
1

Implementing Code Review in the Scientific Workflow: Insights from 1

Ecology and Evolutionary Biology 2

Edward R. Ivimey-Cook*, Joel Pick, Kevin Bairos-Novak, Antica Culina, Elliot Gould, Matt 3

Grainger, Benjamin M. Marshall, David Moreau, Matthieu Paquet, Raphaël Royauté, Alfredo 4

Sánchez-Tójar, Inês Silva, and Saras M. Windecker* 5

 6

*corresponding author(s) 7

e.ivimeycook@gmail.com & saras.windecker@gmail.com 8

 9

Keywords: reliability, reproducibility, software development, coding errors, research process, 10

open science, transparency. 11

 12

Abstract 13

Code review increases reliability and improves reproducibility of research. As such, code review 14

is an inevitable step in software development and is common in subjects such as computer 15

science. However, despite its importance, code review is noticeably lacking in ecology and 16

evolutionary biology. This is problematic as it facilitates the propagation of coding errors and a 17

reduction in reproducibility of published results. To address this, we provide a detailed 18

commentary on how to effectively review code, how to set up your project to enable this form of 19

review and detail its possible implementation at several stages throughout the research 20

process. This guide serves as a primer for code review, and adoption of the principles and 21

advice here will go a long way in promoting more open, reliable, and transparent ecology and 22

evolutionary biology. 23

 24

2

Introduction 25

Across scientific disciplines, researchers increasingly rely on code written in open-source 26

software, such as R and Python, to clean, manipulate, visualise, and analyse data (Lai et al. 27

2019; Peikert and Brandmaier 2021; Peikert et al. 2021). Such software allows for increased 28

transparency and reproducibility compared to software that operates through point-and-click 29

interfaces (“User Interface” or “UI-based”), such as Minitab and SPSS (Obels et al. 2020). One 30

of the key benefits of this code-based software is flexibility, because researchers can tailor 31

analyses to their specific research needs which would otherwise be unavailable. However, the 32

flexibility of code comes at a cost, as it means that it can be more error-prone (Budd et al. 33

1998). These errors may be conceptual (e.g., implementing the wrong function for a given task), 34

programmatic (e.g., indexing the wrong column of a data frame), or syntactic (e.g., the incorrect 35

spelling of a statement or function). Although UI-based software is also prone to conceptual 36

errors, programmatic and syntactic errors are more common in code-based software. These 37

errors can contribute to a lack of reproducibility or to the propagation of incorrect results (see 38

Obels et al. 2020 for a review of code and data in psychology). Indeed, several high profile 39

retractions have centred on these types of mistakes (Miller 2006; Ma and Chang 2007; Bolnick 40

and Paull 2009; Huijgen et al. 2012; Williams and Bürkner 2020). One way to minimise potential 41

errors, besides carefully annotating code and following best coding practices, is to undergo a 42

process of code review. However, unlike in some disciplines (such as in computer science and 43

software development) where code review is routinely implemented (Nelson and Schumann 44

2004; Badampudi et al. 2019), it is noticeably absent from the research and publication 45

processes in other academic disciplines that rely on code to make inferences and predictions 46

(Indriasari et al., 2020), including ecology and evolutionary biology. 47

 48

3

To address this, we advocate for a fundamental shift in research culture that brings code review 49

into all stages of the research process, as reviewing of code is necessary to facilitate error 50

correction and to confirm the reproducibility of reported results. This is particularly important as 51

analyses are becoming ever more complicated, especially in the fields of ecology and 52

evolutionary biology (Touchon and McCoy 2016). But how can we implement code review? By 53

whom, when, and how can it take place? In this paper, we provide some suggestions about how 54

to conduct a code review and how to produce code that facilitates this form of review. Finally, 55

we discuss the application of code review throughout the entire process of publication, from the 56

early stages of pre-publishing right through to after work is published. Although we focus mainly 57

on issues and techniques related to the R and Python coding languages due to their popularity 58

in the fields of ecology and evolutionary biology (Mislan et al. 2016; Lai et al. 2019), the 59

concepts and principles we discuss are widely applicable. 60

 61

What should code review evaluate? 62

Code review is the process of either formally (as part of the peer review process) or informally 63

(as coauthors or colleagues) checking and evaluating each other’s code. It is critical to help 64

avoid conceptual, programmatic, and syntactic errors in code and can take place at any stage of 65

the research cycle; pre-submission, during formal peer review, or post-publication. Although the 66

manner and scope in which code review occurs may vary depending on the position in the 67

research cycle, the core priorities remain the same: to ensure code is as reported in methods, is 68

able to successfully run, is reliable, and is able to reproduce stated results 69

 70

Below we describe these key priorities as the four R’s of code review (Figs. 1 and 2): 71

 72

Is the code as Reported? 73

4

Code is a key research output and a critical component of scientific methodology. As such, open 74

code accompanying written methods sections is becoming more common, following similar 75

pushes for Open and FAIR data (Lamprecht et al. 2020). Therefore, it is imperative that code is 76

checked for consistency when presented with the corresponding manuscript. These questions 77

help us avoid conceptual errors in code. Does the code match the description of what is 78

“Reported” within the methods section (Fig. 1)? Ensuring code matches the methods reported 79

is imperative to evaluate whether the code is doing what is stated in the manuscript and what it 80

is intended to do by the user. For instance, methods may state that an analysis uses a 81

generalised linear model with Poisson error, but the code instead fits a Gaussian error structure. 82

Reviewing for this mismatch must be part of code review. In addition, and equally important for 83

reproducibility is whether the relevant packages (with appropriate version numbers) are stated 84

somewhere in the manuscript? In general, it is good practice to, at the very least, list the 85

packages (with version numbers) that are integral to the analysis or to visualisation in the 86

manuscript. These can be obtained by using the “citation()” function in R or using the 87

“setuptools” package in Python. A full list of all packages used (and versions), for instance 88

those involved with cleaning and tidying of data, could be given elsewhere such as in an 89

associated .R or .py file. 90

 91

Does the code Run? 92

Even if code matches the methodology reported in a paper, this does not mean the code is 93

executable (i.e. can “Run”). Programmatic and syntactic errors can make code fail to rerun. For 94

example, code will not be able to be run (Fig. 1) if the appropriate packages are not listed 95

(and thus not installed) or if there are spelling mistakes. Data sharing, where possible, should 96

accompany code sharing, so that code can be fully rerun with the original data. If data sharing is 97

not possible, some simulated data or a data snippet should be provided so that the code can be 98

5

rerun. In cases where it would take a long period of time to rerun code (for instance with some 99

forms of Bayesian modelling), the code should be accompanied with appropriate model outputs 100

(readily provided by the author, see below “Output reproducibility”). 101

 102

Is the code Reliable? 103

Errors can still propagate through code that runs and produces an output, because code can 104

produce incorrect results in a reproducible manner (i.e. every time the code is run). For 105

example, if code selects or modifies the wrong column in a dataset, the code will still run, but 106

produce a reproducible yet inaccurate result (i.e. the code is not “Reliable”). This type of error 107

could easily be conceptual, arising from a misunderstanding of the dataset, or programmatic, 108

such as from indexing by number and mistaking the column order. Although some coding 109

techniques, such as explicitly indexing by column name, can help avoid many of these 110

mistakes, this type of error is common and also extremely difficult to pick up by anyone without 111

deep familiarity with the dataset and code. These errors are thought to scale with the number 112

and complexity of code (Lipow 1982). Although intrinsically linked to evaluating whether code 113

can be run (the second “R”), evaluating code reliability means not only ensuring that the code 114

runs to completion without error, but examining intermediate outputs of the code to ensure there 115

are no mistakes. The functions “identical()” in R and “numpy.array_equal()” in Python can be 116

useful at this stage of code review to compare object similarity between newly-generated and 117

previously-saved intermediate outputs. 118

 119

Are results Reproducible? 120

The last “R” of code review builds on the previous code review stages, and is perhaps the most 121

fundamental: can the code produce the output, and thus support the conclusions, given in the 122

paper (Goodman et al. 2016)? As several recent papers have highlighted (Archmiller et al. 123

6

2020; Obels et al. 2020; Errington et al. 2021; Minocher et al. 2021; Tiwari et al. 2021), 124

reproducibility in research results is often very low. Therefore, the final step of code review is 125

ensuring that final outputs when code is rerun match those reported in analysis and results 126

sections. With that said, at times obtaining the exact same result is not possible. Some level of 127

tolerance must therefore be applied especially when dealing with stochastic methods in which 128

parameter estimates will change between subsequent runs. This can occur for example if the 129

“set.seed()” function in R or “random.seed” function in Python has not been used prior to 130

stochastic sampling. Providing model outputs can go some way in helping with this (see above), 131

however it does not allow for the code to be explicitly run to see if you can obtain similar results 132

as stated in the paper (regardless of potential time taken). In this case, newly generated results 133

should be assessed to see if they matched (and how closely) to the conclusion (the direction 134

and significance level) and the numbers (intervals matching within one significant figure) of the 135

stated results (Archmiller et al. 2020). A useful example of this is also given in the 136

supplementary material of Archmiller et al. (2020), in which a mean of 4.12 and interval of 3.45 137

to 4.91 reproduces the conclusion and numbers of a study with a mean of 4.00 and interval of 138

3.3 to 5.0. Similar conclusions would be drawn if these means (and CIs) were higher (e.g., 6.5, 139

6.0 to 7.0), but the numbers would not be considered quantitatively reproduced. On the other 140

hand, the conclusions and numbers would not be reproduced if the model instead produced a 141

mean of 4.1 with an interval of -1 to 8.4 (as the confidence interval here overlaps with 0). It is 142

worth noting and mentioning in your review how closely the numbers and conclusion matched 143

with the reported results. 144

 145

 146

 147

 148

 149

7

 150

Figure 1. The four “R’s of code review. 151

 152

8

 153

Figure 2. An example peer code review flowchart. 154

9

Setting up your code for effective code review 155

Code review should evaluate if code matches reported methods, whether code runs and is 156

reliable, and lastly, if results can be reproduced. But in order for these questions to be 157

addressed, code must be written and shared in a way that it is possible for someone else to 158

rerun an analysis; both to allow for code to be reviewed and to be reused in the future when 159

properly maintained and contained (see Boettiger 2015). For this to happen, all necessary 160

scripts must be shared along with appropriate metadata indicating how the scripts interact with 161

one another, along with describing all other necessary software and appropriate versions. Often, 162

researchers lack formal training in coding, and learn to code in an ad-hoc fashion that excludes 163

training on general styling, appropriate use of workflows, and project organisation. As a result, 164

researchers may often not be aware of the steps necessary to set up code for a project in a 165

manner that reflects best coding practices. Therefore, below we list key principles (Fig. 3) that 166

will help make code reviewable at any stage of the research cycle. 167

 168

Project organisation 169

Every project needs some form of directory organisation and folder structure. This is likely to be 170

largely driven by the function and form that your research takes, but an efficient and transparent 171

folder structure that keeps raw data separate from code and intermediate outputs should be 172

created. This helps to ensure that raw data is not accidentally modified or overwritten if and 173

when any data cleaning or wrangling techniques are applied. A simple folder and file structure 174

such as this will go a long way to help researchers from all coding skill levels understand the 175

order and flow of the data analysis. Particularly when the user creates sequentially labelled 176

subfolders and scripts where someone following the code knows which order things must be run 177

(e.g., files beginning with “01…”) in addition to dividing and naming folders to fit their purpose 178

10

(e.g., data, scripts, function). Several incredibly useful examples already exist (Cooper 2017; 179

Alston and Rick 2021; Chure 2023; see also https://coderefinery.github.io/reproducible-180

research/ and https://lakens.github.io/statistical_inferences/14-181

computationalreproducibility.html). Project code should be stored and available on any data or 182

code repository. Another option for organising a project is to use pipeline tools (for instance see 183

https://github.com/pditommaso/awesome-pipeline), such as the targets R package (Landau 184

2021) or the Luigi package in Python (see https://www.martinalarcon.org/2018-12-31-a-185

reproducible-science/). These tools allow users to automate the process of data analysis, taking 186

a raw dataset through the steps necessary to produce data analysis and visualisation. The 187

advantage to the user is that the code is compartmentalised into logical steps (e.g. import raw 188

data, data cleaning, data wrangling, data analysis, data visualisation) and any changes to the 189

code only affects the downstream steps. For example, if we change the type of analysis we do, 190

we do not need to re-import the data or clean it again. This saves time in computation 191

(especially important for complex long running pipelines) but is also advantageous for 192

reproducibility, and sharing and reuse of code. Reviewers can effectively re-run the steps 193

needed to produce a data analysis or figure without having to re-run time consuming pre-194

processing steps. 195

 196

Project and input metadata 197

Projects will instantly have better organisation and increased reproducibility when users know 198

how they should work through the various folders and subfolders. A README text file and 199

additional metadata gives users the signposts required to facilitate rerunning of code. This can 200

contain information on the packages used (e.g. the package name and version number), along 201

with a detailed description of the various data files, project aim, contact information of the 202

authors, and any relevant licences in place for code or for data (see 203

https://choosealicense.com/licenses/ for more information). Furthermore, key information about 204

11

source data is critical for reproducing analysis code. If sharing data is inappropriate to your 205

study (for example when dealing with sensitive confidential data) then a user can provide a 206

sample of simulated data or a primer so that the code can be checked and read (Quintana 207

2020; Hennessy et al. 2022). However, if data is readily available, then providing detailed 208

information about what the data is (preferably in an associated README) and where the data is 209

(e.g., stored on a free data repository such as The Open Science Framework or OSF, Zenodo, 210

or Dryad) should be provided. Metadata should include information such as where the data 211

comes from, who the owners are, as well as what each column header entails, and any relevant 212

acronyms or shorthand notation (ideally following FAIR principles, so data is Findable, 213

Accessible, Interoperable, and Reusable; see Lamprecht et al. (2020). This is particularly useful 214

when controlled vocabulary is used throughout, and R packages such as codemeta (Boettiger 215

2017) and dataReporter (Petersen and Ekstrøm 2019) or Python packages such as 216

CodeMetaPy (Gompel 2023) and cookiecutter (Feldroy 2022) can help with this. Lastly, it is also 217

crucial to explain what possible data cleaning or curation occurred before the analysis code. For 218

instance, outlining what previous data manipulation or pre-processing steps have been taken to 219

obtain the data in its current state or when an intermediate data file was used. 220

 221

Code Readability 222

Good readability of code is extremely important in enabling effective code review. Several quick 223

solutions exist to provide increased clarity: explicitly calling packages (via a package’s 224

namespace, e.g. package::function() in R or package.module.function in Python), using relative 225

file paths (preferably with an associated R project file, if using R with RStudio or in a virtual 226

environment if using Python), removing redundant packages, and writing analysis code with 227

clear subheadings and easy-to-understand object names. Best practice coding tips, aided by R 228

packages such as styler (Müller and Walthert 2020) or pycodestyle in Python (Rocholl 2022) can 229

format code in a number of standardised styles (e.g., Google, tidyverse in R, or PeP8 in Python) 230

12

with a single line of code or a click of a button. Fortunately, several recent guides and primers 231

have been written that focus on increasing coding cleanliness (Sweigart 2020; Filazzola and 232

Lortie 2022; see Table 1 from Hunter-Zinck et al. 2021), so we urge the reader to consult these 233

guidelines for tips and advice on improving code readability. 234

 235

Output reproducibility 236

One of the key principles and requirements of code is the ability to correctly reproduce 237

published graphs, statistics, and results. In order to do so, a user’s code needs to provide a 238

clear link between each section of the code and the various reported graphs and outputs to 239

enable comparison of code to paper and to results. This should then facilitate checking that the 240

results produced by the code match the stated results in the publication. In some cases, 241

reproducing analysis from models can take considerable time to complete, for instance when re-242

running complicated Bayesian models. In this case the “exact” reproducibility of results is not 243

always possible if code must simulate a stochastic process (e.g., Monte Carlo sampling 244

methods). In this case using set seed (see above) or saving simulation outputs still allows for 245

reproducible results (e.g., with the “saveRDS” function in R or the “pickle.dump” function in 246

Python) and can enable code reviewers to check the reproducibility of the reported results. 247

 248

13

 249

Figure 3. A basic workflow for reviewable code that can be adopted from the onset of a project. 250

 251

Pre-Publication: Setting up a code review group 252

Informal training coupled with insufficient time and incentives (Touchon and McCoy 2016), 253

means that coding and subsequent analysis are often the responsibility of a single member of a 254

team throughout a project's entire lifetime. This is in stark contrast to the research-team wide 255

collaboration typical when developing methodology and experimental design. The often 256

14

individual nature of writing research code is part of what makes pre-publication code review so 257

unlikely, but all the more critical. Although code review has a place in the formal peer review 258

process and post-publication, one of the most important places for code review to take place is 259

before publication. 260

To achieve this, there must be a culture of peer code review among research teams. One of the 261

most effective methods by which researchers can establish a culture of peer code review in 262

research labs or among colleagues is by setting up a code review group. Here we draw on our 263

experience building a code review club (which we set up in collaboration with the Society for 264

Open, Reliable, and Transparent Ecology and Evolution, SORTEE) to present tips for 265

establishing this type of community. In particular, we focus on advice for removing the barriers 266

people have towards sharing their code and receiving feedback; be these due to a lack of time 267

or incentive, a lack of technical knowledge and unclear workflows, or due to social pressures 268

and the fear of being judged by peers (Gomes et al. 2022). 269

 270

Encourage collaboration from the start of a project 271

Code review can begin as early as the first initiation of a project and play a role beyond 272

publication; it is useful to keep continuous code collaboration at all stages of a manuscript. 273

Collaboration can be facilitated through various code-sharing platforms such as GitHub where 274

users can submit and comment on pull requests (see Braga et al. 2023). At SORTEE we 275

established a peer review group and used GitHub issues to summarise discussion of an 276

individual’s code during an interactive zoom session (see https://github.com/SORTEE/peer-277

code-review/issues/8 for an example including a summary). However, it is important to find a 278

method of facilitating code review that works for your group. 279

 280

Set clear goals for the review 281

15

Setting out what you want to achieve with each code review session is particularly important 282

when it comes to organising peer review meetings. Is the focus on general learning and 283

improving readability or is it to error-check and scrutinise the reproducibility of your code? 284

Having a clear structure and goal for each peer review session is important in order to focus 285

comments and advice to address the precise reason for review. Similarly, unless the aim of a 286

code review is to evaluate different analytical options, it would be better to leave methodological 287

questions aside to ensure code review is streamlined. 288

 289

Normalize coding errors and establish a judgement-free environment 290

Code review volunteers often feel very anxious about showing code that may have errors. It is 291

therefore vital to normalise the existence of errors and highlight that perfection is never possible. 292

It is also useful to stress that there is no such thing as bad code (Barnes 2010) and there are 293

usually multiple ways to approach the same problem (Silberzahn et al. 2018; Botvinik-Nezer et 294

al. 2020). One of the most important statements for peer code review is that there is no single 295

way to code. It is important for code review not to get bogged down modifying or homogenising 296

style; as long as code is readable, then coding diversity should be encouraged. It is important to 297

create a relaxed environment where people can learn and correct mistakes without judgement 298

or fear of failure and everyone in the peer review group should have a chance to contribute and 299

speak. 300

 301

Carefully consider group size 302

Usually a smaller group is a friendly starting point for peer code review because it allows people 303

to feel more comfortable speaking up and participating. Small peer review groups (potentially 304

even one-to-one) can better facilitate peer-to-peer learning and more focused review of code. 305

However, there are also times when larger groups are more effective, such as having wider 306

discussions on general themes and tips. It is worth considering the aims in establishing the 307

16

group to help guide the ideal size. For instance, if your goal is to facilitate more general 308

discussions, then a big group size is more likely to enable this. However, if your goal is to 309

enable more focused review of code, then perhaps it is better to reduce the size of the peer 310

review group for this purpose. 311

 312

Consider the incentives 313

Code review, outside of paper submission and the formal peer review process, can have a large 314

impact on an individual’s project, from error-checking, to validation of appropriate statistical 315

analyses. This then poses the question: what incentives should reviewers of code get? If 316

deemed appropriate, the reviewer could be acknowledged using the MeRIT (Method Reporting 317

with Initials for Transparency) system (Nakagawa et al. 2023), “e.g., J.L.P. ran a linear mixed 318

model with a Gaussian error distribution. Code was checked by E.I.C.”. In some circumstances, 319

it may even be appropriate for the reviewer to obtain co-authorship of the paper, if the review 320

fundamentally altered the project and subsequent paper. Incentives should be relative to the 321

impact of the reviewer on the project. 322

 323

During Publication: Formal code review 324

One of the most crucial aspects of code review can take place during the formal peer review 325

process. This is where reviewers are able to carefully follow and understand the logic of 326

analyses, much like the flow of writing from the introduction to the discussion of a paper 327

(Powers and Hampton 2019). In some journals, such as The Royal Society (see Data sharing 328

and mining | Royal Society 2023), Behavioural Ecology and Sociobiology (Bakker and Traniello 329

2020), and The American Naturalist (see Bolnick 2022) both code and data are available for 330

reviewers to assess right from the submission stage. In some cases, such as in Journal of Open 331

Source Software, the entire process of formal peer review, including that of code and 332

17

manuscript is hosted on GitHub and implemented via GitHub issues (see 333

https://github.com/openjournals/joss-reviews/issues for several useful examples). This, as 334

Fernández-Juricic (2021) points out, has a number of benefits. For authors, providing code 335

during peer review could lead to an increase in the quality of the manuscript, and for reviewers, 336

available code allows for a far deeper insight into the manuscript as there is a clearer link 337

between experimental methodology and statistical analysis (the First R; code as “Reported”). 338

These benefits are substantial and could ultimately contribute to the adoption of code review 339

during the publication process. 340

However, beyond the availability of code during submission, there are numerous other hurdles 341

before effective and in-depth code review can be reasonably formalised as part of the peer 342

review process. One of the most pressing issues is finding suitable individuals to review code 343

given there is already a lack of willing reviewers in the current system. It is reasonable to expect 344

reviewers to check that code is as reported, but anything more in-depth could take up the time 345

of already overworked academics, who may not necessarily have the exact expertises needed 346

to check other people’s code. This needs to be fully considered and sufficiently addressed 347

before code review becomes a standard part of the peer review process. 348

 349

Post-Publication: Reviewing code after publication 350

Reviewing code post-publication is another facet of code review but one that has been much 351

less discussed. Although it does not prevent publication of incorrect results, it does enable 352

checking if code is indeed adhering to the R’s listed above. However, the initial question should 353

be, has all code used to produce the results been made available? This can either be a yes 354

(stored and available on any data or code repository) or a no. Fortunately, an increasing number 355

18

of journals are now requesting code be shared alongside scientific articles (Culina et al. 2020), 356

such as in supplemental materials or by linking to an online repository. This then allows for any 357

open and shared code to be checked and verified alongside methods section statements 358

(Stodden, 2011; Light et al., 2014). However, unlike data, code is a lot less likely to be made 359

available regardless of these mandatory journal policies. As Figure 2 from Culina et al. (2020) 360

shows, although the number of journals that possesses a mandatory code rule is increasing 361

(from 15% to 79%; from 2015 to 2020) the number of articles that actually provide open code is 362

still around 27% (although this number varies considerably among journals). This suggests that 363

not many authors are adhering to this policy, which is an impediment to computational 364

reproducibility (Culina et al. 2020). However, there is hope to be found here. As Culina et al. 365

have shown, journals requiring code to be shared are increasing in number yearly and, as a 366

field, we already have improved substantially (Mislan et al. 2016; Culina et al. 2020; Jenkins et 367

al. 2023). In some cases, journals have implemented far stricter (and rightly so) data and code 368

requirements along with assigning corresponding data editors (see Bolnick 2022). However, the 369

first necessary step is for all journals to make it a requirement for both code and data to be 370

present from the very start of the submission stage (Powers and Hampton 2019; Fernández-371

Juricic 2021). But what happens if the code is not available? In this case, the main option is to 372

reach out to the corresponding author (or perhaps the journal itself) and ask if the code could be 373

made available; similar to data being made available “upon reasonable request”. 374

The next part is relevant to the previous section above (“What should code review evaluate?). If 375

you find that the code associated with a manuscript does not adhere to any of the “R”s listed 376

above, then the first step is to contact the corresponding author (or if the paper uses the MeRIT 377

system, the person who actually conducted the analysis; Nakagawa et al. 2023). This could be 378

in the form of a GitHub issue if there is a repository for the code or an email (see Fig. 2). If there 379

is indeed an error in code, and it is not due to differences in software version (e.g., differences 380

19

in R and package versions) or due to inherent stochasticity (e.g., simulations or MCMC 381

sampling), then the authors should be given a chance to contact the journal themselves to 382

highlight and correct their mistakes. For instance, as per American Naturalist’s stance (see 383

Bolnick, 2022), authors who contact the journal to correct code or data errors will not be 384

penalised and corrections are encouraged (when warranted). However, in cases where updated 385

results would alter the narrative of a published paper, corrections may be more difficult to address 386

without newer methods of documenting changes. Publication versioning or “living” documents may 387

present a solid first step in such a scenario (Kane and Amin 2023). By encouraging post-388

publication code review, we can both decrease the proliferation of coding errors and also 389

increase the reliability of published science. 390

Concluding remarks 391

In this brief overview, we have provided a basic set of guidelines for peer code review, 392

recommendations for producing reviewable code, and considerations for how it should be 393

adopted at every level of research throughout the publication process. The principles and advice 394

listed here should form a baseline for code review that should be improved upon. We hope that 395

this encourages coders at all levels to try and promote more reproducible, transparent, and 396

open coding practices. In addition, we hope that this provides a primer to start a code reviewing 397

club of your own! 398

 399

Acknowledgements 400

This work began during workshops at the 2021 and 2022 annual conferences of the Society for 401

Open, Reliable, and Transparent Ecology and Evolutionary biology run by E.I-C. and S.M.W. 402

This work was partially funded by the Center of Advanced Systems Understanding (CASUS), 403

which is financed by Germany's Federal Ministry of Education and Research (BMBF) and by the 404

20

Saxon Ministry for Science, Culture and Tourism (SMWK) with tax funds on the basis of the 405

budget approved by the Saxon State Parliament. C.H.F. and J.M.C. were supported by NSF 406

IIBR 1915347. 407

 408

References 409

Alston, J. M., and J. A. Rick. 2021. A Beginner’s Guide to Conducting Reproducible Research. 410

Bulletin of the Ecological Society of America 102:1–14. 411

Archmiller, A. A., A. D. Johnson, J. Nolan, M. Edwards, L. H. Elliott, J. M. Ferguson, F. Iannarilli, 412

et al. 2020. Computational Reproducibility in The Wildlife Society’s Flagship Journals. The 413

Journal of Wildlife Management 84:1012–1017. 414

Badampudi, D., R. Britto, and M. Unterkalmsteiner. 2019. Modern code reviews - Preliminary 415

results of a systematic mapping study. Pages 340–345 inProceedings of the Evaluation and 416

Assessment on Software Engineering, EASE ’19. Association for Computing Machinery, New 417

York, NY, USA. 418

Bakker, T. C. M., and J. F. A. Traniello. 2020. Ensuring data access, transparency, and 419

preservation: mandatory data deposition for Behavioral Ecology and Sociobiology. Behavioral 420

Ecology and Sociobiology 74:132. 421

Barnes, N. 2010. Publish your computer code: it is good enough. Nature 467:753. 422

Boettiger, C. 2015. An introduction to Docker for reproducible research. ACM SIGOPS 423

Operating Systems Review 49:71–79. 424

———. 2017. Generating CodeMeta Metadata for R Packages. The Journal of Open Source 425

Software 2:454. 426

Bolnick, D. n.d. EIC Update: American Naturalist policy on data and code archiving. 427

Bolnick, D. I., and J. S. Paull. 2009. Morphological and dietary differences between individuals 428

21

are weakly but positively correlated within a population of threespine stickleback. Evolutionary 429

Ecology Research 11:1217–1233. 430

Botvinik-Nezer, R., F. Holzmeister, C. F. Camerer, A. Dreber, J. Huber, M. Johannesson, M. 431

Kirchler, et al. 2020. Variability in the analysis of a single neuroimaging dataset by many teams. 432

Nature 582:84–88. 433

Braga, P. H. P., K. Hébert, E. J. Hudgins, E. R. Scott, B. P. M. Edwards, L. L. Sánchez Reyes, 434

M. J. Grainger, et al. 2023. Not just for programmers: How GitHub can accelerate collaborative 435

and reproducible research in ecology and evolution. Methods in Ecology and Evolution 1–17. 436

Budd, J. M., M. Sievert, and T. R. Schultz. 1998. Phenomena of retraction: reasons for 437

retraction and citations to the publications. JAMA 280:296–297. 438

Chure, G. 2023. Git + GitHub As A Platform For Reproducible Research. Python. 439

Cooper, N. 2017. A Guide to Reproducible Code in Ecology and Evolution. 440

Culina, A., I. van den Berg, S. Evans, and A. Sánchez-Tójar. 2020. Low availability of code in 441

ecology: A call for urgent action. PLOS Biology 18:e3000763. 442

Data sharing and mining | Royal Society. n.d. 443

Errington, T. M., A. Denis, N. Perfito, E. Iorns, and B. A. Nosek. 2021. Challenges for assessing 444

replicability in preclinical cancer biology. (P. Rodgers & E. Franco, eds.)eLife 10:e67995. 445

Feldroy, A. 2022. cookiecutter: A command-line utility that creates projects from project 446

templates, e.g. creating a Python package project from a Python package project template. 447

Python. 448

Fernández-Juricic, E. 2021. Why sharing data and code during peer review can enhance 449

behavioral ecology research. Behavioral Ecology and Sociobiology 75:103. 450

Filazzola, A., and C. Lortie. 2022. A call for clean code to effectively communicate science. 451

Methods in Ecology and Evolution. 452

Gomes, D. G. E., P. Pottier, R. Crystal-Ornelas, E. J. Hudgins, V. Foroughirad, L. L. Sánchez-453

Reyes, R. Turba, et al. 2022. Why don’t we share data and code? Perceived barriers and 454

22

benefits to public archiving practices. Proceedings of the Royal Society B: Biological Sciences 455

289:20221113. 456

Gompel, M. van. 2023. CodeMetaPy: Generate and manage CodeMeta software metadata. 457

Python. 458

Goodman, S. N., D. Fanelli, and J. P. A. Ioannidis. 2016. What does research reproducibility 459

mean? Science Translational Medicine 8. 460

Hennessy, E. A., R. L. Acabchuk, P. A. Arnold, A. G. Dunn, Y. Z. Foo, B. T. Johnson, S. R. 461

Geange, et al. 2022. Ensuring Prevention Science Research is Synthesis-Ready for Immediate 462

and Lasting Scientific Impact. Prevention Science 23:809–820. 463

Huijgen, R., S. M. Boekholdt, B. J. Arsenault, W. Bao, J.-M. Davaine, F. Tabet, F. Petrides, et 464

al. 2012. RETRACTED: Plasma PCSK9 Levels and Clinical Outcomes in the TNT (Treating to 465

New Targets) Trial: A Nested Case-Control Study. Journal of the American College of 466

Cardiology 59:1778–1784. 467

Hunter-Zinck, H., A. F. de Siqueira, V. N. Vásquez, R. Barnes, and C. C. Martinez. 2021. Ten 468

simple rules on writing clean and reliable open-source scientific software. PLOS Computational 469

Biology 17:e1009481. 470

Jenkins, G. B., A. P. Beckerman, C. Bellard, A. Benítez-López, A. M. Ellison, C. G. Foote, A. L. 471

Hufton, et al. 2023. Reproducibility in ecology and evolution: Minimum standards for data and 472

code. Ecology and Evolution 13:e9961. 473

Kane, A., and B. Amin. 2023. Amending the literature through version control. Biology Letters 474

19:20220463. 475

Lai, J., C. J. Lortie, R. A. Muenchen, J. Yang, and K. Ma. 2019. Evaluating the popularity of R in 476

ecology. Ecosphere 10:e02567. 477

Lamprecht, A.-L., L. Garcia, M. Kuzak, C. Martinez, R. Arcila, E. Martin Del Pico, V. Dominguez 478

Del Angel, et al. 2020. Towards FAIR principles for research software. (P. Groth, P. Groth, & M. 479

Dumontier, eds.)Data Science 3:37–59. 480

23

Landau, W. M. 2021. The targets R package: a dynamic Make-like function-oriented pipeline 481

toolkit for reproducibility and high-performance computing. Journal of Open Source Software 482

6:2959. 483

Lipow, M. 1982. Number of Faults per Line of Code. IEEE Transactions on Software 484

Engineering SE-8:437–439. Presented at the IEEE Transactions on Software Engineering. 485

Ma, C., and G. Chang. 2007. Retraction for Ma and Chang, Structure of the multidrug resistance 486

efflux transporter EmrE from Escherichia coli. Proceedings of the National Academy of Sciences 487

104:3668–3668. 488

Miller, G. 2006. A Scientist’s Nightmare: Software Problem Leads to Five Retractions. Science 489

314:1856–1857. 490

Minocher, R., S. Atmaca, C. Bavero, R. McElreath, and B. Beheim. 2021. Estimating the 491

reproducibility of social learning research published between 1955 and 2018. Royal Society 492

Open Science 8:210450. 493

Mislan, K. A. S., J. M. Heer, and E. P. White. 2016. Elevating The Status of Code in Ecology. 494

Trends in Ecology & Evolution 31:4–7. 495

Müller, K., and L. Walthert. 2020. Styler: Non-invasive pretty printing of R code. R package 496

version 1.3. 2. 497

Nakagawa, S., E. R. Ivimey-Cook, M. J. Grainger, R. E. O’Dea, S. Burke, S. M. Drobniak, E. 498

Gould, et al. 2023. Method Reporting with Initials for Transparency (MeRIT) promotes more 499

granularity and accountability for author contributions. Nature Communications 14:1788. 500

Nelson, S., and J. Schumann. 2004. What makes a code review trustworthy? Page 10 pp.- 501

in37th Annual Hawaii International Conference on System Sciences, 2004. Proceedings of the. 502

Presented at the 37th Annual Hawaii International Conference on System Sciences, 2004. 503

Proceedings of the. 504

Obels, P., D. Lakens, N. A. Coles, J. Gottfried, and S. A. Green. 2020. Analysis of Open Data 505

and Computational Reproducibility in Registered Reports in Psychology. Advances in Methods 506

24

and Practices in Psychological Science 3:229–237. 507

Peikert, A., and A. M. Brandmaier. 2021. A Reproducible Data Analysis Workflow With R 508

Markdown, Git, Make, and Docker. Quantitative and Computational Methods in Behavioral 509

Sciences 1–27. 510

Peikert, A., C. J. van Lissa, and A. M. Brandmaier. 2021. Reproducible Research in R: A 511

Tutorial on How to Do the Same Thing More Than Once. Psych 3:836–867. 512

Petersen, A. H., and C. T. Ekstrøm. 2019. dataMaid : Your Assistant for Documenting 513

Supervised Data Quality Screening in R. Journal of Statistical Software 90. 514

Powers, S. M., and S. E. Hampton. 2019. Open science, reproducibility, and transparency in 515

ecology. Ecological Applications 29:e01822. 516

Quintana, D. S. 2020. A synthetic dataset primer for the biobehavioural sciences to promote 517

reproducibility and hypothesis generation. eLife 9:e53275. 518

Rocholl, J. C. 2022. pycodestyle: Python style guide checker. Python. 519

Silberzahn, R., E. L. Uhlmann, D. P. Martin, P. Anselmi, F. Aust, E. Awtrey, Š. Bahník, et al. 520

2018. Many analysts, one data set: Making transparent how variations in analytic choices affect 521

results. Advances in Methods and Practices in Psychological Science 1:337–356. 522

Sweigart, A. 2020. Beyond the Basic Stuff with Python: Best Practices for Writing Clean Code. 523

No Starch Press. 524

Tiwari, K., S. Kananathan, M. G. Roberts, J. P. Meyer, M. U. Sharif Shohan, A. Xavier, M. 525

Maire, et al. 2021. Reproducibility in systems biology modelling. Molecular Systems Biology 526

17:e9982. 527

Touchon, J. C., and M. W. McCoy. 2016. The mismatch between current statistical practice and 528

doctoral training in ecology. Ecosphere 7:e01394. 529

Williams, D., and P.-C. Bürkner. 2020. Coding Errors Lead to Unsupported Conclusions: A 530

critique of Hofmann et al. (2015). Meta-Psychology 4. 531

