Title: iNaturalist is an open science resource for ecological genomics by enabling rapid and tractable
records of initial observations of sequenced specimens

Running Title: iNaturalist for genomics

Author: Jay Keche Goldberg, Department of Ecology and Evolutionary Biology, University of Arizona,
Tucson, AZ, USA

For correspondence: jaykgold@arizona.edu

Abstract

The rapidly growing body of publicly available sequencing data for rare species and/or wild-
captured samples is accelerating the need for detailed records of the specimens used to generate
datasets. Many already published datasets are unlikely to ever be reused, not due to problems with the
data themselves, but due to their questionable or unverifiable origins. In this paper, I present iNaturalist
– a pre-existing citizen science platform that allows people to post photo observations of organisms in
nature – as a tool that allows genomics researchers to rapidly publish observations of specimens used to
generate sequencing datasets. This practice aligns with the values of the open science movement; and I
also discuss how iNaturalist, along with other online resources, can be used to create an open genomics
pipeline that enables future replication studies and ensures the value of genomics datasets to future
research.

Introduction

The number of high-quality published genomes has increased rapidly in recent years (Kress et al.
2022) and the feasibility of sequencing multiple individuals of species with large heterozygous genomes
has enabled pan-genomics with eukaryotic organisms (Golicz et al. 2020). Once restricted to prokaryotes
with small genomes (Rasko et al. 2008), there are now several plant and animal species with publicly
available pangeneome databases (Gao et al. 2019; Tong et al. 2022). Evolutionary biologists are routinely
using whole genome sequencing to observe responses to climate change (Waldvogel et al. 2020) and
experimental manipulation (Kovács and Dragoš 2019) in real time. Many labs and consortia are
publishing genomes as fast as possible to make them available to the broader scientific community
(Mathers et al. 2022), but often publish their data in minimalist reports (Smith et al. 2017) that
sometimes lack even basic descriptions of the data itself (Hains et al. 2020). The explosion of genomic
data, while scientifically exciting, presents a dilemma if details regarding the collection of source
specimen(s) are not properly recorded and made available to the broader scientific community.
Datasets originating from wild specimens require more rigorous documentation of the originating
samples to ensure their long-term value – especially when they represent rare, cryptic, or species that
are likely to see their taxonomic identity altered (such as members of poorly resolved clades). This is a
significant gap for open genomics research, but iNaturalist – a platform where users post observations
of wildlife and experts identify them – could be a valuable tool for researchers who wish to improve the
reusability of their data and help create a fully open genomics data pipeline (Figure 1). The publicly
accessible nature of iNaturalist observations (one can access them without an account on the platform)
makes it ideal for tackling the lack of robust, easily accessible, information regarding the originating
samples used to generate publicly available sequencing datasets.

What is iNaturalist?

iNaturalist is a citizen science platform that allows users to upload photos from an internet
connected device (smartphone, computer, etc.). Knowledgeable identifiers – often actively publishing
researchers or museum curators – then identify these organisms. These photo observations are also
accompanied by metadata – the date/time and location at which the photo was taken – and sometimes
include specific notes regarding the sex/life stage/etc. of the observed organism (these are often filled in
by identifiers). Any discussion of the observations by the observer and identifiers is also recorded and associated with it. iNaturalist has already proven its value to ecologists and is cited in several papers regarding invasion dynamics (Serniak et al. 2022) and animal behavior (Vardi et al. 2021).

An open genomics pipeline

Open access journals lacking paywalls have become commonplace and many funding agencies mandate that results be published in them. Public repositories for various forms of data (GenBank, Dryad, etc.) – and the code needed to analyze them (Github) – exist and are often free to contribute to. Some model species and popular study clades even have their own dedicated repositories (e.g. Flybase, Sol Genomics Network). Resources for publishing step-by-step methodologies (protocols.io) also exist. Yet, until the advent of iNaturalist there was no way to freely publish open access natural history observations other than within peer-reviewed publications. Now, however, it is possible to instantly upload photos from the field, have them automatically associated with key metadata (time and location), and make them freely available to both the scientific community and broader public using iNaturalist. This makes it a valuable tool for ecological and evolutionary geneticists to improve their data pipelines and better align with open science practices.

iNaturalist’s utility lies in how it allows researchers to associate publications with field observations via their unique URLs (example user profile and observation can be found in Web Resources) that provide an easy-to-follow paper trail. This allows future researchers to verify the identity of the initial sample/specimen and collection details. This is critical for species that are likely to have their taxonomy revised as their identity can be followed through disagreements between systematists based on their observable traits. It also allows for minor identification errors (e.g. those that do not meaningfully alter the outcome of a study) to be easily resolved through the community identification process and for these resolutions to be linked to the final dataset and/or publication without the need for formal corrections.

When accessed in bulk through the Global Biodiversity Information Facility (GBIF), sets of iNaturalist observations can be given digital object identifiers (DOIs) that enable replication studies (Forti et al. 2022a/b); and, within the iNaturalist platform, observations can be collected into projects. This makes it easy for researchers to keep track of the samples used in a study that they may be planning, carrying out, or have already published. Any projects that an observation is a part of are shown underneath the observation, thus making it easy to track how researchers have used a sample/dataset over time. In addition to tracking important metadata regarding the use of scientific samples for open and repeatable science, this gives the public deeper insight into the science of the species they see in daily life and a direct line to the researchers conducting it.

Conclusions

As the genomics revolution continues to open doors to research on the ecology and evolution of previously impossible-to-study species, the need for better documentation of data origins will increase dramatically. iNaturalist is a platform that researchers can use to rapidly publish field observations of samples/specimens that are eventually used in sequencing projects. When combined with other open science resources, it creates an open genomics data pipeline that allows both the scientific community and public-at-large to have better insight into the process behind genomics research.

Acknowledgements

I would like to acknowledge the California Academy of Sciences and National Geographic Society for enabling the iNaturalist initiative and all developers who have worked on the project in any way. I would also like to thank Margaret Wilch for introducing me to iNaturalist and Judith Bronstein for encouraging me to write this manuscript, as well as helpful comments on an early draft for this
manuscript. My funding is currently provided by a National Science Foundation postdoctoral research fellowship in biology (PRFB #2010772) and the University of Arizona.

Data Availability Statement
No new data or code was generated during the preparation of this manuscript. Links to all mentioned platforms can be found in the ‘Web Resources’ section.

Conflict of Interest Statement
I declare that I have no conflict of interest associated with the contents of this manuscript; and that I am not affiliated with iNaturalist (or its parent organizations) in any way beyond that of other enthusiastic users.

Web Resources
iNaturalist
Homepage: https://www.inaturalist.org/
GBIF Homepage: https://www.gbif.org/
iNaturalist User Profile: https://www.inaturalist.org/people/6089000
Example Observation: https://www.inaturalist.org/observations/134334492

Public Information Repositories
Protocols.io: https://www.protocols.io/
Dryad: https://datadryad.org/stash
Github: https://github.com/
European Nucleotide Archive (ENA): https://www.ebi.ac.uk/ena/browser/home
FlyBase: https://flybase.org/
WormBase: https://wormbase.org/
Sol Genomics Network: https://solgenomics.net/
Saccharomyces Genome Database: https://www.yeastgenome.org/

Biology focused pre-print servers
BioRxiv: https://www.biorxiv.org/
EcoEvoRxiv: https://ecoevorxiv.org/
MedRxiv: https://www.medrxiv.org/
Zenodo: https://zenodo.org/


Smith, D.R., 2017. Goodbye genome paper, hello genome report: the increasing popularity of ‘genome


Figure 1. A flowchart outlining an example “open genomics pipeline” with five key steps and their corresponding open science platform. The first step in this pipeline, publicly recording the initial field observations/collection associated with a study, is the aspect that iNaturalist fulfills. The precise steps, and platforms used to carry them out, necessary for the best open science practices will vary, given the wealth of system-specific databases such as FlyBase or the Sol Genomics Network.