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Abstract 13 

Code review increases reliability and improves reproducibility of research. As such, code review 14 

is an inevitable step in software development and is common in subjects such as computer 15 

science. However, despite its importance, code review is noticeably lacking in ecology and 16 

evolutionary biology. This is problematic as it facilitates the propagation of coding errors and a 17 

reduction in reproducibility of published results. To address this, we provide a detailed 18 

commentary on how to effectively review code, how to set up your project to enable this form of 19 

review and detail its possible implementation at several stages throughout the research 20 

process. This guide serves as a primer for code review, and adoption of the principles and 21 

advice here will go a long way in promoting more open, reliable, and transparent ecology and 22 

evolutionary biology. 23 

 24 
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Introduction 25 

Across scientific disciplines, researchers increasingly rely on code written in open-source 26 

software, such as R and Python, to clean, manipulate, visualise, and analyse data (Lai et al. 27 

2019; Peikert and Brandmaier 2021; Peikert et al. 2021). Such software allows for increased 28 

transparency and reproducibility compared to software that operates through point-and-click 29 

interfaces (“User Interface” or “UI-based”), such as Minitab and SPSS (Obels et al. 2020). One 30 

of the key benefits of this code-based software is flexibility, because researchers can tailor 31 

analyses to their specific research needs which would otherwise be unavailable. However, the 32 

flexibility of code comes at a cost, as it means that it can be more error-prone (Budd et al. 33 

1998). These errors may be conceptual (e.g., implementing the wrong function for a given task), 34 

programmatic (e.g., indexing the wrong column of a data frame), or syntactic (e.g., the incorrect 35 

spelling of a statement or function). Although UI-based software is also prone to conceptual 36 

errors, programmatic and syntactic errors are more common in code-based software. These 37 

errors can contribute to a lack of reproducibility or to the propagation of incorrect results (see 38 

Obels et al. 2020 for a review of code and data in psychology). Indeed, several high profile 39 

retractions have centred on these types of mistakes (Miller 2006; Ma and Chang 2007; Bolnick 40 

and Paull 2009; Huijgen et al. 2012; Williams and Bürkner 2020). One way to minimise potential 41 

errors, besides carefully annotating code and following best coding practices, is to undergo a 42 

process of code review. However, unlike in some disciplines (such as in computer science and 43 

software development) where code review is routinely implemented (Nelson and Schumann 44 

2004; Badampudi et al. 2019), it is noticeably absent from the research and publication 45 

processes in other academic disciplines that rely on code to make inferences and predictions 46 

(Indriasari et al., 2020), including ecology and evolutionary biology.  47 

 48 
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To address this, we advocate for a fundamental shift in research culture that brings code review 49 

into all stages of the research process, as reviewing of code is necessary to facilitate error 50 

correction and to confirm the reproducibility of reported results. This is particularly important as 51 

analyses are becoming ever more complicated, especially in the fields of ecology and 52 

evolutionary biology (Touchon and McCoy 2016). But how can we implement code review? By 53 

whom, when, and how can it take place? In this paper, we provide some suggestions about how 54 

to conduct a code review and how to produce code that facilitates this form of review. Finally, 55 

we discuss the application of code review throughout the entire process of publication, from the 56 

early stages of pre-publishing right through to after work is published. Although we focus mainly 57 

on issues and techniques related to the R and Python coding languages due to their popularity 58 

in the fields of ecology and evolutionary biology (Mislan et al. 2016; Lai et al. 2019), the 59 

concepts and principles we discuss are widely applicable.  60 

 61 

What should code review evaluate? 62 

Code review is the process of either formally (as part of the peer review process) or informally 63 

(as coauthors or colleagues) checking and evaluating each other’s code. It is critical to help 64 

avoid conceptual, programmatic, and syntactic errors in code and can take place at any stage of 65 

the research cycle; pre-submission, during formal peer review, or post-publication. Although the 66 

manner and scope in which code review occurs may vary depending on the position in the 67 

research cycle, the core priorities remain the same: to ensure code is as reported in methods, is 68 

able to successfully run, is reliable, and is able to reproduce stated results 69 

 70 

Below we describe these key priorities as the four R’s of code review (Figs. 1 and 2): 71 

 72 

Is the code as Reported? 73 
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Code is a key research output and a critical component of scientific methodology. As such, open 74 

code accompanying written methods sections is becoming more common, following similar 75 

pushes for Open and FAIR data (Lamprecht et al. 2020). Therefore, it is imperative that code is 76 

checked for consistency when presented with the corresponding manuscript. These questions 77 

help us avoid conceptual errors in code. Does the code match the description of what is 78 

“Reported” within the methods section (Fig. 1)?  Ensuring code matches the methods reported 79 

is imperative to evaluate whether the code is doing what is stated in the manuscript and what it 80 

is intended to do by the user. For instance, methods may state that an analysis uses a 81 

generalised linear model with Poisson error, but the code instead fits a Gaussian error structure. 82 

Reviewing for this mismatch must be part of code review.  In addition, and equally important for 83 

reproducibility is whether the relevant packages (with appropriate version numbers) are stated 84 

somewhere in the manuscript? In general, it is good practice to, at the very least, list the 85 

packages (with version numbers) that are integral to the analysis or to visualisation in the 86 

manuscript. These can be obtained by using the “citation()” function in R or using the 87 

“setuptools”  package in Python. A full list of all packages used (and versions), for instance 88 

those involved with cleaning and tidying of data, could be given elsewhere such as in an 89 

associated .R or .py file. 90 

 91 

Does the code Run?  92 

Even if code matches the methodology reported in a paper, this does not mean the code is 93 

executable (i.e. can “Run”). Programmatic and syntactic errors can make code fail to rerun. For 94 

example, code will not be able to be run (Fig. 1) if the appropriate packages are not listed 95 

(and thus not installed) or if there are spelling mistakes. Data sharing, where possible, should 96 

accompany code sharing, so that code can be fully rerun with the original data. If data sharing is 97 

not possible, some simulated data or a data snippet should be provided so that the code can be 98 
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rerun. In cases where it would take a long period of time to rerun code (for instance with some 99 

forms of Bayesian modelling), the code should be accompanied with appropriate model outputs 100 

(readily provided by the author, see below “Output reproducibility”).  101 

 102 

Is the code Reliable? 103 

Errors can still propagate through code that runs and produces an output, because code can 104 

produce incorrect results in a reproducible manner (i.e. every time the code is run). For 105 

example, if code selects or modifies the wrong column in a dataset, the code will still run, but 106 

produce a reproducible yet inaccurate result (i.e. the code is not “Reliable”). This type of error 107 

could easily be conceptual, arising from a misunderstanding of the dataset, or programmatic, 108 

such as from indexing by number and mistaking the column order. Although some coding 109 

techniques, such as explicitly indexing by column name, can help avoid many of these 110 

mistakes, this type of error is common and also extremely difficult to pick up by anyone without 111 

deep familiarity with the dataset and code. These errors are thought to scale with the number 112 

and complexity of code (Lipow 1982). Although intrinsically linked to evaluating whether code 113 

can be run (the second “R”), evaluating code reliability means not only ensuring that the code 114 

runs to completion without error, but examining intermediate outputs of the code to ensure there 115 

are no mistakes. The functions “identical()” in R and “numpy.array_equal()” in Python can be 116 

useful at this stage of code review to compare object similarity between newly-generated and 117 

previously-saved intermediate outputs.  118 

 119 

Are results Reproducible? 120 

The last “R” of code review builds on the previous code review stages, and is perhaps the most 121 

fundamental: can the code produce the output, and thus support the conclusions, given in the 122 

paper (Goodman et al. 2016)? As several recent papers have highlighted (Archmiller et al. 123 
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2020; Obels et al. 2020; Errington et al. 2021; Minocher et al. 2021; Tiwari et al. 2021), 124 

reproducibility in research results is often very low. Therefore, the final step of code review is 125 

ensuring that final outputs when code is rerun match those reported in analysis and results 126 

sections. With that said, at times obtaining the exact same result is not possible. Some level of 127 

tolerance must therefore be applied especially when dealing with stochastic methods in which 128 

parameter estimates will change between subsequent runs. This can occur for example if the 129 

“set.seed()” function in R or “random.seed” function in Python has not been used prior to 130 

stochastic sampling. Providing model outputs can go some way in helping with this (see above), 131 

however it does not allow for the code to be explicitly run to see if you can obtain similar results 132 

as stated in the paper (regardless of potential time taken). In this case, newly generated results 133 

should be assessed to see if they matched (and how closely) to the conclusion (the direction 134 

and significance level) and the numbers (intervals matching within one significant figure) of the 135 

stated results (Archmiller et al. 2020). A useful example of this is also given in the 136 

supplementary material of Archmiller et al. (2020), in which a mean of 4.12 and interval of 3.45 137 

to 4.91 reproduces the conclusion and numbers of a study with a mean of 4.00 and interval of 138 

3.3 to 5.0. Similar conclusions would be drawn if these means (and CIs) were higher (e.g., 6.5, 139 

6.0 to 7.0), but the numbers would not be considered quantitatively reproduced. On the other 140 

hand, the conclusions and numbers would not be reproduced if the model instead produced a 141 

mean of 4.1 with an interval of -1 to 8.4 (as the confidence interval here overlaps with 0). It is 142 

worth noting and mentioning in your review how closely the numbers and conclusion matched 143 

with the reported results. 144 

 145 

 146 

 147 

 148 

 149 
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  150 

Figure 1. The four “R’s of code review. 151 

 152 



8 

 153 

Figure 2. An example peer code review flowchart. 154 
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Setting up your code for effective code review 155 

Code review should evaluate if code matches reported methods, whether code runs and is 156 

reliable, and lastly, if results can be reproduced. But in order for these questions to be 157 

addressed, code must be written and shared in a way that it is possible for someone else to 158 

rerun an analysis; both to allow for code to be reviewed and to be reused in the future when 159 

properly maintained and contained (see Boettiger 2015). For this to happen, all necessary 160 

scripts must be shared along with appropriate metadata indicating how the scripts interact with 161 

one another, along with describing all other necessary software and appropriate versions. Often, 162 

researchers lack formal training in coding, and learn to code in an ad-hoc fashion that excludes 163 

training on general styling, appropriate use of workflows, and project organisation. As a result, 164 

researchers may often not be aware of the steps necessary to set up code for a project in a 165 

manner that reflects best coding practices. Therefore, below we list key principles (Fig. 3) that 166 

will help make code reviewable at any stage of the research cycle.  167 

 168 

Project organisation 169 

Every project needs some form of directory organisation and folder structure. This is likely to be 170 

largely driven by the function and form that your research takes, but an efficient and transparent 171 

folder structure that keeps raw data separate from code and intermediate outputs should be 172 

created. This helps to ensure that raw data is not accidentally modified or overwritten if and 173 

when any data cleaning or wrangling techniques are applied. A simple folder and file structure 174 

such as this will go a long way to help researchers from all coding skill levels understand the 175 

order and flow of the data analysis. Particularly when the user creates sequentially labelled 176 

subfolders and scripts where someone following the code knows which order things must be run 177 

(e.g., files beginning with “01…”) in addition to dividing and naming folders to fit their purpose 178 
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(e.g., data, scripts, function). Several incredibly useful examples already exist (Cooper 2017; 179 

Alston and Rick 2021; Chure 2023; see also https://coderefinery.github.io/reproducible-180 

research/ and https://lakens.github.io/statistical_inferences/14-181 

computationalreproducibility.html). Project code should be stored and available on any data or 182 

code repository. Another option for organising a project is to use pipeline tools (for instance see 183 

https://github.com/pditommaso/awesome-pipeline), such as the targets R package (Landau 184 

2021) or the Luigi package in Python (see https://www.martinalarcon.org/2018-12-31-a-185 

reproducible-science/). These tools allow users to automate the process of data analysis, taking 186 

a raw dataset through the steps necessary to produce data analysis and visualisation. The 187 

advantage to the user is that the code is compartmentalised into logical steps (e.g. import raw 188 

data, data cleaning, data wrangling, data analysis, data visualisation) and any changes to the 189 

code only affects the downstream steps. For example, if we change the type of analysis we do, 190 

we do not need to re-import the data or clean it again. This saves time in computation 191 

(especially important for complex long running pipelines) but is also advantageous for 192 

reproducibility, and sharing and reuse of code. Reviewers can effectively re-run the steps 193 

needed to produce a data analysis or figure without having to re-run time consuming pre-194 

processing steps.  195 

  196 

Project and input metadata 197 

Projects will instantly have better organisation and increased reproducibility when users know 198 

how they should work through the various folders and subfolders. A README text file and 199 

additional metadata gives users the signposts required to facilitate rerunning of code. This can 200 

contain information on the packages used (e.g. the package name and version number), along 201 

with a detailed description of the various data files, project aim, contact information of the 202 

authors, and any relevant licences in place for code or for data (see 203 

https://choosealicense.com/licenses/ for more information). Furthermore, key information about 204 
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source data is critical for reproducing analysis code. If sharing data is inappropriate to your 205 

study (for example when dealing with sensitive confidential data) then a user can provide a 206 

sample of simulated data or a primer so that the code can be checked and read (Quintana 207 

2020; Hennessy et al. 2022). However, if data is readily available, then providing detailed 208 

information about what the data is (preferably in an associated README) and where the data is 209 

(e.g., stored on a free data repository such as The Open Science Framework or OSF, Zenodo, 210 

or Dryad) should be provided. Metadata should include information such as where the data 211 

comes from, who the owners are, as well as what each column header entails, and any relevant 212 

acronyms or shorthand notation (ideally following FAIR principles, so data is Findable, 213 

Accessible, Interoperable, and Reusable; see Lamprecht et al. (2020). This is particularly useful 214 

when controlled vocabulary is used throughout, and R packages such as codemeta (Boettiger 215 

2017) and dataReporter (Petersen and Ekstrøm 2019) or Python packages such as 216 

CodeMetaPy (Gompel 2023) and cookiecutter (Feldroy 2022) can help with this. Lastly, it is also 217 

crucial to explain what possible data cleaning or curation occurred before the analysis code. For 218 

instance, outlining what previous data manipulation or pre-processing steps have been taken to 219 

obtain the data in its current state or when an intermediate data file was used.   220 

 221 

Code Readability 222 

Good readability of code is extremely important in enabling effective code review. Several quick 223 

solutions exist to provide increased clarity: explicitly calling packages (via a package’s 224 

namespace, e.g. package::function() in R or package.module.function in Python), using relative 225 

file paths (preferably with an associated R project file, if using R with RStudio or in a virtual 226 

environment if using Python), removing redundant packages, and writing analysis code with 227 

clear subheadings and easy-to-understand object names. Best practice coding tips, aided by R 228 

packages such as styler (Müller and Walthert 2020) or pycodestyle in Python (Rocholl 2022) can 229 

format code in a number of standardised styles (e.g., Google, tidyverse in R, or PeP8 in Python) 230 
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with a single line of code or a click of a button. Fortunately, several recent guides and primers 231 

have been written that focus on increasing coding cleanliness (Sweigart 2020; Filazzola and 232 

Lortie 2022; see Table 1 from Hunter-Zinck et al. 2021), so we urge the reader to consult these 233 

guidelines for tips and advice on improving code readability. 234 

  235 

Output reproducibility 236 

One of the key principles and requirements of code is the ability to correctly reproduce 237 

published graphs, statistics, and results. In order to do so, a user’s code needs to provide a 238 

clear link between each section of the code and the various reported graphs and outputs to 239 

enable comparison of code to paper and to results. This should then facilitate checking that the 240 

results produced by the code match the stated results in the publication. In some cases, 241 

reproducing analysis from models can take considerable time to complete, for instance when re-242 

running complicated Bayesian models. In this case the “exact” reproducibility of results is not 243 

always possible if code must simulate a stochastic process (e.g., Monte Carlo sampling 244 

methods). In this case using set seed (see above) or saving simulation outputs still allows for 245 

reproducible results (e.g., with the “saveRDS” function in R or the “pickle.dump” function in 246 

Python) and can enable code reviewers to check the reproducibility of the reported results.  247 

 248 
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 249 

Figure 3. A basic workflow for reviewable code that can be adopted from the onset of a project. 250 

 251 

Pre-Publication: Setting up a code review group 252 

Informal training coupled with insufficient time and incentives (Touchon and McCoy 2016), 253 

means that coding and subsequent analysis are often the responsibility of a single member of a 254 

team throughout a project's entire lifetime. This is in stark contrast to the research-team wide 255 

collaboration typical when developing methodology and experimental design. The often 256 
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individual nature of writing research code is part of what makes pre-publication code review so 257 

unlikely, but all the more critical. Although code review has a place in the formal peer review 258 

process and post-publication, one of the most important places for code review to take place is 259 

before publication.  260 

To achieve this, there must be a culture of peer code review among research teams. One of the 261 

most effective methods by which researchers can establish a culture of peer code review in 262 

research labs or among colleagues is by setting up a code review group. Here we draw on our 263 

experience building a code review club (which we set up in collaboration with the Society for 264 

Open, Reliable, and Transparent Ecology and Evolution, SORTEE) to present tips for 265 

establishing this type of community. In particular, we focus on advice for removing the barriers 266 

people have towards sharing their code and receiving feedback; be these due to a lack of time 267 

or incentive, a lack of technical knowledge and unclear workflows, or due to social pressures 268 

and the fear of being judged by peers (Gomes et al. 2022). 269 

 270 

Encourage collaboration from the start of a project 271 

Code review can begin as early as the first initiation of a project and play a role beyond 272 

publication; it is useful to keep continuous code collaboration at all stages of a manuscript. 273 

Collaboration can be facilitated through various code-sharing platforms such as GitHub where 274 

users can submit and comment on pull requests (see Braga et al. 2023). At SORTEE we 275 

established a peer review group and used GitHub issues to summarise discussion of an 276 

individual’s code during an interactive zoom session (see https://github.com/SORTEE/peer-277 

code-review/issues/8 for an example including a summary). However, it is important to find a 278 

method of facilitating code review that works for your group.  279 

 280 

Set clear goals for the review 281 
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Setting out what you want to achieve with each code review session is particularly important 282 

when it comes to organising peer review meetings. Is the focus on general learning and 283 

improving readability or is it to error-check and scrutinise the reproducibility of your code? 284 

Having a clear structure and goal for each peer review session is important in order to focus 285 

comments and advice to address the precise reason for review. Similarly, unless the aim of a 286 

code review is to evaluate different analytical options, it would be better to leave methodological 287 

questions aside to ensure code review is streamlined.  288 

 289 

Normalize coding errors and establish a judgement-free environment 290 

Code review volunteers often feel very anxious about showing code that may have errors. It is 291 

therefore vital to normalise the existence of errors and highlight that perfection is never possible. 292 

It is also useful to stress that there is no such thing as bad code (Barnes 2010) and there are 293 

usually multiple ways to approach the same problem (Silberzahn et al. 2018; Botvinik-Nezer et 294 

al. 2020). One of the most important statements for peer code review is that there is no single 295 

way to code. It is important for code review not to get bogged down modifying or homogenising 296 

style; as long as code is readable, then coding diversity should be encouraged. It is important to 297 

create a relaxed environment where people can learn and correct mistakes without judgement 298 

or fear of failure and everyone in the peer review group should have a chance to contribute and 299 

speak. 300 

 301 

Carefully consider group size  302 

Usually a smaller group is a friendly starting point for peer code review because it allows people 303 

to feel more comfortable speaking up and participating. Small peer review groups (potentially 304 

even one-to-one) can better facilitate peer-to-peer learning and more focused review of code. 305 

However, there are also times when larger groups are more effective, such as having wider 306 

discussions on general themes and tips. It is worth considering the aims in establishing the 307 
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group to help guide the ideal size. For instance, if your goal is to facilitate more general 308 

discussions, then a big group size is more likely to enable this. However, if your goal is to 309 

enable more focused review of code, then perhaps it is better to reduce the size of the peer 310 

review group for this purpose.  311 

 312 

Consider the incentives 313 

Code review, outside of paper submission and the formal peer review process, can have a large 314 

impact on an individual’s project, from error-checking, to validation of appropriate statistical 315 

analyses. This then poses the question: what incentives should reviewers of code get? If 316 

deemed appropriate, the reviewer could be acknowledged using the MeRIT (Method Reporting 317 

with Initials for Transparency) system (Nakagawa et al. 2023), “e.g., J.L.P. ran a linear mixed 318 

model with a Gaussian error distribution. Code was checked by E.I.C.”. In some circumstances, 319 

it may even be appropriate for the reviewer to obtain co-authorship of the paper, if the review 320 

fundamentally altered the project and subsequent paper. Incentives should be relative to the 321 

impact of the reviewer on the project.  322 

 323 

During Publication: Formal code review 324 

One of the most crucial aspects of code review can take place during the formal peer review 325 

process. This is where reviewers are able to carefully follow and understand the logic of 326 

analyses, much like the flow of writing from the introduction to the discussion of a paper 327 

(Powers and Hampton 2019). In some journals, such as The Royal Society (see Data sharing 328 

and mining | Royal Society 2023), Behavioural Ecology and Sociobiology (Bakker and Traniello 329 

2020), and The American Naturalist (see Bolnick 2022) both code and data are available for 330 

reviewers to assess right from the submission stage. In some cases, such as in Journal of Open 331 

Source Software, the entire process of formal peer review, including that of code and 332 
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manuscript is hosted on GitHub and implemented via GitHub issues (see 333 

https://github.com/openjournals/joss-reviews/issues for several useful examples). This, as 334 

Fernández-Juricic (2021) points out, has a number of benefits. For authors, providing code 335 

during peer review could lead to an increase in the quality of the manuscript, and for reviewers, 336 

available code allows for a far deeper insight into the manuscript as there is a clearer link 337 

between experimental methodology and statistical analysis (the First R; code as “Reported”). 338 

These benefits are substantial and could ultimately contribute to the adoption of code review 339 

during the publication process.  340 

However, beyond the availability of code during submission, there are numerous other hurdles 341 

before effective and in-depth code review can be reasonably formalised as part of the peer 342 

review process. One of the most pressing issues is finding suitable individuals to review code 343 

given there is already a lack of willing reviewers in the current system. It is reasonable to expect 344 

reviewers to check that code is as reported, but anything more in-depth could take up the time 345 

of already overworked academics, who may not necessarily have the exact expertises needed 346 

to check other people’s code. This needs to be fully considered and sufficiently addressed 347 

before code review becomes a standard part of the peer review process. 348 

 349 

Post-Publication: Reviewing code after publication 350 

Reviewing code post-publication is another facet of code review but one that has been much 351 

less discussed. Although it does not prevent publication of incorrect results, it does enable 352 

checking if code is indeed adhering to the R’s listed above. However, the initial question should 353 

be, has all code used to produce the results been made available? This can either be a yes 354 

(stored and available on any data or code repository) or a no. Fortunately, an increasing number 355 
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of journals are now requesting code be shared alongside scientific articles (Culina et al. 2020), 356 

such as in supplemental materials or by linking to an online repository. This then allows for any 357 

open and shared code to be checked and verified alongside methods section statements 358 

(Stodden, 2011; Light et al., 2014). However, unlike data, code is a lot less likely to be made 359 

available regardless of these mandatory journal policies. As Figure 2 from Culina et al. (2020) 360 

shows, although the number of journals that possesses a mandatory code rule is increasing 361 

(from 15% to 79%; from 2015 to 2020) the number of articles that actually provide open code is 362 

still around 27% (although this number varies considerably among journals). This suggests that 363 

not many authors are adhering to this policy, which is an impediment to computational 364 

reproducibility (Culina et al. 2020). However, there is hope to be found here. As Culina et al. 365 

have shown, journals requiring code to be shared are increasing in number yearly and, as a 366 

field, we already have improved substantially (Mislan et al. 2016; Culina et al. 2020; Jenkins et 367 

al. 2023). In some cases, journals have implemented far stricter (and rightly so) data and code 368 

requirements along with assigning corresponding data editors (see Bolnick 2022). However, the 369 

first necessary step is for all journals to make it a requirement for both code and data to be 370 

present from the very start of the submission stage (Powers and Hampton 2019; Fernández-371 

Juricic 2021). But what happens if the code is not available? In this case, the main option is to 372 

reach out to the corresponding author (or perhaps the journal itself) and ask if the code could be 373 

made available; similar to data being made available “upon reasonable request”.  374 

The next part is relevant to the previous section above (“What should code review evaluate?). If 375 

you find that the code associated with a manuscript does not adhere to any of the “R”s listed 376 

above, then the first step is to contact the corresponding author (or if the paper uses the MeRIT 377 

system, the person who actually conducted the analysis; Nakagawa et al. 2023). This could be 378 

in the form of a GitHub issue if there is a repository for the code or an email (see Fig. 2). If there 379 

is indeed an error in code, and it is not due to differences in software version (e.g., differences 380 
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in R and package versions) or due to inherent stochasticity (e.g., simulations or MCMC 381 

sampling), then the authors should be given a chance to contact the journal themselves to 382 

highlight and correct their mistakes. For instance, as per American Naturalist’s stance (see 383 

Bolnick, 2022), authors who contact the journal to correct code or data errors will not be 384 

penalised and corrections are encouraged (when warranted). However, in cases where updated 385 

results would alter the narrative of a published paper, corrections may be more difficult to address 386 

without newer methods of documenting changes. Publication versioning or “living” documents may 387 

present a solid first step in such a scenario (Kane and Amin 2023). By encouraging post-388 

publication code review, we can both decrease the proliferation of coding errors and also 389 

increase the reliability of published science.  390 

Concluding remarks 391 

In this brief overview, we have provided a basic set of guidelines for peer code review, 392 

recommendations for producing reviewable code, and considerations for how it should be 393 

adopted at every level of research throughout the publication process. The principles and advice 394 

listed here should form a baseline for code review that should be improved upon. We hope that 395 

this encourages coders at all levels to try and promote more reproducible, transparent, and 396 

open coding practices. In addition, we hope that this provides a primer to start a code reviewing 397 

club of your own! 398 
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