S1A, Richards et al. 2006, Prigent et al. 2014).

3.2. Considerations for the δ13C-EAA patterns of facultative prototrophs

Organisms that have the ability to synthesise EAAs de novo (termed EAA prototrophs), i.e. the basal

resources in the context of this review, can be split into two distinct functional groups based on their

metabolism. The first are the obligate EAA prototrophs, which are the autotrophs that synthesise the

EAAs they need from simple inorganic carbon sources through photo- or chemosynthesis. The second

group we term the facultative EAA prototrophs, which are organisms that utilise (in)organic carbon

sources for biomolecular building blocks to synthesise EAAs de novo, but may also assimilate EAAs from

external sources for normal metabolic functioning. This group contains the heterotrophic bacteria and

fungi that drive biochemical decomposition (or saprotrophs), and mixotrophic organisms, such as some

algal protists, that can both photosynthesise to fix inorganic carbon and take up external organic matter.

Obtaining δ13C-EAA data from facultative EAA prototrophs is generally more difficult than from obligate
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EAA prototrophs due to the additional effort required for isolating, characterising, and cultivating

Archaea, bacteria and fungi, as compared to sampling, characterising, and, if necessary, cultivating algae

and plants. Many microbial species are unculturable or have complex growth requirements that limit

their isolation and characterization (Parks et al. 2020). Our compiled δ13C-EAA data for bacteria and fungi

were predominantly from cultures grown on an AA-free single organic carbon source. This is done to

ensure that the EAAs in the harvested biomass are derived from the organisms' biosynthetic pathways

and not from the culturing substrate (Larsen et al 2009). However, this creates a bias relative to typical in

situ δ13C-EAA patterns because a culture medium cannot mimic natural growth environments. Some

bacteria and fungi lack the specific metabolic pathways necessary to synthesise some or all their AAs and

must obtain them from the environment or their host organism, making them metabolically dependent

on external AA sources (Hosie and Poole 2001, Heizer et al. 2006, Yamaguchi et al. 2017, Price et al 2018,

McCarthy and Walsh 2018). For the specific set of EAAs that they cannot synthesise, these organisms are

auxotrophic (the term for the incapability of synthesis). For many other microbes that possess the

necessary membrane transport proteins, assimilating AAs opportunistically from the external

environment is energetically efficient compared to synthesising them de novo (Morrissey et al. 2023).

The presence of external EAAs in biomass of facultative EAA prototrophs presents a challenge for

δ13C-EAA data, particularly their interpretation: their underlying δ13C-EAA patterns from de novo

synthesis being potentially skewed by the assimilation of EAAs synthesised by other, likely

photosynthetic, basal organisms.

The degree to which facultative EAA prototrophs may incorporate external EAAs to build biomass is not

well understood (Martin-Perez and Villén 2015, Price et al. 2018). Genetic factors and associated

phenotypes are necessary for them to compete for and assimilate dissolved organic carbon substrates

such as AAs (Dang et al. 2022). According to a recent study, saprophytic bacteria that assimilate

polymeric substrates like cellulose do not assimilate significant amounts of simple dissolved organic

carbon substrates such as glucose and AAs, as opposed to rhizosphere-associated bacteria (Dang et al.

2022). Fungi are similarly specialised in breaking down large insoluble polymers through exoenzyme

secretion, producing smaller constituents (Algora Gallardo et al. 2021, Batista García et al. 2016,

Ruiz-Dueñas et al. 2021). These saprotrophic fungi are expected to have higher bulk δ13C values than

their substrate (Pollierer et al. 2020, Gebauer and Taylor 1999), due to respiration of 13C-light CO2 or

uptake of 13C-enriched complex polymers. Pollierer et al. (2020) found however that saprotrophic fungi

and their litter substrate had similar δ13C values of phenylalanine. While this does not provide conclusive

evidence of direct phenylalanine incorporation into biomass, it is noteworthy that ectomycorrhizal fungi,
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which receive simple carbon compounds from their plant host, did not exhibit such an overlap. Yeast

cultured on high AA content assimilated leucine and valine into their biomass, which affected the yeasts'

δ13C-EAA patterns, indicating that external AA uptake rates are specific to each AA (Arsenault et al.

2022a). Dissolved AAs in soils and aquatic environments are typically found in low concentrations of

0.01-50 µM and 1-10 µM/L, respectively (Lytle and Perdue 1981, Kielland 1994). If the turnover rate is

equally low, it suggests that under most conditions, heterotrophic bacteria and fungi are unlikely to

incorporate enough free EAAs into tissue for growth and to significantly alter their δ13C-EAA patterns.

Further, when in free forms in aquatic matrices, hydrophobic EAAs (valine, isoleucine, leucine,

methionine, phenylalanine) are likely to be less bioavailable than more hydrophilic or partially

hydrophobic EAAs (histidine, threonine, lysine) (Brio 2006).

The synthesis of AAs in heterotrophic bacteria involves various carbon sources and intermediates,

including glucose, pyruvate, oxaloacetate, alpha-ketoglutarate, succinyl-CoA, acetyl-CoA, and

hexose-phosphates (a simplified overview of the metabolic network is given in Fig. 1B, for a more

complete metabolic network, see Fig. S1B). Besides the direct assimilation of EAAs, as discussed above,

other classes of biomolecules can enter the metabolic network for AA synthesis. Fatty acids, a product of

lipid digestion, can be broken down via β-oxidation to produce acetyl-CoA and other intermediates that

can then be used in central metabolism to synthesise the carbon skeleton of e.g. leucine (Jimenez-Diaz et

al. 2017). Keto acids, such as alpha-ketoglutarate, which are formed from the deamination or

transamination of AAs, can be converted into the carbon skeletons of other AAs via transamination into

glutamate, which is then decarboxylated into the TCA intermediate oxaloacetate via the GABA shunt

(Feehily and Karatzas 2013). The breakdown of various organic carbon sources can result in

intermediates that enter central metabolism at different points, which may explain why Pollierer et al.

(2020) found that ectomycorrhizal and saprophytic fungi have different δ13C-EAA patterns. Scott et al.

(2006) observed distinct δ13C-EAA patterns in acetate-metabolising bacteria compared to other

heterotrophic archaea and bacteria, as well as autotrophic bacteria. Part of the difference can be

attributed to organic acids converting to acetyl-CoA. Within the domain Archaea, methanotrophs can use

different carbon assimilation pathways depending on the environmental conditions. Takano et al. (2018)

found that anaerobic archaea forming methanotrophic mats in cold methane seeps rely on both

dissolved inorganic carbon and methane for their carbon. When these archaea convert 13C depleted

methane to intermediates such as pyruvate and acetyl-CoA, their AAs become gradually more 13C

depleted during biosynthesis with each step of biosynthesis that elongates AA carbon skeletons.

Short-chain AAs like glycine and alanine have less negative 13C values (δ13C values between -80 and
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-100‰) than long-chain AAs like isoleucine and leucine (δ13C values between -110 and -120‰). Leucine

also serves as a precursor for isoprenoid lipids, which are also extremely 13C depleted. The study also

showed that the δ13C-EAA patterns differed between functional groups of methanotrophs.

Regarding our compilation of δ13C-AA data obtained from the biomass of facultative EAA prototrophs, we

can exclude the possibility that external EAA acquisition substantially contributed to the variability in

δ13C-EAA patterns as they were predominantly cultivated on AA free media. Despite other potential

sources of variability such as analytical uncertainties compounded by aggregating δ13C-EAA data from

multiple labs and studies, our findings demonstrate that both heterotrophic bacteria and fungi exhibit

distinct δ13C-EAA patterns compared to algae and vascular plants (as seen in Figure 5A+B and Appendix

Ss: Figure S2A,B). These distinctions are likely due to the varying EAA biosynthetic pathways and

metabolic demands dominating the δ13C-EAA patterns among these major taxa, as discussed in section 2.

Our analysis distinguishes heterotrophic and photosynthetic microbial groups, but also reveals

substantial intragroup variability, particularly in heterotrophic bacteria. Although the pathways for

synthesising EAAs are considered conserved in bacteria due to their vital role, they generally have higher

degree of genomic variation compared to the other major domains (D’Souza et al. 2014, Price et al.

2018). For example, bacteria have different pathways for synthesising many of the EAAs used for

δ13C-EAA fingerprinting such as isoleucine, leucine, lysine, phenylalanine, threonine, and valine (D'Mello

2017). Variability in bacterial δ13C-EAA patterns may also stem from the synthesis of non-EAA products,

which affects metabolic flux patterns and isotopic values of EAA precursor molecules as conceptualised

in Box 1. Since the domain Bacteria encompasses a wide range of phenotypic and genotypic diversity,

considering heterotrophic bacteria as a single, homogeneous group in terms of δ13C-EAA fingerprints is

likely a gross simplification. Compared to bacteria, fungi have larger genomes but a lower degree of

genomic diversity (Nayfach et al. 2021). Many of the fungal biosynthetic EAA pathways are also found in

bacteria with the exception of the α-aminoadipate pathway of lysine, which is fungi specific except for

the bacterial genus Thermus (Jastrzębowska and Gabriel 2015). However, the intracellular chemical

compartmentalization found in eukaryotes may result in more complex isotopic fractionations compared

to prokaryotes (section 2), contributing to the divergent δ13C-EAA patterns between fungi and bacteria

(Fig. S2C). Differences in the types and proportions of biomolecules both between and within the

domains, potentially affecting branch points related to EAA biosynthesis, may also contribute to differing

δ13C-EAA patterns (Hayes 2001).
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While most bacterial and fungal EAA prototrophs are wholly dependent on external organic carbon

sources, other facultative EAA prototrophs can use both autotrophy and heterotrophy to acquire carbon.

Termed mixotrophy, these facultative EAA prototrophs occur in many algal groups, free-living protozoa

and green plants (Matantseva and Skarlato 2013, Selosse and Roy 2009). Therefore, incorporation of

externally synthesised AAs influencing δ13C patterns is an issue not only for Archaea, heterotrophic

bacteria and fungi. Mixotrophic protists that both photosynthesise and ingest prey by phagocytosis have

long been recognised, including representatives in ciliates, flagellates, foraminifera and radiolaria

(Stoecker et al. 2009, Jones 2000, Sanders 1991). These mixotrophic protists play important roles in

planktonic food webs across the global oceans (Stoecker et al. 2017, Faure et al 2019) and lake

ecosystems (Waibel et al. 2019). Two-way exchanges of carbon-containing biomass between green plants

and mycorrhizal fungi have been evidenced, leading to the suggestion that mixotrophy may be wide

spread across the vascular plant phyla (Selosse et al. 2016, Firmin et al. 2022, Giesemann and Gebauer

2022), beyond the limited cases of carnivory and hemi-parasitism (Selosse and Roy 2009, Schmidt et al.

2013). More generally, mixotrophic strategies may be far more common in traditionally viewed

autotrophic species than is appreciated, due to the absorption of simple organic compounds (Selosse et

al. 2017). The implications of mixotrophy for δ13C-EAA patterns is currently unclear as the identity of

biomolecular exchanges and their metabolic fate is typically unknown (Ward 2019). The grand écart

hypothesis proposes that mixotrophic strategies in light limiting environments, such as shaded forest

canopies or poorly lit waters that typically coincide with increasing nutrients, exist primarily for carbon

uptake (Selosse et al. 2017). This contrasts with the more traditional view that mixotrophic strategies,

such as plant carnivory or phagocytosis in late plankton bloom succession, evolved to supplement

nitrogen and phosphorus in nutrient poor environments. However, the uptake of heterotrophic carbon

sources by autotrophs may not result in its assimilation into their tissues, if such sources are

preferentially used for other metabolic purposes. External organic carbon may be used to fuel respiration

under stressful conditions as inferred from increased oxidation rates of diatoms grown in the dark with

various exogenous carbon compounds (Tuchman et al. 2006). Heterotrophic carbon assimilation should

have a minimal effect on δ13C-EAA patterns if the carbon is first transformed into common carbon

precursors for AA biosynthesis (section 2). Potential shifts in δ13C-EAA patterns should only arise if there

are EAAs directly assimilated and incorporated into tissues, or if AA specific intermediates are introduced

into biosynthetic pathways (metabolic shunting, Appendix S1: Figure S1A,B). Assimilation of fungal

derived carbon has been evidenced isotopically in plants (Bolin et al. 2017), although whether this

specifically includes EAAs cannot be elucidated from the bulk isotope approaches employed. However,



29

labelling experiments have demonstrated that various microalgal species can take up exogenous AAs,

which are then assimilated into their own proteins (Rivkin and Putt 1987). Therefore, high environmental

AA availability may not only affect δ13C-EAA patterns in heterotrophic microorganisms, but also in other,

mixotrophic, basal organisms.

3.3. From δ13C-EAA patterns to fingerprints

The variety of phylogenetic and ecological factors that can influence δ13C-EAA patterns prompts the

question of how to define the δ13C-EAA pattern space for a given basal resource. The concept of a

"fingerprint" for δ13C-EAA patterns, as introduced by Larsen et al. (2009) to differentiate between

bacterial, fungal, and plant EAA biosynthesis, has since been applied to a wider range of contexts (e.g.

Larsen et al. 2012, Arthur et al. 2014, Yun et al. 2022). However, there is still a notable lack of a formal

definition of a δ13C-EAA fingerprint. This has likely contributed to variations in the construction and

interpretation of “δ13C-EAA fingerprints”, such as the use of measured rather than mean-centred

δ13C-EAA values (e.g. Besser et al. 2022), or referring to consumer δ13C-EAA patterns as “fingerprints”

(e.g. McMahon and Newsome 2019). To maintain clarity and reflecting on the original purpose of

δ13C-EAA fingerprints, which was to trace different basal resources and their contributions of

proteinaceous carbon to consumer tissues (Larsen et al. 2009), we explicitly define a “δ13C-EAA

fingerprint” as:

“the minimum δ13C-EAA pattern space that is solely occupied by a group or collection of similar basal

organisms and encompasses the intragroup variability in δ13C-EAA patterns expressed by those

organisms.”

where the δ13C-EAA pattern and basal resource organisms are as defined in section 2. Here, the

‘uniqueness’ characteristic of fingerprints is qualified by sole occupancy, which offers an explicit and

unambiguous mechanism for determining whether δ13C-EAA pattern space is unique. By limiting it to the

minimum occupied space, arbitrary overlaps between basal resources can be excluded. However, it is

worth noting that the sole occupancy of a δ13C-EAA pattern space by one group is comparative, and

therefore depends on the presence or absence of other basal resource groups in an ecosystem (shown in

Fig 3, basal resource groups 3 & 4) or its relevance to the consumer (section 4.1). A priori understanding

of a consumer’s ecology and the ecosystem that it inhabits underpin which basal resource δ13C-EAA

patterns will be defined as δ13C-EAA fingerprints. Therefore, being considered a δ13C-EAA fingerprint will
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be study and context specific, and may change between studies that include the same basal resource

group(s).

To define groups of similar basal organisms, a flexible framework is needed to accommodate the variety

of studies using δ13C-EAA approaches. Phylogenetically closer organisms are expected to express more

similar δ13C-EAA patterns due to genetic constraints associated with AA biosynthesis, as we observed in

broad basal resource groups (Fig. 4). Yet adaptations to particular environments can lead to similar

patterns among phylogenetically distant groups (see Appendix S3). Our compilation showed that

mean-centred δ13C values of phenylalanine separates plants from most other basal resource groups, but

variation is noticeable at individual and family levels (Appendix S3: Figure S3A,B). Phenotypic expressions

associated with adaptations to particular environments can imprint over broad phylogeny as disparate

groups converge in their δ13C-EAA patterns. For example, families highly adapted to arid environments

show greater similarity in their δ13C-EAA patterns than phylogenetically closer families lacking highly

specialised water uptake and retention mechanisms (Appendix S3: Figure S3A). Additionally, variation in

δ13C-EAA patterns occurs across varying levels of biological organisation, and these differences may be

driven by different EAAs. While phenylalanine separated plants from other broad basal resource groups,

it contributed little to within phyla distinction in plants. In contrast threonine contributed little to broad

basal resource group separation in δ13C-EAA patterns (Fig. 4), yet varies across plant families and is the

most variable EAA at the individual level (Appendix S3: Figure S3A,B). These observations suggest that

δ13C-EAA patterns have the potential to express higher specificity than is typically acknowledged when

applied in the literature, where data are often grouped from multiple studies into broad basal resource

categories (Arthur et al. 2014, Ayayee et al. 2015, 2016a,b, McMahon et al. 2015a, Rowe et al. 2019,

Macartney et al. 2020, Wall et al. 2021, Pollierer and Scheu 2021, Arsenault et al. 2022b, Stubbs et al.

2022). Empirical work conducted over the past decade has provided valuable phenomenological insights,

however, we propose the development of a conceptual framework focused on the metabolic functioning

of organisms (as commenced in section 2) to facilitate greater prediction of δ13C-EAA pattern structures

of basal resources across environments. This aspiration for a greater mechanistic understanding would

complement the current conservative approach that requires in situ measurement of basal resources on

a study by study basis to avoid erroneous inferences.

3.4. Optimal characterisation of δ13C-EAA fingerprints
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To make fine-scaled distinctions with δ13C-EAA fingerprints, well-defined sampling protocols and

δ13C-EAA measurements with minimal analytical error are essential (section 7). Basal resource samples

should accurately represent the taxonomic group under investigation in the system of study. This

precludes composite samples such as particulate organic matter filtrates, microalgal and bacterial mats,

or partially degraded materials (detritus). Such composites may contain faeces, degraded organic matter,

bacteria etc., and therefore are inaccurate representations of pure basal resources. Further, composites

average over a diversity of clades or species, which may or may not be suitable to the specific study.

Tissue samples of specialist primary consumers (e.g. zooplankton or specialised herbivorous fish) are

often used as a surrogate for specific basal resource δ13C-EAA fingerprints (e.g. Skinner et al. 2021).

However, sole dependency of a primary consumer on one specific basal resource is unlikely due to

incidental ingestion and digestion of other sources (e.g. functionally similar basal resources, detritus,

associated bacteria and meiofauna in macroalgal turfs, Nicholson and Clements 2023). Prior to in situ

sampling, systematic characterisation of δ13C-EAA fingerprints in singularly cultured basal organisms

would be optimal to establish to what extent basal resources can be subdivided into clades with similar

functionality or divergence if not already known. Field collected samples with a high concentration of a

particular species or clade can then be analysed for verification, as some basal resources might display

different δ13C-EAA fingerprints in situ compared to cultures. For example, δ13C-EAA patterns of the

sub-ice algae Melosira arctica growing in long-chained strands in its natural under-ice habitat

significantly differed from their cultivated form where they grow in singular cell suspension (Vane et al.

2023). Secondly, the extent to which unique δ13C-EAA fingerprints can be characterised depends on the

number of EAAs measured as including more EAAs increases the potential to discriminate between

different basal resources. The number of EAAs that can be measured depends on the analytical

sensitivity of the instrument as well as the EAA concentrations in consumer tissue types. In most

proteinaceous soft tissues 6-7 EAAs can be measured, but this is reduced in mineralised tissues such as

biogenic calcites due to lower EAA concentrations (e.g. methionine and lysine, McMahon et al. 2018,

Vokhshoori et al. 2022).

Directly visualising whether δ13CEAA patterns of select basal resource groups are distinct is not feasible

due to the high dimensionality of the data. However, sole occupancy is a requirement in order for a

δ13C-EAA pattern space to be considered a fingerprint for a basal resource group (section 3.3, Fig. 3).

Multiple pairwise biplots of mean-centred δ13C-EAA values subset higher dimensional data that can be

visualised, however results in significant information loss and are difficult to interpret holistically.

Dimension reduction approaches that can be used to visualise δ13C-EAA patterns include principal
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component analysis (PCA) and linear discriminant analysis (LDA), which recast the data to fewer variables

whilst minimising information loss. However, the two approaches differ in what information they

optimally retain. PCA maximises total variation across the dataset onto fewer, uncorrelated axes

regardless of data groups. LDA meanwhile maximises the differences between groups while minimising

intragroup variability to optimally separate groups, providing linear, uncorrelated discriminants (although

they may not be geometrically orthogonal in the original variable space in contrast with PCA). While it

may seem that LDA is more appropriate to identify distinctions between δ13C-EAA patterns, it is worth

noting that when sample sizes are small, as is often the case with δ13C-EAA data, PCA can outperform

LDA in separating groups and is less sensitive to input data (Martínez et al. 2001; for a comparison of the

two approaches, see section 5.3). While visual inspection of δ13C-EAA patterns can be fruitful, it remains

a subjective approach to discerning distinctions. Objectively discerning distinctions between δ13C-EAA

patterns requires the use of statistical measures to quantify the degree of overlap or closeness between

basal resource groups. One such general measure is the Bhattacharya coefficient (BC, Bhattacharyya

1946, see Fig. 3 and Appendix S2), which quantifies the similarity of two multivariate probability

distributions on a scale between 0 and 1, and therefore can be applied directly to the multivariate

δ13C-EAA patterns or transformed data (e.g. following PCA/LDA). Quantifying δ13C-EAA pattern

distinctions not only improves statistical clarity for defining δ13C-EAA fingerprints, but will also facilitate

more direct comparisons between studies that, for example, measure different suites of EAAs.

4. Tracing basal resources from a consumer perspective

The application of δ13C-EAA fingerprints comes with many advantages for tracing carbon from basal

resources to consumers. Due to the consistency of δ13C-EAA patterns in natural and cultivation

environments, a wide array of basal resource groups including microbes can be traced, and potentially to

specific clades. The high number of individual EAA tracers enables the characterisation of many basal

resources simultaneously. However, the application of δ13C-EAA fingerprints depends on the

appropriateness for the research question regarding the consumer. Estimates of basal resource use

across large taxonomic groups (such as plants, bacteria, and microalgae) requires coarser δ13C-EAA

fingerprints, than more specific questions on basal resource use. For example distinguishing between

microalgae clades requires the use of finer scale taxonomic δ13C-EAA fingerprints. From the hypothesised

mechanisms driving δ13C-EAA fingerprints (section 3.1), and spatially varying availability of basal

organisms, it is likely that they are specific to the regional ecosystem in which they occur and cannot be
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generalised across broad basal resource groups due to their phylogenetic and phenotypic variations

(section 3.3). Inferences surrounding basal resource use become more complicated for consumers that

partially acquire EAAs biosynthesized by (endo)symbionts and the use of δ13C-EAA fingerprints in such

cases is still relatively understudied. In this section, we therefore review and discuss the myriad of ways

that δ13C-EAA patterns and fingerprints can be applied to infer basal resource use or EAA sources by

consumers.

4.1. Applying δ13C-EAA fingerprints in ecological studies

As organisms consume basal resources either directly or indirectly through their prey, they assimilate the

δ13C-EAA patterns of those basal resources into their own tissues. By mean-centring the measured

δ13C-EAA values in consumer tissues (which are in effect a mixture of baseline δ13C-EAA values from

consumed basal resources), the δ13C-EAA patterns in consumer tissues are obtained. In the simplest

case, a specialised consumer that wholly depends on a single basal resource would have a tissue

δ13C-EAA pattern identical to that of the basal resource due to the negligible changes in δ13C-EAA values

during trophic transfer of EAAs (often referred to as a trophic discrimination factor - TDF). However, if

this consumer started to incorporate a second basal resource with a separate δ13C-EAA fingerprint, then

its own tissue δ13C-EAA pattern would become a mixture, or weighted average, of the two basal resource

fingerprints. While estimating proportional basal resource use may seem relatively simple with only two

resources, real world trophic systems can be highly complex. There are a multitude of potential basal

resources within ecosystems, various combinations of which could result in similar δ13C-EAA patterns in

consumer tissues (referred to as an underdetermined mixing system; Parnell et al. 2010). Reconstructing

basal resource use by the studied consumers thus requires the characterisation of relevant basal

resource δ13C-EAA patterns. Prior knowledge on the dietary niche of the organism and the extent of the

distinction in basal resource δ13C-EAA patterns determine the specificity with which basal resource use

can be quantified. The variation in the basal resource δ13C-EAA fingerprints then has to be evaluated

together with the consumer tissue δ13C-EAA patterns to assess whether the consumers do not fall

outside of the basal resources (e.g. with biplots and, or PCA/LDAs). When consumer tissues are outliers

this can indicate that a basal resource is missing or that a basal resource group’s variation is insufficiently

characterised either due to low replication or due to incomplete sampling of consumer-relevant basal

resource clades. However, different analytical methods, carbon fractionations during treatment

protocols of consumer and basal resource tissues, or deviations during isotopic measurements can lead
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to offsets between consumer and basal resource (section 7). These considerations are important

prerequisites to obtain reliable quantifications of the proportional basal resource by the consumer

(section 8).

Relatively simple questions regarding the relative use of aquatic versus terrestrial basal resources by a

consumer have been commonly addressed using both bulk and AA stable isotope approaches. The

δ13C-EAA patterns of terrestrial plants and aquatic microalgae are distinct globally (Fig. 4A), show less

within-group variation than their bulk or baseline δ13C-EAA values, and therefore are excellent tracers for

quantification of their use by consumers (Larsen et al. 2013). While the distinction between the δ13C-EAA

fingerprints of these two large basal resource taxa is highly consistent (Larsen et al. 2013, Liew et al.

2019), the intragroup variation is likely to be specific to the ecosystem in which the consumer resides.

Most ecological questions revolve around estimating the proportional use of multiple potential basal

resources by a consumer, including bacteria, microalgae, and macroalgae. In such studies, it has become

common practice to use training data sets, or basal resource δ13C-EAA values characterised in other

studies such as Larsen et al. (2013) and McMahon et al. (2016). Training data is often combined with

additional basal resources δ13C-EAA patterns measured from the ecosystem of interest to infer basal

resource use of the studied consumers (e.g. Arthur et al. 2014, Ayayee et al. 2015, Rowe et al. 2019,

Macartney et al. 2020, Wall et al. 2021, Arsenault et al. 2022b, Stubbs et al. 2022). The extensive use of

training data stems from the main assumption that basal resource δ13C-EAA patterns are highly

conservative and representative of similar basal resources across all ecosystems. While the evidence

suggests δ13C-EAA patterns are highly consistent, the assumption of δ13C-EAA patterns being

representative across various ecosystems is unlikely to be true at broad taxonomic scales. As discussed in

section 3, the variation within δ13C-EAA patterns of large basal resource taxa such as microalgae and

bacteria can be attributed to finer distinctions in phylogeny and associated with phenotypic structural

components. δ13C-EAA fingerprints even occur between plant structures such as seeds, roots, and leaves

and therefore exact sampling of plant organs that are ingested by the consumer is necessary. Generic

training data may therefore not include the specific variations in δ13C-EAA patterns in the particular

ecosystem in which the studied consumer resides. Additionally, the use of general training data can add

significant additional variation that is not pertinent to the specific ecosystem. Using training data sets

can lead to poor discrimination between basal resources (Liew et al. 2019, Macartney et al. 2020, Phillips

et al. 2020, Stubbs et al. 2022) and may not reflect the true underlying basal resource δ13C-EAA patterns
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space against which the consumer δ13C-EAA patterns are compared (Philips et al. 2020, Macartney et al.

2020). The use of training data further requires inter-laboratory calibration of the δ13C-EAA values by

measuring identical reference tissue materials in each facility to correct for potential analytical offsets

(Arthur et al. 2014). As laboratories have different analytical protocols and errors that are not yet

well-constrained, corrections with calibration post-hoc can lead to greater uncertainties in the δ13C-EAA

values that should be accounted for (see section 8.2). In the absence of reference materials and δ13C-EAA

patterns that are directly related to the diet and ecosystem of the studied consumer, studies should

ideally characterise their own relevant basal resource δ13C-EAA fingerprints to make reliable inferences

on basal resource use.

Some consumers are known to rely on only a few related or one basal resource taxa as for example in

marine open water food webs that are mainly fueled by phytoplankton. It is increasingly apparent that

such basal resources can be distinguished into finer clades within a taxa such as different clades of

phytoplankton (Vane et al. 2023, Stahl et al. 2023), more detailed inferences on their use by consumers

can be made. These basal resource δ13C-EAA fingerprints discriminate over a relatively smaller isotopic

space (i.e. basal resource group 1 in Fig. 1, Vane et al. 2023). Such detailed basal resource discriminations

provide opportunities for detailed inferences on specific basal resource use by consumers on

spatiotemporal scales. Shifts in diazotrophic and non-diazotrophic cyanobacteria, eukaryotic microalgae,

and heterotrophic bacteria were observed over a 1000 years by analysing δ13C-EAA patterns in

subsequent growth rings of proteinaceous deep-sea corals (McMahon et al. 2015a). Significantly

different δ13C-EAA patterns in planktivorous fish caught across different locations in the Baltic Sea

indicated the use of different marine microalgae clades (Larsen et al. 2020). In the Arctic Ocean,

δ13C-EAA patterns in zooplankton and planktivorous fish showed a larger variation than the δ13C-EAA

patterns characterised in early spring particular organic matter consisting mainly of diatoms. This

indicated that other microalgae clades occurring earlier in the season might not have characterised and

explained the additional variation in the consumer tissues (Vane et al. 2023). While potentially powerful,

researchers need to consider if such fine-scale basal resource distinctions no longer inform about the

ecological processes of interest in relation to the consumer. For example, distinguishing between various

clades within phytoplankton will not be informative when phytoplankton make only a minor contribution

to the consumer biomass. Similarly, if the spatiotemporal variability in availability of specific basal

resources is high compared to consumer tissue integration times and movement patterns, such as during

phytoplankton bloom progressions, then fine scale distinctions are unlikely to be observed within the

consumers as they average over that resource specificity. However, more studies characterising δ13C-EAA
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fingerprints in microalgae, cyanobacteria and marine bacteria clades are required to identify the extent

of discrimination. This could then be a powerful method to trace the potential finer changes in basal

resource use by consumers that can occur with climate change and other anthropogenic alterations to

ecosystems around the world.

4.2. Tracing EAA sources in consumers with (endo)symbiotic relationships

For some consumers, the amount of EAAs obtained from their diet is insufficient to directly meet their

physiological demands. Endosymbionts that are able to biosynthesise EAAs can meet this shortfall for

host consumers and therefore facilitate the specialisation on nutrient-poor diets, opening previously

inaccessible ecological niches. A classic example is that of aphids and other plant sap feeding insects that

rely on endosymbiotic gut bacteria synthesising EAAs that are missing in their sugar dominated diets

(Akman Gündüz and Douglas 2009). Symbiotic bacteria occurring in the gut of the host often, but not

always, possess the full set of genes for EAA synthesis (Neis et al. 2015, Portune et al. 2016), and are

common occurrence in detrital consumers, such as earthworms, springtails, Diptera, sesarmid crabs, and

oribatid mites. The hosts typically subsist on nutrient-deficient diets such as detrital matter or woody

plant materials (Ayayee et al. 2015, 2016b) from which symbionts digest complex polymers and

synthesise EAAs that are passed to their host. The EAA contribution of gut symbionts can be variable

however due to changing dietary availability or digestibility. In enchytraeids, a family of oligochaetes,

increasing indigestible fibre content in the diet resulted in increased symbiont EAA supplementation, but

also led to decreased growth (Larsen et al. 2016a). Changes in EAA provisioning by gut microbes are

proposed to be associated with the changes in microbiome composition and metabolic rate (Ayayee et

al. 2020).

In the marine environment, many corals, molluscs, and sponges are mixotrophic holobionts: in addition

to heterotrophic particle capture, the animal hosts rely on a complex community of symbiotic

photoautotrophs and heterotrophs for their nutrition to varying degrees (Skinner et al. 2022, Pita et al.

2018). In corals these can include endosymbionts, typically dinoflagellates of the clade Symbiodiniaceae

hosted within the coral tissue (Skinner et al. 2022); diverse endolithic microbiomes on and within their

carbonate skeleton, including microalgae, fungi, and bacteria (Pernice et al. 2020); and potentially

microorganisms associated with epidermal and gastrodermal mucus (Fox et al. 2019, Kwong et al. 2019).

Coupled δ13CAA values between coral hosts and their endosymbionts suggests that endosymbiotic algae
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play a major role in the biosynthesis and provisioning of AAs to their hosts, despite evidence that

cnidaria may have the potential to synthesise some EAAs directly (Ferrier-Pagès et al. 2021 and

references therein). Transfer of photoassimilates has also been shown to occur between endolithic

symbionts and the overlying coral host tissues (Schlichter et al. 1995, Fine and Loya 2002). It should be

recognised however that biochemical roles of holobiont symbioses are not restricted to just AA

synthesis: rapid fixation and transfer (within 15 minutes) of inorganic carbon in seawater by

endosymbionts is facilitated by intracellular storage structures including lipid droplets and glycogen

granules in both the photoautotrophs and host tissues (Kopp et al. 2015). Approximately 50% of newly

fixed carbon is respired by the holobiont as a whole within 48 hrs (Tremblay et al. 2012), therefore coral

symbionts play a considerable role in provisioning high-energy biomolecules to fuel holobiont

metabolism. Highly variable host-symbiont interactions add further complexity when considering EAA

contributions of symbionts to host tissues, which can be related to in situ light levels (Wall et al. 2021),

depth or resource availability (Macartney et al. 2020), and therefore specific to microhabitats and host

species. Observed seasonality in holobiont microbiome compositions implies not only spatial, but

temporal variability in potential symbiont functioning, including the capacity for EAA provisioning (e.g.

Sharp et al. 2017, Glasl et al. 2020).

Identifying and quantifying the EAA sources that contribute to host consumer tissues in the presence of

symbionts will ultimately depend on the ability to characterise and distinguish symbiotic basal resources

from those obtained through the diet. This could potentially be assessed by characterising symbiont

δ13C-EAA patterns across various host systems. The δ13C-EAA patterns in endosymbiotic dinoflagellates

separated by repeated centrifugation from coral tissue have been observed to be distinct from the

surrounding particulate organic matter, a proxy for phytoplankton (Fox et al. 2019, Wall et al. 2021).

Recent work indicates that the δ13C-EAA patterns of Symbiodiniaceae may be distinctive from other free

living dinoflagellates (Stahl et al. 2023). Baseline δ13C-EAA values often vary between the symbionts and

coral tissue but whether this translates to differing δ13C-EAA patterns is unclear (Martinez et al. 2020,

2021, Ferrier-Pagès et al. 2021). Although sponge microbial symbionts have not been successfully

cultivated (Pita et al. 2018), sponge tissue and their assumed symbiotic microbes have been separated

through size fractionation in the tropical sponge Mycale grandis (Shih et al. 2020). Gut microbial

δ13C-EAA patterns have not been characterised even though potential model organisms exist, e.g.

Drosophila, from which they can be readily cultivated (Erkosar et al. 2013). Currently, general bacterial

δ13C-EAA patterns from data compilations consisting mostly of terrestrial bacteria are used in

identifications of gut microbial EAA supplementation due to perceived similarities with consumer tissue
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δ13C-EAA patterns (Arthur et al. 2014). These findings are supported by offsets in δ13C-EAA values

between consumer tissue and their diet observed in some controlled feeding studies that are interpreted

as gut microbial EAA supplementation (Newsome et al. 2011, 2020). However, such observed offsets may

be a result of particular tissue pretreatments leading to bias (see section 7.1 and Fig. 8). Bacterial

δ13C-EAA patterns are highly variable (Fig. 4, section 3.1) and those of gut bacteria are potentially

distinctive, therefore utilising training datasets of (terrestrial) bacteria δ13C-EAA patterns could lead to

false inferences on host EAA sourcing.

As symbionts are typically hosted in diverse communities, the optimal characterisation of symbiont

δ13C-EAA patterns will likely be difficult beyond isolating single symbiont species cultures. Yet,

determining symbiont EAA provisioning will require extensive characterisation of symbiont δ13C-EAA

patterns to capture the variation between symbiont species. Accurately reconstructing symbiont

δ13C-EAA values retrospectively from the offsets between δ13C-EAA values of diet and consumer tissues

(Larsen et al. 2016b, Newsome et al. 2020) requires prior knowledge of proportional contributions of

symbionts to consumer tissues, which are currently lacking. Despite high potential, future studies will

require a good understanding of the spatiotemporal host-symbiont dynamics when assessing the

potential of acquiring distinctive symbiont δ13C-EAA fingerprints.

5. Beyond δ13C-EAA fingerprinting

In some instances, basal resources of interest may not exhibit distinct δ13C-EAA patterns, especially when

phylogenetically similar resources are spatially or ecologically separated (e.g., underwood versus canopy

vegetation or sea-ice microalgae versus pelagic phytoplankton) (de la Vega et al. 2019, Tejada et al.

2020). Moreover, even when basal organisms are phylogenetically similar or identical, their

macronutrient content may differ, such as in leaves compared to tubers (Jarman et al. 2017). Thus,

relying solely on δ13C-EAA patterns may not adequately resolve multiple protein sources for

cosmopolitan omnivores (Larsen et al. 2022). In such cases, researchers can employ additional tracers to

gain further insights into the environment in which the consumer lived (see Introduction). However,

additional insights into resource use may also be gleaned from the dataset already at hand, namely

δ13C-NEAA values in conjunction with baseline δ13C-EAA values. The argument can be made that baseline

δ13C-EAA values are more informative than bulk δ13C values because the EAAs are synthesised exclusively

by basal organisms as opposed to bulk carbon (Hobbie et al., 2017). In this section, we will explore the
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potential of using the full range of δ13C-AA data, particularly δ13C-NEAA and baseline δ13C-EAA baseline

values, to provide complimentary dietary insights applicable across spatiotemporal scales.

5.1. Factors affecting δ13C-NEAA values in animals

δ13C-NEAA data has been underutilised in ecological studies, likely due to animals' de novo NEAA

synthesis and the subsequent reduction in diagnostic potential compared to δ13C-EAA patterns (Larsen et

al. 2009). NEAAs include alanine, glycine, and serine synthesised in the glycolytic pathway; asparagine

and glutamine synthesised in the TCA cycle; aspartate derived from asparagine; glutamate, proline, and

hydroxyproline derived from glutamine; tyrosine derived from phenylalanine; and cysteine derived from

serine (Fig. 1C). Since animals can synthesise NEAAs de novo, they are likely to reflect adaptive or

physiological responses to resource changes (Fig. 5). Consumer δ13C-NEAA values can be conceptually

thought of as a mixture of two sources: the de novo synthesised NEAAs and those directly sourced from

the diet. Factors influencing the δ13C-NEAA values during de novo synthesis will reflect those discussed in

section 2 (eq. 1), whereas those directly routed into tissues will reflect the isotopic values of those in the

diet. The carbon used for NEAA synthesis comes from different macronutrients, each with their own

isotopic composition, associated catabolic processes, and proportional contribution to NEAA

biosynthesis (see Fig. 5 for graphical conceptualisation and Appendix S1: Figure S1C for detailed

metabolic network). For example, lipid moieties and short-chain fatty acids are 13C depleted relative to

proteins and carbohydrates (Deniro and Epstein 1977, Melzer and Schmidt 1987, Weber et al. 1997).

While directly routed NEAAs will have δ13C values that reflect those of the diet, substantial downstream

processing of NEAAs, particularly in the splanchnic tissues, e.g. the tissues of the organs in the

abdominal cavity such as liver, stomach, small/large intestine, pancreas, spleen, and kidney, may cause

some fractionation (Caut et al. 2009, Larsen et al. 2022a). Responses to changes in diet quality may also

be AA specific as macronutrients enter different parts of the overall central metabolic network. For

example, alanine metabolism is particularly responsive to carbohydrate but not protein intake, whereas

glycine metabolism appears to be responsive to dietary protein levels (Yu et al. 1985).

As mentioned, dietary AAs may undergo fractionation during their catabolic processing in the splanchnic

tissue, but also within the microbiome of the abdominal cavity. Some NEAAs are used for oxidative fuel

in the mucous membrane or as building blocks for other metabolites (Burrin and Stoll 2009). However, a

lack of these NEAAs or caloric restrictions in general can lead to increased catabolism of certain EAAs,
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making them unavailable for the formation of structural tissues (Neis et al. 2015). In humans, between

20% to 50% of dietary EAAs such as leucine, lysine, and phenylalanine are retained in the abdominal

cavity, but retention can reach 90% for threonine (Hoerr et al. 1991, Biolo et al. 1992, Matthews et al.

1993, Van Goudoever et al. 2000, Schaart et al. 2005). Retention rates of dietary NEAAs is typically

higher, with glutamate and aspartate being almost completely retained in splanchnic tissues (Battezzati

et al. 1995, Reeds et al. 1996, Stoll and Burrin 2006, Riedijk et al. 2007), making them unavailable for

tissue formation elsewhere in the body. The retention of alanine in splanchnic tissue is around 70%, but

little of its carbon skeletons are used for new protein synthesis (Battezzati et al. 1999). Compared to

alanine, dietary glycine has a higher proportion routed towards the formation of new proteins and

metabolites such as glutathione, a powerful antioxidant, and bile acids, which are essential for digestion

and fat absorption (Jourdan et al. 2011). Around 40% of dietary proline is retained in the splanchnic

tissues, making it a crucial amino acid for overall protein synthesis (Dabrowski et al. 2005, Wu et al.

2008). However, it is challenging to determine if dietary NEAAs are metabolised during digestion, or used

as building blocks in tissue proteins (Battezzati et al. 1999, Dai et al. 2012). Once dietary NEAAs enter the

liver, the central organ for AA degradation and syntheses, they are utilised for protein building and as

precursors for non-proteinogenic metabolites (Fig. 5). If dietary NEAAs are in excess, they are converted

into fat, which can be catabolized into glycogen when needed. While the ratio of dietary NEAAs

incorporated versus those synthesised de novo in proteinogenic tissues often remains unclear due to

varying catabolic rates and metabolic demands, it is feasible to make reasonably precise estimates in

collagenous tissues when considering the NEAAs as an aggregated pool (Hobbie et al. 2017).
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Figure 5. Schematic representation of the macronutrients (proteins, carbohydrates, lipids), metabolic processes,

and environmental effects that contribute to the δ13C values of amino acids (AA) in animals. The metabolic

processes are divided into macronutrient catabolism, central metabolism including glycolysis and the tricarboxylic

acid (TCA) cycle, and the biosynthesis of the non-essential AAs (NEAAs) that can be utilised for proteinogenic or

non-proteinogenic purposes. All the essential AAs (EAAs) are assumed to be routed directly from proteinaceous

dietary sources (ΣPMacro = 0). A fraction of the dietary NEAAs may be routed directly to tissue proteins (1 - ΣPMacro),

which will have δ13C values that reflect those of the dietary NEAAs. In terms of the sources and processes affecting

d13C-NEAA values of tissue proteins, the molecular constituents of each macronutrient have their own initial

isotopic composition, δ13CMacro, and fractionation as they are converted to NEAA-precursors, Acq.Macro. As the

catabolic networks are different for the three macronutrients (Fig. S1C), the effect of environment will likely induce

different physiological responses in isotopic fractionations (Env*Acq.Macro). The contributions of different

macronutrients to NEAA synthesis (ΣPMacro = PProt. + PCarb. + PLip.) may fluctuate with diet composition and covary with

physiological changes such as the accumulation of adipose tissue, reproduction status or muscle catabolism. Tissue

proteins may also be catabolised and re-enter the central metabolism. Taken together, the isotopic composition of

tissue proteins will reflect the proportional mixture of directly routed dietary AAs plus those synthesised de novo

following catabolism (for NEAAs), and the associated fractionations with each macronutrient (ca. Fig. 1). The
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metabolic pathways are summarised based on Stryer et al. (2019). Abbreviations: 3-PGA, 3-Phosphoglyceric acid;

Ala, alanine; Arg, arginine; Asn, asparagine; Asp, Asparagine; Cys, cysteine; Gly, glycine; Gln, glutamine; Glu,

glutamic acid; Hyp, hydroxyglycine; Pro, proline; Ser, serine; Tyr, tyrosine. The illustration was created with

BioRender.com.

5.2. Exploring full δ13C amino acid datasets

The complexity and multitude of factors influencing NEAA sourcing, catabolism, and synthesis raise

questions of the degree δ13C-NEAA data can provide additional insights into past and current resource

use. Nevertheless, consistency among empirical studies suggests that NEAAs could be valuable, as this

implies that the various processes potentially imparting variation do not mask underlying dietary signals.

A review on using δ13C-AA values to trace the trophic fate of aquafeed macronutrients concluded that

combined δ13C-NEAA and δ13C-EAA patterns could inform metabolic routing and utilisation of dietary

lipids and carbohydrates when dietary parameters are well-defined (Larsen et al. 2022). Recent human

epidemiological studies have shown that serum δ13C-NEAA values reflect the intake of beverages

sweetened with high-fructose corn syrup, a carbohydrate source with high δ13C values (Choy et al. 2013,

Yun et al. 2018, 2020, Johnson et al. 2021). Utilising NEAAs as nutritional markers in archaeological

studies has also provided deeper insights into various dietary categories and subsistence strategies of

past human populations. The δ13C spacing between glycine and phenylalanine, first observed by Corr et

al. (2005), can indicate whether a population primarily consumed C3 terrestrial or freshwater proteins.

More recent ordination analyses of combined δ13C-EAA and δ13C-NEAA literature data show distinct

clustering of populations with different subsistence strategies (Ma et al. 2021, Soncin et al. 2021, Brozou

et al. 2022, Larsen et al. 2022b). These findings are encouraging, as they suggest that δ13C-NEAA values

in humans consistently reflect their subsistence strategies. In addition to considering δ13C-NEAA values,

both archaeological and ecological studies suggest that in certain contexts, baseline δ13C-EAA values can

help to constrain protein sources.

Currently, there are no default methodologies for utilising full δ13C-AA datasets to predict the primary

protein sources of consumers. To examine the importance of ordination techniques and data

preprocessing methods in ensuring accurate predictions and assessments, we compiled archaeological

δ13C-AA values from human collagen and keratin across eight studies (see Appendix S4). These
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populations, which span 6500 years and are situated in distinct geographical regions, were analysed

using both PCA and LDA techniques to determine protein source categories: Freshwater (FP), marine

(MP), terrestrial C3 (C3P), and terrestrial C4 (C4P). Additionally, we compared two types of data

preprocessing: measured and EAA mean-centred δ13C-AA data, and visualised the δ13C-EAA mean values

in the ordination plots. There is an important caveat to consider in our evaluation of δ13C-AA data for

past human populations: The protein sources of these populations cannot be independently verified

using other lines of evidence. Our assessments depend solely on the contextual information provided by

the archaeological studies, e.g. geographical locations where the samples were obtained, along with the

baseline δ13C-AA data. A comprehensive discussion of the results can be found in Appendix S4.

In summary, the ordination outcomes indicate that most populations primarily cluster near the

anticipated protein sources, albeit with some discrepancies between data preprocessing and ordination

approaches (Fig. 6). The predictions of the different combinations of ordination techniques and data

preprocessing do not appear to be fundamentally different; however, LDA ordination results tend to align

more closely with the expected protein sources of the human populations than PCA. In terms of the two

data set representations (measured vs. mean-centred), 18 out of 64 unknown (predicted) individuals

were categorised differently due to the slight structural differences. In the vast majority of these

discrepancies, the use of measured data yields more accurate predictions of protein sources compared

to mean-centred data. In terms of applying class probability assignments pθ(x) and likelihood lx(θ)

functions to predict protein sources to the LDA output, we found that likelihood functions are

comparatively less prone to false inferences. This is particularly true for samples that fall outside the

mixing-space, in our case the ordination space defined by the classifier δ13C-AA data with the four

protein sources. We calculated Bhattacharyya coefficients to evaluate overlap between human

populations and protein sources. Although overlaps help compare methodological approaches, they are

less suited for assessing relative protein contributions, as populations falling between protein groups

have low coefficient values. We show that regardless of preprocessing or ordination methods, a similar

set of amino acids contribute to maximising intra- and inter-group variation. Phenylalanine and valine

differentiate terrestrial and aquatic resources, while proline separates C3 protein groups (Honch et al.

2012, Larsen et al. 2013). The δ13C patterns of glycine, alanine, and glutamate play an important role in

distinguishing protein sources within terrestrial and aquatic groups. The relative δ13C offsets among

these NEAAs may partially reflect the balance of dietary fat to carbohydrate (Choy et al. 2013, Yun et al.

2018, 2020, Johnson et al. 2021, Larsen et al. 2022).
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These findings provide a unique perspective on the consistency of δ13C-AA patterns in humans, but may

only apply to omnivores and warrant further investigation in different dietary contexts, such as obligate

herbivores or carnivores. Reconstructing past human resources is challenging due to relatively limited

information that can be obtained from geographical region, excavation artefacts, and skeletal remains

examination. Despite these limitations, our ordination analysis supports the hypothesis that alanine,

glutamate, glycine, and proline are suitable nutritional markers. The remarkable consistency in δ13C-AA

patterns across human tissue samples spanning 6,500 years holds potential for uncovering

individual-level differences within populations. Analysing the full δ13C-AA dataset may also provide

insight into macronutrient balance, but further studies are needed to fully understand the metabolic

controls of δ13C-NEAA values.
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Figure 6. Ordination analysis with δ13C values of alanine (Ala), aspartic acid/asparagine (Asx), glycine (Gly), glutamic

acid/glutamine (Glx), phenylalanine (Phe), proline (Pro), and valine (Val) from archaeological human collagen and

keratin samples. The left panel subplots depict the first two PCA components (subplots A and C) and the right panel

subplots the first two LDA discriminants (subplots B and D). The ordination analyses in subplots A and B are based

on measured δ13C-AA data and subplots C and D on EAA (Phe and Val) mean-centred δ13C-AA data. The broken lines
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in the LDA plots indicate the decision boundaries for whether individuals predominantly obtained dietary proteins

from freshwater (FP), marine (MP), terrestrial C3 (C3P), or terrestrial C4 (C4P) sources. To produce this

categorisation, we selected a subset of individuals with clear archaeological and environmental contexts. These

‘known’ individuals, denoted with open blank symbols in subplots A1, B1, C1 and D1, originate from Belize, Brazil,

Bulgaria, Greenland, Guatemala, Japan, Serbia, and Romania (data from Honch et al. 2012, Colonese et al. 2014).

Populations with less certain diets are featured with distinctly coloured symbols and polygons (data from Choy et

al. 2010, Raghavan et al. 2010, Mora et al. 2018, Webb et al. 2018, Ma et al. 2021, Brozou et al. 2022). Subplots A2,

B2, C2 and D2 mirror A1, B1, C1 and D1, respectively, but the symbols are colour graded from yellow to red according

to the δ13C-EAA mean value of each sample. The Odense and Pica 8 populations are based on tissues from the

same individuals that reflect short-term (rib and hair) or long-term (femur and tendon) dietary histories. Detailed

information about each sample can be found in Appendix S4.

5.3. Baseline isotope values as complementary markers of basal resources

Our meta-analysis of human data demonstrates that, similar to bulk δ13C values, baseline δ13C-EAA data

serve as robust source markers when the factors controlling them in basal resources are well

constrained. However, it remains relatively rare for ecological studies to integrate both baseline δ13C-EAA

values and source diagnostic δ13C-EAA patterns. A successful application of this integrative approach is

Vane et al.'s (2018) study, which used δ13C-EAA analysis to track ontogenetic resource utilisation and

migration of acoupa weakfish (Cynoscion acoupa) by comparing otolith edges of juveniles and adults

with resources in their environment. Since juveniles inhabit Brazilian mangrove estuaries before moving

to the coastal shelf as adults, juvenile otoliths were expected to be influenced by baseline δ13C-EAA

values of freshwater phytoplankton, making them more 13C depleted than adults. The study found that

the first principal component, driven by the dynamic range in baseline δ13C-EAA values, separated

freshwater and marine resources, while the second principal component, driven by δ13C-EAA patterns

(intermolecular δ13C relationships), distinguished among freshwater phytoplankton, detrital mangrove

leaves, and mangrove root rhodophytes. Ordination analyses of measured δ13C-EAA data (as opposed to

mean-centred δ13C-EAA data) have also been successfully applied to track basal resource contributions in

coral reefs (McMahon et al. 2016) and salt marshes (Johnson et al. 2019).

As exemplified by our meta-analysis of human compilation data, researchers must have a thorough

understanding of the environmental conditions in a habitat to determine if they result in distinct

δ13C-EAA baselines. Baseline δ13C values in basal resources are influenced by inorganic carbon sources,

physiological adaptation, response to environmental conditions, and carbon fractionation in biosynthetic
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pathways (section 2). In polar regions, sea ice melt affects CO2-carbonate chemistry and creates a

distinction in baseline δ13C-EAA values between ice algae and pelagic phytoplankton, which are not CO2

limited (de la Vega et al. 2019). In lacustrine systems, changing boundary layer formation and primary

production can make it challenging to confine baseline δ13C values unless the system is closely monitored

(Zimmer et al. 2020). In terrestrial habitats, refixation of respired CO2 and shady conditions can result in

more negative δ13C values compared to canopy vegetation δ13C values. The isotope dynamics between

these two habitats are highly dependent on growth season, solar radiation, topography, and wind

conditions affecting understory air turbulence (Tejada et al. 2020).

When models or observational data on the physiochemical environment are insufficient to constrain or

create adequate differentiation in baseline δ13C values of basal resources, we recommend caution in

using baseline δ13C-EAA information in ordination analysis. A study by Larsen et al. (2020) of four

functional groups from the Baltic Sea, including pelagic piscivores, benthic predators, planktivores, and

suspension feeders, found that in some systems, baseline δ13C-EAA variability may obscure information

about niche space. This is because consumer tissues are composed of a mixture of δ13C-EAA values from

various basal resources over time and in different habitats, making it challenging to use single δ13C-EAA

values as a proxy for changes in marine basal resource composition. To gain a better understanding of

changes in basal resources, it is essential to characterise the ecosystem-specific δ13C-EAA patterns in

both basal resources and consumer tissues.

6. Considerations for using archival tissues

Changes in basal resource use can occur over ontogeny, both within and between populations, and over

seasonal to millennial scales. Tracking these changes accurately depends on the rate of dietary AA

incorporation in various animal tissues (relative to the rate of change) and their preservation. Selecting

one or multiple specific tissues from an individual organism that vary in their incorporation rates can

indicate the basal resource use during a couple of days to an entire lifetime of the individual. The ability

to reconstruct past basal resource use by a species relies on the integrity and preservation of tissues and

their δ13C-AA values over long time scales. Natural and artificial preservation have the potential to

extend the basal resource reconstructions over timescales of several thousands of years under certain

conditions. In this section, we discuss the components of tissue sample selection that are important for

enabling specific basal resource reconstructions over time and space.
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6.1. Temporal resolutions with consumer tissues

The incorporation of AAs is not uniform across various tissues due to tissue turnover and growth during

an organism’s lifetime at different rates, and therefore different tissues may reflect different timeframes

of dietary history. Blood and soft tissues such as liver and muscles can be turned over completely within

days or months depending on the metabolic rate of the particular tissue, age class or animal (Boecklen et

al. 2011, Thomas and Crowther 2015, Vander Zanden et al. 2015). Hard and semi-hard tissues such as

bones and ligaments are remodelled throughout life, but at different turnover rates according to age,

gender, and physiological and pathological conditions (Hadjidakis and Androulakis 2006). By analysing

different bones from ribs to femurs, a reconstructed dietary history can span an entire decade or more

(Tieszen 1983, Fahy et al. 2017, Matsubayashi and Tayasu 2019). This dietary timespan can be expanded

to a complete lifetime by analysing other collagenous tissues that are metabolically inert and therefore

not remodelled after formation such as human dentine (Brault et al. 2014). Such tissues will reflect

dietary history of the period of their formation during an individual’s ontogeny. Metabolically inert

keratin excrescences such as hair, nails, and feathers in mammals and birds can give consecutive dietary

information on seasonal scales as they grow continuously until replaced during moulting seasons. Other

keratin tissues such as scales of fish and reptiles, and whale baleen grow in visible increments and can be

used to reconstruct partial life histories. Entire dietary life histories can be reconstructed from

metabolically inert calcium carbonate structures such as bivalve shells, coral skeletons, and fish otoliths.

During a continuous layered calcification process from the early embryonic stage throughout the entire

individual's lifetime, small amounts of protein are incorporated on a daily basis (Edeyer et al. 2000,

Borelli et al. 2001, Falini et al. 2015). Opaque band formations within these carbonate structures indicate

favourable growth periods with higher incorporation of protein concentrations (Watabe et al. 1982).

These visible incremental bands can be formed on daily, monthly and (sub)annual basis and can be used

for estimating the age of the organism (Payan et al. 1999, Borelli et al. 2001, Falini et al. 2015). Chitin

structures, such as cephalopod beaks and gladii, and cartilage vertebrae of sharks grow throughout an

individual's lifetime displaying incremental bands that can be sampled for life history variations in basal

resource use (Cherel et al. 2009, 2019, Magozzi et al. 2021). Mechanical structures such as cephalopod

beaks and whale baleen lose material due to wear and therefore their temporal information will be

limited to a certain timespan before the collection (Aguilar and Borrell 2021).
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The temporal resolution gained from the increments in biogenic carbonates, chitin structures, and

keratin excrescences is dependent on the AA concentration, increment width, structure size, and

minimum analytical volume. The AA concentrations in shells, fish otoliths and coral skeletons are often

low, generally ranging between 0.5 and 2% but can be up to 10% protein content (Degens et al. 1969)

and with exceptions in proteinaceous corals (Williams 2020). Moreover, the AA composition can

significantly differ between species and tissue types,for example the EAA methionine concentrations are

often very low in many tissues while the NEAA glycine in bones are high. Thus, minimum analytical

sample volumes and the target AAs often determine the temporal resolution that can be sampled from

biogenic carbonate samples with low protein contents as higher sample volumes requirements may have

to be drawn from across multiple increments.

6.2 Natural and artificial preservation of tissues

As proteinogenic AAs can withstand high levels of heat, gamma radiation and temperature changes, their

preservation in hard tissue samples largely depends on whether they are compromised by AA leaching,

augmentation or bacterial reworking (Grupe 1995, Collins et al. 2002, Iglesias-Groth et al. 2011). Several

degradation indicators such as D- and L-enantiomer ratios of AAs and relatively constant baseline

δ13C-AA and δ15N-AA values and patterns show that high density carbonate matrices such as egg and

bivalve shells remain inert for at least 10,000 years under favourable conditions (Tuross et al. 1988, Engel

et al. 1994, Macko et al. 1994, Silfer et al. 1994, Johnson et al. 1998, O’Donnell et al. 2007, Misarti et al.

2017). Unbound protein fractions in high density matrices are more prone to leaching and can disappear

within the first 6000 years after an organism death under hot and aqueous conditions (Bada et al. 1999,

Ortiz et al. 2018). Exogenous AAs can accumulate on the outer surfaces of hard tissues and should be

removed prior to analysis with mechanical drilling, short washing with diluted HCl or sonication in

distilled water (Engel et al. 1994). Removing traces of diagenesis is more challenging in porous structures

such as coral skeletons and bones where exogenous AAs can be deposited over a large internal surface

area (Bada et al. 1999). Lower density matrices such as bones and elastic tissues do not persist on

geological timescales except under extremely favourable conditions. For example, while collagen and

elastin have been detected with synchrotron Fourier-transform infrared spectroscopy in fossils from the

Jurassic period, it is at insufficient amounts for δ13C-AA analysis (Lee et al. 2017, Boatman et al. 2019).

Bone structures are also more sensitive to environmental fluctuations, i.e. humidity and temperature

shifts that can accelerate AA degradation by creating micro-fissures and porous structures in
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biomineralized tissues (Grupe 1995, Maurer et al. 2014). To assess protein preservation in bones on

archaeological and historical timescales, measuring the nitrogen content and atomic ratios of carbon to

nitrogen is often standard (Brock et al. 2012). For external hard tissues like feathers and fish scales,

physical abrasion and leaching can diminish the amount of proteins available for analysis (Salvatteci et al.

2012).

Soft tissues that readily degrade are best preserved in dried or frozen state for extensive time periods.

However, natural history museums and research institutions often preserve them in solvents such as

ethanol or with embalming fluids containing methanol and formaldehydes. Storage with these chemical

preservation techniques seems to have no significant short-term effects (<1 year) on δ13C-AA or δ15N-AA

values (Strzepek et al. 2014, Hetherington et al. 2019, Durante et al. 2020, Swalethorp et al. 2020).

Alterations to δ13C-AA and δ15N-AA values have been observed for samples preserved up to 27 years

(Hannides et al. 2009, Hetherington et al. 2019, Durante et al. 2020, Swalethorp et al. 2020). Beyond

this, it is unclear how solvents affect δ13CAA values in proteinaceous tissues, but storage over centennial

timescales or heating causes tissue disintegration and loss of AAs to the surrounding solvent (Von Endt

2000, Marte et al. 2003). It is likely that the preservation chemicals affect tissue integrity by impacting

the peptide and protein bonds. This could lead to unstructured AA leaching into the surrounding fluids in

the long term and thus affecting the δ13C-AA values of the tissue as a whole due to mass-based diffusion

differences. To fully embrace δ13C-AA analysis of chemically preserved tissues further investigations into

the leaching of AAs are warranted.

7. Minimising analytical uncertainties in the measurements of δ13C-AA values

Precise and consistently accurate measurements of δ13C values in individual AAs are crucial to detect the

fine distinctions in basal resource δ13C-EAA fingerprints and consumer δ13C-EAA patterns. The

methodology for carbon isotope analysis in AAs is however longer and more complex (summarised in

Fig. 7) than bulk stable isotope analysis, increasing the likelihood of errors in measured δ13C-AA values.

Prerequisites for bulk isotope analysis are limited to the weighing of dried tissue that is then completely

combusted in the elemental analyser, although high concentrations of lipids or minerals may be

chemically removed during tissue preparation. The amount of tissue material needed for bulk isotope

analysis can be considerably less than for AA analysis (for carbonate analysis from ~25 µg to

approximately 5 mg respectively), which can limit the resolution with which hard tissue increments can
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be analysed. Typical protocols for AA analysis include acid hydrolysis of dried tissues, where strong acids

(6M HCl) for 70 minutes to 21 hours at high temperatures of 110-150°C respectively, are used to break

the peptide bonds and extract the individual AAs (Enggrob et al. 2019, Silverman et al. 2022). However,

acids can lead to degradation of certain AAs, such as tryptophan and cysteine. Purification of tissues

from non-AA compounds to prevent chromatographic co-elution can precede or follow the acid

hydrolysis (Fig. 8). The measurement of carbon isotopes in AAs can be done on a gas chromatograph

interfaced to a combustion reactor and isotope ratio mass spectrometer (GC-IRMS) or a set up with a

liquid chromatograph (LC-IRMS). For GC-IRMS, naturally polar AAs need to be volatilized with

derivatization protocols, whereas AAs can be directly analysed after acid hydrolysis and purification with

a LC-IRMS. However, LC-IRMS has currently lower chromatographic AA separation abilities and needs

approximately 20x more sample volume compared to GC-IRMS (Smith et al. 2009, Dunn et al. 2011). This

limits its use, precluding small and/or low AA concentration samples such as otoliths or shells. To ensure

stable isotopic measurements of AAs over long analytical periods, reference AA compounds should be

added to the analysed AA sample or run alongside the analytes. Currently, diverse approaches to sample

treatment, derivatization protocols, and instrumentation exist between laboratories with relatively

unknown effects on δ13C-AA measurements. We therefore highlight the most likely areas for error in

sample preparation.
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Figure 7. Proposed standardised analytical protocols for different sample types from sample preparation to

post-analysis. Broken lines towards the mineralization step indicate that this treatment is only needed for certain

sample types such as collagenous tissues or materials rich in biogenic minerals (step 1). Solvents should be

evaporated instead of discarded to avoid potential AA loss with the exception of collagenous samples that are

relatively insoluble. Remaining minerals will be removed with ion-exchange purification (step 5). With the

derivatization method, methoxycarbonyl (MOC) esterification, the demineralization step of certain samples such as

otoliths and shells can be bypassed due to the lack of water sensitive solvents. MOC derivatization is therefore also
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directly applicable on blood samples without drying (Walsh et al 2012). All other tissue samples need to be dried

(step 2) before acid hydrolysis (step 3). For samples with an excess of lipids or non-hydrolysable plant particles, a

first purification with solvents can be applied (step 4) before isolating the AAs from all other compounds with

ion-exchange columns (step 5). Solvent and bases eluting AA from the ion-exchange columns are evaporated and

reference standards are added to the AA sample (step 6). After subsequently dissolving the AA sample in a slightly

acidic solution, it can be analysed with liquid chromatography combustion isotope ratio mass spectrometry

(LC-c-IRMS, step 9). Analysis on a gas chromatography combustion isotope ratio mass spectrometry (GC-c-IRMS)

requires AA volatilisation by derivatization (step 7). As the GC-IRMS has a comparatively lower combustion capacity,

a more accurate evaluation of the hydrolysable AA concentrations in the sample can be performed on a GC coupled

to a flame ionisation detector (GC-FID, step 8). Derivatisation agents add distinct amounts of carbon according to

the functional groups of individual AAs or also known as kinetic fractionation. Thus, the acquired δ13CEAA values

have to be corrected with individually determined correction factors for each AA (step 10). Data validation for

precision and accuracy of the measured δ13C-EAA values can then be assessed with reference materials that have

been analysed in parallel with the AA samples (step 11). 

7.1. Purification of amino acid samples

The removal of non-AA compounds, such as lipids, minerals, calcium carbonate, and urea, is often one of

the first steps to avoid error in stable isotope analysis. These compounds can co-elute with individual AA

compounds in the chromatography or accumulate in the GC-IRMS liner that can lead to AA peak tailing

and increased incidences of co-elution. As a chromatographic peak elutes with the lighter 12C compounds

first and then with the ‘heavier’ 13C compounds, overlap or co-elution of AAs with either peak end or

start of other compounds lead to inaccurate measurements of the individual δ13C values of AAs

(Meier-Augenstein 2002, Sessions 2006). Non-AA compounds can also react with derivatization

chemicals and deplete them before reacting with the AAs, leading to lower AA concentrations eluting on

the GC-IRMS. Some purification protocols use extensive treatments to remove non-AA compounds by

soaking them in acidic solutions for extended periods followed by repeated rinses with purified water.

Excess pretreatment fluids are then removed as supernatant or through filtering. As these aqueous

pretreatments take place before acid hydrolysis, the tissue samples are still in their protein constellation,

including small peptides and free (unbound) AAs. Due to the hydrophilic nature of some proteins (e.g.

glycoproteins) and EAAs (e.g. lysine, tyrosine, histidine, threonine), this could potentially lead to their

dissolvement and partial removal with the pretreatment fluids. This disposal of AA constituted

compounds may lead to an alteration in the δ13C-EAA values of the pre-treated tissue. These
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pre-treatments are predominantly performed on consumer tissues to remove excess lipids or urea, while

the dietary tissues are left untreated (see Appendix S5). With the potential loss of EAAs and subsequent

alteration of the δ13C-EAA values in the consumer tissue, this can result in an artificial offset between

dietary and consumer tissue δ13C-EAA values.

Comparing 17 controlled feeding studies that investigated the hypothesis of direct EAA routing from diet

to tissue, where Δ13Cdiet-tissue values are expected to be ~0‰, some feeding studies observed Δ13Cdiet-tissue

for individual EAAs can deviate by -12 to 13‰ without a consistent direction (Hare et al. 1991, Johnson

et al. 1998, Howland et al. 2003, Jim et al. 2006, Newsome et al. 2011, 2014, 2020, Whiteman et al.

2018, Manlick and Newsome 2022, Fig. 8, Appendix S5). Other studies however observe values of

approximately 0‰ for each individual EAA (McMahon et al. 2010, 2015b, Webb et al. 2017, Lui et al.

2018, Takizawa et al. 2020, Wang et al. 2019a, Huneau et al. 2019, Barreto-Curiel et al. 2019, Fig. 8,

Appendix S5). Large offsets were found in studies that used extensive water rinses and light acidic

treatments and mention removing these solutions from the consumer tissue samples (Fig. 8, Appendix

S5). Other potential mechanisms for such differences may include analytical measurement deviations or

experimental time periods that are shorter than the time needed for tissue δ13C-EAA values to reach full

equilibrium with the experimental diet. Also the analytical error enhanced by the correction for added

carbon during derivatization, and the underrepresentation of the variation in dietary δ13C-EAA values

due to analysing too few diet samples can account for some of the offsets in all studies. However, as

these are common considerations in controlled feeding studies, we do not believe that they are the main

cause of the excessive offsets in δ13C-EAA values between diet and consumer tissue.

Water rinses used for sample purification have been discouraged for bulk isotope analysis due to them

resulting in large and inconsistent carbon isotopic variations (Serrano et al. 2008, Brodie et al. 2011,

Schlacher and Connolly 2014, Pellegrini and Snoeck 2016). We therefore encourage investigating if the

same issue arises with AA analysis. Until this has been resolved we recommend to apply purification

protocols after acid hydrolysis with for example organic solvents only, and cation exchange or solid phase

extraction columns (Fig. 7, McMahon et al. 2010, Takano et al. 2010, Ohkouchi et al. 2017). Organic

solvents are usually used to separate high amounts of lipids in tissues or sample debris from the AAs.

They include non-mixing solvents such as dichloromethane and n-hexane, where the latter is insoluble to

AAs and removed. Cation exchange resins bind positively charged AAs to the negatively charged resins

that are released when a strong base is run through. Solid phase extractions, however, are not efficient

for demineralization as the minerals likely react with the solid phase and prevent AA elution (Vane pers.
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obs.). Purification protocols with cation-exchange columns lead to negligible loss and carbon

fractionation of AAs (Takano et al. 2010). The exception to applying acidic pretreatment are well

preserved bone materials where whole bones are dissolved in light acids for a short period without

powderizing to extract the collagen (Sealy et al. 2014). Removal of bone carbonate AA is necessary as it

is more susceptible to diagenetic processes and has different turnover times than collagen (Stafford et al

1988, Lambert and Grupe 1993).

Figure 8. The differences in measured δ13C values for individual EAAs, isoleucine (Ile), leucine (Leu), phenylalanine

(Phe), valine (Val), threonine (Thr), lysine (Lys), methionine (Met), histidine (His), observed between diet and

consumer tissue in 17 separate controlled feeding studies divided on the use of water-rinsing pretreatments of the

tissue samples. Consumer tissues vary from muscle, intestinal, heart, and liver tissue, to bone collagen, blood

plasma and eggshell, while diets were divided on for example C3/C4 origins, percentages of protein, carbohydrate

and lipid, and prey organisms. See S5 for specific details on individual studies.

7.2. Error propagation, accuracy and precision during measurements of δ13C-AA values

Error propagation, large deviations in measured δ13C values due to errors introduced into analytical

processes, can arise from the derivatization protocols needed for analysis on a GC-IRMS and technical

deviations in the instruments. Derivatization chemicals should be added in excess amounts to avoid

rate-limited chemical reactions that could cause isotope effects. Since derivatization adds exogenous

carbon to AAs, it is necessary to calculate the resulting offset in δ13C values between the derivatized and
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non-derivatized AAs. This can be done by leveraging mass-balance equations and predefined isotope

correction factors, but it comes with the caveat that it can potentially introduce and propagate errors

(Fig. 7, Docherty et al. 2001, Takizawa et al. 2020). These error propagations can be minimised with

reagents that have δ13C values closer to those of the analysed samples. The extent of the corrections and

error is exacerbated by adding large carbon chains to individual AAs with derivatization methods such as

N-pivaloyl/isopropyl esters (NP/iPr) and N-trifluoroacetyl isopropanol esters (TFAA) in comparison to

methoxycarbonyl (MOC) esterification (Silfer et al. 1991, Corr et al. 2007, Walsh et al. 2014). Errors in

measured δ13C-AA values can also be introduced when water-sensitive derivatization agents are used,

such as acetyl chloride and acetic anhydride in N-acetylmethyl (NACME) and TFAA methods. This can

lead to a reaction with the water retained by the hydrophilic CaCl2 during the drying process of acid

hydrolyzed CaCO3, laboratory humidity or incomplete drying steps during the derivatization protocols.

The formed compounds can appear in the chromatography and alter the δ13C value measurements when

co-eluting with AAs. Water-sensitive derivatization agents are absent in MOC protocols and thus there is

no need for demineralization of samples and likely enables the analysis of small volume biogenic

carbonate increment sampling (Vane et al. 2018). However, the slightly acidic starting solution in MOC

affects the NEAA glutamic acid δ13C values, and to a lesser extent aspartic acid, as the low pH and the

catalysing pyridine will result in its cyclization into pyroglutamic acid (Walsh et al. 2014, Yarnes and

Herszage 2017). There is an unknown effect of isotopic stability of TFAA derivatized samples that can

only be kept for several days, while NACME and MOC derivatized AAs are known to be stable for several

months. NACME is often a preferred derivatization protocol due to its high precision, long stability and

enabling measurements of all hydrolysable NEAAs.

Ensuring consistency and comparability in δ13C-AA measurements across time and between analytical

facilities is critical. Good chromatographic practices, including baseline separation between individual

compounds, Gaussian peak shapes, and maintaining the linearity range of isotope analyses, promote

accuracy and precision. Monitoring the analytical stability of instrumentation and the consistency of δ13C

values measurements of AAs across time and projects is crucial to avoid deviations in isotopic

measurements (Meier-Augenstein and Schimmelmann 2019). This can be monitored by continuously

running commercially available internal (added to the analysed sample) and external (run separately in

between samples) reference compounds. Each set of references should ideally encompass δ13C values at

both the lower and upper extremes of the analysed sample spectrum. Reference compounds can be

divided into those that require derivatization prior to GC analysis and those that do not. As for the
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internal standards, pre-derivatization compounds such as aminocaproic acid (an isomer of lysine) or

norleucine (an isomer of leucine) can either be added pre or post acid hydrolysis to monitor potential

losses and isotope effects during these chemical steps. However, their practical use of internal references

can be challenging as AA concentrations in samples are often unknown, making the estimation of

internal reference material additions problematic, especially for samples with low AA concentrations.

Post-derivatization compounds include n-alkanes, acetanilide, and caffeine. Users should check that

these compounds do not co-elute with the derivatized sample AAs. When considering the sets of

external reference compounds, it is critical to include a set of AAs with known isotope values with every

batch of derivatized samples (Fig. 7, Roberts et al. 2018, Meier-Augenstein and Schimmelmann 2019).

This accounts for isotope effects attributed to added carbon during derivatization and kinetic isotope

effects during chemical reactions. The non-derivatized external references serve to calibrate the δ13C

value of the reference CO2 monitoring gas and monitor long-term stability and instrument drift in δ13C

values. Typically, these external reference compounds consist of a set of short to long-chain n-alkanes

with isotope values that have been validated and referenced across multiple analytical facilities

(Schimmelmann et al. 2016).

To reduce the variability of carbon fractionation during the derivatization process, it is important to carry

out complete reactions and thoroughly remove all derivatization solvents. The increased volatility of

derivatized AAs means they can easily evaporate, particularly if overheating or prolonged drying occurs.

This may result in partial or total evaporation of the derivatized AAs, with low-molecular weight

derivatives being especially susceptible once they reach boiling point. As the composition of sample

matrices often differs, even within a sample batch, meticulous attention should be given to achieving

consistent dryness following each chemical treatment step as individual samples can have distinct drying

times.

As discussed above, variations in analytical protocols, equipment, and sample matrices can lead to biases

between datasets generated in disparate analytical facilities. To counteract these biases, it is essential to

establish a widely available repository of biological reference materials. However, identifying appropriate

biological reference materials for δ13C-AA analysis has proven challenging. Biological reference materials

must be homogeneous, easily transportable, and ideally non-hazardous, i.e. they should not be

biologically active. Similar to commercially available single compounds, there should be two sets of each

biological reference material, ensuring they cover δ13C values at both the lower and upper ends of the

sample spectrum analysed. Possessing such reference materials would enable δ13C-AA data measured
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across various studies and facilities to be compared accurately and with greater confidence. This would

be further supported by increased standardisation of methodologies (Fig. 7), as the diverse protocols

and chemicals currently utilised may introduce additional biases into isotopic values measured at

different facilities.

8. From qualifying to quantifying basal resource contributions

Consumer δ13C-EAA patterns are a composition, or linear combination, of the δ13C-EAA patterns in the

basal resources at the base of the food-web that are assimilated to synthesise their tissues (see section

4.1). This is known as a linear mixing system. Linear mixing systems and the analysis of compositional

data have a long history spanning many branches of science where such data structures are common.

Examples range from geology and the analysis of mineral composites (Weltje et al. 1997) to remote

sensing where incoming spectra are mixtures of pure spectral components (Clevers and Zerita-Miller

2008). The statistical framework used to estimate the proportional contributions of known endmembers

to compositional data is known as a linear (un)mixing model (Weltje et al. 1997, Phillips 2012, Parnell et

al. 2013).

Over the past 20 years, there has been significant development of mixing models that specifically

address many of the issues associated with biological systems. These include complex data structures,

such as varying consumer traits and individual trophic specialisation that impart variation in basal

resource use in individual consumers (Semmens et al. 2009, Stock et al. 2018); tracer concentration

dependence (Phillips and Koch 2002); the multitude of potential basal resources within ecosystems,

various combinations of which could result in the same δ13C-EAA patterns (known as an

under-determined mixing system, Parnell et al. 2010); and natural variations and measurement errors

that add uncertainty to resource and consumer tracer values (Moore and Semmens 2008, Stock et al.

2018). In this section, we outline the use and application of mixing models pertaining to δ13C-EAA data,

highlighting key considerations, assumptions and limitations that bring both opportunities as well as

caveats when applying mixing models. While several different implementations of mixing models are

available (Wang et al. 2019b, Cheung and Szpak 2021, Heikkinen et al. 2022), we primarily focus on those
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implemented in the MixSIAR package in R (Stock et al. 2018), due to its flexibility, relatively common use

across ecological studies, and the familiarity of the authors with this software.

8.1. Consolidating basal resource information

The area bounded by basal resource δ13C-EAA fingerprints (endmembers) demarcates the available

mixing space: the area that defines all possible consumer tissue δ13C-EAA patterns (mixtures, Phillips et

al. 2014, Smith et al. 2013). The dimensionality of this mixing space is equal to the number of individual

tracers. For δ13C-EAA data, this is the number of EAAs, typically five or six. Hence, dimensionality

reduction tools such as PCA are useful to visualise distinctions between different resources and

alignment between basal resources and consumers. All potential basal resources that can contribute to

consumer δ13C-EAA values should be characterised (see section 3.2), otherwise information regarding

the endmembers that constitute the mixture is incomplete. The proportional contributions of each basal

resource are not independent of each other: they must, by definition, sum to one. Missing basal

resources is therefore a general problem when resolving linear mixing systems (Weltje et al. 1997) and

will result in inaccurate proportions regardless of the statistical approach. Consumer tissue δ13C-EAA data

falling outside of the mixing space can indicate missing resources. However, even if consumers fall within

the basal resource mixing space, it is still possible that some basal resources used have not been

characterised.

While missing endmembers are problematic, it is important to limit basal resources to only those that

likely contribute to consumer tissues. While it may seem reasonable to include as many basal resources

as possible, an underlying assumption of mixing models is that all defined endmembers contribute to the

mixture to some degree, even if that contribution is only very small. Excluding unused basal resources

limits model complexity, aiding model performance. Furthermore, it improves model accuracy by

removing potentially isotopically feasible but biologically unrealistic resource combinations. Conversely,

statistical artefacts arise when resolving mixing models with high numbers of basal resources regardless

of the number of tracers used (solutions will tend towards 1/n for large n). Therefore, it is recommended

to limit mixing models to seven or fewer resources (see Stock et al. 2018 for details). While data

visualisation (e.g. PCAs) may help verify whether particular basal resources contribute to consumers,

exclusion of basal resources should ideally be based on a priori knowledge of the study system.
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Once the consumer-relevant basal resources have been determined, any modifications to tracer values

between basal resources and the consumer tissues (and their variability) need to be defined. These are

typically referred to as trophic discrimination factors (TDFs, which are tracer, source and even consumer

specific). While TDFs present an additional consideration for other types of tracers (Schulting et al.

2022), they are considered negligible for δ13C-EAA data. Due to the spatiotemporal consistency of

δ13C-EAA fingerprints, sampling does not need to occur during the time period in which AAs are

incorporated into consumer tissues nor within the spatial extent of the consumers sampled (as is for the

case for baseline δ13C-EAA values or other tracers, Phillips et al. 2014). This is particularly pertinent to

studies using historical data or retrospectively reconstructing time-series of basal resource use, easing

the logistical infeasibility of complete resource characterisation. Consideration should also be given to

other sources of uncertainty. Basal resource δ13C-EAA data should include their natural variation along

each AA. Logistical and analytical constraints may result in low sample replication of basal resources, and

therefore isotopic variation being inadequately described. While the uncertainty due to low sample size

can be incorporated into Bayesian mixing models, it will reduce precision in model solutions.

Alternatively, basal resource δ13CEAA variation could be approximated using available literature sources

that are well described. However, current differences in methodologies and analytical processes among

studies without international reference materials impairs the use of basal resource δ13C-EAA values

collated from the literature. Interestingly, uncertainty in instrumental precision when measuring

δ13C-EAA values is rarely considered when quantifying basal resource use (Hopkins and Ferguson 2012;

but see Vane et al. 2023). This may be because instrumental error has rarely been considered more

generally within mixing models. The mixing model framework initially developed for bulk stable isotope

analysis is based on data where instrumental error estimates are often very low and therefore can be

considered negligible (typically 0.1-0.2‰ for bulk δ13C and δ15N). For δ13C-EAA values, analytical

uncertainty can vary between different AAs (~1‰), and therefore should be incorporated into mixing

models to ensure model uncertainty estimates are not artificially deflated.

8.2. Modelling consumer behaviour

Once δ13C-EAA values of basal resources have been established, focus should be given to the consumers.

Specific hypotheses regarding their basal resource use will inform how mixing models will be structured.
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Factors that may explain differences in basal resource use between individual consumers need to be

accounted for. This could include characteristics such as species, biological sex, size/ontogenetic stage

(e.g. juvenile, subadult, adult) or social status that may result in differences due to differing nutritional

requirements or limiting access to specific dietary items. For example, smaller individuals may not be

able to capture larger prey items or lower social status could restrict access to nutrient-dense foods, such

as meat. Hierarchical spatial structuring of consumers should also be accounted for (e.g. distinct

subpopulations within larger areas or spatially discrete sampling sites within a region). These can affect

resource availability, and therefore the ‘realised’ basal resource use, even if preferences are the same

among individuals (Semmens et al. 2009). This similarly applies to consumers that were sampled at

different time periods (e.g., seasons, years). Bias in consumer sampling or failing to account for these

potential drivers can lead to false inferences as estimates will not reflect the realised basal resource use

of the true population(s).

A key strength of Bayesian mixing models is the ability to incorporate prior information on basal resource

use. External estimates of resource use, for example from mass-balanced food web models, can be

directly incorporated to inform model solutions (Stock et al. 2018). However, such approaches should be

used with caution, especially if prior information is itself biassed (e.g. stomach and scat data towards

poorly-digestible prey), as they can overly restrict mixing model solutions (Swan et al. 2020).

Theoretically, known nutritional limitations, such as macronutrient requirements, could be included for

cases where consumers are omnivorous with considerable diversity in diet quality. While incorporating

informative priors can be fruitful, it is important to recognise that such prior information often relates to

questions of diet (i.e. the proportions of various prey assimilated by a consumer) and may therefore not

be applicable when regarding hypotheses of basal resource use using δ13C-EAA data.

Error structures, although important, are often overlooked in mixing models. For groups of consumers,

residual errors in MixSIAR are modelled as a multiplicative term (called a residual stretch error, rather

than additive Gaussian noise) that stretches or compresses the variance attributed to model processes

(point source sampling, and source and TDF variance) to fit to the consumer data (Stock et al. 2016,

2018). This is conducted separately for each isotopic tracer. The ecological justification is that consumers

sample sources many times as they assimilate dietary biomolecules into their tissues through feeding
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events, and therefore should dampen the natural isotopic variation observed in sources. This contrasts

the underlying mathematics that sample source tracer values from their distributions only once when

estimating model solutions. Residual stretch errors are therefore expected to take values between 0 and

1 in order to compress variation due to feeding behaviours. Values approaching zero can be interpreted

as an increase in the number of feeding events reflected in the consumer tissue, synonymous with a

slower tissue turnover rate. However, values in excess of one indicate that further processes are causing

variation other than those captured by the mixing model structure. In this framework, consideration

needs to be given to the prevailing drivers of within-group isotopic variation in consumers (which mixing

models assume to have identical diets) and how they obtain their proteins. For more passive trophic

behaviours such as sessile filter-feeding or grazing, the stretch error approach appears to work well

(Stock et al. 2016). However, active and selective feeding modes in motile consumers may violate the

assumption of stochastic source sampling across individuals, and will result in inflated residual stretch

error estimates. In such instances it may be more appropriate to model unique diets to each individual

by incorporating individuals as a random effect in the model structure. The drawback of this approach is

that it will result in all residual intra-group variation in δ13C-EAA values, after accounting for modelled

factors, being solely attributed to differences in individual resource use. In reality, most systems likely

comprise some degree of individual variation in resource use as well as other undefined sources of

isotopic variation. While the suitability of different error structures can be explored in terms of the

goodness of fit of the mixing model (Cheung and Szpak 2021), emphasis should be given to the biological

interpretations and their trade-offs within the studied system.

8.3. Mixing model output: Interpretation and considerations

Implemented mixing models provide a suite of solutions for the given model structure and set of basal

resources. Contemporary mixing model software packages implement a Monte-Carlo Markov Chain

(MCMC) Bayesian framework providing model solutions as a set of posterior draws (Parnell et al. 2013).

Average proportional contributions, the effects of the various modelled factors (e.g. size, biological sex),

and desired confidence intervals can then be calculated from the posteriors. If further indices or metrics

are required, such as the degree of dietary overlap between individuals, then these should be calculated

within each posterior draw of mixing model solutions, providing a posterior estimate of the metric itself.

It is necessary however to first check whether basic model assumptions are met, the model has properly
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converged, and the optimal model structure has been determined (see Phillips et al. 2014 for details on

these general aspects of mixing models).

One key aspect of a mixing model’s ability to accurately estimate basal resource use by the consumer is

the distinction between basal resources. If two basal resources cannot be distinguished, i.e. do not have

unique δ13C-EAA fingerprints, then this will result in a strong negative correlation between the

proportional contributions of those two sources across model solutions and potential bimodality in their

proportional distributions (Phillips et al., 2014). In such cases it is prudent to, post-analysis, combine the

proportional contributions of the two indistinguishable basal resources into a single group. While this

reduces the basal resource resolution, often it will drastically reduce the uncertainty in proportional

resource contributions. Basal resources that highly overlap in PCA space, i.e. have very similar δ13C-EAA

patterns (Fig. 4), will be indistinguishable from a mixing model perspective. This is often tested for

statistically by comparing the mean δ13C-EAA values of sources for each AA separately: basal resources

whose δ13C-EAA values do not statistically differ across all EAAs are considered indistinguishable.

However, such statistical tests depend on large sample sizes to be robust measures of equality of means

(Stock et al. 2018), which is typically not the case for δ13C-EAA data. Furthermore, while mean δ13C

values may be similar for some EAAs, this does not reflect the multivariate space within which the mixing

models operate and differences between variances and covariances of basal resources are not examined.

If required, statistical scrutiny should be conducted using a multivariate approach, such as estimating

pairwise Bhattacharyya coefficients (see Fig. 4) that quantify the alignment or ‘closeness’ of

multidimensional distributions. If two or more sources are isotopically similar, it is still recommended

that their proportional contributions be combined post analysis rather than merging them prior to

implementing the mixing model (Stock et al. 2018). During individual statistical comparisons of source

tracers, it may be identified that all sources may exhibit similar means across one or more EAAs. It may

seem logical to remove statistically similar tracers to reduce model complexity and aid model

convergence. However, in doing so users could unintentionally be removing AA tracers that help mixing

models to resolve by reducing information on differences in basal resource variances or covariances.

Increasing numbers of tracers in mixing models can only maintain or reduce overall model uncertainty

(assuming the tracers are robust), therefore it is recommended that all available measured tracers are

included in mixing models. This has been demonstrated for δ13C-EAA data with mice fed varying

specialised and mixed experimental diets, with mixing models including the full suite of AAs giving

solutions closest to the various known diets with reduced uncertainties compared to those using a
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restricted set of AAs and other statistical approaches used to quantify basal resource use (Manlick et al.

2022).

Consideration should be given to the trade-off of attributing intra-group variability in consumer tissue

δ13C-EAA values to consumer-resource sampling processes (with residual stretch errors) or differences in

individual basal resource use using random effects (see section 8.2). If implemented, interrogation of

stretch errors can identify whether one or more basal resources have been insufficiently characterised or

if there are other issues with model components, e.g. analytical uncertainty. Stretch errors slightly

greater than one are not necessarily suggestive of poor quality of results. There are many complex

biological and ecological processes and interactions that impart variability: it is simply not feasible to

measure and capture them all within statistical models. However, stretch error values that are much

greater than one are a potential indication of one or more substantive processes that are lacking from

the mixing model. If stretch errors are inflated for many to all of the EAA tracers, then this likely indicates

missing but significant driver(s) of basal resource use from the model structure. Likely factors that may

be missing, such as age-based variations in resource use, should be identified and incorporated into the

mixing model structure if feasible. Conversely, if only one or a few EAA tracers have inflated stretch

errors, then it is unlikely that this could be attributed to unexplained differences in basal resource use

(which would typically affect all tracers in the mixing model). Instead, more EAA tracer-specific sources

of variation need to be identified. This could include a missing basal resource that significantly differs in

δ13C values for the identified EAAs (Vane et al. 2023). Poorly constrained EAA specific TDFs/variances due

to, for example, varying analytical precisions across EAAs that are not included in the model may also

result in EAA-specific stretching. Finally, it could be an indication of a potentially unknown EAA routing

mechanism in the consumer. While such situations may be problematic when addressing specific

hypotheses, they can be useful in pinpointing further avenues of research by highlighting inadequacies in

current knowledge or assumptions.

The ability of a mixing model to partition basal resource use with precision ultimately depends on the

mixing space, the positions of basal resources and consumers within it, and their uncertainties. Robustly

quantifying basal resource use can therefore be highly ecosystem-specific. A large mixing area relative to

the variation observed within basal resource δ13C-EAA patterns is ideal in reducing uncertainty in

estimates. If consumers are specialised in utilising only a few, isotopically similar basal resources, then

their δ13C-EAA pattern mixing area will also be restricted. This can be exacerbated if other sources of

uncertainty, such as measurement errors for individual EAAs, are large. Small signal to noise ratios in
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δ13C-EAA data are reflected in large uncertainties in mixing model proportional estimates. Large

confidence/credible intervals in model estimates in these cases reflect the true uncertainty associated

with disentangling basal resource use given the EAA tracers and system structure. In such instances, the

use of δ13C-EAA baseline values instead of δ13C-EAA patterns, may prove fruitful where strong

environmental gradients separate δ13C-EAA baseline values in basal resources, enlarging the mixing area

(Vane et al. 2023). However, this requires basal resources to be sampled within the same spatiotemporal

window as the consumers (see section 5.1).

8.4. Conceptualising the quantification of basal resource EAA use

Carbon stable isotope analysis of EAAs presents opportunities and additional complexities for

isotope-based mixing model approaches compared to those focused on bulk stable isotope data. The

relatively direct routing of EAAs into consumer tissues results in the δ13C-EAA values of basal resources

remaining little altered as they pass through food webs. δ13C-EAA values are therefore ideally suited to

address hypotheses such as the flow of basal resource biomass through food webs. This contrasts with

the theoretical underpinning upon which ecological mixing models were developed, which was to

address questions of consumer diets, i.e., the identity of ingested biomass (prey items) that is

assimilated into consumer tissues. While these conceptual differences appear nuanced, they need to be

considered during study design, sample collection and data analysis to avoid erroneous inferences.

Fundamentally, which (and how) sources are collected and analysed will depend on whether the

research objectives focus around questions of basal resource use or diet (Parnell et al. 2014).

The application of basal resource training datasets is becoming commonplace in δ13C-EAA studies

(section 4.1), and more expansive (e.g. Arsenault et al. 2022b). Due to the ecosystem-specific and

potentially study-specific nature of δ13C-EAA fingerprints (section 3.1), and the lack of interlaboratory

reference materials (section 4.1 and 7.2), using such training datasets results in inflated variation and

potential bias (mean offsets) in quantified basal resource δ13C-EAA fingerprints. Therefore using training

datasets when estimating consumer-basal resource use is questionable. This is highlighted in Fig. 9

where we show in LDA space how the global compilation of basal resource δ13C-EAA patterns inflates

variation compared to more suitable in-study sampling designs for two disparate ecosystems. Mean

δ13C-EAA pattern bias can also be observed for several basal resource groups (notably fungi, plants,

marine microalgae and red macroalgae). Mixing models are sensitive to input data, including
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endmember values (Bond and Diamond 2011). Therefore, applying mixing models with broad training

datasets would increase uncertainty in mixing model solutions and could lead to false inferences as

implausible basal resource combinations adequately resolve consumer δ13C-EAA patterns (Manlick and

Newsome 2022). However, logistical constraints often limit basal resource sampling and analysis. In such

instances, the application of compilation data requires a balance between inadequate but

system-specific sampling versus selectively compiled out-of-study basal resources that will incorporate

variability and biases from processes beyond the ecosystem of interest.

Quantifying proportional basal resource use by metazoans through mixing models in a rigorous manner

is by no means trivial. As described throughout this section there are many underlying conditions and

assumptions for robust proportional estimations. Consequently, other semi-quantitative techniques have

recently been implemented to resolve mixing systems, notably LDA-based classification approaches

(Radice et al. 2019, Fox et al. 2019, Skinner et al. 2021, Arsenault et al. 2022). Arguments advocating for

this approach include a “less rigid framework” regarding uncharacterised resources and multivariate

mixing space geometry (Fox et al. 2019, Manlick and Newsome 2022). Such arguments misconstrue that

the “rigid” assumptions are inherent to the Bayesian mixing model methodology rather than being

fundamental to mixing systems themselves. For example, individual δ13C-EAA values of consumers falling

outside of the basal resource mixing space after accounting for modifications implies an inadequately

described mixing system (section 8.1). This general problem can often be masked by LDA dimensionality

reduction, but is likely more noticeable when implementing Bayesian mixing models. Recent simulations

on lake ecosystem data highlight that significant bias can occur between known basal resource

contributions and those estimated using the LDA approach (Saboret et al. 2023). Moreover, we argue

that the perceived limitations of mixing models should be considered a strength in that they require

adequate prior understanding of the system (Makarewicz and Sealy 2015) for robust proportional

estimates. It is frequently highlighted that mixing models are only as good as the data that goes into

them (Phillips et al. 2014), yet they can also only be as good as our understanding of system processes. If

we cannot describe these using mathematical abstraction, then attempting to quantify them becomes

folly.
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Figure 9. LDA plots highlighting the increased variation and potential offsets introduced to the characterisation of

basal resource δ13C-EAA patterns when using global compilation datasets (individual data points plus their convex
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hulls, Fig. 4) compared to within study sampling designs relevant to the studied metazoan. Data from two study

systems have been used A) the water flea Daphnia sp. in Arctic freshwater lakes of Alaska (Larsen et al. 2013) and

B) an Arctic sponge at the sea ice marginal zone in the northern Barents Sea (Vane et al. 2023). CAM plants and

extremophile bacteria were excluded a priori as they do not contribute to study ecosystems (section 3.1). Larsen et

al. (2013) sampled basal organisms directly from within the study ecosystem (within study, denoted by triangles)

and from other similar but spatially separated ecosystems, including phytoplankton cultures (within ecosystem,

denoted by circles). The within ecosystem freshwater (FW) microalgae sampling from Larsen et al. (2013) consisted

of a single replica of seston filtrate composite, which falls outside of the compilation data and likely consists of a

mixture of microalgae and other allochthonous SPOM sources. Vane et al. sampled three distinct clades of marine

microalgae: ice algae particulate organic matter filtrates (iPOM); sub-ice algae strands of Melosira sp.; and pelagic

particulate organic matter filtrates (pPOM), denoted by square, triangle, and diamond symbols respectively.

9. Perspectives on δ13C-AA applications in food web ecology

Carbon stable isotope analysis of AAs represents a considerable leap forward in the analytical tools

available for retrospective basal resource tracing in the biological and paleontological sciences. This

compound-specific approach offers increased dimensionality facilitating the disentanglement of

intertwined trophic, metabolic and environmental processes that often obscure interpretations in

traditional bulk stable isotope approaches (Yun et al. 2022). Although such detailed analyses may

necessitate more extended sample processing time and incur increased costs, they yield richly layered

datasets capable of addressing more intricate or nuanced hypotheses. With respect to carbon stable

isotope analyses of AAs specifically, the consistent relative offsets between different EAAs produced by

basal organisms over diverse environments enable direct comparisons between organisms sampled from

different locations and at different points in time. This continuity, coupled with the longevity of AAs in

well-preserved consumer tissues, allows for extensions far back into the paleontological record. These

characteristics set EAAs apart from bulk stable isotopes whose values fluctuate with the spatially and

temporally varying environmental background. Yet, these environmental effects are still captured within

the measured δ13C-EAA values (termed baseline δ13C-EAA values in basal organisms), allowing inferences

about the in situ environment to be made retrospectively. As EAAs are major, trophically-unaltered

structural components of biomass, δ13C-EAA values are a consistent tracer of their biosynthetic origins.

Furthermore, δ13C-NEAA values in metazoans, which reflect a combination of direct routing from dietary

NEAAS and de novo synthesis from catabolised macronutrients, offer valuable insight into dietary



69

macronutrient content and therefore diet quality in consumers. Given the diverse roles of AAs as

metabolites, or precursors in the synthesis of metabolites and other non-proteinaceous structural

components, the stable isotope compositions of the suite of AAs may also help to infer metabolic

processes that underpin cellular and tissue functioning. As such, δ13C-AA data can unlock valuable

insights into the trophic interactions, nutrient flows, and physiological responses to environments that

structure food webs. Moreover, δ13C-AA data can illucidate spatiotemporal dynamics of basal resource

use by consumers in response to natural or anthropogenic induced changes in the ecosystem.

Harnessing the trove of information embedded in δ13C-AA data relies on a solid mechanistic

comprehension of the complex processes that contribute to individual AA carbon isotope values. While

progress has started to be made in recent years (e.g. Larsen et al. 2015, Manlick et al. 2022, Elliot Smith

et al. 2022, Stahl et al. 2023), this has been outpaced by the broad and expanding applications of carbon

stable isotope analyses of AAs in the current literature. As underscored throughout this review, existing

knowledge gaps may impede the wider use of δ13C-AA data or result in the dependence on

unacknowledged and occasionally unfounded assumptions.

One of the major knowledge gaps is the relatively unknown level of specificity reflected in δ13C-EAA

patterns of basal resources. While some studies suggest a high degree of taxonomic resolution (Scott et

al. 2006, Larsen et al. 2020, Vane et al. 2023, Stahl et al. 2023), lack of data impede comprehensive

analyses of δ13C-EAA pattern specificity across different basal organisms. Interestingly, different EAAs

appear to be diagnostic at different ranks of taxonomic resolution (section 3.1). Misalignment between

the ecological or functional discriminations desired and those observed within δ13C-EAA data, even with

high specificity, need to be acknowledged. For instance, discerning between fresh vs detrital material of

basal organisms with δ13C-EAA data can be challenging (Vane et al. 2023), as the δ13C-EAA patterns

remain consistent when the basal organism tissue undergoes leaf necrosis, fragmentation and detrital

transport (Larsen et al 2013, Elliott Smith et al. 2022). Similarly different phenotypic growth forms may

occur between and within cultured organisms and those sampled in the environment (Vane et al. 2023).

Facultative EAA prototrophy may further complicate distinctions between basal organisms (section 3.2),

especially if multiple groups directly route molecules from the same external pools, resulting in their

δ13C-EAA patterns to converge and therefore limit the potential for δ13C-EAA fingerprints to occur.

However, given the intense competition and resulting functional niche separation among saprotrophic

communities, considerable δ13C-EAA pattern convergence seems unlikely (Dang et al. 2022).
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The current logistical constraints associated with obtaining δ13C-AA data have likely contributed to the

trend of incorporating external training data into study designs. This usage varies from selecting specific

basal organism groups for graphical comparisons (e.g. Stahl et al. 2023) to extensive compilations used

within mixing models (e.g. Arsenault et al. 2022b). Given the potential for high specificity in broad basal

resource groups (e.g. plant vs. fungal derived AAs) within and across ecosystems, incorporating extensive

training data sets from a multitude of studies, biomes and sampled species into mixing models can be

problematic, as depicted in Fig. 9. Moreover, even when training data are used solely for comparisons,

differences in analytical protocols and equipment can introduce biases between datasets generated in

different research labs (section 7).

The issue of interlab comparisons is not unique to the carbon stable isotope analyses of AAs. For many

years, there has been ongoing development and evaluation of suitable external reference materials for

calibrations in stable isotope analyses in general (e.g. Stichler 1995, Gröning 2004, de Laeter 2005).

These efforts aim to establish globally recognised standards that promote precision and accuracy across

different laboratories. Assuming suitable internal standards for intra-laboratory precision are also met,

finding suitable external reference materials for δ13C-AA analysis still poses unique challenges. One of

the key challenges lies in identifying internationally acceptable materials that chemically align with

sample material for derivatization methods and analyte-dependent fractionations. Having such reference

materials would allow for δ13C-AA data measured across studies and labs to be compared accurately and

with confidence. This would be further facilitated by greater standardisation of methodologies (Fig. 7), as

the varying protocols and chemicals currently in use may be adding additional biases in data measured at

different research facilities (e.g. Fig. 8). Interlab comparison studies of different methodological

approaches could at least pinpoint the specific processes within protocols that cause measurement

biases, and improve understanding of the specific fractionations associated with specific workflows. One

immediate benefit of accurate interlab comparisons would be the ability to collate δ13C-AA values

measured into a single databank that could be used as a reference library for future studies that could

be used to look-up δ13C-AA data already quantified for different taxa. While there are wider calls for a

centralised repository for isotope data (Pauli et al. 2017), this constitutes a separate functional role to

that of a δ13C-AA value reference library.

Expediting data sharing and transfer through a database of δ13C-AA values could help to navigate current

limitations that impede wider application of δ13C-AA patterns. With standardised training data readily

available, researchers could compile and tailor training data sets to specific ecosystems or consumers in
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an open and transparent manner. A reference library would also provide an opportunity to explore the

issue of specificity within δ13C-AA patterns of broad basal organism groups by extending preliminary

analyses like those conducted here on vascular plants (see Appendix S3) to other phylogenetic clades

and incorporating a wider number of species. Such knowledge would guide future decisions about

whether species-specific samples are required for retrospective basal resource use studies due to high

specificity, or whether data from more distantly related species may serve as suitable analogues for the

δ13C-AA patterns of basal organisms of interest.

The power of δ13C-AA data extends beyond simply reconstructing basal resource use in consumers. Given

that individual AAs are synthesised through distinct metabolic pathways, and additionally serve as key

metabolites, viewing δ13C-AA data through the lens of physiological processes can provide metabolic

insights and generate new hypotheses. This includes the hypothesis proposed in section 3.1 that the

synthesis of 13C deplete lignin results in relatively enriched δ13C values of phenylalanine in vascular

plants. Furthermore, δ13C-AA analyses could shed light on quantifying the degree of direct AA

incorporation in facultative prototrophs. By culturing of basal organisms on AA-free media, we can

establish the δ13C-AA pattern of purely de novo synthesised AAs. Comparing these cultured δ13C patterns

with those sampled in the environment, along with heterotrophic sources, could reveal the degree to

which heterotrophic AAs are directly assimilated into the proteins of facultative AA prototrophs in situ.

This approach could provide insights into the biochemical functioning of bacterial and fungal

saprotrophic communities and disentangle the role of heterotrophy in mixotrophic algae. For instance,

are ingested AAs directly assimilated into tissue structures or used as a source of nitrogen for other

metabolic processes under nutrient limitation where the remaining carbon skeleton is subsequently

respired? These questions underscore the potential depth of understanding that δ13C-AA data can

provide.

The application of δ13C-EAA fingerprints holds immense potential for addressing pressing ecological

questions on carbon transfer from basal resources to consumer proteins in food webs. However, the

application comes with pitfalls. There is a need for having a basic understanding of the underlying

isotopic mechanisms, an a priori knowledge on the ecologies of specific basal organisms and studied

consumers, and the adherence to best practices for robust proportional calculations with mixing models.

Many of these limitations are not unique to the stable isotope analyses of amino acids, having already

been recognised in traditional bulk stable isotope applications. The advantage of δ13C-EAA fingerprints is

the increased data complexity and the nuanced insight it provides. When correctly applied, δ13C-EAA



72

fingerprinting affords the opportunity to explore carbon flux questions on spatiotemporal scales without

having to characterise changes in baseline δ13C-EAA values, offering unparalleled specificity and

inclusivity in basal resource characterisation and tracing. This is an immense benefit for understanding

how basal resource use by metazoans has shifted due to anthropogenic climate change and pollution.

Questions such as whether consumers have adapted to the anthropogenic changes in their environment

by changing specific basal resource use have scarcely been explored. Similarly, changes in basal resource

use during the life history of consumers, over seasons, years or populations are not well understood, in

part due to the required extensive basal resource sampling. Understanding the basal resource use by

metazoan species in conjunction with changes in basal resource abundance, composition, nutritional

quality, and the environment can give insight into the resilience of differing food webs across the world.
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Appendix S1

The power and pitfalls of amino acid carbon stable isotopes for tracing the use and fate of basal

resources in food webs

Vane K., Cobain M.R.D., Larsen T.

Three detailed figures of metabolic networks in plant, heterotrophic bacteria, and animal cells
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Figure S1A. Amino acid biosynthesis pathways in plants. Simplified schematic overview of the anabolic and catabolic amino acid (AA)

pathways in plants, using Arabidopsis thaliana as a model species. Based on chemical similarities and precursors, the AAs can be categorized
into five groups: 1) the glutamate family, originating from alpha-ketoglutarate (α-KG); 2) the aspartate family, originating from oxaloacetate; 3)
the pyruvate group; 4) the 3-phosphoglycerate group; and 5) the aromatic amino acid group, derived from phosphoenolpyruvate and
erythrose-4-phosphate. Superscript numbers next to each AA indicate its categorization, and filled ellipses represent products of the primary
biosynthesis pathway. In addition to serving as structural components in proteins, AAs fulfill a wide range of biological roles, functioning as
metabolites, energy-yielding substrates, and signaling molecules, as indicated by the descriptions within the rounded rectangles. Abbreviations:
Ala, alanine; α-KG, alpha-ketoglutarate; Asn, asparagine; Asp, Asparagine; CBB, Calvin-Benson-Bassham; Cys, cysteine; DAHP,
3-deoxy-D-arabinoheptulosonate 7-phosphate; DMPP, dimethylallyl pyrophosphate; GABA, γ-Aminobutyric acid; Gly, glycine; Gln, glutamine;
Glu, glutamic acid; His, histidine; Ile, isoleucine; IPP, Isopentenyl pyrophosphate, Leu. leucine, Lys, lysine; Met, methionine; P5C,
1-pyrroline-5-Carboxylate; Phe, phenylalanine; Pro, proline; PRPP, Phosphoribosylpyrophosphate; RuBisCo, ribulose-1,5-bisphosphate
carboxylase-oxygenase; Ser, serine; TCA, tricarboxylic acid; Trp, tryptophan; Tyr, tyrosine; Val, valine. The pathways are based on the KEGG

PATHWAY database (https://www.kegg.jp/kegg/pathway.html). The illustration was created with BioRender.com.

https://www.kegg.jp/kegg/pathway.html
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Figure S1B. Amino acid biosynthesis pathways in heterotrophic bacteria. Simplified schematic overview of the anabolic and catabolic
amino acid (AA) pathways in heterotrophic bacteria using Escherichia coli as a model organism. The superscript number next to each AA indicate
its categorization (see Fig. 1 for details) and the filled ellipses indicate that it is a product of the main biosynthesis pathway. The descriptions
inside the rounded rectangles exemplify important non-proteinogenic functions of AAs in E. coli. Abbreviations: Ala, alanine; α-KG,
alpha-ketoglutarate; Asn, asparagine; Asp, Asparagine; CBB, Calvin-Benson-Bassham; Cys, cysteine; DAHP, 3-deoxy-D-arabinoheptulosonate
7-phosphate; DMPP, dimethylallyl pyrophosphate; GABA, γ-Aminobutyric acid; Gly, glycine; Gln, glutamine; Glu, glutamic acid; His, histidine; Ile,
isoleucine; IPP, Isopentenyl pyrophosphate, Leu. leucine, Lys, lysine; Met, methionine; P5C, 1-pyrroline-5-Carboxylate; Phe, phenylalanine; Pro,
proline; PRPP, Phosphoribosylpyrophosphate; RuBisCo, ribulose-1,5-bisphosphate carboxylase-oxygenase; Ser, serine; TCA, tricarboxylic acid;
Trp, tryptophan; Tyr, tyrosine; Val, valine. The pathways are based on the KEGG PATHWAY database (https://www.kegg.jp/kegg/pathway.html).

The illustration was created with BioRender.com.
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Figure S1C. Anabolic and catabolic amino acid pathways in vertebrates using Homo sapiens as a model organism. The
non-essential AAs (filled ellipses) can be grouped according to their association with their main biosynthesis pathways: The
glycolytic AAs are synthesised from metabolic intermediates (pyruvate, phosphoenolpyruvate) of the glycolytic pathway (in the
cytosol) and the tricarboxylic acid (TCA) NEAAs are synthesised from intermediates of the TCA cycle (a-KG, oxaloacetate) (in the
mitochondria). Glucose and glycerol are sourced to the glycolytic pathway, and fatty acids (FAs) and short chain fatty acids are
sourced to the TCA cycle. The catabolism of excess AAs either occurs via gluconeogenesis or ketogenesis. Gluconeogenesis is the
synthesis of glucose from non-carbohydrate precursors such as the glucogenic amino acids (marked with 1) and ketogenesis is
the metabolic pathway for producing ketone bodies by breaking down fatty acids and ketogenic amino acids (marked with 2). A
large group of AAs can be catabolized by both processes (marked 3). Key roles of the non-essential AAs as precursors in
physiological processes other than protein synthesis are indicated within the rounded rectangles. Certain non-proteinogenic
amino acids such as citrulline and ornithine are important intermediaries in various pathways involving nitrogenous metabolism.
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In terms of the macronutrients, carbohydrates primarily serve as an energy source after being converted to glucose and then to
glycolytic intermediates such as 3-phosphoglycerate and pyruvate before entering the TCA cycle. If the supply of carbohydrates
exceeds the cell’s immediate energy demand, it is stored in the liver as glycogen or, with the help of insulin, converted into fatty
acids, circulated to other parts of the body and stored as fat in adipose tissue. Some carbohydrates also become NEAA building
blocks. Proteins get converted to AAs in the digestive system before entering the liver. If the AAs are not used to build proteins,
they are either catabolised via gluconeogenesis or ketogenesis. Gluconeogenesis is the synthesis of glucose from
non-carbohydrate precursors such as the glucogenic amino acids. Ketogenesis is the metabolic pathway for producing ketone
bodies by breaking down fatty acids and ketogenic amino acids. A large group of AAs can be catabolized by both processes.
Lipids are converted to glycerol, fatty acids and short chain fatty acids. They are able to create energy in a process called beta
oxidation that produces acetyl-coA. Some acetyl-coA molecules are used for synthesis of structural and functional lipids, and
others are used as an energy source in the TCA cycle. Like the other macronutrients, fatty acids can also be used as NEAA
building blocks. The metabolic pathways are summarised based on Frayn and Evans (2016). Other abbreviations: Ala, alanine;
Asn, asparagine; Asp, Asparagine; Cys, cysteine; GABA, γ-Aminobutyric acid; Gly, glycine; Gln, glutamine; Glu, glutamic acid; His,
histidine; Ile, isoleucine; IPP, Isopentenyl pyrophosphate, Leu. leucine, Lys, lysine; Met, methionine; P5C,
1-pyrroline-5-Carboxylate; Phe, phenylalanine; Pro, proline; PRPP, Phosphoribosylpyrophosphate; Ser, serine; Trp, tryptophan;
Tyr, tyrosine; Val, valine. The illustration was created with BioRender.com.
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Appendix S2

The power and pitfalls of amino acid carbon stable isotopes for tracing the use and fate of basal

resources in food webs

Vane K., Cobain M.R.D., Larsen T.

Literature compilation of basal resource δ13C-EAA data

The overview of individual observations can be found in the Figshare data repository:

DOI:10.6084/m9.figshare.22852355



101

The δ13C-EAA values of basal resources were collected from studies that mentioned having directly

measured δ13C-EAA values in basal resources. A Web of Science search was performed until the end of

2022 was based on combined keywords such as ‘amino acid’, ‘carbon isotopes’, ‘ecology’. Initially, all

mentioned δ13C-EAA values in basal resources that were measured directly in the study were compiled,

and references therein were additionally screened. We additionally included basal resources from Vane

et al. (2023), which was under review at the time. All studies with available δ13C-EAA values either

published online or by request were measured with a GC-IRMS. Although the measurements were

gained with different derivatization protocols and in different analytical facilities, no corrections were

applied to the compiled δ13C-EAA values. This was due to the absence of universally used reference

materials with known δ13C values. Some of the variation in δ13C-EAA values between basal resources can

thus be attributed to methodological and analytical differences. However, this did not hamper the

general observation of discrimination between basal resource groups.

For comparisons between studies, we limited basal resources to those that were measured for five EAAs:

leucine, isoleucine, valine, phenylalanine, and threonine. Lysine was not measured in the majority of the

studies. Measurements of basal resources that were based on composite samples, such as POM,

microbial mats or zooplankton were omitted to ensure that only those basal resources that were directly

measured without potential addition of other basal resource traces or detrital materials. This also

allowed us to be more precise with the assignment of basal resources to particular groupings, from

general groupings of plants, bacteria, and phytoplankton to subgroupings of C3/C4/CAM plants,

freshwater/marine phytoplankton, diazotrophy in cyanobacteria, brown/red macrophytes, seagrass, and

green macrophytes (represented only by Ulva sp. plus one measure of Batophora sp.). Sample taxonomy

was standardised according to the GBIF backbone (the Global Biodiversity Information Facility, GBIF

2022).

The discrimination of the baseline δ13C-EAA values in these basal resources were then visualised by using

a linear discrimination analysis (LDA). LDAs were typically limited to only three basal resource groups

providing maximal discrimination that can be observed in 2-dimensional plots. In order to estimate the

overlap between groups, we calculated the Bayesian posterior distribution of the Bhattacharyya

coefficients (BC, Bhattacharyya 1946) of pairwise groups. The BC is a general statistical measure that

quantifies the degree of similarity between two multivariate distributions, ranging from 0 (completely

dissimilar distributions, i.e. no overlap) to 1 (identical distributions, i.e. complete overlap), regardless of

the dimensionality of the data. This makes it highly suitable for δ13C-EAA data, where the dimensionality

of the data can vary between studies depending on the number of amino acids that can be measured.

This means measures of overlap can be compared either between studies, or contrasted pre- or post-

transformations of data (e.g. PCA or LDA dimensionality reduction). In order to estimate the posterior

distributions of BC for each pair, and therefore the overlaps, we derived Bayesian posteriors for

multivariate normal distributions of basal group δ13C-EAA patterns (post LDA) using an MCMC approach

with the “fitMVNdirect” function given in Skinner et al. (2019) with the default settings. This is a

generalised, dimension-wise, approach analogous to that implemented in the commonly used SIBER

package (Jackson et al. 2011). The BC was then calculated pairwise for each posterior draw using the
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“bhattacharyya.matrix” function from the fpc package (Hennig 2023). Analyses were conducted in R

statistical software version 4.2.1 (R Core Team 2022).

Table S2.1. Posterior estimates of Bhattacharyya coefficients for group pairs plotted in Fig. 4 of the

main manuscript. Q25 and Q75 represent the interquartile range.

ID pairing min q25 median q75 max

A Bacteria vs Phytoplankton 0.207 0.345 0.381 0.42 0.594

A Bacteria vs Plants 0.021 0.061 0.077 0.097 0.208

A Phytoplankton vs Plants 0.213 0.311 0.338 0.366 0.49

B Cyanobacteria_D vs Freshwater phytoplankton 0.006 0.194 0.281 0.375 0.917

B Cyanobacteria_D vs Marine phytoplankton 0 0.02 0.038 0.066 0.407

B Freshwater phytoplankton vs Marine phytoplankton 0.171 0.322 0.364 0.405 0.555

C Brown algae vs Green algae 0.32 0.47 0.515 0.56 0.725

C Brown algae vs Red algae 0.17 0.308 0.349 0.391 0.61

C Brown algae vs Seagrass 0.018 0.084 0.118 0.169 0.556

C Green algae vs Red algae 0.446 0.635 0.678 0.723 0.885

C Green algae vs Seagrass 0.002 0.032 0.058 0.101 0.587

C Red algae vs Seagrass 0.047 0.184 0.232 0.294 0.674

D C3 vs C4 0.72 0.885 0.911 0.936 0.989

D C3 vs CAM 0.144 0.28 0.32 0.366 0.614

D C4 vs CAM 0.045 0.193 0.248 0.315 0.582

Table S2.2. Posterior estimates of Bhattacharyya coefficients for group pairs plotted in Fig. S2. Q25

and Q75 represent the interquartile range.

Subplot Pairing min q25 median q75 max

A Freshwater phytoplankton vs Marine phytoplankton 0.168 0.292 0.332 0.374 0.586

A Freshwater phytoplankton vs Seagrass 0.042 0.162 0.215 0.288 0.666

A Marine phytoplankton vs Seagrass 0.02 0.073 0.102 0.143 0.48

B Bacteria vs Fungi 0.231 0.356 0.396 0.439 0.607

B Bacteria vs Phytoplankton 0.125 0.23 0.267 0.305 0.48

B Fungi vs Phytoplankton 0.233 0.349 0.39 0.434 0.643

C Bacteria vs Macrophytes 0.31 0.449 0.485 0.522 0.682
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C Bacteria vs Plants 0.026 0.068 0.087 0.108 0.244

C Macrophytes vs Plants 0.255 0.361 0.385 0.411 0.51

Figure S2: Linear discriminant (LD) analysis of basal resources based on mean-centred δ13C-EAA values compiled from the
literature. Upper subplot panel: LD scores for individual samples, with distinct symbols denoting each group. Lower subplot
panel: Bhattacharyya coefficients (BC) for group pairs represented as density scores, indicating the degree of overlap in LD
scores between groups (0 = no overlap, 1 = identical distributions). EAAs considered: leucine (Leu), isoleucine (Ile), valine (Val),
threonine (Thr), and phenylalanine (Phe). Each subplot features the following taxa: A) Bacteria, freshwater phytoplankton, and
seagrasses; B) Bacteria, fungi, and phytoplankton; C) Bacteria, macrophytes, and plants (comprising C3, C4, and CAM). For visual
clarity, coefficients for each independent variable were multiplied by 8. See sample identities, classifications, and literature
sources in Figshare DOI:10.6084/m9.figshare.22852355 and BC values in Table S2.
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Appendix S3

The power and pitfalls of amino acid carbon stable isotopes for tracing the use and fate of basal

resources in food webs

Vane K., Cobain M.R.D., Larsen T.

Phylogeny contributes to variation in δ13C-EAA patterns within vascular plants

As described in Section 2 of the main text, δ13C-EAA patterns are expected to vary with phylogeny due to

lineage specific biosynthetic pathways and enzymatic constraints. In addition there are confounding

phenotypic expressions observed within taxonomic clades, i.e. clades are on average adapted to live in

particular environments, that may also potentially influence δ13C-EAA patterns through phenotypic
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expressions that modulate down-stream demands, and therefore isotopic fractionations, of certain EAAs.

Although distinctions are apparent across broad taxonomic clades (Section 3), current data are too

limited to test widely across basal organisms whether finer scale distinctions are readily quantifiable,

although it is suggested in some specific instances (e.g. separation between cultured diatom species,

Vane et al. 2023). Here we show however that phylogeny, within the relatively well described phylum of

Tracheophyta (vascular plants), partially explains variation in individual δ13C-EAA patterns.

We limited our compilation dataset (in Appendix S2) to only vascular plants. As family was the lowest

common taxonomic rank identified across all samples, we defined phylogeny from Tracheophyta down to

family for each observation. Initial taxonomic ranks were extracted from GBIF (the Global Biodiversity

Information Facility, GBIF 2022). To ensure that residual variation in δ13C-EAA patterns could be

adequately estimated, we further restricted the dataset to only those families with at least 3

observations within the dataset, resulting in 18 families in total. Family names were cross referenced

against the Open Tree of Life (OTL) and any assigned families that had broken phylogenies (e.g. are

paraphyletic) were reassigned to monophyletic subfamily divisions that incorporated all samples from

the original family. The phylogenetic subtree of these 18 (sub)families was then extracted from OTL

(shown in Fig. S3A, through the R package ‘rotl’, Michonneau et al. 2016).

To test whether phylogeny explains variation in δ13C-EAA patterns, we constructed a multivariate,

phylogenetic mixed effects model in a Bayesian framework, with the five mean-centred EAA δ13C values

modelled as a random effect of phylogenetic relatedness based on the topology of the vascular plant

family subtree. The model was run in R (version 4.2.1, R Core Team 2022) using the package

‘MCMCglmm’ (Hadfield, 2010, model specifics are provided in the supplied R code). Trace plots of the

chain were checked and showed good model convergence.

The average δ13C-EAA pattern for a vascular plant is shown in Fig. S3. Mean-centred threonine values are

relatively enriched in 13C (median 12.1‰) and leucine relatively deplete (median -8.2‰) compared to

other EAAs. However, these two EAAs also had the least certainty of their means, shown by the wide

credibility intervals (CIs), followed by isoleucine. Average phenylalanine and valine had much higher

certainty, with 95% credibility intervals spanning <1‰ (see Fig. S4). Approximately 50% of the total

variation in δ13C-EAA patterns was attributed to phylogeny (posterior median = 0.51, 95% CI 0.36 to

0.66). Mean-centred leucine δ13C values varied the most with phylogeny (mean variance of 9.7, 95% CI

3.0 to 18.5), followed by threonine (mean 5.0, 95% CI 0.44 to 11.4) and isoleucine (mean 3.1, 95% CI

0.62 to 6.8), with almost no variation expressed in either phenylalanine (mean 0.15, 95% CI <0.01 to

0.65) or valine (mean 0.31, 95% <0.01 to 1.6), shown in Fig. S3. Qualitatively, it can be observed that

some families express similar δ13C-EAA patterns despite being phylogenetically distant from each other.

Notably, Fabaceae, the legume plants that typically host nitrogen fixing bacteria in their roots, have

relatively deplete threonine values but relatively enriched leucine values. This matches with the distant

sister families Posidoniaceae and Hydrocharitaceae, which encompass marine seagrasses and many

other aquatic plant species. It can also be seen that the families Agavoideae, Cactaceae and

Zygophyllaceae have similar δ13C-EAA patterns marked by relatively deplete leucine but enriched

isoleucine and threonine, with representative species typically known for being adapted to dry habitats.
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The residual variance - covariance structure is shown in Fig. S4. Threonine expressed the largest

individual variation (mean variance 7.35) and negatively co-varied with all other EAAs (all mean

correlations < -0.39). These negative correlations intuitively make sense as threonine is relatively the

most enriched amino acid (Fig. S3) and the data are mean centred, therefore increasing values in one

amino acid will be accompanied by decreases in the other EAAs. Interestingly, valine and phenylalanine,

despite showing almost no variation with phylogeny, express considerable individual variances (means of

3.05 and 3.97 respectively). This implies mechanisms at the individual level that result in variation in

these EAAs rather than lineage specific mechanisms. Valine and phenylalanine also negatively covary

with each other, likely due to the same reasoning as with threonine. Despite having large variations with

phylogeny, isoleucine and leucine both have limited individual variances, suggesting that within vascular

plants, biosynthetic pathways involving these two amino acids may be less plastic at the individual level.
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Figure S3A: Modelled mean-centred δ13C values of five EAAs (δ13C patterns) of vascular plants. Global average values (right hand panel) and the offsets, Δδ13C, for each EAA

(first to fifth panels) among the 18 taxonomic (sub)families in the vascular plant dataset. Phylogenetic topology between the 18 families is plotted on the left hand side. Circles

indicate median posterior values, thick bars denote the 50% credible intervals (CIs) and thin bars the 95% CIs. Average mean-centred δ13C CIs for phenylalanine and valine fall

within the median circles. Dashed lines are plotted at zero on all panels for clarity.
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Figure S3B: Residual variance - covariance matrix of modelled vascular plant δ13C patterns. Variances (Var) of individual EAAs

are plotted along the diagonal with thick borders, covariances (Cov) in the upper triangle, and corresponding correlations (Cor)

in the lower triangle. Posterior mean values (large text) with 95% credible intervals (smaller text) are given for each EAA pairing.

Posterior mean values that are not statistically distinguishable from zero are denoted as n.s.
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Appendix S4

The power and pitfalls of amino acid carbon stable isotopes for tracing the use and fate of basal

resources in food webs

Vane K., Cobain M.R.D., Larsen T.

Literature compilation of archaeological human δ13C-AA data

The overview of selected studies can be found in the Figshare data repository:

DOI:10.6084/m9.figshare.22852355



112

We compiled δ13C-AA data from historical and archaeological human populations with diverse

subsistence strategies, as reported in eight studies. In two of these studies (Honch et al. 2012 and

Colonese et al. 2014), the archaeological and environmental contexts enabled us to select a subset of

populations for which we could identify their primary dietary protein sources: freshwater (δ13C-EAA

mean: -27.5±1.5‰, n=12), marine (-19.4±1.2‰, n=19), terrestrial C3 (-27.1±1.0‰, n=12), and terrestrial

C4 (-19.1±2.1‰, n=14) proteins. See Table Sx for detailed sample information. The protein sources for

the six populations from the remaining six studies were less certain. These populations included

individuals from Köpingsvik (bone, Mesolithic and Middle Neolithic; Webb et al. 2018); Nancheng (bone,

Proto-Shang; Ma et al. 2021); Nukdo (bone, Late Bronze Age; Choy et al. 2010); Odense rib (bone,

Medieval; Brozou et al. 2022); Odense femur (bone, Medieval; Brozou et al. 2022); Pica-8 (hair, Late

Intermediate; Mora et al. 2018); Pica-8 (tendon, Late Intermediate; Mora et al. 2018); and Uummannaq

(bone, 16th and 17th centuries; Raghavan et al. 2010). Two of the studies reported δ13C-AA values for

different tissue types from the same individuals. We compared two types of data preprocessing:

measured and EAA mean-centred δ13C-AA data. The former highlights the influence of environmental

factors on δ13C-AA variations, while the latter emphasises the effect of metabolic processes on

intermolecular δ13C variability. We applied two ordination techniques, PCA and LDA, to assess the

relationship between the independent variables (i.e., δ13C-AA values) and the spread of data within and

between groups with known primary diet protein sources. We then projected the δ13C-AA values of

individuals with unknown protein sources onto the principal component and linear discriminant spaces.

To corroborate the correctness of the results, we used mean δ13C-EAA values (phenylalanine and valine),

with marine and C4 protein groups expected to be more 13C enriched than the freshwater and C3 protein

groups. We employed two different methods to assess the similarity of humans to the four protein

sources:

1) For both preprocessing datasets, we compared class probability assignments pθ(x) and likelihood lx(θ)

functions to predict protein sources in the LDA output. While pθ(x) is best suited for discrete

classification to a predefined group because it sums to 1, lx(θ) is not normalised to 1 and is therefore less

prone to false inferences by forcing unlikely classifications.

2) To measure the similarity of the populations to the protein groups across both preprocessing datasets

and ordination methods, we calculated Bhattacharyya coefficients, which measure similarity between

two multivariate probability distributions (see S2 for statistical details). A coefficient of 0 indicates no

overlap between the two distributions, while a coefficient of 1 indicates that they are identical.

PCA captures the direction of maximum variation in the data rather than maximising group separability

as is the case for LDA. Therefore, variables contributing to intragroup variation have a greater weight in

PCA than LDA. This is particularly apparent when separating the C3 and freshwater protein groups from

the C4 and marine protein groups based on baseline δ13C-EAA values. In terms of classifying new

observations (individuals with unknown protein source), LDA will assign them to the class with the

highest likelihood, even if it is small. If the highest likelihood is small, the observation has weak

similarities to any of the predefined classes. The Pica 8 hair individuals exemplify this, as the δ13C values

of glycine are enriched by ~10‰ compared to glycine in the collagenous Pica 8 samples. This shows that

LDA predictions can be misleading when the training data are inadequate or fall outside the boundaries

of the training data. Identifying these observations can be achieved through visual inspection of
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discriminant scores and likelihood estimates. From visual inspection, it is evident that the Pica-8 hair

samples fall outside the predefined C4 protein group and have much lower likelihoods compared to the

tendon samples - see Figs. 6B1 and 6D1 and Table Sx. In contrast to likelihood estimates, which provide

values for single observations, Bhattacharyya coefficients (BC) are estimated at the population level, for

two compared groups, in this case, a human population versus a protein source. The median BC values of

Bayesian posterior estimates reported in Fig. S4 show that PCA ordination generally produces higher

median values compared to LDA ordination. This is to be expected as LDA optimises for separation

between groups. However, these median BC values have limited value for this case study because

populations falling within the 'mixing-space' of the four protein sources but not overlapping with any of

them have low BC values. Therefore, it is important to visually inspect the ordination plots when

evaluating BC values. Nevertheless, many of the trends reported in likelihood estimates also hold true for

the BC values. For instance, both the Odense (both rib and femur) and Nukdo populations exhibit a much

greater overlap with C3 proteins in the PCA than in the LDA techniques, underscoring how sensitive these

predictions are to the specific ordination method used.

Out of 64 unknown (predicted) individuals, 18 were categorised differently between the two data set

representations (measured vs. mean-centred) due to the slight structural differences. According to the

LDA output, most of these individuals likely consumed mixed diets, e.g. Nukdo individuals on C3/marine

protein (δ13C-EAA mean: -25.9±1.1‰, n=9), or on brackish resources, e.g. the Köpingsvik (-22.1±0.5‰,

n=5) and Uummannaq (-20.4±0.5‰, n=6) individuals. The measured values for the Uummannaq

individuals have a marine protein bias, while the mean-centred values have a freshwater protein bias

(Fig. 6). For the Odense individuals (femur: -26.3±0.7‰, n=10; rib: -26.2±1.2‰, n=10), the measured

values categorised all but one femur sample as C3, while the mean-centred data categorized 11 in C3, 3

in marine, and 6 in C4 group. The mean δ13C-EAA values and contextual information support the

predictions based on measured values for the Uummannaq individuals and non-C3 predictions of the

Odense individuals. The prediction of individuals from the remaining populations (Nancheng,

-15.4±2.2‰, n=12; Pica 8 tendon, -19.3±3.8‰, n=6; Pica 8 hair, -16.4±1.3‰, n=6) are consistent

between the two data sets with all but one individual clustering with the C4 protein group. The

prediction of the outlier individual (SE-T3) with the C3 protein group is corroborated by its mean

δ13C-EAA value (-26.8‰). A visual inspection shows that predictions based on measured δ13C-EAA values

are more accurate, as seen in Figs. 6B1 and 6D1. For example, the individual (M70) with a mean δ13C-EAA

value of -22.1‰ is a clear outlier in Fig. 6B1, trending towards the C3 group, while a similar trend is less

obvious in Fig. 6D1.

The data compilation comprises two populations, Pica-8 and Odense, from which it is possible to infer

dietary histories from the same individuals thanks to analyses of different tissue types. The earlier

dietary history of the Pica-8 individuals represented by the tendon samples indicates that the individuals

relied on different subsistence strategies: Terrestrial C4 (n=4), marine C4 (SI-T74; n=1), and possibly a

mixture of terrestrial C3 and C4 (SE-T3; n=1). The comparatively higher mean δ13C-EAA values of the hair

than tendon samples, typically between 1 and 2‰, support that the population became more reliant on

C4 protein sources. This is particularly true for the SE-T3 whose hair samples were 13C enriched by 8.6‰
compared to the tendon samples, which had a mean δ13C-EAA value typical of the terrestrial protein
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group. We are also questioning whether the classification of the SI-T74 and SE-T3 tendon samples to the

C4 group is correct in part because of their mean δ13C-EAA values are depleted by ~3‰ compared to the

the remaining Pica-8 individuals and most of the C4 Nancheng individuals. Thus, it appears that the

ordination and mean δ13C-EAA results do not fully corroborate one another. In terms of inferring dietary

histories based on collagen only, the ribs of the Odense individuals most likely represent the period after

they were admitted to a leprosy hospital and the femurs represent earlier periods. As noted by the

authors of the study, it appears that several individuals increased marine protein consumption after

hospitalisation (Brozou et al. 2022). For individuals relying on proteins from brackish waters, the

predictions of the Uummannaq (Raghavan et al. 2010) and Köpingsvik (Webb et al. 2018) populations are

in line with modern salinity observations showing brackish waters in both locations, but with the protein

sources of the Uummannaq individuals being more marine-based compared to the Köpingsvik

individuals (Holinde and Zielinski 2016, Kniebusch et al. 2019). Most Nukdo individuals relied more on

marine than C3 proteins (Choy et al. 2010).

Regardless of the preprocessing and ordination methods, both datasets have many similar features in

terms of the weight and direction of independent variables (Fig. 6B2 vs. Fig. 6D2): Alanine, aspartate,

and glutamate generally contribute to maximising intragroup variation (Fig. 6C2), and phenylalanine,

valine, proline, and glycine contribute to maximising intergroup variation (Fig. 6B2 and 6D2). Our study

confirmed that δ13C of phenylalanine vs. valine separate terrestrial and aquatic resources (Honch et al.

2012, Larsen et al. 2013). Like previous studies, we found that phenylalanine relative to valine is more 13C

enriched in terrestrial than in aquatic protein groups. Among the NEAAs, proline is important for

separating the C3 from the other protein groups. Our analysis could not determine the cause of the 13C

enrichment in the C3 protein group compared to other groups. However, according to Liu et al. (2018),

copepods on a high-carbohydrate diet exhibited a higher trophic 13C enrichment of proline than

anchovies on a high-protein diet. The 13C enrichment of glycine is highest in the freshwater protein group

and lowest in the C4 protein group (Fig. 6B2). The cause of these isotopic effects remains unclear, as they

could result from either metabolic processes in the food sources or post-ingestive processes. Factors

contributing to these effects may include the conversion of excess dietary protein into fat and energy, as

well as the de novo synthesis of glycine. Although alanine and glutamate are relatively uninformative

amino acids, the terrestrial protein groups were significantly more 13C enriched than the aquatic protein

groups (P < 0.001). This difference may arise from higher carbohydrate consumption in terrestrial protein

groups compared to aquatic protein groups. Epidemiological studies investigating the δ13C-AA response

to high-fructose corn syrup-sweetened beverage intake have identified alanine and glutamate as

potential markers of carbohydrate intake (Choy et al. 2013, Yun et al. 2018, 2020, Johnson et al. 2021).

Both NEAAs use pyruvate, a glycolytic intermediate, as a precursor, and acetyl-CoA, a product of

beta-oxidation, acts as a precursor for glutamate but not glycine (Fig. S1C). The distinct response of

alanine and glutamate to carbohydrate intake is likely influenced by the balance of dietary fat to

carbohydrate.
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Figure S4: Comparison of human populations of known diets with those with uncertain diets. The matrix plots show the

median Bhattacharyya coefficients (0 = no overlap, 1 = identical distributions) indicating the degree of overlap in PC (left hand

side) or LD (right hand side) scores between human groups (see Fig. 6) and their potential dietary protein sources (FP,

freshwater protein; MP, marine protein, C3P, terrestrial C3 protein; C4P, terrestrial C4 protein). Top panels are based on

measured δ13C-AA data whereas bottom panels are EAA (phenylalanine and valine) mean-centred δ13C-AA values .
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Appendix S5

The power and pitfalls of amino acid carbon stable isotopes for tracing the use and fate of basal

resources in food webs

Vane K., Cobain M.R.D., Larsen T.

The compilation of dietary offsets between δ13CEAA values in diet and metazoan tissues

The methodology overview of each study can be found in the Figshare data repository:

DOI:10.6084/m9.figshare.22852355
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To investigate the differences in offsets between δ13C-EAA values between diet and metazoan tissues,

δ13C-EAA values from controlled feeding studies that aimed to study the routing of AAs from different

dietary compositions to animal tissues with δ13C-AA values were compiled. We searched Web of Science

for articles published from the beginning of online records until May 2022 using the terms “amino acid”,

“carbon isotopes”, “fractionation”. While not all feeding experiments aiming to qualify the routing of

AAs with carbon isotopes could be found with these search terms, references within publications

mentioning trophic discrimination of EAAs were additionally screened.

As a result, 17 publications were found that described the measured δ13C-EAA values between animal

tissue and their specific diet. Analytical and methodological information was extracted from each

publication and compiled. Extracted analytical information included instrumentation (e.g. GC-IRMS or

LC-IRMS) derivatisation method in case of GC-IRMS measurements, description of the chemical

pretreatments of both consumer and diet tissues. Methodology descriptions encompassed consumer

species, type of tissue, dietary type or variations, amount of days that the diet was fed to the consumer,

and how many individual replicate consumer tissues were measured. δ13C-EAA values were mainly

acquired from tables in the publication, online supplementary materials and data repositories, or direct

requests to the corresponding author. However, offsets in δ13C-EAA values were gained from a graph in

Howland et al. (2003) as the request for raw data was unanswered. No corrections to the δ13C-EAA

values between the studies were necessary due to the interest in the offsets in δ13C-EAA values between

diet and tissue that were measured in the same analytical facility. As not all offsets were presented in a

similar manner between publications (e.g. δ13C-EAAdiet - δ13C-EAAtissue), some offsets were calculated

directly from study data.
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