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Abstract 13 

Code review increases reliability and improves reproducibility of research. As such, code review 14 

is an inevitable step in software development and is common in fields such as computer 15 

science. However, despite its importance, code review is noticeably lacking in ecology and 16 

evolutionary biology. This is problematic as it facilitates the propagation of coding errors and a 17 

reduction in reproducibility and reliability of published results. To address this, we provide a 18 

detailed commentary on how to effectively review code, how to set up your project to enable this 19 

form of review and detail its possible implementation at several stages throughout the research 20 

process. This guide serves as a primer for code review, and adoption of the principles and 21 

advice here will go a long way in promoting more open, reliable, and transparent ecology and 22 

evolutionary biology. 23 

  24 
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Introduction 25 

Across scientific disciplines, researchers increasingly rely on code written in open-source 26 

software, such as R and Python, to clean, manipulate, visualise, and analyse data (Lai et al., 27 

2019; Peikert & Brandmaier, 2021; Peikert et al., 2021). Such software allows for increased 28 

transparency and reproducibility compared to software that operates through point-and-click 29 

interfaces (“User Interface” or “UI-based”), such as Minitab and SPSS (Obels et al., 2020). One 30 

of the key benefits of this code-based software is flexibility, because researchers can tailor 31 

analyses to their specific research needs which would otherwise be unavailable. However, the 32 

flexibility of code comes at a cost, as it means that it can be more error-prone (Budd et al., 33 

1998). These errors may be conceptual (e.g., implementing the wrong function for a given task), 34 

programmatic (e.g., indexing the wrong column of a data frame), or syntactic (e.g., the incorrect 35 

spelling of a statement or function). Although UI-based software is also prone to conceptual 36 

errors, programmatic and syntactic errors are more common in code-based software. These 37 

errors can contribute to a lack of reproducibility or to the propagation of incorrect results (see 38 

Obels et al., 2020 for a review of code and data in psychology). Indeed, several high-profile 39 

retractions have centred on these types of mistakes (Miller, 2006; Ma & Chang, 2007; Bolnick & 40 

Paull, 2009; Huijgen et al., 2012; Williams & Bürkner, 2020). One way to minimise potential 41 

errors, besides carefully annotating code and following best coding practices, is to undergo a 42 

process of code review. However, unlike in some disciplines (such as in computer science and 43 

software development) where code review is routinely implemented (Nelson & Schumann, 44 

2004; Badampudi et al., 2019), it is noticeably absent from the research and publication 45 

processes in other academic disciplines that rely on code to make inferences and predictions 46 

(Indriasari et al., 2020), including ecology and evolutionary biology. 47 

  48 



3 

To address this, we advocate for a fundamental shift in research culture that brings code review 49 

into all stages of the research process, as reviewing of code is necessary to facilitate error 50 

correction and to confirm the reproducibility and reliability of reported results. This is particularly 51 

important as analyses are becoming ever more complicated, especially in the fields of ecology 52 

and evolutionary biology (Touchon & McCoy, 2016). But how can we implement code review? 53 

By whom, when, and how can it take place? In this paper, we provide some suggestions about 54 

how to conduct a code review and how to produce code that facilitates this form of review. 55 

Finally, we discuss the application of code review throughout the entire process of publication, 56 

from the early stages of pre-publishing right through to after work is published. Although we 57 

focus mainly on issues and techniques related to the R and Python coding languages due to 58 

their popularity in the fields of ecology and evolutionary biology (Mislan et al., 2016; Lai et al., 59 

2019), the concepts and principles we discuss are widely applicable. 60 

  61 

What should code review evaluate? 62 

Code review is the process of either formally (as part of the peer review process) or informally 63 

(as coauthors or colleagues) checking and evaluating each other’s code. It is critical to help 64 

avoid conceptual, programmatic, and syntactic errors in code and can take place at any stage of 65 

the research cycle; pre-submission, during formal peer review, or post-publication. Although the 66 

manner and scope in which code review occurs may vary depending on the position in the 67 

research cycle, the core priorities remain the same: to ensure code is as reported in the 68 

methods section, is able to successfully run, is reliable, and is able to reproduce stated results. 69 

  70 

Below we describe these key priorities as the four Rs of code review (Figs. 1 and 2): 71 

  72 

Is the code as Reported? 73 
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Code is a key research output and a critical component of scientific methodology. As such, open 74 

code accompanying written methods sections is becoming more common, following similar 75 

pushes for Open and FAIR data (Lamprecht et al., 2020). Therefore, it is imperative that code is 76 

checked for consistency when presented with the corresponding manuscript. These questions 77 

help us avoid conceptual errors in code. Does the code match the description of what is 78 

“Reported” within the methods section (Fig. 1, SM Box 1)? Ensuring code matches the methods 79 

reported is imperative to evaluate whether the code is doing what is stated in the manuscript 80 

and what it is intended to do by the user. For instance, methods may state that an analysis uses 81 

a generalised linear model with Poisson error, but the code instead fits a Gaussian error 82 

structure. Reviewing for this mismatch must be part of code review. In addition, and equally 83 

important for reproducibility is whether the relevant packages (with appropriate version 84 

numbers) are stated somewhere in the manuscript. In general, it is good practice to, at the very 85 

least, list the packages (with version numbers) that are integral to the analysis or to visualisation 86 

in the manuscript. These can be obtained by using the “citation()” function in R or using the 87 

“setuptools” package in Python. A full list of all packages used (and versions), for instance those 88 

involved with cleaning and tidying of data, could be given elsewhere such as in an associated .R 89 

or .py file. Packages such as {renv} (Ushey, 2023; which replaces {packrat}, Ushey et al., 2022), 90 

{groundhog} (Simonsohn & Gruson, 2023), or {poetry} (Eustace, 2023) and {pipenv} (Pipenv 91 

Maintainer Team, 2023) in Python can help with ensuring a reproducible environment and allow 92 

for specific loading of desired package versions. Another option is containerisation through the 93 

use of Docker (Boettiger, 2015). Detailed tutorials already exist which highlight the use of this 94 

reproducible method in far more detail than we will discuss here. 95 

  96 

Does the code Run? 97 
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Even if code matches the methodology reported in a paper, this does not mean the code is 98 

executable (i.e., can “Run”). Programmatic and syntactic errors can make code fail to rerun. For 99 

example, code will not be able to be run if it includes calls to libraries (or modules) that are 100 

not installed in the current computing environment or if there are spelling mistakes (Fig. 1, 101 

SM Box 1). Data sharing, where possible, should accompany code sharing, so that code can be 102 

fully rerun with the original data. If data sharing is not possible, simulated data or a data snippet 103 

should be provided so that the code can be rerun. In cases where it would take a long period of 104 

time to rerun code (for instance with some forms of Bayesian modelling), the code should be 105 

accompanied with appropriate model outputs (readily provided by the author, see below “Output 106 

reproducibility”). 107 

  108 

Is the code Reliable? 109 

Errors can still propagate through code that runs and produces an output, because code can 110 

produce incorrect results in a reproducible manner (i.e., every time the code is run). For 111 

example, if code selects or modifies the wrong column in a dataset, the code will still run, but 112 

produce a reproducible yet inaccurate result (i.e., the code is not “Reliable”; Fig. 1, SM Box 1). 113 

This type of error could easily be conceptual, arising from a misunderstanding of the dataset, or 114 

programmatic, such as from indexing by number and producing a mistaken column order or 115 

from user-defined functions. Although some coding techniques, such as explicitly indexing by 116 

column name or by performing unit testing of any user-defined function (see Cooper, 2017; 117 

relevant packages include {testthat}, Wickham, (2011) in R or {pytest} in Python, Okken, 2022), 118 

can help avoid many of these mistakes, this type of error is common and also extremely difficult 119 

to pick up by anyone without deep familiarity with the dataset and code. In particular, these 120 

errors are thought to scale with the number of lines and complexity of code (Lipow, 1982). 121 

Although intrinsically linked to evaluating whether code can be run (the second “R”), evaluating 122 
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code reliability means not only ensuring that the code runs to completion without error, but 123 

examining intermediate outputs of the code to ensure there are no mistakes. The functions 124 

“identical()” in R and “numpy.array_equal()” in Python can be useful at this stage of code review 125 

to compare object similarity between newly-generated and previously-saved intermediate 126 

outputs. 127 

  128 

Are the results Reproducible? 129 

The last “R” of code review builds on the previous code review stages, and is perhaps the most 130 

fundamental: can the code produce the output, and thus support the conclusions, given in the 131 

paper (Goodman et al., 2016; Fig. 1, SM Box 1)? As several recent papers have highlighted 132 

(Archmiller et al., 2020; Obels et al., 2020; Errington et al., 2021; Minocher et al., 2021; Tiwari et 133 

al., 2021), reproducibility in research results is often very low. Therefore, the final step of code 134 

review is ensuring that final outputs when code is rerun match those reported in the analysis 135 

and results sections (including any relevant figures and narrative text contained within these 136 

sections). With that said, at times obtaining the exact same result is not possible. Some level of 137 

tolerance must therefore be applied especially when dealing with stochastic methods in which 138 

parameter estimates will change between subsequent runs or with techniques that are 139 

computationally demanding and slow. This can occur for example if the “set.seed()” function in 140 

R or “random.seed” function in Python has not been used prior to stochastic sampling. Providing 141 

model outputs can go some way in helping with this (see above), however it does not allow for 142 

the code to be explicitly run to see if you can obtain similar results as stated in the paper 143 

(regardless of potential time taken). In this case, newly generated results should be assessed to 144 

see if they matched (and how closely) to the conclusion (the direction and significance level) 145 

and the numbers (intervals matching within one significant figure) of the stated results 146 

(Archmiller et al., 2020). A useful example of this is also given in the supplementary material of 147 
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Archmiller et al. (2020), in which a mean of 4.12 and interval of 3.45 to 4.91 reproduces the 148 

conclusion and numbers of a study with a mean of 4.00 and interval of 3.3 to 5.0. Similar 149 

conclusions would be drawn if these means (and CIs) were higher (e.g., 6.5, 6.0 to 7.0), but the 150 

numbers would not be considered quantitatively reproduced. On the other hand, the conclusions 151 

and numbers would not be reproduced if the model instead produced a mean of 4.1 with an 152 

interval of -1 to 8.4 (as the confidence interval here overlaps with 0). It is worth noting and 153 

mentioning in your review how closely the numbers and conclusion matched with the reported 154 

results. 155 

  156 

 157 

Figure 1. The four “Rs” of code review. Figure design by B.M.M. 158 
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  159 

Setting up your code for effective code review 160 

Code review should evaluate if code matches reported methods, whether code runs and is 161 

reliable, and lastly, if results can be reproduced. But in order for these questions to be 162 

addressed, code must be written and shared in a way that it is possible for someone else to 163 

rerun an analysis; both to allow for code to be reviewed and to be reused in the future when 164 

properly maintained and contained (see Boettiger, 2015). For this to happen, all necessary 165 

scripts must be shared along with appropriate metadata indicating how the scripts interact with 166 

one another, along with describing all other necessary software and appropriate versions. Often, 167 

researchers lack formal training in coding, and learn to code in an ad-hoc fashion that excludes 168 

training on general styling, appropriate use of workflows, and project organisation. As a result, 169 

researchers may often not be aware of the steps necessary to set up code for a project in a 170 

manner that reflects best coding practices. Therefore, below we list key principles (Fig. 2) that 171 

will help make code reviewable at any stage of the research cycle. 172 

 173 

Project organisation 174 

Every project needs some form of directory organisation and folder structure. This is likely to be 175 

largely driven by the function and form that your research takes, but an efficient and transparent 176 

folder structure that keeps raw data separate from code and intermediate outputs should be 177 

created. This helps to ensure that raw data is not accidentally modified or overwritten if any data 178 

cleaning or wrangling techniques are applied. A simple folder and file structure such as this will 179 

go a long way to help researchers from all coding skill levels understand the order and flow of 180 

the data analysis, particularly when the user creates sequentially labelled subfolders and scripts 181 

where someone following the code knows which order things must be run (e.g., files beginning 182 
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with “01…”) in addition to dividing and naming folders to fit their purpose (e.g., data, scripts, 183 

function). Several incredibly useful examples already exist (Cooper, 2017; Alston & Rick, 2021; 184 

Chure, 2023; see also https://coderefinery.github.io/reproducible-research/ and 185 

https://lakens.github.io/statistical_inferences/14-computationalreproducibility.html). Project code 186 

should be stored and available on any data or code repository. Another option for organising a 187 

project is to use pipeline or workflow tools (for instance see 188 

https://github.com/pditommaso/awesome-pipeline), such as the {targets} (Landau, 2021) and 189 

{workflowR} R packages (Blischak et al., 2019) or the {luigi} package (The Luigi Authors, 2023) 190 

in Python (see 191 

https://www.martinalarcon.org/2018-12-31-a-reproducible-science/). These tools allow users to 192 

automate the process of data analysis, taking a raw dataset through the steps necessary to 193 

produce data analysis and visualisation. The advantage to the user is that the code is 194 

compartmentalised into logical steps (e.g., import raw data, data cleaning, data wrangling, data 195 

analysis, data visualisation) and any changes to the code only affects the downstream steps. 196 

For example, if we change the type of analysis we do, we do not need to re-import the data or 197 

clean it again. This saves time in computation (especially important for complex, long-running 198 

pipelines) but is also advantageous for reproducibility, and sharing and reuse of code. 199 

Reviewers can effectively rerun the steps needed to produce a data analysis or figure without 200 

having to rerun time consuming pre-processing steps. 201 

  202 

Project and input metadata 203 

Projects will instantly have better organisation and increased reproducibility when users know 204 

how they should work through the various folders and subfolders. A README text file and 205 

additional metadata gives users the signposts required to facilitate rerunning of code. This can 206 

contain information on the packages used (e.g., the package name and version number), along 207 

with a detailed description of the various data files, project aim, contact information of the 208 
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authors, and any relevant licences in place for code or for data (see 209 

https://choosealicense.com/licenses/ for more information). Furthermore, key information about 210 

source data is critical for reproducing analysis code. If sharing data is inappropriate to your 211 

study (for example when dealing with sensitive confidential data) or if data is so large it cannot 212 

be easily shared, then a user can provide a sample of simulated data or a primer so that the 213 

code can be checked and read (Quintana, 2020; Hennessy et al., 2022). However, if data is 214 

readily available, then providing detailed information about what the data is (preferably in an 215 

associated README) and where the data is (e.g., stored on a free data repository such as The 216 

Open Science Framework (OSF), Zenodo, or for ecology data, the Knowledge Network for 217 

Biocomplexity) should be provided. Metadata should include information such as where the data 218 

comes from, who the owners are, as well as what each column header entails, and any relevant 219 

acronyms or shorthand notation (ideally following FAIR principles, so data is Findable, 220 

Accessible, Interoperable, and Reusable; see Lamprecht et al., 2020). This is particularly useful 221 

when controlled vocabulary is used throughout, and R packages such as {codemeta} (Boettiger, 222 

2017) and {dataReporter} (Petersen & Ekstrøm, 2019) or Python packages such as 223 

{CodeMetaPy} (Gompel, 2023) and {cookiecutter} (Feldroy, 2022) can help with this. Lastly, it is 224 

also crucial to explain what data cleaning or curation occurred before the analysis code. For 225 

instance, outlining what previous data manipulation or pre-processing steps have been taken to 226 

obtain the data in its current state or when an intermediate data file was used.  227 

  228 

Code Readability 229 

Good readability of code is extremely important in enabling effective code review. Several quick 230 

solutions exist to provide increased clarity: explicitly calling packages (via a package’s 231 

namespace, e.g., package::function() in R or package.module.function in Python), using relative 232 

file paths (for instance using the {here} package (Müller, 2020) and preferably with an 233 

associated R project file, if using R with RStudio or in a virtual environment if using Python), 234 
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removing redundant packages, and writing analysis code with clear subheadings and easy-to-235 

understand object names. Best practice coding tips, aided by R packages such as {styler} 236 

(Müller & Walthert, 2020) or {pycodestyle} in Python (Rocholl, 2022) can format code in a number 237 

of standardised styles (e.g., Google, tidyverse in R, or PeP8 in Python) with a single line of code 238 

or a click of a button. Fortunately, several recent guides and primers have been written that 239 

focus on increasing coding cleanliness (Sweigart, 2020; Hunter-Zinck et al., 2021; Filazzola & 240 

Lortie, 2022), so we urge the reader to consult these guidelines for tips and advice on improving 241 

code readability. 242 

  243 

Output reproducibility 244 

One of the key principles and requirements of code is the ability to correctly reproduce 245 

published graphs, statistics, and results. In order to do so, a user’s code needs to provide a 246 

clear link between each section of the code and the various reported graphs and outputs to 247 

enable comparison of code to paper and to results. This should then facilitate checking that the 248 

results produced by the code match the stated results in the publication. In some cases, 249 

reproducing analysis from models can take considerable time to complete, for instance when re-250 

running complicated Bayesian models or other techniques involving long computational time. In 251 

this case the “exact” reproducibility of results is not always possible if code must simulate a 252 

stochastic process (e.g., Monte Carlo sampling methods). In this case using set.seed() or 253 

saving simulation outputs still allows for reproducible results (e.g., with the “saveRDS” function 254 

in R or the “pickle.dump” function in Python) and can enable code reviewers to check the 255 

reproducibility of the reported results. 256 
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 257 

 258 

Figure 2. A basic workflow for reviewable code that can be adopted from the onset of a project. 259 

See Supplementary Material for a printable checklist of the points listed here. Figure and 260 

checklist design by B.M.M. 261 

  262 

Pre-Publication: Setting up a code review group 263 



13 

Informal training coupled with insufficient time and incentives (Touchon & McCoy, 2016), means 264 

that coding and subsequent analysis are often the responsibility of a single member of a team 265 

throughout a project's entire lifetime. This is in stark contrast to the research-team wide 266 

collaboration typical when developing methodology and experimental design. The individual 267 

nature of writing research code is part of what makes pre-publication code review so unlikely, 268 

but even more critical. Although code review has a place in the formal peer review process and 269 

post-publication, one of the most important places for code review to take place is before 270 

publication. 271 

To achieve this, there must be a culture of peer code review among research teams. One of the 272 

most effective methods by which researchers can establish a culture of peer code review in 273 

research labs or among colleagues is by setting up a code review group. Here we draw on our 274 

experience building a code review club (which we set up in collaboration with the Society for 275 

Open, Reliable, and Transparent Ecology and Evolutionary Biology, SORTEE) to present tips 276 

for establishing this type of community. In particular, we focus on advice for removing the 277 

barriers people have towards sharing their code and receiving feedback; be these due to a lack 278 

of time and incentive, a lack of technical knowledge and unclear workflows, or due to social 279 

pressures and the fear of being judged by peers (Gomes et al., 2022). 280 

 281 

Encourage collaboration from the start of a project 282 

Code review can begin as early as the first initiation of a project and play a role beyond 283 

publication; it is useful to keep continuous code collaboration at all stages of a manuscript. 284 

Collaboration can be facilitated through various code-sharing platforms such as GitHub where 285 

users can submit and comment on pull requests (see Braga et al., 2023). At SORTEE we 286 

established a peer review group and used GitHub issues to summarise discussion of an 287 

individual’s code during an interactive zoom session (see 288 
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https://github.com/SORTEE/peer-code-review/issues/8 for an example including a summary). 289 

However, it is important to find a method of facilitating code review that works for your group. 290 

  291 

Set clear goals for the review 292 

Setting out what you want to achieve with each code review session is particularly important 293 

when it comes to organising peer review meetings. Is the focus on general learning and 294 

improving readability or is it to error-check and scrutinise the reproducibility of your code? 295 

Having a clear structure and goal for each peer review session is important in order to focus 296 

comments and advice to address the precise reason for review. Similarly, unless the aim of a 297 

code review is to evaluate different analytical options, it would be better to leave methodological 298 

questions aside to ensure code review is streamlined. 299 

  300 

Normalize coding errors and establish a judgement-free environment 301 

Code review volunteers often feel very anxious about showing code that may have errors. It is 302 

therefore vital to normalise the existence of errors and highlight that perfection is never possible. 303 

It is also useful to stress that there is no such thing as bad code (Barnes, 2010) and there are 304 

usually multiple ways to approach the same problem (Silberzahn et al., 2018; Botvinik-Nezer et 305 

al., 2020). One of the most important statements for peer code review is that there is no single 306 

way to code. It is important for code review not to get bogged down by modifying or 307 

homogenising style; as long as code is readable, then coding diversity should be encouraged. It 308 

is important to create a relaxed environment where people can learn and correct mistakes 309 

without judgement or fear of failure and everyone in the peer review group should have a 310 

chance to contribute and speak. 311 

  312 

Carefully consider group size 313 
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Usually, a smaller group is a friendly starting point for peer code review because it allows 314 

people to feel more comfortable speaking up and participating. Small peer review groups 315 

(potentially even one-to-one) can better facilitate peer-to-peer learning and a more focused 316 

review of code. However, there are also times when larger groups are more effective, such as 317 

having wider discussions on general themes and tips. It is worth considering the aims in 318 

establishing the group to help guide the ideal size. For instance, if your goal is to facilitate more 319 

general discussions, then a big group size is more likely to enable this. However, if your goal is 320 

to enable more focused review of code, then perhaps it is better to reduce the size of the peer 321 

review group for this purpose. 322 

  323 

Consider the incentives 324 

Code review, outside of paper submission and the formal peer review process, can have a large 325 

impact on an individual’s project, from error-checking, to validation of appropriate statistical 326 

analyses. This then poses the question: what incentives should reviewers of code get? If 327 

deemed appropriate, the reviewer could be acknowledged using the MeRIT (Method Reporting 328 

with Initials for Transparency) system (Nakagawa et al., 2023), “e.g., J.L.P. ran a linear mixed 329 

model with a Gaussian error distribution. Code was checked by E.I.C.”. In some circumstances, 330 

it may even be appropriate for the reviewer to obtain co-authorship of the paper, if the review 331 

fundamentally altered the project and subsequent paper. For instance, a situation may arise 332 

where a code reviewer(s) finds a major coding error which, when fixed after highlighting and 333 

reproducing the issue to the author(s), alters the subsequent results and conclusions of the 334 

manuscript. Ultimately, incentives should be relative to the impact of the reviewer on the 335 

project.  336 

  337 

During Publication: Formal code review 338 
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One of the most crucial aspects of code review can take place during the formal peer review 339 

process. This is where reviewers are able to carefully follow and understand the logic of 340 

analyses, much like the flow of writing from the introduction to the discussion of a paper 341 

(Powers & Hampton, 2019). In some journals, such as The Royal Society (Data sharing and 342 

mining | Royal Society, 2023), Behavioural Ecology and Sociobiology (Bakker & Traniello, 343 

2020), and The American Naturalist (Bolnick, 2022) both code and data are available for 344 

reviewers to assess right from the submission stage. In some cases, such as in Journal of Open 345 

Source Software, the entire process of formal peer review, including that of code and 346 

manuscript is hosted on GitHub and implemented via GitHub issues (see 347 

https://github.com/openjournals/joss-reviews/issues for several useful examples). This, as 348 

Fernández-Juricic (2021) points out, has several benefits. For authors, providing code during 349 

peer review could lead to an increase in the quality of the manuscript, and for reviewers, 350 

available code allows for a far deeper insight into the manuscript as there is a clearer link 351 

between experimental methodology and statistical analysis (the First R; code as “Reported”). 352 

These benefits are substantial and could ultimately contribute to the adoption of code review 353 

during the publication process by journals. 354 

However, beyond the availability of code during submission, there are numerous other hurdles 355 

before effective and in-depth code review can be reasonably formalised as part of the peer 356 

review process. One of the most pressing issues is finding suitable individuals to review code 357 

given there is already a lack of willing reviewers in the current system. It is reasonable to expect 358 

reviewers to check that code is as reported, but anything more in-depth could take up the time 359 

of already overworked academics, who may not necessarily have the exact expertise needed to 360 

check other people’s code. A potential first step is for journals to appoint official journal code 361 

reviewers/editors. Although similar to data editors (see below), this role’s sole responsibility 362 

would be to check that code adheres to the four R’s and would be considered a separate (but 363 
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parallel) process from the responsibilities of “typical” reviewers. However, all of these concerns 364 

need to be fully considered and sufficiently addressed before code review becomes a standard 365 

part of the peer review process. 366 

  367 

Post-Publication: Reviewing code after publication 368 

Reviewing code post-publication is another facet of code review but one that has been much 369 

less discussed. Although it does not prevent publication of incorrect results, it does enable 370 

checking if code is indeed adhering to the R’s listed above (Fig. 1). However, the initial question 371 

should be, has all code used to produce the results been made available? This can either be a 372 

yes (stored and available on any data or code repository) or a no. Fortunately, an increasing 373 

number of journals are now requesting code be shared alongside scientific articles (Culina et al., 374 

2020), such as in supplemental materials or by linking to an online repository. This then allows 375 

for any open and shared code to be checked and verified alongside methods section statements 376 

(Stodden, 2011; Light et al., 2014). However, unlike data, code is a lot less likely to be made 377 

available regardless of these mandatory journal policies. As Figure 2 from Culina et al. (2020) 378 

shows, although the number of journals that possesses a mandatory code rule is increasing 379 

(from 15% in 2015 to 79% in 2020) the number of articles that actually provide open code is still 380 

around 27% (although this number varies considerably among journals). This suggests that not 381 

many authors are adhering to this policy, which is an impediment to computational 382 

reproducibility (Culina et al. 2020). However, there is hope to be found here. As Culina et al. 383 

have shown, journals requiring code to be shared are increasing in number yearly and, as a 384 

field, we already have improved substantially (Mislan et al., 2016; Culina et al., 2020; Jenkins et 385 

al., 2023). In some cases, journals have implemented far stricter (and rightly so) data and code 386 

requirements along with assigning corresponding data editors (Bolnick, 2022). However, the first 387 
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necessary step is for all journals to make it a requirement for both code and data to be present 388 

from the very start of the submission stage (Powers & Hampton, 2019; Fernández-Juricic, 389 

2021). But what happens if the code is not available? In this case, the main option is to reach 390 

out to the corresponding author (or perhaps the journal itself) and ask if the code could be made 391 

available; similar to data being made available “upon reasonable request”. 392 

The next part is relevant to the previous section above (“What should code review evaluate?). If 393 

you find that the code associated with a manuscript does not adhere to any of the “R”s listed 394 

above, then the first step is to contact the corresponding author (or if the paper uses the MeRIT 395 

system (Nakagawa et al., 2023), the person who actually conducted the analysis). This could be 396 

in the form of a GitHub issue if there is a repository for the code or an email (see Fig. 3). If there 397 

is indeed an error in code, and it is not due to differences in software version (e.g., differences 398 

in R and package versions) or due to inherent stochasticity (e.g., simulations or MCMC 399 

sampling), then the authors should be given a chance to contact the journal themselves to 400 

highlight and correct their mistakes. For instance, as per American Naturalist’s stance (Bolnick, 401 

2022) authors who contact the journal to correct code or data errors will not be penalised and 402 

corrections are encouraged (when warranted). However, in cases where updated results would 403 

alter the narrative of a published paper, corrections may be more difficult to address without newer 404 

methods of documenting changes. Publication versioning or “living” documents may present a solid 405 

first step in such a scenario (Kane & Amin, 2023). By encouraging post-publication code review, 406 

we can both decrease the proliferation of coding errors and also increase the reliability of 407 

published science. 408 

 409 
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 410 

Figure 3. An example peer code review flowchart that can occur post-publication. Figure design 411 

by J.L.P and E.I.C. 412 

  413 

Concluding remarks 414 
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In this brief overview, we have provided a basic set of guidelines for peer code review, 415 

recommendations for producing reviewable code, and considerations for how it should be 416 

adopted at every level of research throughout the publication process. The principles and advice 417 

listed here should form a baseline for code review that should be improved upon. We hope that 418 

this encourages coders at all levels to try and promote more reproducible, transparent, and 419 

open coding practices. In addition, we hope that this provides a primer to start a code reviewing 420 

club of your own. 421 
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