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ABSTRACT 28 

Species’ environmental niches are conventionally modelled using coarse-grained macroclimate data. 29 

These data are known to deviate substantially from local, near-ground and proximal conditions (i.e., 30 

the microclimate), especially so below forest canopies. Here, we aimed to assess the impact of using 31 

gridded microclimate data instead of gridded macroclimate data on the performance of species 32 

distribution models (SDMs), as well as on the predicted geographical distribution and the derived 33 

species response curves of 140 forest specialist plant species across Europe over the 2000-2020 34 

period. We performed a comparative study between SDMs constructed with different sets of 35 

bioclimatic predictors to separately test the effect of using (i) proximal climate data instead of 36 

conventional macroclimatic data and (ii) high-resolution proximal climate data rather than coarse-37 

gridded macroclimatic data. Therefore, we challenged SDMs with: (1) a macroclimatic dataset at a 38 

spatial resolution of 1 km × 1 km; (2) an aggregated microclimatic dataset matching the same 39 

resolution of 1 km × 1 km; and (3) a microclimatic dataset at a much finer spatial resolution of 25 m × 40 

25 m. We found significant differences in model performance, indicating that microclimate-based 41 

SDMs outperform both their macroclimatic and aggregated counterparts. Most importantly, this study 42 

makes clear that macroclimate-based SDMs tend to introduce a systematic bias into the perceived 43 

species response curves. Additionally, macroclimatic data is unable to identify warm and cold refugia 44 

beyond the range edges of species’ distributions. We thus conclude that microclimate-based SDMs 45 

are a crucial tool to gain peculiar insights regarding biodiversity conservation, which is needed to align 46 

management actions and prioritize conservation efforts. 47 

Keywords: climate change, species distribution modelling, MaxEnt, microclimate, ForestTemp, forest 48 

plant species, species response curves, understory temperatures  49 
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INTRODUCTION 50 

Over the last decades, species distribution models (SDMs, also known as ecological niche models or 51 

habitat suitability models), have emerged as a central method to project the effects of changing 52 

environmental conditions on species’ distributions in space and time (Elith & Leathwick, 2009; Guisan 53 

& Zimmermann, 2000; Zimmermann et al., 2010). Species distribution models are employed for a wide 54 

range of applications that are vital to support conservation decision making (Baker et al., 2021), 55 

ranging from quantifying the effects of contemporary climate change on biodiversity (Araújo et al., 56 

2011; Pearce-Higgins et al., 2017) to the management of invasive species (Roy‐Dufresne et al., 2019; 57 

Srivastava, 2019) and rewilding practices (Jarvie & Svenning, 2018).  58 

SDMs commonly are correlative models that infer relationships between species occurrences 59 

and the environment using statistical or machine learning methods (Elith & Leathwick, 2009). 60 

Conventional SDM practices involve the incorporation of a standard set of bioclimatic variables with 61 

a maximal spatial resolution of 30 arc seconds (± 1 km² at the equator) such as WorldClim (Fick & 62 

Hijmans, 2017; 1 km²), CHELSA (Karger et al., 2017; 1 km²) or TerraClimate (Abatzoglou et al., 2018; 63 

16 km²). However, these climatological data are derived from standardized meteorological stations at 64 

approximately 2 meters height above short vegetation, exposed to wind, and well away from trees 65 

and buildings to minimize any noise generated by microclimatic effects (Jarraud, 2008). Gridded 66 

macroclimatic data interpolate such weather stations’ data and thus represent the free-air 67 

temperature conditions in open ecosystems. Although these data are sufficient to adequately capture 68 

changes in free-air temperatures, problems arise when using these data to model the response of 69 

species that live close to the ground in topographically heterogenous terrain and/or in ecosystems 70 

with trees and shrubs. For instance, within-pixel (1 km²) variability of mean annual temperatures can 71 

be as high as 6 °C in mountainous areas, and this might even increase when different land-use types 72 

are present within a single grid cell (i.e., forested and non-forested areas; Lenoir et al., 2013). This high 73 

thermal variability results from physical processes such as air flow and incoming solar radiation that 74 

interact with topographic factors such as slope aspect and surface roughness (Geiger, 1950). 75 

Additionally, vegetation cover is known to affect local microclimate temperature (De Frenne et al., 76 

2019; Lenoir et al., 2017). Indeed, it is currently well acknowledged that forests harbour distinct 77 

microclimatic conditions owing to the structural complexity of the canopy, resulting in shading and 78 

evapotranspirative cooling (Geiger, 1950). Consequently, forest canopies are characterized by their 79 

buffering capacities of extreme temperatures in comparison to weather station data, with cooler sub-80 

canopy maximum temperatures and warmer sub-canopy minimum temperatures (De Frenne et al., 81 

2019). In European forests, this difference can add up to 9°C for mean monthly temperatures (Haesen 82 

et al., 2021).  83 
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It is clear that fine-scale microclimatic data should urgently be used within SDMs – and 84 

ecological research in general – as ignoring the mismatch between conventionally-used macroclimatic 85 

data and the apparent microclimatic conditions might lead to erroneous predictions, wrong ecological 86 

interpretations and, ultimately, questionable conservation decisions (Körner & Hiltbrunner, 2018). 87 

Especially under contemporary climate change, where species are shifting their distributions in 88 

accordance with the moving isotherms, accurate estimations of species distributions are needed. The 89 

correct identification of leading and trailing edges of moving species distributions is of particular 90 

interest for conservation since they coincide with the formation and disappearance of suitable habitat, 91 

respectively (Greiser et al., 2020). Furthermore, recent studies emphasize on the importance of so-92 

called microrefugia, where species can find more stable climatic conditions in which they can persist 93 

for a longer amount of time (Finocchiaro et al., 2022; Nadeau et al., 2022). However, current SDM 94 

practices are unable to identify these microrefugia as conventional macroclimate data represents the 95 

overarching free-air temperatures rather than the local temperatures inside these microrefugia 96 

(Lenoir et al., 2017), which act at high-spatial resolution.  97 

With recent advances in microclimate modelling (Gril et al., 2023; Maclean, 2019), there has 98 

been an increase in the usage of microclimate in SDMs (Graae et al., 2018; Greiser et al., 2020; Lenoir 99 

et al., 2017). Nevertheless, current studies have not yet been able to incorporate fine-scale 100 

microclimatic data over continental extents (Lembrechts, Nijs, & Lenoir, 2018). However, with the 101 

recent advent of sub-canopy microclimate layers for European forests at 25 m × 25 m resolution, a 102 

new avenue of species distribution modelling can be explored (Haesen et al., 2023).  103 

Here, we compared SDMs constructed with different sets of bioclimatic variables to separately 104 

test the effect of using (i) proximal climate data instead of conventional macroclimatic data and (ii) 105 

high-resolution proximal climate data rather than coarse-gridded macroclimatic data. We therefore 106 

challenge SDMs with (1) a macroclimatic dataset at a spatial resolution of 1 km × 1 km; (2) an 107 

aggregated microclimatic dataset matching the resolution of the macroclimatic dataset, yet using 108 

proximal below-canopy temperatures; and (3) a microclimatic dataset at a spatial resolution of 25 m 109 

× 25 m, matching the resolution of understory vegetation communities and using the proximal below-110 

canopy temperatures. Note that we did not opt to include a high-resolution macroclimatic dataset 111 

(i.e., 25 m × 25 m; topographically downscaled) within this comparative study as this would be 112 

representative for topoclimatic conditions, which are proximal as well. Additionally, topoclimate 113 

would not capture the influence of the canopy cover on below-canopy temperatures.  114 

For 198 forest specialist plant species, we aimed to assess the impact of large-scale, gridded 115 

microclimate data on the performance of SDMs as well as on their predicted geographical distribution. 116 

Furthermore, we compared species thermal response curves constructed with the three methods for 117 



5 
 

the forest specialist plant species, and analysed their behaviour at their range edges. As forests are 118 

known to buffer temperatures, forest specialist plant species respond to warmer minimum 119 

temperatures and lower maximum temperatures as perceived by the free-air temperature data. 120 

Therefore, we hypothesize that (1) the actual thermal response curves of forest specialist species are 121 

narrower than the perceived thermal response curves (Figure 1). Intuitively, the incorrectly modelled 122 

thermal response curve would result in an overestimation of species range distributions when using 123 

macroclimate data. However, the resultant of the effects of the incorrectly modelled species response 124 

and the ‘incorrect’ macroclimate data on the predicted distribution may lead to deviation from this 125 

expectation. Therefore, our null hypothesis is that (2) the effect of the incorrectly modelled species 126 

response will be cancelled out by the ‘incorrect’ macroclimate data, so that distributions modelled by 127 

macroclimate and microclimate data will not differ. Finally, assuming that species are constrained by 128 

the maximum temperature at the trailing edge of their distribution and in the minimum temperature 129 

at the leading edge, we hypothesize that (3) populations of forest specialist species survive in local 130 

microrefugia, which are cooler than the surrounding area at the trailing edge and warmer than the 131 

surrounding area at the leading edge. 132 

 133 

Figure 1: Design of this comparative study, where we compared species distribution models with different set-134 
ups of climatic data. As forests are known to buffer sub-canopy temperatures, forest specialist plant species 135 
respond to warmer minimum temperatures and lower maximum temperatures as perceived by the free-air (i.e. 136 
macroclimate) temperature data. Therefore, we hypothesize that the actual thermal response curves of forest 137 
specialist species are narrower than the perceived thermal response curves. Black points indicate (simulated) 138 
species occurrences (adapted from Lenoir et al., 2017).  139 
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METHODS 140 

 Study area & species selection 141 

Our study area encompasses all 27 EU countries, plus Albania, Andorra, Bosnia and Herzegovina, 142 

Kosovo, Liechtenstein, Montenegro, North Macedonia, Norway, San Marino, Serbia, Switzerland and 143 

the United Kingdom. The Canary Islands and Azores, as well as Europe's overseas territories were 144 

excluded from the analysis. 145 

Forest specialist species were selected based on the European forest vascular plant species 146 

list, which is based on vegetation databases, literature and expert knowledge (Heinken et al., 2022). 147 

From this list, we first selected shrub and herb species, which – unlike tree species – usually complete 148 

their entire life cycle within the forest understory layer, thus experiencing forest microclimate 149 

dynamics (Caron et al., 2021). Subsequently, we selected the species categorized as forest specialists 150 

(i.e. categories 1.1 and 1.2 in Heinken et al., 2022) throughout their entire range, meaning that these 151 

species occur only in closed-canopy forests, forest edges or forest openings. The final selection 152 

encompassed 198 forest specialist species (Table S1). 153 

 Environmental predictors 154 

Three different sets of bioclimatic temperature-related variables (i.e., macroclimatic, aggregated 155 

microclimatic and microclimatic) were used to construct our SDMs, starting from the conventional set 156 

of eleven bioclimatic temperature variables. However, we excluded mean temperature of the wettest 157 

quarter (BIO8) and mean temperature of the driest quarter (BIO9) as these were recently criticized for 158 

their use within species distribution models (Booth, 2022). As the available CHELSA and WorldClim 159 

data are not fully covering our study period (2000-2020), we used TerraClimate to construct the 160 

‘macroclimatic dataset’ at the typical spatial resolution of 1 km² as used in conventional SDMs. 161 

TerraClimate bioclimatic variables covering the 2000-2020 period are available at a spatial resolution 162 

of 16 km² and thus were spatially downscaled to a spatial resolution of 1 km². To do this, we first 163 

calculated, for each 1 km² grid cell, the difference between the bioclimatic variables of TerraClimate 164 

(1970-2000 period; 16 km²) and WorldClim (1970-2000 period; 1 km²) and then added these offset 165 

values or anomalies to the TerraClimate bioclimatic variables for the 2000-2020 period to come to a 166 

final macroclimate layer of 1 km² resolution. This method assumes that the offset values from the 167 

long-term average period of 1970-2000 are still valid for the period 2000-2020.  168 

The ‘microclimatic dataset’ consists of the original bioclimatic variables provided within 169 

ForestClim, a new high-resolution dataset of forest understory temperature for all European forests 170 

at a spatial resolution of 25 m × 25 m derived from the ForestTemp model (Haesen et al., 2021, 2023). 171 

Briefly, ForestTemp was created by combining more than 1,200 time series of in situ near-surface 172 
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forest temperatures from across Europe with topographical, biological and macroclimatic predictors 173 

in a machine learning model. The ‘aggregated dataset’ was generated by aggregating (i.e. averaging) 174 

the ForestClim bioclimatic variables to a 1 km² resolution. 175 

Each set of bioclimatic temperature variables was complemented with the conventional set 176 

of eight bioclimatic precipitation variables. Note that we omitted precipitation of the warmest quarter 177 

(BIO18) and precipitation of the coldest quarter (BIO19) for similar reasons discussed by Booth (2022). 178 

The six remaining variables were calculated from TerraClimate precipitation data for the 2000-2020 179 

period and disaggregated to match the spatial resolution of each bioclimatic set. Finally, edaphic 180 

variables were added, since soil data often increase model performance (Hageer et al., 2017). Based 181 

on their effects on plant demography, we selected four soil variables: bulk density (bdod; cg/cm³), 182 

which reflects the soil porosity; soil clay content (clay; g/kg), which reflects the soil texture; pH H2O 183 

(pH; unitless); and cation exchange capacity (cec; mmolc/kg; Hageer et al., 2017). The soil raster layers 184 

were downloaded from the SoilGrids database (Poggio et al., 2021) at a resolution of 250 m for three 185 

different depths: 0-5 cm; 5-15 cm; and 15-30 cm. These three layers were averaged into one single 186 

layer representing the depth from 0 cm to 30 cm, with the exception of pH (i.e., a logarithmic scale), 187 

which was aggregated using the median value over the three layers. 188 

To help reduce overfitting of SDMs, multicollinearity between the predictors was assessed 189 

using a pairwise Spearman correlation test (Figure S1). Highly correlated variables (Spearman 190 

correlation coefficients > 0.7) were removed from the analysis in order to reach the most 191 

parsimonious model  (Dormann et al., 2013). When excluding one of the correlated covariate pair, we 192 

retained variables which are known to be more important for plant species distribution (Macek, 193 

Kopecký, & Wild, 2019) and which are important for our further analyses (e.g., BIO5 & BIO6). The final 194 

selection of covariates encompassed two temperature variables (maximum temperature of the 195 

warmest month (BIO5) and minimum temperature of the coldest month (BIO6)), two precipitation 196 

variables (mean annual precipitation, (BIO12) and precipitation seasonality (BIO15)) and two edaphic 197 

variables (cation exchange capacity and soil clay content). All covariate layers were projected in an 198 

equal-area projection (epsg:3035; ETRS89/LAEA). 199 

Species occurrence data 200 

Georeferenced occurrence data for 198 forest plant species were downloaded from the Global 201 

Biodiversity Information Facility on the 13th of September 2022 (https://doi.org/10.15468/dl.kf533a). 202 

To improve data quality for each species, the occurrence data were filtered in the following sequential 203 

steps: (1) only records of ‘human observations’ were selected; (2) records with an unknown 204 

coordinate uncertainty or coordinate uncertainty larger than 25 m (i.e., the pixel size) were excluded; 205 

(3) records located at country or capital centroids and biodiversity institutions (e.g., botanical gardens) 206 

https://doi.org/10.15468/dl.kf533a
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were omitted (Cheng et al., 2021); (4) duplicate records were removed; (5) records outside our study 207 

area were deleted; (6) only records observed during our climatic reference period (2000-2020) were 208 

selected; (7) records were spatially thinned to one random observation per 25 m × 25 m grid cell; and 209 

(8) we omitted species with less than 50 cleaned occurrence records, which has been postulated as a 210 

minimum standard to build robust species distribution models (van Proosdij et al., 2016; Wisz et al., 211 

2008). Finally, we maintained occurrence data for 140 out of 198 species (Table S1). Note that exactly 212 

the same occurrence datasets are needed over the different climatic set-ups to have comparable 213 

model outputs. Here, we decided to work with occurrence datasets that underwent a cleaning 214 

protocol based upon the characteristics of the microclimatic dataset (i.e., maximum coordinate 215 

uncertainty of 25 m, and spatial thinning to a 25 m × 25 m grid cell). 216 

 Species distribution modelling 217 

We used MaxEnt, a presence-background algorithm that combines species presence-only data with 218 

environmental predictors for the current climate to predict the environmental suitability of each study 219 

species across our study area (Phillips, et al., 2017; Phillips & Dudík, 2008). We did that for each of the 220 

three sets of bioclimatic variables (i.e., the macroclimatic set, the aggregated microclimatic set and 221 

the microclimatic set), thus generating three sets of habitat suitability maps for each study species. 222 

Background data were generated by sampling an equal amount of background points as occurrence 223 

points (i.e., so that species prevalence equals 50%) based on a 2D kernel-density estimate of the 224 

occurrence points (Venables & Ripley, 2002), meaning that the spatial density of the background 225 

points is proportional to the spatial density of occurrence points for a given species, thereby 226 

accounting for spatial bias in the occurrence points (Lake et al., 2020; Vollering et al., 2019). 227 

Although widely-used in scientific research, MaxEnt could suffer from issues like spatial bias 228 

and bad model performance (Radosavljevic & Anderson, 2014). To deal with the problem of spatial 229 

bias, we conducted spatially independent evaluations in ENMeval2.0 (Kass et al., 2021; Muscarella et 230 

al., 2014) using block cross-validation and allocating 80% of our occurrence points to this cross-231 

validation procedure (20% is kept for independent evaluation).  Furthermore, model performance was 232 

improved by tuning the model settings in ENMeval2.0 rather than working with the default settings 233 

of MaxEnt. This was implemented by means of a grid search over the possible values of the two 234 

hyperparameters: feature classes (Linear, Quadratic, Product) and regularization multipliers (0.5, 1, 2, 235 

3, 4 and 5). Linear, quadratic and product features were selected to allow for linear and quadratic 236 

relationships as well as interactions among predictors (Merow, Smith, & Silander, 2013). 237 

Regularization multipliers, on the other hand, control model complexity and overfitting. The larger 238 

these regularization multipliers, the smoother the model predictions. 239 
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 Model performance & sensitivity 240 

In order to customize the settings for the feature classes and the regularization multipliers, a total of 241 

42 different models were run for every single species. The Akaike Information Criterion for small 242 

sample sizes (AICc) was used to select the best candidate models (Burnham & Anderson, 2004). Next, 243 

model performance was assessed using the Continuous Boyce Index (CBI), instead of the commonly-244 

used area under the receiver-operating characteristic curve (AUC). The latter has recently been shown 245 

to be biased in presence-only models and should therefore be avoided (Jiménez & Soberón, 2020). 246 

The CBI is a threshold-independent metric that represents the relationship between predicted habitat 247 

suitability and the distribution of occurrence records (Hirzel et al., 2006). Additionally, we calculated 248 

the sensitivity enabling us to quantify how good our model is able at distinguishing true positives from 249 

false negatives. Both were calculated based on the independent 20% subset of the data.  250 

Finally, we used Bayesian regression models (BRMs) in order to assess differences in model 251 

performance and sensitivity between SDMs constructed using the three different types of climate 252 

data. We opted for BRMs as they are able to account for data dependencies (i.e., values clustered 253 

within species), unequal variances among groups and skewed distributions. The final model structures 254 

are added in Table S2. Both sensitivity and CBI were modelled with a beta distribution. CBI was 255 

rescaled between 0 and 1 before analysis. Bayesian regression models were run using the brms 256 

package (Bürkner, 2021). All models were first run using standard priors and with 2 chains, 10,000 257 

iterations and a warm-up of 1000 runs. When models did not converge, the flat priors were replaced 258 

by weakly informative priors (Table S2) and the models were run again with 4 chains. The final models 259 

converged with �̂� values close to 1 (Gelman and Rubin’s diagnostic) and all bulk and tail effective 260 

sample sizes of the means were greater than 2500. When the highest posterior density intervals (α = 261 

0.05) of the contrasts, calculated using the emmeans package (Lenth, 2021), did not overlap with zero, 262 

contrasts are considered ‘significant’.  263 

 Model predictions 264 

Habitat suitability was predicted for each species and for each of the three sets of bioclimatic 265 

temperature variables (macroclimatic, aggregated microclimatic and microclimatic) for the 2000-2020 266 

period. Furthermore, we transformed the logistic maps (i.e., probability values for habitat suitability) 267 

to binary (presence-absence) maps using the 10% training presence as a threshold, meaning that the 268 

suitable area contains 90% of the original occurrence records (Benito, Cayuela, & Albuquerque, 2013). 269 

 To compare between model predictions from SDMs constructed with different climate 270 

sources and resolutions, we calculated both the potential suitable area and the potential latitudinal 271 

range of each species. Note that we (i) disaggregated the binary maps derived from macroclimatic and 272 



10 
 

aggregated data (1 km × 1 km) to the finer resolution (25 m × 25 m), and (ii) masked out all non-forest 273 

pixels to make a valid comparison between the three climate types. First, the potential suitable area 274 

(km²) was calculated as the sum of all pixels classified as potentially suitable under the binary maps. 275 

Second, the northern (i.e., leading or cold) and southern (i.e., trailing or warm) latitudinal limit of the 276 

predicted distributional ranges were defined as the 95% and 5% quantile in latitudinal position, 277 

respectively, of all pixels classified as potentially suitable. Next, we quantified species thermal 278 

response curves for mean annual temperature (BIO1), maximum temperature of the warmest month 279 

(BIO5) and minimum temperature of the coldest month (BIO6). Note that we randomly sampled 280 

1,000,000 pixels over the potentially suitable area to optimize computational power. For each 281 

variable, we derived the cold edge (Q05), the optimum (mode), the warm edge (Q95), and the niche 282 

width (Q95 – Q05). Analogous to the model performance, we used BRMs with the same settings to 283 

assess differences in model predictions between the SDMs based on the three types of climate data 284 

(Table S2). Values of bioclimatic variables were standardized before the analysis to aid model 285 

convergence. 286 

Finally, we analyzed whether species are constrained to specific (relative) temperature 287 

conditions in their leading and trailing latitudinal limits, as this potentially has important implications 288 

for nature conservation. For the trailing and leading edge, we extracted the 5% most southern and 289 

northern occurrence records, respectively. Using paired two-sided t-tests (α = 0.05), we compared the 290 

local temperature conditions of these occurrence points to the surrounding microclimatic conditions 291 

over a range of circular buffers (i.e., 100 m, 500 m, 1000 m, 2500 m, 5000 m; Figure S2) around each 292 

occurrence record.  293 

 All calculations were performed in R version 4.1.1 (R Core Team, 2021). The Tier-2 Genius 294 

cluster from the high-performance computing facilities of Flanders was used to make the predictions. 295 

In order to improve reproducibility, we followed the ODMAP (Overview, Data, Model, Assessment and 296 

Prediction) protocol to report on the SDMS in this study (Table S3; Zurell et al., 2020).  297 
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RESULTS 298 

 Model performance & sensitivity 299 

We found significant differences (α = 0.05) in model performance between models constructed with 300 

(i) macroclimatic (mean CBI = 0.09; se = 0.04) and microclimatic (mean CBI = 0.67; se = 0.02) data, (ii) 301 

macroclimatic and aggregated microclimatic (mean CBI = 0.28; se = 0.04), and (iii) aggregated 302 

microclimatic and microclimatic data (Figure 2). Furthermore, there were no significant differences 303 

between any of the groups regarding the sensitivity of the models. We identified 11 species (i.e., 304 

Anemone trifolia, Asarum europaeum, Clematis recta, Cyclamen purpurascens, Dictamnus albus, 305 

Gagea spathacea, Lathyrus vernus, Neottia nidus-avis, Polystichum aculeatum, Ribes spicatum, and 306 

Saxifraga hirsuta)  for which the incorporation of microclimatic data did not increase the performance 307 

of the SDMs in comparison to conventional SDM practices, contrarily to the other 129 species for 308 

which microclimate improved performance.  309 

 310 

Figure 2: (a) Pairwise comparison of performance (CBI) and sensitivity between SDMs build with macroclimatic, 311 
aggregated microclimatic and microclimatic data. A positive effect size of the comparison reflects a higher model 312 
performance and sensitivity in SDMs built with the first group of climate data compared to SDMs built with the 313 
second group of climate data. Negative effect sizes reflect the opposite result. Points and associated black error 314 
bars correspond to posterior means and 95% highest posterior density intervals of the differences (of the scaled 315 
CBI and sensitivity). Significant differences are indicated by full dots whereas non-significant differences are 316 
indicated by transparent dots; (b) Parallel coordinate chart indicating the performance of each SDM per species 317 
over the three types of climate data (i.e., macroclimatic data, aggregated microclimatic data and microclimatic 318 
data). The thick black line shows the average CBI value over each of the three climate types. The GGally package 319 
was used to create the parallel coordinate plot (Schloerke et al., 2022).     320 
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 Potential suitable area & latitudinal range 321 

A first visual assessment of the binary maps showed clear differences in the potential suitable area 322 

and the potential latitudinal range covered by each species between models calibrated with 323 

macroclimatic data and models calibrated with microclimatic data at the native spatial resolution of 324 

25 m × 25 m (non-aggregated data) (e.g., Paris quadrifolia; Figure S3). Indeed, the Bayesian regression 325 

models confirm these visual interpretations (Figure 3). Relative to the native microclimate-based 326 

SDMs, both the leading and trailing edge of the species’ distributional ranges are significantly 327 

overestimated when using either macroclimatic or aggregated microclimatic data at 1-km2. 328 

Consequently, species’ potential latitudinal ranges are significantly smaller when using SDMs 329 

calibrated with microclimatic data (mean = 2,261 km; se = 42 km) in comparison with SDMs calibrated 330 

with aggregated microclimatic data (mean = 2,580 km; se = 43 km) or macroclimatic data (mean = 331 

2,620 km; se = 49 km). Analogous, a species’ potential suitable area is significantly smaller when using 332 

SDMs calibrated with microclimatic data (mean = 911,845 km²; se = 30,383 km²) in comparison with 333 

SDMs calibrated with aggregated microclimatic data (mean = 1,148,763 km²; se = 33,527 km²) or 334 

macroclimatic data (mean = 1,268,189 km²; se = 38,274 km²). 335 

 336 

Figure 3: Pairwise comparison of the leading edge, trailing edge, latitudinal range, and potential suitable area, 337 
respectively between SDMs build with macroclimatic, aggregated microclimatic and microclimatic data. A 338 
positive effect size of the comparison reflects more northern leading edges, more northern trailing edges, higher 339 
latitudinal ranges and more potentially suitable area in SDMs built with the first group of climate data compared 340 
to SDMs built with the second group of climate data. Negative effect sizes reflect the opposite result. Points and 341 
associated black error bars correspond to posterior means and 95% highest posterior density intervals of the 342 
differences (of the standardized variables). Significant differences are indicated by full dots whereas insignificant 343 
differences are indicated by transparent dots. 344 
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 Species response curves 345 

A first visual assessment of the response curves showed that microclimate-based response curves of 346 

minimum temperature of the coldest month, mean annual temperature and maximum temperature 347 

of the warmest month have different optima, and narrower niches compared to macroclimate-based 348 

response curves (e.g., Paris quadrifolia; Figure 4).  349 

 350 

Figure 4: Response curves for (a) minimum temperature of the coldest month; (b) maximum temperature of the 351 
warmest month and (c) mean annual temperature for Paris quadrifolia. 352 

Here, the Bayesian regression models partially supports these visual interpretations (Figure 5). Optima 353 

significantly differed between SDMs ran with microclimate and macroclimate data for minimum and 354 

maximum temperatures, with warmer optima in minimum temperature and cooler optima in 355 

maximum temperature for microclimate-based SDMs relative to macroclimate based SDMs. However, 356 

for mean temperature there are no significant differences in optima between the different climate 357 

types. Furthermore, the niche width was narrower in minimum and mean temperatures for 358 

microclimate-based SDMs relative to macroclimate based SDMs. Surprisingly, the niche width is 359 

significantly wider in maximum temperatures for microclimate-based SDMs relative to macroclimate 360 

based SDMs. 361 
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 362 

Figure 5: Pairwise comparison of the cold edge (Q05), optimum, warm edge (Q95), and niche width, respectively 363 
between SDMs build with macroclimatic, aggregated microclimatic and microclimatic data . Each of the 364 
comparisons is made for minimum temperature of the coldest month (BIO6), mean annual temperature (BIO1), 365 
and maximum temperature of the warmest month (BIO5), respectively. A positive effect size reflects warmer 366 
values for the cold edge, optima and warm edge as well as wider niche widths, respectively, in SDMs built with 367 
the first group of climate data compared to SDMs built with the second group of climate data. Negative effect 368 
sizes reflect the opposite result. Points and associated black error bars correspond to posterior means and 95% 369 
highest posterior density intervals of the differences (of the standardized variables). Significant differences are 370 
indicated by full dots whereas insignificant differences are indicated by transparent dots. 371 

 Microrefugia 372 

For a buffer of 2500 m, we found that 66% of all the species are constrained in local microrefugia at 373 

their range edges. More specifically, 41% of the species found refuge in warm refugia, relative to the 374 

surrounding landscape, at the leading edge while 49% of the species have remnant populations in cool 375 

refugia, relative to the surrounding landscape, at the trailing edge (e.g., Paris quadrifolia; Figure 6). 376 
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         377 

 378 

Figure 6: (a) Suitability map for Paris quadrifolia resulting from an SDM built with microclimatic data at 25 m × 379 
25 m resolution. The black dots represent the occurrence points extracted from GBIF and used as an input to the 380 
SDMs. We see that the species is located in (b) warm refugia (i.e., higher minimum temperature values in the 381 
coldest month of the year) at their leading edge and in (c) cool refugia (i.e., lower maximum temperature values 382 
in the warmest month of the year) at their trailing edge. The grey background shows non-forest areas.  383 
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DISCUSSION 384 

Here, we tested the effect of incorporating three different types of climatic data (i.e., macroclimate, 385 

aggregated microclimate matching the spatial resolution of macroclimate and microclimate at its fine 386 

spatial resolution) into species distribution models (SDMs) for 140 forest specialist plant species, 387 

allowing us to investigate the effect of microclimate as well as the effect of spatial resolution on the 388 

performance and predictions of SDMs. We found substantial differences in the model performance 389 

(based on the Continuous Boyce Index), indicating that microclimate-based SDMs significantly 390 

outperform their conventional (i.e., macroclimate) counterparts and that aggregating microclimate 391 

data at coarser spatial resolutions matching macroclimate leads to significant loss in performances. 392 

However, the use of aggregated proximal data is still a significant improvement to the use of 393 

conventional macroclimate data in SDMs. Furthermore, species response curves derived from the 394 

model predictions differed substantially between climate types. These findings highlight the 395 

importance of incorporating microclimate data within SDMs, as already postulated by Lembrechts et 396 

al. (2018). Certainly within the face of climate change, microclimate-based SDMs are a valuable tool 397 

as they allow to identify local refugia for biodiversity conservation. Indeed, up to 66% of the studied 398 

species have remnant populations in warm or cold refugia at the leading or trailing edge, respectively. 399 

Accordingly, management practices should be in line with the gained insights in order to preserve local 400 

microrefugia as they are able to preserve biodiversity despite macroclimatic warming. 401 

 The strength of microclimate-based species distribution models 402 

Over the last years, microclimate research focused on improving our understanding of the drivers 403 

behind differences between microclimate and macroclimate temperatures (Zellweger et al., 2019) and 404 

predicting and mapping microclimate temperatures across space and time (Greiser et al., 2018; 405 

Kearney et al., 2019; Lembrechts et al., 2022). Although the drivers behind forest microclimates are 406 

relatively well understood, testing how microclimate layers perform within ecological applications 407 

such as SDMs has been limited, especially so across large (i.e., continental) spatial extents.  408 

Previous research supports our findings on an increased performance of microclimate-based 409 

SDMs. For instance, Ashcroft et al. (2008) have already stated that explaining plant species 410 

distributions benefits from increasing the accuracy of local temperature, which is also confirmed by 411 

Slavich et al. (2014) who have shown that using topoclimate rather than coarse-gridded macroclimatic 412 

data leads to improved model performance. On the contrary, Stark & Fridley (2022) did not find 413 

significant differences in the performance of microclimate-based and macroclimate-based joint SDMs. 414 

Nevertheless, when studying plant species distributions, high-resolution environmental information 415 

has overall shown to significantly improve model performance and spatial predictions. 416 
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The increased performance of microclimate-based SDMs can be explained by several reasons, 417 

which are mainly related to the two main input sources of each SDM: the occurrence points and our 418 

predictors. First, each occurrence point is subjected to a certain amount of positional error (Wüest et 419 

al., 2020). In this study, we only used records with a very low coordinate uncertainty (< 25 m). 420 

However, putting such a threshold on the positional error might induce a loss of model power by 421 

reducing the sample size of the occurrence points (Guisan et al., 2007). Therefore, many studies often 422 

include occurrence records with higher positional uncertainties (e.g., Sanczuk et al., 2022). To deal 423 

with these errors within the analysis, it is conventionally suggested to increase the spatial resolution 424 

of the analysis to compensate for any positional errors in the occurrence points. However, SDMs are 425 

sensitive to changes in the spatial resolution (Chauvier et al., 2022; Manzoor et al., 2018). Decreasing 426 

spatial resolution inherently induces a loss of information as the data is smoothed (i.e., aggregated). 427 

This comes at the cost of model performance as shown by the CBI values from the models built with 428 

aggregated microclimatic data. Therefore, Gábor et al. (2022) strongly recommend to fit models as 429 

close as possible to the response grain of the species, meaning that it is recommended to calibrate 430 

SDMs with environmental data consistent with the biological scale of the system or organism under 431 

study (Randin et al., 2009). For instance, when modelling sessile species (i.e., species with low 432 

mobility) or organisms in systems characterized by high environmental heterogeneity, predictors with 433 

an increased spatial resolution will be needed to capture the details in their niches more accurately 434 

(Araújo et al., 2019; Elith & Leathwick, 2009). Consequently, we expect that the results from this study 435 

are not necessarily transferable when studying more mobile species (e.g., birds or mammals) in 436 

homogeneous systems (e.g., flat terrain, monoculture plantations). Nevertheless, aggregating 437 

proximal data still significantly improves the performance of SDMs relative to the use of conventional 438 

macroclimate data in SDMs. Especially when computational capacity is limited, aggregated 439 

microclimatic data could be used in order to improve models. 440 

The climate that really matters 441 

The increased availability of microclimatic data products over large spatial extents (Haesen et al., 442 

2023; Lembrechts et al., 2022) opens new avenues within ecological research. With these data, we 443 

are able to unravel the hidden niches and describe the conditions that actually matter for species living 444 

close to the ground surface (e.g., tree seedlings and forest floor herbs) at very fine spatial resolutions. 445 

This study makes clear that species environmental niches derived from conventional macroclimatic 446 

data are much wider than one would expect given the buffering effect of forests (De Frenne et al., 447 

2019). Furthermore, the niche estimations based on microclimatic data make it possible to more 448 

accurately pinpoint where species could come under pressure due to climate change, facilitating 449 

alignment of appropriate management actions (e.g., assisted migration). Indeed, an accurate 450 
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assessment of species distributional ranges will become vital as many forest specialist species are 451 

characterized by slow dispersal rates, up to several meters per year (Hermy et al., 1999; Svenning et 452 

al., 2008). It is very unlikely that these species will be able to follow contemporary macroclimate 453 

warming, where climate zones are shifting several kilometres each year (Burrows et al., 2011). In this 454 

respect, microclimate data and microclimate-based SDMs offer a solution as they will allow us to more 455 

accurately assess the velocity of microclimate warming experienced by organisms and its effect on 456 

species redistributions. Although outside the scope of this research, this could potentially reveal that 457 

the actual velocity of species redistributions does not have to be as high as predicted based on 458 

macroclimatic data.   459 

When taking a closer look at the trailing and leading edge, we found that 66% of the studied 460 

species already persist in cool or warm refugia, respectively (Figure 6; Figure S2). Current SDM 461 

practices are unable to identify these microrefugia as conventional macroclimate data represents the 462 

overarching free-air temperatures rather than the local temperatures inside these microrefugia 463 

(Lenoir et al., 2017), which act at high-spatial resolution. Microclimate-based SDMs thus enable the 464 

species-level identification of these microrefugia (Michalak et al., 2020). These insights will thus be 465 

crucial for conservation practices as the importance of microrefugia regarding the accumulation and 466 

conservation of biodiversity has been widely discussed in the recent scientific literature (Finocchiaro 467 

et al., 2022; Nadeau et al., 2022). Indeed, microclimate-based SDMs are a valuable tool to identify 468 

areas within the landscape where forest management practices can be aligned (i) to increase the 469 

capacity of species and communities to resist climate change (i.e., resistance strategy) or (ii) to 470 

facilitate the transformation of communities to species that are well adapted to the novel 471 

environmental conditions (Hylander et al., 2022). 472 

We would like to note that the goal of this study was to compare different types of climate 473 

data for use in SDMs, meaning that we did not necessarily build the best possible model for each 474 

species. Therefore, the environmental niches and distributional ranges provided in this study should 475 

not be used to undertake conservation actions.  476 

Future improvements 477 

As gridded microclimatic data at 25 m × 25 m is currently only available for European forests, this 478 

multi-species study is limited to 140 forest specialist plant species. Here, we do not cover herbaceous 479 

plant species living in open habitats such as grasslands or heathlands, as relevant microclimate data 480 

at the relevant spatial resolution is not yet available for these habitats. This is mainly due to the fact 481 

that measurements from available microclimate sensors are strongly affected by incoming solar 482 

radiation when installed in open ecosystems (Maclean et al., 2021), which prevents the development 483 

of analogous microclimatic data for these systems. In order to assess whether the results from this 484 
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study are transferable to other species groups, accurate microclimate data over large spatial extents 485 

in open systems is thus urgently needed. Furthermore, additional variables play an important role in 486 

plant species distributions but are not yet available at high spatial resolution over large spatial extents. 487 

For instance, soil moisture is known to be vital for plant survival, but up till now the topographic 488 

wetness index has often been used as a proxy (Kopecký et al., 2021) as high-resolution soil moisture 489 

products are hard to obtain. Finally, microclimatic data predicted under future shared socioeconomic 490 

pathways (SSPs) will improve insights for future conservation efforts. For instance, knowledge on 491 

species reshuffling under climate change or thermophilization of species communities could benefit 492 

from such microclimate change predictions. However, forests are very dynamic systems and their 493 

structural characteristics – known to influence the forest microclimate – cannot be assumed to remain 494 

static over time, which hampers the development of such dynamic products up till now (De 495 

Lombaerde et al., 2022). Especially within a warming world, disturbances affecting forest canopies 496 

(e.g., drought, pests, storms) will become more frequent and pronounced (De Frenne et al., 2021; 497 

Seidl et al., 2017).  498 
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CONCLUSIONS 499 

In this study, we performed a comparative analysis between species distribution models (SDMs) with 500 

three different sets of climate data: (i) conventional macroclimatic data; (ii) aggregated microclimatic 501 

data matching the macroclimatic data in spatial resolution; and (iii) microclimatic data at the native 502 

fine spatial resolution that is relevant to the size of the studied organisms (i.e., understory forest 503 

specialists here). We conclude that the performance of SDMs for forest specialist species can be 504 

significantly improved by incorporating microclimatic data, although this might not necessarily be 505 

transferable to other species groups. We would like to emphasize the ability of microclimate-based 506 

SDMs to uncover the hidden niche of forest specialist plant species, which has implications for the 507 

predicted tolerance of these species at their warm and cold edge. Furthermore, this study makes clear 508 

that macroclimatic data is unable to identify warm and cold refugia beyond the range edges of species’ 509 

distributions. Therefore, we conclude that microclimate-based SDMs are a crucial tool to gain peculiar 510 

insights regarding biodiversity conservation within the face of climate change, which is needed to align 511 

management actions and prioritize conservation efforts.  512 
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Supplementary material 772 

Table S1: List of the study species, selected from the European forest vascular plant species list (Heinken et al., 773 
2022). We report the amount of occurrence records used within the SDMs after data cleaning. 774 

Species Nr. of records  Species Nr. of records 

Aconitum lycoctonum subsp. lasiostomum 0  Hymenophyllum tunbrigense 24 

Actaea erythrocarpa 18  Hypericum androsaemum 2595 

Actaea spicata 9158  Hypopitys monotropa 3921 

Adoxa moschatellina 2365  Impatiens noli-tangere 4548 

Aegonychon purpurocaeruleum 422  Impatiens parviflora 12917 

Allium ursinum 8970  Inula helvetica 149 

Androsace chaixii 14  Knautia drymeia 117 

Anemone ranunculoides 2818  Lamium galeobdolon 0 

Anemone trifolia 154  Lamium galeobdolon 22345 

Arabis turrita 558  Laser trilobum 43 

Aremonia agrimonoides 22  Laserpitium nestleri 30 

Arenaria procera 0  Lathraea squamaria 3812 

Arum italicum 8219  Lathyrus cirrhosus 1 

Arum maculatum 7331  Lathyrus niger 1653 

Asarum europaeum 1892  Lathyrus venetus 55 

Asperula taurina 69  Lathyrus vernus 8234 

Brachypodium sylvaticum 12233  Limodorum abortivum 888 

Bromopsis benekenii 1632  Lonicera alpigena 698 

Bromopsis ramosa 1094  Lonicera nigra 1241 

Calamagrostis chalybaea 378  Lunaria rediviva 1365 

Calypso bulbosa 7  Luzula forsteri 1103 

Campanula latifolia 1393  Luzula luzulina 84 

Cardamine bulbifera 4186  Luzula nivea 1032 

Cardamine enneaphyllos 392  Luzula pedemontana 19 

Cardamine glanduligera 65  Maianthemum bifolium 14196 

Cardamine heptaphylla 1768  Melampyrum bohemicum 23 

Cardamine pentaphyllos 664  Melica picta 5 

Cardamine trifolia 244  Melica uniflora 8231 

Carex alba 615  Melittis melissophyllum 4174 

Carex digitata 10190  Mercurialis ovata 28 

Carex disperma 304  Milium effusum 11644 

Carex elongata 2403  Moehringia muscosa 648 

Carex fritschii 0  Moneses uniflora 3624 

Carex loliacea 562  Neottia cordata 5301 

Carex pendula 3397  Neottia nidus-avis 4685 

Carex pilosa 150  Neottianthe cucullata 0 

Carex remota 7905  Omphalodes scorpioides 16 

Carex strigosa 367  Onoclea struthiopteris 0 

Cephalanthera damasonium 1508  Orchis spitzelii 6 

Cerastium sylvaticum 4  Orobanche hederae 384 

Chimaphila umbellata 1514  Orobanche lucorum 5 

Chrysosplenium oppositifolium 2490  Orobanche salviae 14 
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Cinna latifolia 898  Orthilia secunda 7210 

Circaea alpina 1744  Oxalis acetosella 27704 

Circaea lutetiana 9695  Paeonia mascula 29 

Circaea x intermedia 275  Paris quadrifolia 15002 

Cirsium carniolicum 8  Pilosella hybrida 0 

Clematis recta 102  Poa remota 778 

Clinopodium menthifolium 486  Poa stiriaca 0 

Coptidium lapponicum 1156  Polygonatum multiflorum 7309 

Coronilla coronata 45  Polystichum aculeatum 1935 

Corydalis cava 2087  Polystichum braunii 561 

Cyclamen hederifolium 1805  Polystichum setiferum 1662 

Cyclamen purpurascens 752  Prenanthes purpurea 2892 

Cypripedium calceolus 710  Prunus lusitanica 322 

Cystopteris sudetica 19  Pulmonaria collina 0 

Dactylis glomerata subsp. lobata 999  Pulmonaria longifolia 573 

Daphne laureola 4501  Pulmonaria obscura 2081 

Daphne mezereum 12362  Pulmonaria officinalis 1965 

Dictamnus albus 524  Pulmonaria saccharata 103 

Digitalis purpurea 22045  Pyrola chlorantha 3752 

Diplazium sibiricum 96  Pyrola media 1304 

Drymochloa drymeja 8  Pyrola minor 3735 

Drymochloa sylvatica 2544  Ranunculus cassubicus 187 

Dryopteris remota 13  Rhamnus alpina 313 

Epipactis albensis 0  Ribes spicatum 1528 

Epipactis bugacensis 1  Rumex sanguineus 3069 

Epipactis fageticola 0  Ruscus aculeatus 10151 

Epipactis greuteri 0  Sanicula europaea 5624 

Epipactis leptochila 29  Saxifraga geranioides 14 

Epipactis microphylla 69  Saxifraga hirsuta 211 

Epipactis nordeniorum 0  Saxifraga umbrosa 92 

Epipactis phyllanthes 34  Schedonorus giganteus 2742 

Epipactis placentina 0  Scilla lilio-hyacinthus 126 

Epipactis pontica 0  Scrophularia alpestris 115 

Epipactis purpurata 210  Scrophularia peregrina 38 

Epipactis tallosii 0  Scutellaria altissima 73 

Epipogium aphyllum 144  Sedum cepaea 41 

Euonymus latifolius 245  Senecio hercynicus 169 

Euphorbia amygdaloides 7039  Senecio nemorensis subsp. jacquinianus 8 

Festuca flavescens 8  Silene viridiflora 10 

Gagea spathacea 263  Soldanella montana 42 

Galium aristatum 45  Spiraea japonica 234 

Galium intermedium 3  Stachys sylvatica 13096 

Galium laevigatum 19  Staphylea pinnata 243 

Galium odoratum 18818  Stellaria longifolia 795 

Galium rotundifolium 1155  Stellaria nemorum 587 

Galium sylvaticum 590  Symphytum cordatum 4 

Galium triflorum 391  Trifolium rubens 254 
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Geranium lanuginosum 56  Trochiscanthes nodiflora 14 

Geum sylvaticum 181  Valeriana pyrenaica 56 

Goodyera repens 21442  Veronica montana 2714 

Gymnocarpium dryopteris 9594  Veronica urticifolia 892 

Hacquetia epipactis 103  Vicia dumetorum 136 

Helleborus niger 957  Vicia pisiformis 126 

Helleborus viridis 1162  Viola jordanii 1 

Hepatica nobilis 28312  Viola mirabilis 2449 

Hesperis sylvestris 3  Viola pseudomirabilis 0 

Hordelymus europaeus 2768  Viola reichenbachiana 6726 

  775 
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Table S2: Final model structures of the Bayesian regression models indicating which transformations, 776 
distributions, priors and formulas were used (modeled with brms package). Phi, sigma and alpha are 777 
distributional parameters representing the precision (beta distribution), standard deviation (gaussian and 778 
skewed normal distribution) and skewness (skewed normal distribution) respectively. The adapt_delta argument 779 
is used to adapt sampling speeds (default value = 0.8), with higher values corresponding to slower sampling 780 
speeds and more robust to posterior distributions. Q05, optimum and Q95 refer to cold edge, optimum and warm 781 
edge of the bioclimatic variables. 782 

RESPONSE  Transformation Distribution PRIORS Formula 

CBI  rescaled beta standard 
CBI ~ type + (1 | species) 

phi ~ type 

SENSITIVITY  / beta standard 
sensitivity ~ type + (1 | species) 

phi ~ type 

AREA  standardized skewed normal user-defined* 

area ~ type + (1 | species) 

sigma ~ type 

alpha ~ type 

adapt_delta = 0.9 

EDGES 

Leading standardized skewed normal user-defined* 

leading ~ type + (1 | species) 

sigma ~ type 

alpha ~ type 

adapt_delta = 0.9 

Trailing standardized skewed normal standard 

trailing ~ type + (1 | species) 

sigma ~ type 

alpha ~ type 

Range standardized skewed normal user-defined* 

range ~ type + (1 | species) 

sigma ~ type 

alpha ~ type 

adapt_delta = 0.9 

BIO1 

Q05 standardized skewed normal standard 

BIO1_Q05 ~ type + (1 | species) 

sigma ~ type 

alpha ~ type 

Optimum standardized skewed normal standard 

BIO1_opt ~ type + (1 | species) 

sigma ~ type 

alpha ~ type 

Q95 standardized skewed normal standard 

BIO1_Q95 ~ type + (1 | species) 

sigma ~ type 

alpha ~ type 

adapt_delta = 0.9 

Width standardized skewed normal standard 

BIO1_width ~ type + (1 | species) 

sigma ~ type 

alpha ~ type 

BIO5 

Q05 standardized gaussian standard BIO5_Q05 ~ type + (1 | species) 

Optimum standardized skewed normal standard 

BIO5_opt ~ type + (1 | species) 

sigma ~ type 

alpha ~ type 

adapt_delta = 0.99 

Q95 standardized skewed normal standard 

BIO5_Q95 ~ type + (1 | species) 

sigma ~ type 

alpha ~ type 

Width standardized skewed normal user-defined* 

BIO5_width ~ type + (1 | species) 

sigma ~ type 

alpha ~ type 

adapt_delta = 0.9 

BIO6 Q05 standardized skewed normal user-defined* BIO6_Q05 ~ type + (1 | species) 
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sigma ~ type 

alpha ~ type 

adapt_delta = 0.99 

Optimum standardized skewed normal standard 

BIO5_opt ~ type + (1 | species) 

sigma ~ type 

alpha ~ type 

adapt_delta = 0.9 

Q95 standardized skewed normal standard 

BIO6_Q95 ~ type + (1 | species) 

sigma ~ type 

alpha ~ type 

Width standardized skewed normal standard 

BIO6_width ~ type + (1 | species) 

sigma ~ type 

alpha ~ type 

adapt_delta = 0.9 

*User-defined priors: c(set_prior("normal(0,3)", class = "b"), set_prior("normal(0,5)", class = "b", par="alpha"), set_prior("student_t(3, 0, 783 

2.5)", class = "b", dpar="sigma"))  784 
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Table S3: ODMAP protocol for Haesen et al.  785 

OVERVIEW 

Authorship • Authors: Stef Haesen, Jonathan Lenoir, Eva Gril, Pieter De Frenne, 

Jonas J. Lembrechts, Martin Kopecký, Martin Macek, Matěj Man, 

Jan Wild, Koenraad Van Meerbeek 

• Contact email: stef.haesen@kuleuven.be 

• Title: Uncovering the hidden niche: incorporating microclimate 

temperature into species distribution models 

• DOI: Not applicable 

Model objective • Objective: Mapping / interpolation 

• Target outputs: logistic maps (i.e, continuous habitat suitability 

index) & binary maps (i.e., suitable vs. unsuitable habitat) 

Taxon forest plant specialist species 

Location Europe 

Scale of analysis • Spatial extent (Longitude / Latitude): 8°E - 50°W ; 33°N – 67°N 

• Spatial resolution: 25 m × 25 m (microclimatic data) & 1 km × 1 km 

(macroclimatic data & aggregated microclimatic data) 

• Temporal extent / time period: 2000 - 2020 

• Type of extent boundary: rectangular 

Biodiversity data • Observation type: human observations (GBIF) 

• Response / Data type: presence-only 

Type of predictors climatic, edaphic 

Conceptual model • Hypotheses about species-environment relationships: As forests 

are known to buffer temperatures, we hypothesize that forest 

specialist plant species respond to warmer minimum 

temperatures and lower maximum temperatures as perceived by 

the free-air temperature data. 

Assumptions We assumed that: 

o Species are at (pseudo-) equilibrium with their 

environment. 

o The offset values from the long-term average period of 

1970-2000 are still valid for the period 2000-2020. These 

are used to spatially-downscale the 4 km × 4 km 

TerraClimate data to 1 km × 1 km. 

SDM algorithms • Algorithms: We fitted MaxEnt models, which were chosen due to 

the presence-only character of the occurrence records. 

• Model complexity: MaxEnt models were built with linear, 

quadratic and product features. Regularization multipliers ranges 

from 0.5 to 5. 

• Ensembles: Not applicable 

Model workflow Only weakly correlated predictors were retained in the analysis. We 
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performed parameter tuning for the features and regularization 

multipliers in MaxEnt models based on AICc, using the ENMeval 2.0 

package. Model performance was assessed using the Continuous 

Boyce Index (CBI) 

Software • Software: Analyses were conducted in R version 4.1.1 and models 

were constructed using ENMeval v2.0.0 with maxnet package 

v0.1.4. 

• Data availability: The raw biodiversity data is available through 

https://doi.org/10.15468/dl.kf533a. ForestClim is freely-available 

through https://doi.org/10.6084/m9.figshare.22059125.  

DATA 

Biodiversity data • Taxon names: All species are listed in Table S1 

• Ecological level: individual point data 

• Data source: GBIF (https://doi.org/10.15468/dl.kf533a) 

• Sampling design: random 

• Sample size: Amount of records per species are listed in Table S1 

• Regional mask: We clipped the data to the boundary of the study 

area 

• Data cleaning / filtering: The occurrence data were filtered in the 

following sequential steps: (1) only records of ‘human 

observations’ were selected; (2) records with an unknown 

coordinate uncertainty or coordinate uncertainty larger than 25 m 

were excluded; (3) records located at country or capital centroids 

and biodiversity institutions were omitted; (4) duplicate records 

were removed; (5) only records observed during our climatic 

reference period (2000-2020) were selected; (6) records were 

spatially thinned to one random observation per 25 m × 25 m grid 

cell; and (7) we omitted species with less than 50 cleaned 

occurrence records. 

• Background data: Background data were generated by sampling 

an equal amount of background points as occurrence points based 

on a 2D kernel-density estimate of the occurrence points. 

• Errors and biases: We performed spatial thinning of occurrence 

points to account for sampling bias. Furthermore, background data 

was sampled according to a 2D-kernel density function, which 

introduces an equal amount of sampling bias within the 

background data as in the presence-only data. We only used 

records with a very low coordinate uncertainty (< 25 m) in order to 

minimize positional error on the occurrence points. 

Data partitioning We allocated 80% of the occurrence points to a spatial block cross-

validation procedure, whereas 20% is kept for independent evaluation. 

Predictor variables • Predictor variables: 

o Climate: maximum temperature of the warmest month 

https://doi.org/10.15468/dl.kf533a
https://doi.org/10.6084/m9.figshare.22059125
https://doi.org/10.15468/dl.kf533a
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(BIO5), minimum temperature of the coldest month 

(BIO6), mean annual precipitation (BIO12), and 

precipitation seasonality (BIO15).   

o Edaphic variables: cation exchange capacity and soil clay 

content 

• Data sources: Macroclimatic data was collected from the 

TerraClimate database, whereas microclimatic data was 

downloaded from ForestClim. SoilGrids was used for the edaphic 

variables. 

• Spatial resolution: 25 m × 25 m (microclimatic data) & 1 km × 1 km 

(macroclimatic data & aggregated microclimatic data) 

• Extent: 8°E - 50°W ; 33°N – 67°N 

• Geographic projection: ETRS89/LAEA 

• Time period: 2000-2020 

• Data processing: Bilinear interpolation was used in case data 

needed to be spatially-downscaled, whereas data aggregation (i.e., 

averaging) was used when data needed to be spatially-upscaled. 

All layers were reprojected to ETRS89/LAEA, if needed. 

MODEL 

Variables preselection We started from the conventional set of nineteen bioclimatic 

variables. Based on Booth (2022), we excluded bioclimatic variables 

combining both temperature and precipitation data (i.e., BIO8 = mean 

temperature of the wettest quarter; BIO9 = mean temperature of the 

driest quarter; BIO18 = precipitation of the warmest quarter; BIO19 =  

precipitation of the coldest quarter) 

Multicollinearity Highly correlated variables (Spearman correlation coefficients > 0.7) 

were removed from the analysis in order to reach the most 

parsimonious model. When excluding one of the correlated covariate 

pair, we retained variables which are known to be more important for 

plant species distribution and which are important for our further 

analyses (e.g., BIO5 & BIO6) 

Model settings MaxEnt models were built with linear, quadratic and product features. 

Regularization multipliers ranges from 0.5 to 5 

Non-independence We accounted for spatial autocorrelation by implementing a spatial 

block-cross validation. 

Threshold selection We used a 10% training presence as a threshold, meaning that the 

suitable area contains 90% of the original occurrence records 

ASSESSMENT 

Performance statistics • Performance statistics estimated on validation data: The Akaike 

Information Criterion for small sample sizes (AICc) was used to 

select the best candidate models 

• Performance statistics estimated on testing data: Model 
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performance was assessed using the Continuous Boyce Index (CBI) 

Plausibility checks Maps of modelled predictions were checked by experts for an ad-hoc 

subset of species. 

PREDICTION 

Prediction output • Prediction unit: logistic maps (i.e, continuous habitat suitability 

index) & binary maps (i.e., suitable vs. unsuitable habitat) 

• Post-processing: Non-forested areas where masked out  

  786 
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 787 

Figure S1: Correlation matrix containing all Spearman correlation coefficients (r²) between all combinations of 788 
quantitative variables. Highly correlated variables (Spearman correlation coefficients > 0.7) were removed from 789 
the analysis (Dormann et al., 2013). The final selection of covariates encompassed two temperature variables 790 
(maximum temperature of the warmest month (BIO5) and minimum temperature of the coldest month (BIO6)), 791 
two precipitation variables (mean annual precipitation, (BIO12) and precipitation seasonality (BIO15)) and two 792 
edaphic variables (cation exchange capacity and soil clay content).  793 
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 794 

Figure S2: Range of circular buffers (i.e., 100 m, 500 m, 1000 m, 2500 m, 5000 m) over which we quantified 795 
whether or not a species was located in cool or warm refugia. For the trailing and leading edge, we extracted the 796 
5% most southern and northern occurrence records, respectively. Using paired t-tests (α = 0.05), we compared 797 
the local temperature conditions of these occurrence points to the surrounding microclimatic conditions over 798 
these circular buffers around each occurrence record.  799 
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 800 

Figure S3: Binary maps indicating the potential suitable area for Paris quadrifolia.  These maps are the result of 801 
species distribution modelled using (a) macroclimate data at a spatial resolution of 1 km × 1 km, (b) aggregated 802 
microclimatic data at a spatial resolution of 1 km × 1 km and (c) microclimatic data at the native spatial resolution 803 
of 25 m × 25 m over the 2000-2020 period. Density of suitable pixels along the latitudinal gradient is represented 804 
at the left side, respectively. 805 


