
1

Implementing Code Review in the Scientific Workflow: Insights from 1

Ecology and Evolutionary Biology 2

Edward R. Ivimey-Cook*, Joel L. Pick, Kevin Bairos-Novak, Antica Culina, Elliot Gould, Matt 3

Grainger, Benjamin M. Marshall, David Moreau, Matthieu Paquet, Raphaël Royauté, Alfredo 4

Sánchez-Tójar, Inês Silva, and Saras M. Windecker* 5

 6

*corresponding author(s) 7

e.ivimeycook@gmail.com & saras.windecker@gmail.com 8

 9

Keywords: reliability, reproducibility, software development, coding errors, research process, 10

open science, transparency. 11

 12

Abstract 13

Code review increases reliability and improves reproducibility of research. As such, code review 14

is an inevitable step in software development and is common in fields such as computer 15

science. However, despite its importance, code review is noticeably lacking in ecology and 16

evolutionary biology. This is problematic as it facilitates the propagation of coding errors and a 17

reduction in reproducibility and reliability of published results. To address this, we provide a 18

detailed commentary on how to effectively review code, how to set up your project to enable this 19

form of review and detail its possible implementation at several stages throughout the research 20

process. This guide serves as a primer for code review, and adoption of the principles and 21

advice here will go a long way in promoting more open, reliable, and transparent ecology and 22

evolutionary biology. 23

 24

2

Introduction 25

Across scientific disciplines, researchers increasingly rely on code written in open-source 26

software, such as R and Python, to clean, manipulate, visualise, and analyse data (Lai et al., 27

2019; Peikert & Brandmaier, 2021; Peikert et al., 2021). Such software allows for increased 28

transparency and reproducibility compared to software that operates through point-and-click 29

interfaces (“User Interface” or “UI-based”), such as Minitab and SPSS (Obels et al., 2020). One 30

of the key benefits of this code-based software is flexibility, because researchers can tailor 31

analyses to their specific research needs which would otherwise be unavailable. However, the 32

flexibility of code comes at a cost, as it means that it can be more error-prone (Budd et al., 33

1998). These errors may be conceptual (e.g., implementing the wrong function for a given task), 34

programmatic (e.g., indexing the wrong column of a data frame), or syntactic (e.g., the incorrect 35

spelling of a statement or function). Although UI-based software is also prone to conceptual 36

errors, programmatic and syntactic errors are more common in code-based software. These 37

errors can contribute to a lack of reproducibility or to the propagation of incorrect results (see 38

Obels et al., 2020 for a review of code and data in psychology). Indeed, several high-profile 39

retractions have centred on these types of mistakes (Miller, 2006; Ma & Chang, 2007; Bolnick & 40

Paull, 2009; Huijgen et al., 2012; Williams & Bürkner, 2020). One way to minimise potential 41

errors, besides carefully annotating code and following best coding practices, is to undergo a 42

process of code review. However, unlike in some disciplines (such as in computer science and 43

software development) where code review is routinely implemented (Nelson & Schumann, 44

2004; Badampudi et al., 2019), it is noticeably absent from the research and publication 45

processes in other academic disciplines that rely on code to make inferences and predictions 46

(Indriasari et al., 2020), including ecology and evolutionary biology. 47

 48

3

To address this, we advocate for a fundamental shift in research culture that brings code review 49

into all stages of the research process, as reviewing of code is necessary to facilitate error 50

correction and to confirm the reproducibility and reliability of reported results. This is particularly 51

important as analyses are becoming ever more complicated, especially in the fields of ecology 52

and evolutionary biology (Touchon & McCoy, 2016). But how can we implement code review? 53

By whom, when, and how can it take place? In this paper, we provide some suggestions about 54

how to conduct a code review and how to produce code that facilitates this form of review. 55

Finally, we discuss the application of code review throughout the entire process of publication, 56

from the early stages of pre-publishing right through to after work is published. Although we 57

focus mainly on issues and techniques related to the R and Python coding languages due to 58

their popularity in the fields of ecology and evolutionary biology (Mislan et al., 2016; Lai et al., 59

2019), the concepts and principles we discuss are widely applicable. 60

 61

What should code review evaluate? 62

Code review is the process of either formally (as part of the peer review process) or informally 63

(as coauthors or colleagues) checking and evaluating each other’s code. It is critical to help 64

avoid conceptual, programmatic, and syntactic errors in code and can take place at any stage of 65

the research cycle; pre-submission, during formal peer review, or post-publication. Although the 66

manner and scope in which code review occurs may vary depending on the position in the 67

research cycle, the core priorities remain the same: to ensure code is as reported in the 68

methods section, is able to successfully run, is reliable, and is able to reproduce stated results. 69

 70

Below we describe these key priorities as the four Rs of code review (Figs. 1 and 2): 71

 72

Is the code as Reported? 73

4

Code is a key research output and a critical component of scientific methodology. As such, open 74

code accompanying written methods sections is becoming more common, following similar 75

pushes for Open and FAIR data (Lamprecht et al., 2020). Therefore, it is imperative that code is 76

checked for consistency when presented with the corresponding manuscript. These questions 77

help us avoid conceptual errors in code. Does the code match the description of what is 78

“Reported” within the methods section (Fig. 1, SM Box 1)? Ensuring code matches the methods 79

reported is imperative to evaluate whether the code is doing what is stated in the manuscript 80

and what it is intended to do by the user. For instance, methods may state that an analysis uses 81

a generalised linear model with Poisson error, but the code instead fits a Gaussian error 82

structure. Reviewing for this mismatch must be part of code review. In addition, and equally 83

important for reproducibility is whether the relevant packages (with appropriate version 84

numbers) are stated somewhere in the manuscript. In general, it is good practice to, at the very 85

least, list the packages (with version numbers) that are integral to the analysis or to visualisation 86

in the manuscript. These can be obtained by using the “citation()” function in R or using the 87

“setuptools” package in Python. A full list of all packages used (and versions), for instance those 88

involved with cleaning and tidying of data, could be given elsewhere such as in an associated .R 89

or .py file. Packages such as {renv} (Ushey, 2023; which replaces {packrat}, Ushey et al., 2022), 90

{groundhog} (Simonsohn & Gruson, 2023), or {poetry} (Eustace, 2023) and {pipenv} (Pipenv 91

Maintainer Team, 2023) in Python can help with ensuring a reproducible environment and allow 92

for specific loading of desired package versions. Another option is containerisation through the 93

use of Docker (Boettiger, 2015). Detailed tutorials already exist which highlight the use of this 94

reproducible method in far more detail than we will discuss here. 95

 96

Does the code Run? 97

5

Even if code matches the methodology reported in a paper, this does not mean the code is 98

executable (i.e., can “Run”). Programmatic and syntactic errors can make code fail to rerun. For 99

example, code will not be able to be run if it includes calls to libraries (or modules) that are 100

not installed in the current computing environment or if there are spelling mistakes (Fig. 1, 101

SM Box 1). Data sharing, where possible, should accompany code sharing, so that code can be 102

fully rerun with the original data. If data sharing is not possible, simulated data or a data snippet 103

should be provided so that the code can be rerun. In cases where it would take a long period of 104

time to rerun code (for instance with some forms of Bayesian modelling), the code should be 105

accompanied with appropriate model outputs (readily provided by the author, see below “Output 106

reproducibility”). 107

 108

Is the code Reliable? 109

Errors can still propagate through code that runs and produces an output, because code can 110

produce incorrect results in a reproducible manner (i.e., every time the code is run). For 111

example, if code selects or modifies the wrong column in a dataset, the code will still run, but 112

produce a reproducible yet inaccurate result (i.e., the code is not “Reliable”; Fig. 1, SM Box 1). 113

This type of error could easily be conceptual, arising from a misunderstanding of the dataset, or 114

programmatic, such as from indexing by number and producing a mistaken column order or 115

from user-defined functions. Although some coding techniques, such as explicitly indexing by 116

column name or by performing unit testing of any user-defined function (see Cooper, 2017; 117

relevant packages include {testthat}, Wickham, (2011) in R or {pytest} in Python, Okken, 2022), 118

can help avoid many of these mistakes, this type of error is common and also extremely difficult 119

to pick up by anyone without deep familiarity with the dataset and code. In particular, these 120

errors are thought to scale with the number of lines and complexity of code (Lipow, 1982). 121

Although intrinsically linked to evaluating whether code can be run (the second “R”), evaluating 122

6

code reliability means not only ensuring that the code runs to completion without error, but 123

examining intermediate outputs of the code to ensure there are no mistakes. The functions 124

“identical()” in R and “numpy.array_equal()” in Python can be useful at this stage of code review 125

to compare object similarity between newly-generated and previously-saved intermediate 126

outputs. 127

 128

Are the results Reproducible? 129

The last “R” of code review builds on the previous code review stages, and is perhaps the most 130

fundamental: can the code produce the output, and thus support the conclusions, given in the 131

paper (Goodman et al., 2016; Fig. 1, SM Box 1)? As several recent papers have highlighted 132

(Archmiller et al., 2020; Obels et al., 2020; Errington et al., 2021; Minocher et al., 2021; Tiwari et 133

al., 2021), reproducibility in research results is often very low. Therefore, the final step of code 134

review is ensuring that final outputs when code is rerun match those reported in the analysis 135

and results sections (including any relevant figures and narrative text contained within these 136

sections). With that said, at times obtaining the exact same result is not possible. Some level of 137

tolerance must therefore be applied especially when dealing with stochastic methods in which 138

parameter estimates will change between subsequent runs or with techniques that are 139

computationally demanding and slow. This can occur for example if the “set.seed()” function in 140

R or “random.seed” function in Python has not been used prior to stochastic sampling. Providing 141

model outputs can go some way in helping with this (see above), however it does not allow for 142

the code to be explicitly run to see if you can obtain similar results as stated in the paper 143

(regardless of potential time taken). In this case, newly generated results should be assessed to 144

see if they matched (and how closely) to the conclusion (the direction and significance level) 145

and the numbers (intervals matching within one significant figure) of the stated results 146

(Archmiller et al., 2020). A useful example of this is also given in the supplementary material of 147

7

Archmiller et al. (2020), in which a mean of 4.12 and interval of 3.45 to 4.91 reproduces the 148

conclusion and numbers of a study with a mean of 4.00 and interval of 3.3 to 5.0. Similar 149

conclusions would be drawn if these means (and CIs) were higher (e.g., 6.5, 6.0 to 7.0), but the 150

numbers would not be considered quantitatively reproduced. On the other hand, the conclusions 151

and numbers would not be reproduced if the model instead produced a mean of 4.1 with an 152

interval of -1 to 8.4 (as the confidence interval here overlaps with 0). It is worth noting and 153

mentioning in your review how closely the numbers and conclusion matched with the reported 154

results. 155

 156

 157

Figure 1. The four “Rs” of code review. Figure design by B.M.M. 158

8

 159

Setting up your code for effective code review 160

Code review should evaluate if code matches reported methods, whether code runs and is 161

reliable, and lastly, if results can be reproduced. But in order for these questions to be 162

addressed, code must be written and shared in a way that it is possible for someone else to 163

rerun an analysis; both to allow for code to be reviewed and to be reused in the future when 164

properly maintained and contained (see Boettiger, 2015). For this to happen, all necessary 165

scripts must be shared along with appropriate metadata indicating how the scripts interact with 166

one another, along with describing all other necessary software and appropriate versions. Often, 167

researchers lack formal training in coding, and learn to code in an ad-hoc fashion that excludes 168

training on general styling, appropriate use of workflows, and project organisation. As a result, 169

researchers may often not be aware of the steps necessary to set up code for a project in a 170

manner that reflects best coding practices. Therefore, below we list key principles (Fig. 2) that 171

will help make code reviewable at any stage of the research cycle. 172

 173

Project organisation 174

Every project needs some form of directory organisation and folder structure. This is likely to be 175

largely driven by the function and form that your research takes, but an efficient and transparent 176

folder structure that keeps raw data separate from code and intermediate outputs should be 177

created. This helps to ensure that raw data is not accidentally modified or overwritten if any data 178

cleaning or wrangling techniques are applied. A simple folder and file structure such as this will 179

go a long way to help researchers from all coding skill levels understand the order and flow of 180

the data analysis, particularly when the user creates sequentially labelled subfolders and scripts 181

where someone following the code knows which order things must be run (e.g., files beginning 182

9

with “01…”) in addition to dividing and naming folders to fit their purpose (e.g., data, scripts, 183

function). Several incredibly useful examples already exist (Cooper, 2017; Alston & Rick, 2021; 184

Chure, 2023; see also https://coderefinery.github.io/reproducible-research/ and 185

https://lakens.github.io/statistical_inferences/14-computationalreproducibility.html). Project code 186

should be stored and available on any data or code repository. Another option for organising a 187

project is to use pipeline or workflow tools (for instance see 188

https://github.com/pditommaso/awesome-pipeline), such as the {targets} (Landau, 2021) and 189

{workflowR} R packages (Blischak et al., 2019) or the {luigi} package (The Luigi Authors, 2023) 190

in Python (see 191

https://www.martinalarcon.org/2018-12-31-a-reproducible-science/). These tools allow users to 192

automate the process of data analysis, taking a raw dataset through the steps necessary to 193

produce data analysis and visualisation. The advantage to the user is that the code is 194

compartmentalised into logical steps (e.g., import raw data, data cleaning, data wrangling, data 195

analysis, data visualisation) and any changes to the code only affects the downstream steps. 196

For example, if we change the type of analysis we do, we do not need to re-import the data or 197

clean it again. This saves time in computation (especially important for complex, long-running 198

pipelines) but is also advantageous for reproducibility, and sharing and reuse of code. 199

Reviewers can effectively rerun the steps needed to produce a data analysis or figure without 200

having to rerun time consuming pre-processing steps. 201

 202

Project and input metadata 203

Projects will instantly have better organisation and increased reproducibility when users know 204

how they should work through the various folders and subfolders. A README text file and 205

additional metadata gives users the signposts required to facilitate rerunning of code. This can 206

contain information on the packages used (e.g., the package name and version number), along 207

with a detailed description of the various data files, project aim, contact information of the 208

10

authors, and any relevant licences in place for code or for data (see 209

https://choosealicense.com/licenses/ for more information). Furthermore, key information about 210

source data is critical for reproducing analysis code. If sharing data is inappropriate to your 211

study (for example when dealing with sensitive confidential data) or if data is so large it cannot 212

be easily shared, then a user can provide a sample of simulated data or a primer so that the 213

code can be checked and read (Quintana, 2020; Hennessy et al., 2022). However, if data is 214

readily available, then providing detailed information about what the data is (preferably in an 215

associated README) and where the data is (e.g., stored on a free data repository such as The 216

Open Science Framework (OSF), Zenodo, or for ecology data, the Knowledge Network for 217

Biocomplexity) should be provided. Metadata should include information such as where the data 218

comes from, who the owners are, as well as what each column header entails, and any relevant 219

acronyms or shorthand notation (ideally following FAIR principles, so data is Findable, 220

Accessible, Interoperable, and Reusable; see Lamprecht et al., 2020). This is particularly useful 221

when controlled vocabulary is used throughout, and R packages such as {codemeta} (Boettiger, 222

2017) and {dataReporter} (Petersen & Ekstrøm, 2019) or Python packages such as 223

{CodeMetaPy} (Gompel, 2023) and {cookiecutter} (Feldroy, 2022) can help with this. Lastly, it is 224

also crucial to explain what data cleaning or curation occurred before the analysis code. For 225

instance, outlining what previous data manipulation or pre-processing steps have been taken to 226

obtain the data in its current state or when an intermediate data file was used. 227

 228

Code Readability 229

Good readability of code is extremely important in enabling effective code review. Several quick 230

solutions exist to provide increased clarity: explicitly calling packages (via a package’s 231

namespace, e.g., package::function() in R or package.module.function in Python), using relative 232

file paths (for instance using the {here} package (Müller, 2020) and preferably with an 233

associated R project file, if using R with RStudio or in a virtual environment if using Python), 234

11

removing redundant packages, and writing analysis code with clear subheadings and easy-to-235

understand object names. Best practice coding tips, aided by R packages such as {styler} 236

(Müller & Walthert, 2020) or {pycodestyle} in Python (Rocholl, 2022) can format code in a number 237

of standardised styles (e.g., Google, tidyverse in R, or PeP8 in Python) with a single line of code 238

or a click of a button. Fortunately, several recent guides and primers have been written that 239

focus on increasing coding cleanliness (Sweigart, 2020; Hunter-Zinck et al., 2021; Filazzola & 240

Lortie, 2022), so we urge the reader to consult these guidelines for tips and advice on improving 241

code readability. 242

 243

Output reproducibility 244

One of the key principles and requirements of code is the ability to correctly reproduce 245

published graphs, statistics, and results. In order to do so, a user’s code needs to provide a 246

clear link between each section of the code and the various reported graphs and outputs to 247

enable comparison of code to paper and to results. This should then facilitate checking that the 248

results produced by the code match the stated results in the publication. In some cases, 249

reproducing analysis from models can take considerable time to complete, for instance when re-250

running complicated Bayesian models or other techniques involving long computational time. In 251

this case the “exact” reproducibility of results is not always possible if code must simulate a 252

stochastic process (e.g., Monte Carlo sampling methods). In this case using set.seed() or 253

saving simulation outputs still allows for reproducible results (e.g., with the “saveRDS” function 254

in R or the “pickle.dump” function in Python) and can enable code reviewers to check the 255

reproducibility of the reported results. 256

12

 257

 258

Figure 2. A basic workflow for reviewable code that can be adopted from the onset of a project. 259

See Supplementary Material for a printable checklist of the points listed here. Figure and 260

checklist design by B.M.M. 261

 262

Pre-Publication: Setting up a code review group 263

13

Informal training coupled with insufficient time and incentives (Touchon & McCoy, 2016), means 264

that coding and subsequent analysis are often the responsibility of a single member of a team 265

throughout a project's entire lifetime. This is in stark contrast to the research-team wide 266

collaboration typical when developing methodology and experimental design. The individual 267

nature of writing research code is part of what makes pre-publication code review so unlikely, 268

but even more critical. Although code review has a place in the formal peer review process and 269

post-publication, one of the most important places for code review to take place is before 270

publication. 271

To achieve this, there must be a culture of peer code review among research teams. One of the 272

most effective methods by which researchers can establish a culture of peer code review in 273

research labs or among colleagues is by setting up a code review group. Here we draw on our 274

experience building a code review club (which we set up in collaboration with the Society for 275

Open, Reliable, and Transparent Ecology and Evolutionary Biology, SORTEE) to present tips 276

for establishing this type of community. In particular, we focus on advice for removing the 277

barriers people have towards sharing their code and receiving feedback; be these due to a lack 278

of time and incentive, a lack of technical knowledge and unclear workflows, or due to social 279

pressures and the fear of being judged by peers (Gomes et al., 2022). 280

 281

Encourage collaboration from the start of a project 282

Code review can begin as early as the first initiation of a project and play a role beyond 283

publication; it is useful to keep continuous code collaboration at all stages of a manuscript. 284

Collaboration can be facilitated through various code-sharing platforms such as GitHub where 285

users can submit and comment on pull requests (see Braga et al., 2023). At SORTEE we 286

established a peer review group and used GitHub issues to summarise discussion of an 287

individual’s code during an interactive zoom session (see 288

14

https://github.com/SORTEE/peer-code-review/issues/8 for an example including a summary). 289

However, it is important to find a method of facilitating code review that works for your group. 290

 291

Set clear goals for the review 292

Setting out what you want to achieve with each code review session is particularly important 293

when it comes to organising peer review meetings. Is the focus on general learning and 294

improving readability or is it to error-check and scrutinise the reproducibility of your code? 295

Having a clear structure and goal for each peer review session is important in order to focus 296

comments and advice to address the precise reason for review. Similarly, unless the aim of a 297

code review is to evaluate different analytical options, it would be better to leave methodological 298

questions aside to ensure code review is streamlined. 299

 300

Normalize coding errors and establish a judgement-free environment 301

Code review volunteers often feel very anxious about showing code that may have errors. It is 302

therefore vital to normalise the existence of errors and highlight that perfection is never possible. 303

It is also useful to stress that there is no such thing as bad code (Barnes, 2010) and there are 304

usually multiple ways to approach the same problem (Silberzahn et al., 2018; Botvinik-Nezer et 305

al., 2020). One of the most important statements for peer code review is that there is no single 306

way to code. It is important for code review not to get bogged down by modifying or 307

homogenising style; as long as code is readable, then coding diversity should be encouraged. It 308

is important to create a relaxed environment where people can learn and correct mistakes 309

without judgement or fear of failure and everyone in the peer review group should have a 310

chance to contribute and speak. 311

 312

Carefully consider group size 313

15

Usually, a smaller group is a friendly starting point for peer code review because it allows 314

people to feel more comfortable speaking up and participating. Small peer review groups 315

(potentially even one-to-one) can better facilitate peer-to-peer learning and a more focused 316

review of code. However, there are also times when larger groups are more effective, such as 317

having wider discussions on general themes and tips. It is worth considering the aims in 318

establishing the group to help guide the ideal size. For instance, if your goal is to facilitate more 319

general discussions, then a big group size is more likely to enable this. However, if your goal is 320

to enable more focused review of code, then perhaps it is better to reduce the size of the peer 321

review group for this purpose. 322

 323

Consider the incentives 324

Code review, outside of paper submission and the formal peer review process, can have a large 325

impact on an individual’s project, from error-checking, to validation of appropriate statistical 326

analyses. This then poses the question: what incentives should reviewers of code get? If 327

deemed appropriate, the reviewer could be acknowledged using the MeRIT (Method Reporting 328

with Initials for Transparency) system (Nakagawa et al., 2023), “e.g., J.L.P. ran a linear mixed 329

model with a Gaussian error distribution. Code was checked by E.I.C.”. In some circumstances, 330

it may even be appropriate for the reviewer to obtain co-authorship of the paper, if the review 331

fundamentally altered the project and subsequent paper. For instance, a situation may arise 332

where a code reviewer(s) finds a major coding error which, when fixed after highlighting and 333

reproducing the issue to the author(s), alters the subsequent results and conclusions of the 334

manuscript. Ultimately, incentives should be relative to the impact of the reviewer on the 335

project. 336

 337

During Publication: Formal code review 338

16

One of the most crucial aspects of code review can take place during the formal peer review 339

process. This is where reviewers are able to carefully follow and understand the logic of 340

analyses, much like the flow of writing from the introduction to the discussion of a paper 341

(Powers & Hampton, 2019). In some journals, such as The Royal Society (Data sharing and 342

mining | Royal Society, 2023), Behavioural Ecology and Sociobiology (Bakker & Traniello, 343

2020), and The American Naturalist (Bolnick, 2022) both code and data are available for 344

reviewers to assess right from the submission stage. In some cases, such as in Journal of Open 345

Source Software, the entire process of formal peer review, including that of code and 346

manuscript is hosted on GitHub and implemented via GitHub issues (see 347

https://github.com/openjournals/joss-reviews/issues for several useful examples). This, as 348

Fernández-Juricic (2021) points out, has several benefits. For authors, providing code during 349

peer review could lead to an increase in the quality of the manuscript, and for reviewers, 350

available code allows for a far deeper insight into the manuscript as there is a clearer link 351

between experimental methodology and statistical analysis (the First R; code as “Reported”). 352

These benefits are substantial and could ultimately contribute to the adoption of code review 353

during the publication process by journals. 354

However, beyond the availability of code during submission, there are numerous other hurdles 355

before effective and in-depth code review can be reasonably formalised as part of the peer 356

review process. One of the most pressing issues is finding suitable individuals to review code 357

given there is already a lack of willing reviewers in the current system. It is reasonable to expect 358

reviewers to check that code is as reported, but anything more in-depth could take up the time 359

of already overworked academics, who may not necessarily have the exact expertise needed to 360

check other people’s code. A potential first step is for journals to appoint official journal code 361

reviewers/editors. Although similar to data editors (see below), this role’s sole responsibility 362

would be to check that code adheres to the four R’s and would be considered a separate (but 363

17

parallel) process from the responsibilities of “typical” reviewers. However, all of these concerns 364

need to be fully considered and sufficiently addressed before code review becomes a standard 365

part of the peer review process. 366

 367

Post-Publication: Reviewing code after publication 368

Reviewing code post-publication is another facet of code review but one that has been much 369

less discussed. Although it does not prevent publication of incorrect results, it does enable 370

checking if code is indeed adhering to the R’s listed above (Fig. 1). However, the initial question 371

should be, has all code used to produce the results been made available? This can either be a 372

yes (stored and available on any data or code repository) or a no. Fortunately, an increasing 373

number of journals are now requesting code be shared alongside scientific articles (Culina et al., 374

2020), such as in supplemental materials or by linking to an online repository. This then allows 375

for any open and shared code to be checked and verified alongside methods section statements 376

(Stodden, 2011; Light et al., 2014). However, unlike data, code is a lot less likely to be made 377

available regardless of these mandatory journal policies. As Figure 2 from Culina et al. (2020) 378

shows, although the number of journals that possesses a mandatory code rule is increasing 379

(from 15% in 2015 to 79% in 2020) the number of articles that actually provide open code is still 380

around 27% (although this number varies considerably among journals). This suggests that not 381

many authors are adhering to this policy, which is an impediment to computational 382

reproducibility (Culina et al. 2020). However, there is hope to be found here. As Culina et al. 383

have shown, journals requiring code to be shared are increasing in number yearly and, as a 384

field, we already have improved substantially (Mislan et al., 2016; Culina et al., 2020; Jenkins et 385

al., 2023). In some cases, journals have implemented far stricter (and rightly so) data and code 386

requirements along with assigning corresponding data editors (Bolnick, 2022). However, the first 387

18

necessary step is for all journals to make it a requirement for both code and data to be present 388

from the very start of the submission stage (Powers & Hampton, 2019; Fernández-Juricic, 389

2021). But what happens if the code is not available? In this case, the main option is to reach 390

out to the corresponding author (or perhaps the journal itself) and ask if the code could be made 391

available; similar to data being made available “upon reasonable request”. 392

The next part is relevant to the previous section above (“What should code review evaluate?). If 393

you find that the code associated with a manuscript does not adhere to any of the “R”s listed 394

above, then the first step is to contact the corresponding author (or if the paper uses the MeRIT 395

system (Nakagawa et al., 2023), the person who actually conducted the analysis). This could be 396

in the form of a GitHub issue if there is a repository for the code or an email (see Fig. 3). If there 397

is indeed an error in code, and it is not due to differences in software version (e.g., differences 398

in R and package versions) or due to inherent stochasticity (e.g., simulations or MCMC 399

sampling), then the authors should be given a chance to contact the journal themselves to 400

highlight and correct their mistakes. For instance, as per American Naturalist’s stance (Bolnick, 401

2022) authors who contact the journal to correct code or data errors will not be penalised and 402

corrections are encouraged (when warranted). However, in cases where updated results would 403

alter the narrative of a published paper, corrections may be more difficult to address without newer 404

methods of documenting changes. Publication versioning or “living” documents may present a solid 405

first step in such a scenario (Kane & Amin, 2023). By encouraging post-publication code review, 406

we can both decrease the proliferation of coding errors and also increase the reliability of 407

published science. 408

 409

19

 410

Figure 3. An example peer code review flowchart that can occur post-publication. Figure design 411

by J.L.P and E.I.C. 412

 413

Concluding remarks 414

20

In this brief overview, we have provided a basic set of guidelines for peer code review, 415

recommendations for producing reviewable code, and considerations for how it should be 416

adopted at every level of research throughout the publication process. The principles and advice 417

listed here should form a baseline for code review that should be improved upon. We hope that 418

this encourages coders at all levels to try and promote more reproducible, transparent, and 419

open coding practices. In addition, we hope that this provides a primer to start a code reviewing 420

club of your own. 421

 422

Acknowledgements 423

This work began during workshops at the 2021 and 2022 annual conferences of the Society for 424

Open, Reliable, and Transparent Ecology and Evolutionary biology (SORTEE) run by S.M.W. 425

and E.I-C. (in 2022). We also would like to acknowledge Fonti Kar for their help with organising 426

and delivering the 2021 workshop. This work was partially funded by the Center of Advanced 427

Systems Understanding (CASUS), which is financed by Germany's Federal Ministry of 428

Education and Research (BMBF) and by the Saxon Ministry for Science, Culture and Tourism 429

(SMWK) with tax funds on the basis of the budget approved by the Saxon State Parliament. We 430

also thank Corina Logan, Serena Caplins, the PREreview group (Gracielle Higino, Varina 431

Crisfield, Mobina Gholamhosseini, Katherine Hébert, and Tanya Strydom), and one anonymous 432

reviewer for thoughtful comments on the manuscript. We thank Melina de Souza Leite for 433

allowing us to use their GitHub issue as an example of SORTEE peer code review. 434

 435

References 436

Alston, J.M. & Rick, J.A. (2021) A Beginner’s Guide to Conducting Reproducible Research. 437

Bulletin of the Ecological Society of America, 102, 1–14. 438

21

Archmiller, A.A., Johnson, A.D., Nolan, J., Edwards, M., Elliott, L.H., Ferguson, J.M., et al. 439

(2020) Computational Reproducibility in The Wildlife Society’s Flagship Journals. The Journal of 440

Wildlife Management, 84, 1012–1017. 441

Badampudi, D., Britto, R. & Unterkalmsteiner, M. (2019) Modern code reviews - Preliminary 442

results of a systematic mapping study. In Proceedings of the Evaluation and Assessment on 443

Software Engineering, EASE ’19. Association for Computing Machinery, New York, NY, USA, 444

pp. 340–345. 445

Bakker, T.C.M. & Traniello, J.F.A. (2020) Ensuring data access, transparency, and preservation: 446

mandatory data deposition for Behavioral Ecology and Sociobiology. Behavioral Ecology and 447

Sociobiology, 74, 132. 448

Barnes, N. (2010) Publish your computer code: it is good enough. Nature, 467, 753. 449

Blischak, J.D., Carbonetto, P. & Stephens, M. (2019) Creating and sharing reproducible 450

research code the workflowr way. F1000Research, 8, 1749. 451

Boettiger, C. (2015) An introduction to Docker for reproducible research. ACM SIGOPS 452

Operating Systems Review, 49, 71–79. 453

Boettiger, C. (2017) Generating CodeMeta Metadata for R Packages. The Journal of Open 454

Source Software, 2, 454. 455

Bolnick, D. (2022) EIC Update: American Naturalist policy on data and code archiving. 456

Bolnick, D.I. & Paull, J.S. (2009) Morphological and dietary differences between individuals are 457

weakly but positively correlated within a population of threespine stickleback. Evolutionary 458

Ecology Research. 459

Botvinik-Nezer, R., Holzmeister, F., Camerer, C.F., Dreber, A., Huber, J., Johannesson, M., et 460

al. (2020) Variability in the analysis of a single neuroimaging dataset by many teams. Nature, 461

582, 84–88. 462

22

Braga, P.H.P., Hébert, K., Hudgins, E.J., Scott, E.R., Edwards, B.P.M., Sánchez Reyes, L.L., et 463

al. (2023) Not just for programmers: How GitHub can accelerate collaborative and reproducible 464

research in ecology and evolution. Methods in Ecology and Evolution, 1–17. 465

Budd, J.M., Sievert, M. & Schultz, T.R. (1998) Phenomena of retraction: reasons for retraction 466

and citations to the publications. JAMA, 280, 296–297. 467

Chure, G. (2023) Git + GitHub As A Platform For Reproducible Research. 468

Cooper, N. (2017) A Guide to Reproducible Code in Ecology and Evolution. 469

Culina, A., Berg, I. van den, Evans, S. & Sánchez-Tójar, A. (2020) Low availability of code in 470

ecology: A call for urgent action. PLOS Biology, 18, e3000763. 471

Data sharing and mining | Royal Society [WWW Document]. (2023) . URL 472

https://royalsociety.org/journals/ethics-policies/data-sharing-mining/ [accessed on 2023]. 473

Errington, T.M., Denis, A., Perfito, N., Iorns, E. & Nosek, B.A. (2021) Challenges for assessing 474

replicability in preclinical cancer biology. eLife, 10, e67995. 475

Eustace, S. (2023) poetry: Python dependency management and packaging made easy. 476

Feldroy, A. (2022) cookiecutter: A command-line utility that creates projects from project 477

templates, e.g. creating a Python package project from a Python package project template. 478

Fernández-Juricic, E. (2021) Why sharing data and code during peer review can enhance 479

behavioral ecology research. Behavioral Ecology and Sociobiology, 75, 103. 480

Filazzola, A. & Lortie, C. (2022) A call for clean code to effectively communicate science. 481

Methods in Ecology and Evolution. 482

Gomes, D.G.E., Pottier, P., Crystal-Ornelas, R., Hudgins, E.J., Foroughirad, V., Sánchez-483

Reyes, L.L., et al. (2022) Why don’t we share data and code? Perceived barriers and benefits to 484

public archiving practices. Proceedings of the Royal Society B: Biological Sciences, 289, 485

20221113. 486

Gompel, M. van. (2023) CodeMetaPy: Generate and manage CodeMeta software metadata. 487

23

Goodman, S.N., Fanelli, D. & Ioannidis, J.P.A. (2016) What does research reproducibility 488

mean? Science Translational Medicine, 8. 489

Hennessy, E.A., Acabchuk, R.L., Arnold, P.A., Dunn, A.G., Foo, Y.Z., Johnson, B.T., et al. 490

(2022) Ensuring Prevention Science Research is Synthesis-Ready for Immediate and Lasting 491

Scientific Impact. Prevention Science, 23, 809–820. 492

Huijgen, R., Boekholdt, S.M., Arsenault, B.J., Bao, W., Davaine, J.-M., Tabet, F., et al. (2012) 493

RETRACTED: Plasma PCSK9 Levels and Clinical Outcomes in the TNT (Treating to New 494

Targets) Trial: A Nested Case-Control Study. Journal of the American College of Cardiology, 59, 495

1778–1784. 496

Hunter-Zinck, H., Siqueira, A.F. de, Vásquez, V.N., Barnes, R. & Martinez, C.C. (2021) Ten 497

simple rules on writing clean and reliable open-source scientific software. PLOS Computational 498

Biology, 17, e1009481. 499

Indriasari, T.D., Luxton-Reilly, A. & Denny, P. (2020) A Review of Peer Code Review in Higher 500

Education. ACM Transactions on Computing Education, 20, 1–25. 501

Jenkins, G.B., Beckerman, A.P., Bellard, C., Benítez-López, A., Ellison, A.M., Foote, C.G., et al. 502

(2023) Reproducibility in ecology and evolution: Minimum standards for data and code. Ecology 503

and Evolution, 13, e9961. 504

Kane, A. & Amin, B. (2023) Amending the literature through version control. Biology Letters, 19, 505

20220463. 506

Lai, J., Lortie, C.J., Muenchen, R.A., Yang, J. & Ma, K. (2019) Evaluating the popularity of R in 507

ecology. Ecosphere, 10, e02567. 508

Lamprecht, A.-L., Garcia, L., Kuzak, M., Martinez, C., Arcila, R., Martin Del Pico, E., et al. 509

(2020) Towards FAIR principles for research software. Data Science, 3, 37–59. 510

Landau, W.M. (2021) The targets R package: a dynamic Make-like function-oriented pipeline 511

toolkit for reproducibility and high-performance computing. Journal of Open Source Software, 6, 512

2959. 513

24

Light, R.P., Polley, D.E. & Börner, K. (2014) Open data and open code for big science of 514

science studies. Scientometrics, 101, 1535–1551. 515

Lipow, M. (1982) Number of Faults per Line of Code. IEEE Transactions on Software 516

Engineering, SE-8, 437–439. 517

Ma, C. & Chang, G. (2007) Retraction for Ma and Chang, Structure of the multidrug resistance 518

efflux transporter EmrE from Escherichia coli. Proceedings of the National Academy of 519

Sciences, 104, 3668–3668. 520

Miller, G. (2006) A Scientist’s Nightmare: Software Problem Leads to Five Retractions. Science, 521

314, 1856–1857. 522

Minocher, R., Atmaca, S., Bavero, C., McElreath, R. & Beheim, B. (2021) Estimating the 523

reproducibility of social learning research published between 1955 and 2018. Royal Society 524

Open Science, 8, 210450. 525

Mislan, K.A.S., Heer, J.M. & White, E.P. (2016) Elevating The Status of Code in Ecology. 526

Trends in Ecology & Evolution, 31, 4–7. 527

Müller, K. (2020) here: A Simpler Way to Find Your Files. 528

Müller, K. & Walthert, L. (2020) Styler: Non-invasive pretty printing of R code. R package 529

version 1.3. 2. 530

Nakagawa, S., Ivimey-Cook, E.R., Grainger, M.J., O’Dea, R.E., Burke, S., Drobniak, S.M., et al. 531

(2023) Method Reporting with Initials for Transparency (MeRIT) promotes more granularity and 532

accountability for author contributions. Nature Communications, 14, 1788. 533

Nelson, S. & Schumann, J. (2004) What makes a code review trustworthy? In 37th Annual 534

Hawaii International Conference on System Sciences, 2004. Proceedings of the. Presented at 535

the 37th Annual Hawaii International Conference on System Sciences, 2004. Proceedings of 536

the, p. 10 pp.-. 537

25

Obels, P., Lakens, D., Coles, N.A., Gottfried, J. & Green, S.A. (2020) Analysis of Open Data 538

and Computational Reproducibility in Registered Reports in Psychology. Advances in Methods 539

and Practices in Psychological Science, 3, 229–237. 540

Okken, B. (2022) Python Testing with pytest. Pragmatic Bookshelf. 541

Peikert, A. & Brandmaier, A.M. (2021) A Reproducible Data Analysis Workflow With R 542

Markdown, Git, Make, and Docker. Quantitative and Computational Methods in Behavioral 543

Sciences, 1–27. 544

Peikert, A., Lissa, C.J. van & Brandmaier, A.M. (2021) Reproducible Research in R: A Tutorial 545

on How to Do the Same Thing More Than Once. Psych, 3, 836–867. 546

Petersen, A.H. & Ekstrøm, C.T. (2019) dataMaid : Your Assistant for Documenting Supervised 547

Data Quality Screening in R. Journal of Statistical Software, 90. 548

Pipenv maintainer team. (2023) pipenv: Python Development Workflow for Humans. 549

Powers, S.M. & Hampton, S.E. (2019) Open science, reproducibility, and transparency in 550

ecology. Ecological Applications, 29, e01822. 551

Quintana, D.S. (2020) A synthetic dataset primer for the biobehavioural sciences to promote 552

reproducibility and hypothesis generation. eLife, 9, e53275. 553

Rocholl, J.C. (2022) pycodestyle: Python style guide checker. 554

Silberzahn, R., Uhlmann, E.L., Martin, D.P., Anselmi, P., Aust, F., Awtrey, E., et al. (2018) Many 555

analysts, one data set: Making transparent how variations in analytic choices affect results. 556

Advances in Methods and Practices in Psychological Science, 1, 337–356. 557

Simonsohn, U. & Gruson, H. (2023) groundhog: Version-Control for CRAN, GitHub, and GitLab 558

Packages. 559

Stodden, V. (2011) Trust Your Science? Open Your Data and Code, 2. 560

Sweigart, A. (2020) Beyond the Basic Stuff with Python: Best Practices for Writing Clean Code. 561

No Starch Press. 562

The Luigi Authors. (2023) luigi: Workflow mgmgt + task scheduling + dependency resolution. 563

26

Tiwari, K., Kananathan, S., Roberts, M.G., Meyer, J.P., Sharif Shohan, M.U., Xavier, A., et al. 564

(2021) Reproducibility in systems biology modelling. Molecular Systems Biology, 17, e9982. 565

Touchon, J.C. & McCoy, M.W. (2016) The mismatch between current statistical practice and 566

doctoral training in ecology. Ecosphere, 7, e01394. 567

Ushey, K. (2023) renv: Project Environments. 568

Ushey, K., McPherson, J., Cheng, J., Atkins, A., Allaire, J.J. & Allen, T. (2022) packrat: A 569

Dependency Management System for Projects and their R Package Dependencies. 570

Wickham, H. (2011) testthat: Get Started with Testing. The R Journal, 3, 5–10. 571

Williams, D. & Bürkner, P.-C. (2020) Coding Errors Lead to Unsupported Conclusions: A critique 572

of Hofmann et al. (2015). Meta-Psychology, 4. 573

