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Abstract 19 

Understanding the amount of space required by animals to fulfill their biological needs is 20 

essential for comprehending their behavior, their ecological role within their community, and for effective 21 

conservation planning and resource management. Habituated primates are often studied using handheld 22 

GPS data, which provides detailed movement information that can link patterns of ranging and space-use 23 

to the behavioral decisions that generate these patterns. However, this data may not accurately represent 24 

an animal's total movements, posing challenges when the desired inference is at the home range scale. To 25 

address this, we used a rich 13-year dataset from 11 groups of white-faced capuchins (Cebus imitator) to 26 

examine the impact of sampling elements, such as sample size and regularity, on home range estimation 27 

accuracy. We found that accurate home range estimation is feasible with relatively small sample sizes and 28 

irregular sampling, as long as the data are collected over extended time periods. Concentrated sampling 29 

can lead to bias and overconfidence due to uncaptured variations in space-use and underlying movement 30 

behaviors. Therefore, it is crucial to develop sampling protocols that provide adequate temporal coverage 31 

and consider the movement behaviors of the study species. 32 

Keywords: capuchin, movement, spatial ecology, autocorrelated kernel density, handheld GPS 33 
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Resumen 41 

Entender la cantidad de espacio necesario para satisfacer las necesidades biológicas de los 42 

animales es esencial para comprender su comportamiento, su papel ecológico dentro de su comunidad y 43 

para una planificación efectiva de la conservación y gestión de recursos. Los primates habituados a 44 

menudo son estudiados utilizando datos de GPS portátil, lo que proporciona información detallada sobre 45 

los movimientos y puede vincular los patrones de rango a las decisiones comportamentales. Sin embargo, 46 

estos datos pueden no representar con precisión los movimientos totales del animal, lo que plantea 47 

desafíos para inferir patrones de rango de hogar. Para abordar esto, utilizamos un rico conjunto de datos 48 

de 13 años de 11 grupos de monos cara blanca (Cebus imitator) para examinar el impacto de los 49 

elementos de muestreo, como el tamaño y la regularidad de la muestra, en la precisión de la estimación 50 

del rango de hogar. Encontramos que la estimación precisa del rango de hogar es factible con tamaños de 51 

muestra relativamente pequeños y muestreo irregular, siempre que los datos se recolecten durante 52 

períodos prolongados. El muestreo concentrado puede conducir a sesgos y sobreconfianza debido a 53 

variaciones no capturadas en el uso del espacio y los comportamientos subyacentes del movimiento. Por 54 

lo tanto, es crucial desarrollar protocolos de muestreo que proporcionen una cobertura temporal adecuada 55 

y consideren los comportamientos de movimiento de la especie estudiada.  56 
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Introduction 57 

Animal space-use is often described using the home range concept, developed by Burt (1943), 58 

who defined the home range as ‘the area traversed by the individual in its normal activities of food 59 

gathering, mating and caring for young’. The home range concept is integral to primate research, helping 60 

us understand how individuals - and social groups - interact with one another and their environment. 61 

Measuring home ranges provides insights into elements of behavioral ecology, such as habitat selection, 62 

species abundance and distribution (Gautestad & Mysterud, 2005), metabolism (Harvey & Clutton-Brock, 63 

1981), learning and cognition (Spencer, 2012), resource competition (Crofoot et al., 2008), predator-prey 64 

dynamics (Suraci et al., 2022), and the roles species play in their ecological communities (e.g. seed 65 

dispersal (Gelmi-Candusso et al., 2019) and pollination (Abe et al., 2011)). Home range estimates are also 66 

frequently used to inform species’ minimum area requirements (Pe’er et al., 2014), size recommendations 67 

for protected areas (Brashares et al., 2001), land-use decisions (Johansson et al., 2016), and other aspects 68 

of conservation policy and initiative.  69 

Overview of Home Range Estimation 70 

While home range estimation is a simple concept, in practice, it is a logistically and statistically 71 

challenging endeavor (C. H. Fleming et al., 2015a). Recent research has identified three key elements 72 

required to estimate an accurate home range: 1) a quantitative definition of the home range (Börger et al., 73 

2020), 2) sufficient sampling across the home range, which generally scales with time rather than number 74 

of recorded locations (C. H. Fleming et al., 2018), and 3) a robust estimator that extrapolates future space-75 

use and provides a workflow to overcome the numerous possible sources of bias in home range estimation 76 

(C. H. Fleming et al., 2015a). Further, having a home range requires site fidelity, the tendency to remain 77 

or return to previously occupied areas (Switzer, 1993). Thus, most approaches assume home ranges are 78 

stationary, and the data themselves must show clear evidence of range residency, otherwise home range 79 

analysis is not appropriate (C. H. Fleming & Calabrese, 2017). 80 
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Burt’s definition (1943) provides a conceptual framework for the home range, but it lacks a 81 

statistical basis needed to quantify it (Silva et al., 2021). Early efforts used the Minimum Convex Polygon 82 

(MCP), but joining the outermost points is problematic as it leads to estimates that are highly sensitive to 83 

sampling and assume uniform space-use (Burt, 1943; Kernohan et al., 2001; Worton, 1995). Efforts have 84 

since focused on measuring the utilization distribution (hereafter UD) (Worton, 1989). The UD is a 85 

density function describing the probability distribution of an animal being at any point in space within a 86 

particular area (Börger et al., 2020; Calhoun & Casby, 1958; Jennrich & Turner, 1969). The 95% UD - or 87 

‘the smallest area associated with a 95% probability of finding the animal’ (Fieberg & Kochanny, 2005; 88 

White & Garrott, 1990) is the widely adopted – although somewhat arbitrary - quantitative formulation, 89 

as Burt’s original home range concept excludes ‘occasional sallies outside the area used for normal 90 

activities’ that are ‘perhaps exploratory by nature’ (Burt, 1943).  91 

Constructing UDs generally involves kernel density estimation (hereafter KDE), which works by 92 

placing kernels, or small probability density functions, over each location data point and averaging them 93 

to acquire a total probability density function across all the points (Börger et al., 2020; Worton, 1989). 94 

The resulting probability density function has the highest density where the points are the most 95 

concentrated (Worton, 1989). The conventional KDE method was developed for home range estimation 96 

when movement data were generally collected at relatively low sampling rates using VHF radio-telemetry 97 

(Börger et al., 2020). Consequently, the underlying statistics of the KDE assumes that the data have no 98 

autocorrelation (Worton, 1989), meaning the observed locations are independent of previously, or 99 

subsequently, observed locations. This is a false assumption with most current GPS-based sampling 100 

regimes, as the ability of these devices to collect movement data at higher frequencies results in greater 101 

degrees of autocorrelation in movement datasets (C. H. Fleming et al., 2015a). When the data are sampled 102 

at intervals short enough that the recorded locations are correlated in space and time, which can even be 103 

as coarse as one fix per day (Calabrese et al., 2016)), the assumptions of the conventional KDE are 104 

violated (C. H. Fleming et al., 2015a). 105 
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In the context of autocorrelated data, traditional KDE methods yield UDs that are better suited to 106 

reflecting an animal's space-use during the observation period (i.e., occurrence distribution), rather than 107 

providing a home range estimate that extrapolates beyond the observed data to encompass future space 108 

use (i.e., range distribution) (Börger et al., 2020). The range distribution aligns with Burt's initial 109 

description of the home range by measuring an animal's long-term space use, making it relatively resilient 110 

to variations in sampling effort (C. H. Fleming et al., 2015a). Conversely, the occurrence distribution 111 

focuses on space-use during the observation period, making it highly sensitive to sampling and 112 

conforming closely to the observed data (J. Alston et al., 2022).  113 

Calculating the occurrence distribution can be beneficial for various analytical purposes not 114 

related to home range estimation, such as path reconstruction (C. H. Fleming et al., 2015b), and 115 

determining the times and locations of animal interactions or crossings over landscape features (J. Alston 116 

et al., 2022). There are several methods that explicitly estimate the occurrence distribution including 117 

Brownian bridge approaches (Horne et al., 2007), the continuous-time correlated random walk (Johnson 118 

et al., 2008), time-dependent LocoH (Lyons et al., 2013), and time-series Kriging (C. H. Fleming et al., 119 

2015b). Nevertheless, the KDE is widely used to estimate the home range (hereafter referred to as the 120 

range distribution), instead of the occurrence distribution (C. H. Fleming et al., 2015a), which is only 121 

suitable when the recorded location data are independent and not autocorrelated (Börger et al., 2020). As 122 

almost all modern movement data are autocorrelated (C. H. Fleming et al., 2015a), using the KDE method 123 

typically generates UDs that more closely resemble the occurrence distribution. Therefore, if the intended 124 

goal is to estimate the home range, the KDE approach will provide negatively-biased results that are 125 

potentially misleading (C. Fleming et al., 2014). 126 
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 127 

Figure 1: Comparison of the range distribution using auto-correlated kernel density estimation versus the 128 

occurrence distribution using time-series Kriging over the same autocorrelated data. Red points are 129 

recorded locations of capuchin movements, blue represents the estimated utilization distribution, and 130 

black lines show the mean and 95% confidence interval boundary of the 95% level utilization distribution.  131 

Recently, new home range estimation methods have been developed that account for the fact that 132 

animals’ paths result from movement processes that are, by definition, spatio-temporally autocorrelated. 133 

These methods therefore explicitly treat movement data as a sample of location estimates taken along an 134 

animal’s mostly unobserved continuous movement path (C. H. Fleming et al., 2015a). Improving upon 135 

the KDE, the auto-correlated kernel density estimate (hereafter AKDE) models the underlying 136 

continuous-time movement process of the animal, generating home range estimates that are informed by 137 

autocorrelated data, rather than hindered by it (Calabrese et al., 2016). The AKDE is a flexible approach 138 

that provides the analytical toolkit to handle several other obstacles, such as satellite error, irregular 139 

sampling, bandwidth optimization, and estimation uncertainty (C. Fleming et al., 2020; C. H. Fleming et 140 

al., 2018; C. H. Fleming & Calabrese, 2017).  141 

A comprehensive analysis by Noonan et al. (2019), showed that the AKDE outperformed all 142 

conventional estimators, and was the only estimator capable of producing unbiased estimates with low 143 
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effective sample sizes. While the AKDE is increasingly being adopted in studies of animal ranging 144 

behavior (Crabb et al., 2022; Desbiez et al., 2020; Lenske & Nocera, 2018; McEvoy et al., 2019; Montano 145 

et al., 2021; Naveda-Rodríguez et al., 2022; Poessel et al., 2022), the overwhelming majority of 146 

primatology studies still use methods such as the MCP and conventional KDE. In a Google Scholar 147 

search, we found only five published articles using the AKDE for home range estimation on primate 148 

species (Havmøller et al., 2021; Kalbitzer et al., 2023; Oliveras, 2021; Teichroeb et al., 2022), only one of 149 

which is in a major primatology journal (e.g. AJP, IJP, Primates, Folia Primatologica) (Tórrez-Herrera et 150 

al., 2020). The potential presence of significant, systematic biases in home range estimates is concerning, 151 

as it can lead to erroneous conservation decision-making (Gaston et al., 2008) or inaccurate meta-analyses 152 

that influence public opinion and theoretical frameworks (as noted by Noonan et al., 2020). Also, 153 

particularly worrying is that the methods used to record primate movement (e.g. handheld GPS) are 154 

fundamentally different than those used on studies of most other species (e.g. GPS tags), introducing 155 

additional bias into any comparative work. 156 

Collection of Movement Data in Field Primatology 157 

Due to technological advances in satellite acquisition, position accuracy, and battery conservation 158 

(Markham & Altmann, 2008; Sprague et al., 2004), the use of GPS devices became feasible in dense 159 

tropical forests around the year 2000 (Dominy & Duncan, 2002; Phillips et al., 1998; Singleton & van 160 

Schaik, 2001). Handheld GPS devices allow researchers to collect high-resolution movement data in 161 

conjunction with behavioral observations without applying expensive and potentially risky GPS tags 162 

directly on habituated animals. On the other hand, using GPS tags negates the need to continuously 163 

monitor primates via on-the-ground personnel, allowing movement data to be collected in areas that are 164 

inaccessible to humans, and avoiding any potential disturbance introduced from human presence that may 165 

change behaviors or community interactions (Crofoot, 2021). Although GPS tags are becoming 166 

increasingly common in primate studies (Dore et al., 2020; Markham & Altmann, 2008; Strandburg-167 
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Peshkin et al., 2015; Tórrez-Herrera et al., 2020), most longitudinal studies continue to use handheld 168 

devices (Irwin & Raharison, 2021; Janmaat et al., 2021; Seiler & Robbins, 2020).  169 

There is vast potential in the datasets generated by handheld GPS devices from longitudinal 170 

studies, as they span several years or decades and have corresponding data on demography, behavior, and 171 

environmental variables (Campos et al., 2014; Gibson & Koenig, 2012; Irwin & Raharison, 2021; Seiler 172 

& Robbins, 2020). Thus, these data can give rise to novel and important investigations that are not 173 

feasible for most tracking studies, including how movement and space-use are influenced by demography, 174 

memory and learning, climate change, and human disturbance. Yet the accumulated handheld GPS data 175 

from longitudinal studies is often underutilized, with inquiries on social behavior and life history taking 176 

precedence. Thus, there is generally a lack of understanding of what drives long-term movement and 177 

space-use patterns of primates and how these patterns link with fitness.   178 

Another key issue is that most modern approaches for estimating the home range, including the 179 

AKDE, have been designed to handle movement data sampled continuously at discrete intervals over 180 

predetermined time periods (e.g., GPS tag datasets). Challenges arise when applying these approaches to 181 

the extensive, but often discontinuous and opportunistic datasets produced by tracking the movements of 182 

habituated animals using handheld GPS devices. When animal movement data are collected by tracking 183 

the movements of human observers (e.g. handheld GPS datasets), sampling bias is introduced from 184 

several sources. For instance, data can only be collected when observers are present, causing missing data 185 

when rotating between multiple groups or during vacation periods.  Bias is also introduced when some 186 

areas are less accessible to observers, for example over cliffs or flooded rivers. Sampling disruptions can 187 

also be non-random in time and across behaviors, as groups can be more easily ‘lost’ in rainy seasons 188 

where visibility and audibility are limited, or when groups are moving rapidly.  189 

 For primatologists, handheld GPS data remain an exceedingly valuable input for estimating 190 

space-use. Nevertheless, it remains unclear whether common sampling protocols in field primatology 191 
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produce home range estimates that are truly accurate. Here, we address this concern by answering the 192 

following questions:  193 

1. How much movement data from handheld GPS are necessary to maximize estimation 194 

accuracy?  195 

2. At what temporal scales should we measure home ranges? 196 

3. What are the most important considerations for obtaining representative samples? 197 

Our aim is to understand how to maximize the potential of long-term, handheld GPS data for 198 

accurate home range estimation and to make recommendations for robust home-range estimation using 199 

such datasets. We used a longitudinal dataset from the Lomas Barbudal Monkey Project – comprising 13 200 

years of handheld GPS data collected over 11 groups of white-faced capuchin monkeys (Cebus imitator) 201 

in Guanacaste, Costa Rica. We thinned continuous segments of data into alternative sampling regimes of 202 

varying temporal scales and levels of consistency, and assessed the home range estimation performance 203 

using cross validation from the total samples. This approach allows us to better understand how key 204 

features of movement datasets collected by on-the-ground observers - namely small sample sizes and gaps 205 

in sampling time frames - affect the accuracy of home range estimates.  206 

Methods 207 

Study site 208 

Our field work was carried out at the Lomas Barbudal Monkey Project which was established by 209 

Prof. Dr. Susan Perry in 1990. Her ongoing longitudinal study aims to monitor the social behavior and 210 

life history of white-faced capuchins (Perry et al., 2012). The Lomas Barbudal Monkey Project is 211 

centered around the neotropical dry forests of Reserva Biologica Lomas Barbudal (10°29–32′N, 85°21–212 
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24′W) in Guanacaste, Costa Rica (aka “Lomas”). However, the capuchin groups also venture outside the 213 

reserve into land owned by Finca El Pelón de la Bajura and other nearby private and public lands. 214 

The landscape at Lomas is rugged and highly heterogeneous, consisting of various distinct forest 215 

types, including dry deciduous, riparian, savanna, mesic, extreme deciduous, and regenerative – as well as 216 

large patches cleared for cattle ranching (Frankie et al., 1988). Lomas experiences extreme seasonality 217 

with virtually all of the annual rainfall (1000-2200 mm) occurring between May - November (Frankie et 218 

al., 1988). During the dry season, most animal life seeks refuge in riparian areas as they provide the 219 

primary means of shade and food resources (Frankie et al., 1974). Fires are also common in the dry 220 

season, and increasingly so with stronger and more frequent El Niño events due to climate change (Perry 221 

et al., 2012); Perry pers. obs). Additionally, human disturbance persists year-round at Lomas through 222 

agriculture, mining, poaching, and logging (Quesada & Stoner, 2004; Stoner & Timm, 2004; pers. obs). 223 

Study Species 224 

White-faced capuchin monkeys (Cebus imitator) are arboreal platyrrhine primates that live in 225 

multi-male, multi-female groups ranging anywhere from 5-40 (average 18.8) individuals at Lomas 226 

Barbudal (Perry, 2012). Females typically remain in their natal group for life, while males disperse as 227 

adolescents (mean 7.6 years old) to join other groups and avoid inbreeding (Perry et al., 2012). Fruit and 228 

arthropods comprise most of their diet (McCabe & Fedigan, 2007; Perry & Ordoñez J., 2006);  however, 229 

they are dietary generalists and also eat flowers, eggs, pith, and small vertebrates. Groups are generally 230 

cohesive and move collectively, with each individual remaining within audio-visual contact with at least 231 

one other group member (Campos et al., 2014). Home ranges can overlap extensively with neighboring 232 

groups, and although they don’t defend strict territorial borders, interactions between groups are 233 

aggressive and sometimes even deadly (Crofoot, 2007; Gros-Louis et al., 2003; Perry, 1996). Over the 234 

course of the study, we monitored 11 neighboring groups that are habituated to human observation. 235 

Several of these formed as a result of fissions from existing study groups. 236 
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Data collection 237 

We collected data on the movement trajectories of capuchin groups from September 2009 to 238 

March 2020 using handheld Garmin GPSmap Series units (62s, 64, 64s, 66sr) clipped on or placed in 239 

researcher backpacks. Researchers followed capuchin groups from dawn until dusk (switching between 240 

groups when behavioral data collection was completed (i.e., ~3-10 days)), recording the groups’ 241 

trajectory over the period when capuchins are expected to be active. On search days, GPS recording 242 

began upon encountering groups and continued until groups reached their sleeping site; recording 243 

terminated early in cases of losing contact due to challenging conditions or alternating study groups. 244 

Inefficiency of early GPS models and satellite disconnection due to cloud cover, cliff topography, or 245 

dense canopy also disrupted GPS data collection. In our dataset, 55% of tracks are at least 10 hours in 246 

duration and 78% of tracks are at least 5 hours. GPS units were programmed to collect locations at one fix 247 

per 5 minutes between 2009-2012. When GPSs were upgraded in 2013 they began collecting at one fix 248 

per 30 seconds, which remains the same today. It should be noted that we rediscretize the sampling rate to 249 

one fix per 30 minutes to manage computational costs during home range estimation.  250 

As is common in field primatology studies, movement data collection is somewhat opportunistic, 251 

as behavioral data collection protocols determine which group to follow, as well as when and how 252 

frequently. Once the behavioral data collection priorities were fulfilled for one group, data collection 253 

teams switched to another group. The time spent consecutively with any one group ranged between 1 and 254 

22 days (mean 2.49) depending on the amount of behavioral data needed, visibility, and whether or not 255 

the researchers lost contact with the monkeys. We cleaned all tracking data in the software environment R  256 

(R Core Team, 2022) by visualizing tracks with the mapview package (Appelhans et al., 2022), and then 257 

flagging and removing erroneous points caused by satellite error or researchers forgetting to turn off their 258 

GPS units once they finished behavioral follows and left a focal group. 259 
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The dataset is exceptional in that it covers a large number of groups (11) over a long timeframe 260 

(13 years--see Figure 2). It represents a high-quality example of the data collected during primate field 261 

studies and showcases key challenges in using such data to infer space use: varying temporal coverage 262 

and large and irregular gaps between consecutive sampling periods. There were six cases where specific 263 

groups were followed almost continuously for long periods of two to four months because of concurrent 264 

research projects. These intervals provide ideal subsets of the data to explore the impact of irregular 265 

sampling and small sample sizes on home range estimation. We subsampled these data to emulate 266 

sampling regimes that varied in total duration, regularity of sampling effort, and volume of data. 267 

 268 
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Figure 2: The six complete segments of data selected from the total handheld GPS dataset with the group 269 

name provided on the right side. Each line shows the time sampled in a single day, with a maximum of 13 270 

possible tracking hours (or 26 locations collected at a 30-minute sampling rate) in a day as the monkeys 271 

very rarely move at night. The selected segments were thinned to emulate the varying sampling regimes 272 

shown in Figure 3.   273 

Emulating Sampling Regimes 274 

We chose six high-quality segments (hereafter referred as “complete segments”) from five 275 

different capuchin groups (two of the segments came from one group; the rest were from different 276 

groups), in which the data were collected almost continuously over multiple months. The movement data 277 

from these segments were collected over at least 50 (max = 102 days) nearly consecutive full tracking 278 

days (~13 hours).  We thinned each complete segment to generate ten alternative sampling regimes per 279 

complete segment, totaling 60 different sampling regimes. Out of the ten sampling regimes created from 280 

each complete segment, five were thinned by removing days from either the beginning, the end, or both, 281 

and thus these regimes retained nearly continuous monitoring effort (hereafter, “concentrated sampling 282 

regimes”). The other five regimes were thinned by randomly removing days to create irregular sampling 283 

gaps (hereafter, “spread sampling regimes”). Across the 60 sampling regimes, 30 were concentrated and 284 

30 were spread. The number of days (and approximately the amount of locations) were held constant 285 

across concentrated and spread sampling regimes so that both spread and concentrated regimes have 286 

either 30, 20, 10, 6 or 3 days, corresponding to approximetely 780, 520, 260, 156 and 78 recorded 287 

locations respectively. Each sampling regime is given a sampling regime ID denoting whether it is 288 

concentrated (C) or spread (S) followed by the number of days in the sampling regimes (e.g. S20). 289 
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 290 

Figure 3: Emulated sampling regimes thinned from the six high-quality complete segments. The x-axis 291 

shows the temporal scale, while the y-axis shows the number of recorded locations. For plot aesthetic 292 

purposes, the maximum value each bar can take is variable depending on the temporal scale of the 293 

complete segment (unlike Figure 2 where the maximum was always 26 locations or one full day). The top 294 

row of each segment (labelled as “all”) shows the total data from the complete segment. The following 10 295 

rows indicate the different sampling regimes, which are labelled with a sampling regime ID. The “C” 296 

labels indicate concentrated data, while “S” indicates spread data. The numbers indicate the number of 297 

days in the sampling regime.  298 
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Home Range Estimation 299 

We computed home range estimates for the 60 emulated datasets using the AKDE method 300 

implemented in the ctmm package (Calabrese et al., 2016) in the R Environment for Statistical 301 

Computing (R Core Team, 2022). The ctmm package leverages advances in continuous-time movement 302 

models to provide a suite of tools for generating UDs (among other downstream analyses) while 303 

accounting for the wide range of autocorrelation structures present in most modern tracking datasets as 304 

well as the option to model GPS error. We detail ctmm analysis for home range estimation and provide an 305 

example workflow to make it easy to replicate the analyses with one’s own data in Appendix 1. Then we 306 

demonstrate how we applied this method to the 60 sampling regimes for this study in Appendix 2.  307 

Performance of Home Range Estimates 308 

To evaluate the performance of the 60 emulated regimes—and thus the impact of different 309 

aspects of sampling design—we compared each home range estimate against the data from the full time 310 

period (i.e., complete segments), assuming that estimates that accurately represent these data are more 311 

likely to be closer to the “true” home range. We defined performance as the proportion of the recorded 312 

GPS locations from the complete segments that fall within the boundaries of the 95% UD home range 313 

estimates calculated from the emulated sampling regimes. For simplicity, this measure is hereafter 314 

referred to as simply “performance” or “performance score”. Because the 95% UD is an estimate of the 315 

area in which there is a 95% probability of finding the animal, a perfect performance score is 0.95, 316 

indicating that 95% of the total locations from the complete segment fell within the HR estimate. It is 317 

important to note that because the data from the sampling regimes also represents a portion of the data 318 

within the complete segments, it is expected that performance scores should not deviate substantially 319 

from the optimal value of 0.95. Thus, performance scores that deviate below 0.90 can be viewed as 320 

exceedingly poor. 321 
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Statistical Analysis  322 

The goal of our statistical analysis is to predict home range performance in relation to key 323 

sampling characteristics using binomial generalized linear mixed models (GLMMs) in the brms package 324 

(Bürkner et al., 2023). Our initial model uses a binary predictor variable that indicates whether the data is 325 

concentrated or spread, to predict the performance score as the response variable. In contrast, our second 326 

model predicts the performance score based on the absolute sample size, which is indicated by the 327 

number of recorded locations (collected at a sampling rate of 30 minutes per location). Finally, our third 328 

model predicts performance based on the number of unique weeks, which is a measure of temporal 329 

coverage, quantifying both the length of the sampling window and the number of unique time periods 330 

represented within it. However, the number of unique weeks does not indicate the amount of data 331 

collected within each week. We included an interaction between the predictors and the binary variable 332 

indicating spread or concentrated data in the last two models, and all models have varying slopes and 333 

intercepts per group. 334 

Finally, we compared the effects of increasing unique weeks versus increasing locations on the 335 

performance score. We did this by first z-score standardizing (by subtracting the mean and dividing by 336 

the standard deviation) the number of weeks and locations in each regime. This method centers the range 337 

of these predictors on zero so that they are on the same scale and can be more easily compared across 338 

models. Thus, one standardized unit is equivalent to one standard deviation away from zero. Next, we 339 

calculated the instantaneous slopes (or first derivatives) of the model predictions across various 340 

standardized units of weeks and locations. This is a way of measuring the rate of increase (or effect of 341 

increasing one standardized unit of weeks or locations on the performance score) at different levels along 342 

the posterior prediction curve. We chose three different standardized numbers (-1.30, -0.55, and 0.20) that 343 

designate three levels (low, medium, and high) and are meant to be representative points across the 344 

possible values of standardized weeks and locations. These three standardized numbers correspond to 21, 345 

203, and 385 locations, and 1, 3 and 6 weeks.  346 
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Effective Sample Size 347 

We analyzed estimates of the effective sample size, which is measured as the number of 348 

statistically independent locations within the sample (C. H. Fleming et al., 2019). The effective sample 349 

size is proportional to the mean number of times the animal reverted back toward the center of its home 350 

range (C. H. Fleming et al., 2019), or the mean number of times the animal crossed the linear extent of its 351 

home range (C. H. Fleming & Calabrese, 2017). It is estimated by dividing the sampling time (T) by the 352 

time-lag between locations required for independence () (which is also roughly the average home range 353 

crossing timescale) (C. H. Fleming & Calabrese, 2017; Silva et al., 2021). The effective sample size 354 

provides more information on spatial variance than the number of observed locations (i.e., absolute 355 

sample size) (Silva et al., 2021), and is therefore a better indicator of the reliability of home range 356 

estimates (C. H. Fleming et al., 2019; Noonan et al., 2019).  357 

As  (i.e. the average home range crossing timescale) is integral to the calculation of the effective 358 

sample size, we compared estimates of  from the movement models fitted to the 60 different sampling 359 

regimes to those estimated from the movement models fitted to the six complete segments. This 360 

procedure gives us a better understanding of how estimates of the effective sample size may be biased by 361 

missing data, which has important implications for the shape of the home range contours and the certainty 362 

of area estimates. If  is underestimated, effective sample sizes will be positively-biased, which results in 363 

overconfident and misleading home range estimates. On the other hand, overestimating  will result in 364 

negatively-biased effective sample sizes, leading to exceedingly large uncertainties.  365 

 For all practical purposes, we assumed values of  taken from the movement models fit to the 366 

complete segments were the “true” home range crossing timescales. We used these values to estimate the 367 

“true” effective sample size for each sampling regime (i.e., what the effective sample sizes should be if 368 

the home range crossing timescales were accurately estimated), by dividing the sampling times (T) of the 369 

sampling regimes by the “true”  values. Then we calculated the “estimated” effective sample size for 370 
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each sampling regime by dividing T by the “estimated”  values, which were instead taken from the 371 

movement models fit to the sampling regimes. Finally, we compared the “estimated” and the “true” 372 

effective sample sizes to evaluate any potential biases caused by the different sampling regimes.   373 

It should be noted that the outputs of the fitted movement models already provide an estimate of 374 

the effective sample size which negates the need to manually calculate it. However, we chose to calculate 375 

the effective sample size as described above because it permits comparison across different models.  376 

Ethical Note 377 

The study was entirely observational; GPS devices were carried by observers instead of attached 378 

to the animals. All protocols were approved by UCLA's Animal Care Committee (protocol 2016–022), and 379 

all necessary permits were obtained from SINAC and MINAE (the Costa Rican government bodies 380 

responsible for research on wildlife) and renewed every 6 months over the course of the study; the most 381 

recent scientific passport number being #117-2019-ACAT and the most recent permit being Resolución # 382 

M-P-SINAC-PNI-ACAT-072-2019. This research follows the Animal Behavior Society’s Guidelines for 383 

the Use of Animals in Research. 384 

Results 385 

Spread Sampling Outperforms Concentrated Sampling 386 

Spread sampling regimes were on average more accurate, estimating home ranges that more 387 

closely approximated the target performance score of 0.95 (posterior median = 0.93, 95% quantile 388 

interval: 0.87-0.96). Concentrated sampling regimes estimated home ranges that were more consistently 389 

negatively-biased (posterior median = 0.85, 95% quantile range: 0.61-0.91) (see Figure 4a). Additionally, 390 

spread sampling regimes were more robust than concentrated sampling regimes to low quantities of 391 

recorded locations and unique weeks (see Figure 4b and 4c). Generally, home range estimates for 392 

concentrated sampling regimes performed worse with fewer locations and weeks, but their confidence 393 
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intervals remained consistently narrow. On the other hand, the performances for spread sampling regimes 394 

did not substantially decrease with fewer locations and weeks, but the confidence intervals around their 395 

home range estimates widened (see Figure 7).  396 

 397 

Figure 4: Home range estimation performance predicted by characteristics of sampling. A: Plot showing 398 

the home range estimation performance score predicted by whether the data was concentrated (blue) or 399 

spread (orange). Within these two categories, the raw data are shown on the left, and posterior point 400 

intervals are shown on the right. The posterior point intervals describe the median and 66% and 95% 401 

quantile intervals of the posterior distribution. B and C: Plots showing the model predictions for the effect 402 
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of number of locations (B) and number of unique weeks (C) within the sampling regimes on the 403 

performance score.  Horizontal dashed line shows the optimal performance score of 0.95. The x-axis 404 

shows the z-score standardized locations and/or weeks, and the real-scale locations and/or weeks in 405 

parentheses. The dark solid lines are the mean posterior predictions; lighter lines (although difficult to see 406 

because they are very close to the mean) are 200 randomly sampled posterior predictions. The vertical 407 

dashed lines show the number of locations or weeks to achieve the optimum performance according to the 408 

posterior predictions. The plots showing the varying effects per group are shown on Figures 1, 3, and 5 in 409 

Appendix 3. 410 

More Data is Not Always Better 411 

We show that, when data are lacking, increasing the temporal coverage (measured by the number 412 

of unique weeks) in sampling regimes improves home range estimation performance more than increasing 413 

the absolute sample size (measured by the number of recorded locations). When concentrated sampling 414 

regimes had low absolute sample sizes and temporal coverages (low = -1.3 SD corresponding to 21 415 

locations or one week), a +1 SD increase in locations (243 locations) improved performance of home 416 

range estimates by about 23% (Figure 5a). Meanwhile, a +1 SD increase in weeks (three weeks) boosted 417 

estimation performance by approximately 30% (Figure 5c). This implies that collecting as few as three 418 

locations on a weekly or less frequent sampling schedule can lead to better performance improvements 419 

than collecting 243 locations at a continuous 30-minute sampling rate. 420 

With larger quantities of data already present in sampling regimes, adding more weeks and/or 421 

locations had less impact because the rate of improvement slowed down as it approached optimal 422 

performance. For instance, when concentrated sampling regimes had medium quantities of locations and 423 

weeks (medium = -0.55 SD corresponding to three weeks or 203 locations), a +1 SD in weeks and +1 SD 424 

in locations both improved performance by around 17%. At high quantities (high = 0.2 SD corresponding 425 
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to six weeks or 385 locations), a +1 SD increase in weeks improved performance by about 8% and a +1 426 

SD increase in locations improved performance by about 10%.  427 

We found a similar trend for spread sampling regimes: increasing the number of weeks improved 428 

performance more than increasing the number of locations (Figure 5b and 5d). However, the effects of 429 

increasing both weeks and locations were much smaller compared to concentrated sampling regimes 430 

because spread sampling regimes already had performance scores relatively close to optimal even with 431 

low quantities of locations and weeks.  432 

 433 
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Figure 5: Effects of increasing the number of locations and/or weeks on performance of home range 434 

estimates. Half-eye plots showing the estimates and uncertainties of the instantaneous slope coefficients 435 

(or first derivatives) across a representative spectrum of standardized weeks and recorded locations. The 436 

instantaneous slope coefficients represent the effect of increasing one standard deviation in weeks or 437 

locations on the home range estimation performance score. Plots A and C (Blue-purple colors) represent 438 

concentrated sampling regimes, and plots B and D (orange-yellow) represent spread sampling regimes. 439 

Darker colors represent smaller units, and lighter colors represent greater units of weeks or locations. 440 

Concentrated Sampling is Prone to Bias in the Effective Sample Size 441 

We found that missing data can result in biased effective sample size estimates, particularly for 442 

concentrated sampling regimes. Differences between the “estimated” and the “true” effective sample size 443 

for most sampling regimes were within a relatively reasonable range (~20). Even so, several concentrated 444 

sampling regimes with seemingly adequate absolute sample sizes (~300-500 locations) and total time 445 

sampled (~10-20 full tracking days) had substantially positively-biased (e.g. by ~50-220) effective sample 446 

sizes (within Figure 6, see sampling regime IDs C2, C3, and C4 in CE group and C2 in FL group). The 447 

effective sample size biases resulted in home range estimates with high levels of certainty, but very low 448 

performance scores (see Figure 7). 449 
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 450 

Figure 6: Bias in effective sample size estimates. Plot showing the comparison between the “estimated” 451 

effective sample size (open circles indicate the means; dashed lines indicates 95% confidence intervals) 452 

and the “true” effective sample size (closed circles indicate the means; solid lines indicate the 95% 453 

confidence intervals) across all 60 sampling regimes (6 groups with 10 sampling regimes each). Colors 454 

indicate whether the sampling regime had concentrated (blue) or spread (yellow) data.  455 
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456 

Figure 7: Impact of biased effective sample sizes on home range estimation confidence and performance. 457 

This plot shows an example from CE group of the 10 home range estimates from the sampling regimes 458 

plotted over the total data of the complete segment (see Appendix 2 for all groups). The dark lines 459 

indicate the mean 95% UD contour and the dotted lines indicate the 95% confidence intervals. The open 460 

pink points indicate the locations that were thinned and the filled green points indicate the locations that 461 

remain in the emulated sampling regimes. The top row shows the concentrated sampling regimes and the 462 

bottom row shows the spread sampling regimes. Sampling Regime IDs C20, C10, C6 and C3 produced 463 

home range estimates with poor performances, but also positively-biased effective sample sizes which 464 

resulted in misleading confidence intervals.  465 

Discussion 466 

Our study demonstrates that temporal coverage is a more important factor than the quantity of 467 

data for home range estimation. Advances in GPS technology are allowing researchers to collect data at 468 

increasingly high frequencies, but our results suggest that this does not necessarily translate into more 469 
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accurate home range estimates. This is in line with other recent studies (Noonan et al., 2019) which 470 

caution that increasing the sampling rate often does little to improve the accuracy of home range estimates 471 

due to the high level of redundancy in information when locations are close together in time. Researchers 472 

are encouraged instead to focus on sampling regimes that will increase the “effective” sample size – 473 

which is approximately the number of times the animal crossed the linear extent of its home range during 474 

sampling (C. H. Fleming & Calabrese, 2017)(see Methods section for a more detailed explanation).  475 

Encouragingly for researchers who use handheld GPS data for home range estimation, our study 476 

highlighted that random gaps in data collection are not inherently detrimental for home range estimation 477 

accuracy. In fact, sampling regimes that sacrificed continuous observation for greater temporal coverage 478 

vastly outperformed sampling regimes that were continuous but concentrated into short time periods, even 479 

when effective sample sizes were equal. While this may not be an intuitive finding, consider that wider 480 

sampling windows provide more time for animals to use the full extents of their home range. Even if 481 

sampling gaps result in unobserved home range crossings (thus reducing effective sample sizes), spread-482 

out data will capture more variation in space-use. Therefore, sampling regimes with longer durations 483 

should be more representative of an animal’s total space-use, provided that sampling gaps do not cause 484 

important variation to go uncaptured.  485 

Another key finding was that concentrated sampling sometimes lead to positively-biased effective 486 

sample sizes, resulting in over-confident home range estimates. To explain this, we can again consider the 487 

biological processes behind home range use. Species that forage on ephemeral and patchily distributed 488 

resources, such as fruit-eating primates, must allocate time differentially across their home range so that 489 

search efforts align with when and where resources are most productive (Altmann, 1974; Janson, 2019). 490 

White-faced capuchins are known to do this by foraging for extended time periods in small areas 491 

(Oppenheimer, 1968), and then shifting within their home range in response to changes in resource 492 

availability (Campos et al., 2014). We observed this in our study, as some groups remained within one 493 

side of their home range for up to several weeks before moving to the other side, which was surprising 494 
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given that the average home range crossing time across all groups was about one day. These movement 495 

patterns are difficult to predict relative to those of most leaf-eating primates, which tend to move in 496 

constant patterns, as their food resources are more evenly distributed (Reyna-Hurtado et al., 2018).  497 

As a consequence of capuchin groups temporarily confining their movements within sub-areas of 498 

the home range, movement models fitted to data concentrated within these periods overestimated the 499 

effective sample size. This is because the capuchin groups repeatedly traversed this smaller area, which 500 

lead to underestimated home range crossing times, and therefore overestimated observed home range 501 

crossings. Subsequently, the large effective sample sizes from these samples suggested high quality home 502 

range estimates, although in reality they were too small (see Figure 7 – C20, C10, C6, and C3). This 503 

highlights the importance of examining home range estimate outputs in the context of the biology of the 504 

species, and not relying on statistical criteria alone. 505 

Linking Biology to Temporal Scale  506 

It is common practice to report home range estimates at several standardized temporal scales (e.g. 507 

monthly, quarterly, half-annually, annually), as the results are thought to change depending on the length 508 

of the sampling window (Börger et al., 2008; Campos et al., 2014; White & Garrott, 1990). This is 509 

particularly true up until a sufficient effective sample size is reached, or when home ranges are non-510 

stationary, such as for groups of Yunnan snub-nosed monkeys (Rhinopithecus bieti), which shift their 511 

home ranges over time (Li et al., 2001). However, when home ranges are relatively stable, which is the 512 

case for many primate species (Janmaat et al., 2009; Jolly & Pride, 1998; Poirier, 1968; Singleton & van 513 

Schaik, 2001), widening the sampling window should have little effect after a sufficient effective sample 514 

size is reached (C. Fleming et al., 2014). At this point, the estimated home range area should have reached 515 

a plateau, ceasing to increase with more sampling. The amount of sampling time it takes to reach this 516 

plateau depends upon the home range crossing timescale of the animal.  517 
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Applying standardized sampling schedules to species with different home range crossing times 518 

can introduce bias in cross-species comparisons (C. H. Fleming & Calabrese, 2017). Additionally, when 519 

an animal’s home range crossing time is relatively long, shorter time scales such as monthly or quarterly 520 

may not be sufficient to estimate their home range accurately. If not reported correctly, these results may 521 

misinform metanalyses or conservation plans. A more justifiable approach is to design the sampling 522 

window corresponding to how long it takes for the animal to cross its home range. With this practice, 523 

researchers can make well-founded comparisons across different species and sampling designs, and avoid 524 

potential biases introduced from applying standardized sampling routines to species with different home 525 

range crossing times (C. H. Fleming & Calabrese, 2017). 526 

When designing sampling regimes, it is important to note that the time it takes to cover the home 527 

range varies widely across species. Broadly speaking, home ranges tend to be larger for frugivores 528 

(compared to folivores) (Milton & May, 1976) and large-bodied species (compared to small-bodied 529 

species) (Terborgh & Janson, 1986) - which usually translates into longer home range crossing times, 530 

assuming that movement speeds are approximately the same. Group-living species, such as gray langurs 531 

(Presbytis entellus)(Jay, 1965), chimpanzees (Pan troglodytes)(Nishida, 1968), and yellow baboons 532 

(Papio cynocephalus) (Altmann & Altmann, 1970) tend to have much longer home range crossing times 533 

than solitary species (Milton & May, 1976). Meanwhile, territorial species, such as gibbons (Hylobatidae) 534 

(Cheney, 1986), red-bellied titi monkeys (Callicebus moloch) (Mason, 1968), and vervet monkeys 535 

(Chlorocebus pygerythrus) (Reyna-Hurtado et al., 2018) generally have much shorter home range 536 

crossing times than non-territorial species as they must traverse across their home range rapidly to defend 537 

their borders against neighboring conspecific groups (Mitani & Rodman, 1979). However, some non-538 

territorial species may also move rapidly across their range, such as the highly mobile squirrel monkey 539 

(Saimiri oerstedi), which can use 75-90% of its home range in a single day (Baldwin & Baldwin, 1972).  540 

To ensure that sampling regimes are sufficient to estimate accurate home ranges, they should be 541 

designed so that the sampling window is much longer than the average home range crossing time 542 
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(Noonan et al., 2019). Nonetheless, the average home range crossing time differs across species and 543 

ecological contexts. Also, as we have demonstrated, home range crossing times can be underestimated 544 

fairly easily depending on the underlying movement behavior of the animal.  To avoid these potential 545 

biases and determine the appropriate temporal scale for sampling regimes, it can be extremely valuable to 546 

have a field-based approximation of the home range crossing time for the species of interest.   547 

For reference, the capuchin groups in our study had a mean home range crossing timescale of 548 

12.5 (95% CI: 9.4-16.7) hours, which is about one day considering that they very rarely move at night. 549 

Given this, sampling regimes required ~100-600 locations spread over ~5-7 unique weeks to optimize 550 

home range estimation performance. A relatively similar sampling time (45 to 136 days) was required for 551 

a study on giant anteaters (Myrmecophaga tridactyla), who found that they had a home range crossing 552 

time of about 2 days on average (Giroux et al., 2021).  By comparison, a study on elongated tortoises 553 

(Indotestudo elongata) found that they crossed their home range once every 17 days on average (although 554 

sometimes much longer), and even with up to one year of consistent sampling, were not able to achieve 555 

adequate effective sample sizes for several of their focal animals (Montano et al., 2021).  556 

Relevance of Sampling Regime for Conservation  557 

It is notable that, in our study, effective sample size bias was most problematic for groups that 558 

have the most fragmented habitats from roads and pastures (see CE and FL group in Figure 6). Sampling 559 

regimes for these groups also required more locations and unique weeks to accurately estimate the home 560 

range compared to other groups (see Figure 3 and 5 in Appendix 3). This may be because individuals in 561 

these groups perceive crossing the home range as riskier (Frid & Dill, 2002) or more energetically 562 

expensive (Huang et al., 2017). Thus, it may be favorable to deplete local resources before commuting 563 

long distances. Indeed, human-related disturbances have restricted and reduced the movements of 564 

mammals (Tucker et al., 2018), including primates (Pereira et al., 2022), across the globe. However, such 565 

disturbances may only delay movements until individuals are desperate, and moving between fragmented 566 

habitats becomes essential to find certain resources (Bonelli et al., 2013; Lens & Dhondt, 1994; Panzacchi 567 
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et al., 2013; Schtickzelle et al., 2006). If habitat fragmentation delays movements across animal home 568 

ranges, then gathering sufficient data for home range estimation may take more time than expected. 569 

Sampling regimes that don’t provide enough time for the animals to cross between fragments will 570 

underestimate their home range crossing time, and therefore will have highly biased effective sample 571 

sizes.  572 

It is particularly worrying that species that are of the greatest conservation concern are perhaps 573 

the most prone to biased home range estimates. For instance, large-bodied species with long home range 574 

crossing times, which are the species most vulnerable to extinction (Cardillo et al., 2005), have been 575 

found to be the most likely to have underestimated home range areas (Noonan et al., 2020). Similarly, our 576 

findings suggest that animals that live in fragmented habitats are prone to effective sample size bias.  As 577 

we have demonstrated, this bias can lead to both overconfident and underestimated home range estimates. 578 

This is highly concerning from a conservation standpoint given that underestimated home range estimates 579 

may lead to the establishment of protected areas which don’t accommodate enough space for populations 580 

to survive and reproduce (Brashares et al., 2001; Gaston et al., 2008). Therefore, it is crucial that 581 

sampling for home range estimation be designed carefully around the ecological context and behavior of 582 

the study species, especially when conservation initiatives use these results to inform management 583 

decisions.    584 

Conclusions and Recommendations for Sampling Design  585 

GPS data collection is a component of almost all modern primate field studies (Janmaat et al., 586 

2021), and home range estimates are one of the most sought-after outputs of these data. However, reliable 587 

home range estimates can be compromised when sampling is insufficient to adequately capture the 588 

biological home range, or through inappropriate application of statistical approaches, which is a concern 589 

given that home range estimates are key elements of ecological inference and conservation guidance. 590 
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To ensure that biologists design appropriate sampling regimes (balancing effort with temporal 591 

coverage), it is important to understand (a) the target distribution we are aiming to estimate, (b) what we 592 

should be aiming for in terms of “good quality” data and (c) how we can tell ‘how much is enough?’.  593 

When we are aiming to estimate the home range according to Burt’s original definition, we are 594 

targeting the range distribution. This is the space needed by the animal to survive and reproduce, which 595 

includes both the space used during the sampling period and the space that will eventually be used in the 596 

future (J. Alston et al., 2022). If we are targeting the occurrence distribution, then we are only interested 597 

in the space used during the sampling period, which essentially is an attempt to fill in the gaps between 598 

observed locations. The best quality data for the occurrence distribution is therefore when the sampling 599 

rate is at the highest possible, as this will produce estimates closest to the animals’ actual movement path 600 

(Börger et al., 2020). When the range distribution is the target, the best quality data is when the effective 601 

sample size, or number of observed home range crossings, is maximized (C. H. Fleming & Calabrese, 602 

2017). As we have demonstrated, this is best accomplished by increasing the temporal coverage of 603 

sampling, rather than the sampling rate. With this in mind, we recommend the following guidelines for 604 

estimating the range distribution from handheld GPS data: 605 

1. Design sampling protocols based on an informed understanding of the study species. One 606 

should consider their home range crossing time and whether they are prone to changes in 607 

space-use patterns over time. Conducting a pilot study may be necessary to gather this 608 

information. Alternatively, researchers can utilize a new application called Movedesign, 609 

which employs continuous-time movement modeling principles to help identify the most 610 

suitable sampling design for their specific data and study species (Silva et al., 2023).  611 

2. Aim to maximize the effective sample size by designing the sampling window to be 612 

considerably longer than the average home range crossing time. Anything lower than 10 613 

observed home range crossings tends to be problematic (C. H. Fleming et al., 2018), and 614 
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researchers should aim for even higher sample sizes to ensure that home range estimates are 615 

robust. 616 

3. When missing data cannot be avoided, aim to sample over longer time periods at regular 617 

intervals rather than concentrating sampling efforts into short periods. 618 

4. If it is necessary to use standardized sampling schedules (e.g. weekly, monthly, quarterly, 619 

seasonally, annually, etc.) it is advisable to avoid short temporal scales, especially when the 620 

species has a long home range crossing time. Opting for sampling time scales that either align 621 

with the biology of the species, such as seasonal sampling, or are sufficiently long and 622 

comparable across studies, such as annual sampling, is preferable. 623 

5. Consider reevaluating data collection priorities that could lead to missing movement data, 624 

such as collecting behavioral data from more groups than can be observed at a single time. 625 

Determine whether the temporal coverage or number of individuals/groups is more critical. 626 

Develop adaptable protocols that reduce bias in home range estimation for the focal 627 

individuals or groups while having minimal or no impact on other aspects of data collection. 628 

6. Be explicit with the limitations of handheld GPS data. If missing data are caused by the 629 

inability of researchers to follow primates in particular areas or at particular times, then home 630 

range analysis may not be appropriate.   631 

7. After data collection, it is important to check if there are enough data for home range 632 

analysis. One way to do this is by using variogram regression (see Appendix 1), which 633 

visually evaluates whether diffusion rates have stabilized (C. Fleming et al., 2014). If the 634 

sampling time is significantly longer than the time-lag required for the variogram curve to 635 

plateau, then there is likely sufficient data for home range analysis. Another approach is to 636 

plot home range area over time to see if it has reached a plateau. 637 
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8. If the data meets the requirements for home range estimation, utilize an estimator that 638 

considers autocorrelation and other potential biases. Our suggestion is to use the AKDE 639 

method (see Appendix 1 for a detailed walkthrough). In addition, recent advancements in this 640 

technique have enabled the integration of habitat components to refine the home range 641 

estimate (J. M. Alston et al., 2023). This is particularly beneficial as it reduces the importance 642 

of areas that are less likely to be utilized by the animal, such as bodies of water or pastures.  643 

 In general, we acknowledge the immense potential of longitudinal movement data in shedding 644 

light on important ecological questions. At present, we lack an understanding of how ranging patterns are 645 

influenced by enduring factors such as climate change, environmental disturbance, demographics, and 646 

social learning. Given that primate studies regularly gather longitudinal data on movement, environmental 647 

variables, behavior, and demographics, they may be in a unique position to address these inquiries and 648 

connect them to fitness. Nonetheless, our study has revealed that the usefulness of movement data in 649 

estimating home ranges depends on whether the sampling regimes have adequate temporal coverage for 650 

the focal animals to utilize their entire home range. Therefore, primatologists should be cautious in 651 

designing their sampling protocols to ensure that they accurately represent the biological home range of 652 

the species under investigation. 653 

Supplementary Information 654 

Supporting information detailing home range estimation using AKDE (Appendix 1), the results of home 655 

range analysis from every sampling regime in our study (Appendix 2), and additional information on the 656 

statistical analysis (Appendix 3) are available online. 657 
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Appendix 1: Home Range Estimation using Autocorrelated Kernel
Density Estimation

April 19, 2023

I. Background

The purpose of this appendix is to detail the steps to estimating a home range (HR) using continuous-time
movement modelling and the ctmm package. This document can be used as a practical guide, where one
can use our practice dataset or one’s own data to walk-through the analytical process.

Accounting for autocorrelation is important so that we avoid biases in our results. However, it requires
some additional steps compared to most conventional estimators, which is why we describe the process and
provide an example workflow. We strongly recommend going through the ctmm vignettes (see https://ctmm-
initiative.github.io/ctmm/index.html) for a more detailed review.

Generating a home range estimate from movement data using continuous-time movement modelling involves
three main steps: 1) variogram inspection, 2) model fitting and selection, and 3) Autocorrelated Kernel
Density Estimation (AKDE). This process can either be done using the ctmm package in the R environment
for statistical computing (R Core Team 2022), or using the ctmmweb point-and-click graphical user interface
(Calabrese et al. 2021), which streamlines the modelling steps, helping users conduct home range analysis
without the need to know the R programming language. We describe the process using R below:

The first step is to load the necessary packages and prepare the data

# you can install ctmm from CRAN, but better to get the development version for recent
updates↪

devtools::install_github("ctmm-initiative/ctmm")

# load packages
library(tidyverse)
library(ctmm)

II. Prepare Data

The data must have the same format as the following dataframe with the same column names. These are
the same format required by Movebank. Either you can manually edit the dataframe and then convert to a
telemetry object, or put data on Movebank and import from there, which will automatically put the data
in the correct format.

Note: individual.local.identifier (ILI) specifies the unique ID (usually individual or group) that you
want the home range estimate for. At the bottom of the document, we also include some example code of
how to do all of the below analysis in a single step for a list of several ILIs.

In our study, the ILI indicated the different sampling regimes. “All” was the ILI for the complete segments.
For this walkthrough, we will use the data from the complete segment of SP group, and change the ILI to
the group.
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# read in data frame
# filtering data from SP group, and taking the data from the complete segment - denoted

as "all"↪

DATA <- read.csv("Data/CH1_GPS_data.csv", row.names = NULL) %>%
filter(group == "SP" & individual.local.identifier == "all") %>% #select the complete

segment from SP group (could pick any group)↪

dplyr::select(-individual.local.identifier) %>% # remove prev ILI column
rename(individual.local.identifier = group) # make group the new ILI

The data should should look like this (these are the first six rows):

head(DATA)

## individual.local.identifier timestamp location.long location.lat
## 1 SP 2010-09-12 05:00:00 -85.37901 10.50080
## 2 SP 2010-09-12 05:30:00 -85.37907 10.50041
## 3 SP 2010-09-12 06:00:00 -85.37932 10.49956
## 4 SP 2010-09-12 06:30:00 -85.37947 10.49877
## 5 SP 2010-09-12 07:00:00 -85.37920 10.49790
## 6 SP 2010-09-12 07:30:00 -85.37858 10.49784

Once the dataframe is in the correct format, convert it to a telemetry object and specify the UTM projection:

# convert data to telemetry object
DATA <- DATA %>%

as.telemetry(projection = "+proj=utm +zone=16 +north +datum=WGS84 +units=m +no_defs
+ellps=WGS84 +towgs84=0,0,0")↪

Plot the data:

# plot location data
plot(DATA, main = "Location Data")
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Figure 1: Location data from the complete segment of SP group

III. Variogram Inspection

Variograms plot the semi-variance (y-axis), which is a measure of the average squared displacement, as a
function of the time-lag that separates any pair of observed locations (Diggle and Ribeiro 2007; Silva et
al. 2021). Variograms play two major roles in the ctmm workflow: first, they provide an unbiased visual
diagnostic to assess the autocorrelation structure present in the data, and second, they inform whether the
data shows evidence of range residency (Silva et al. 2021). Asymptoting curves in a variogram indicate
range residency. Where the asymptote aligns with the x-axis is a measure of the necessary time-lag between
positions to assume independence (Silva et al. 2021). It is also a rough estimate of the home range crossing
time (Christen H. Fleming and Calabrese 2017). If the curve continues to increase without flattening, the
animals are either non-resident (i.e. home range drift or migration), or not tracked long enough to capture
the full extent of their home range (Calabrese, Fleming, and Gurarie 2016).
Once the data are confirmed to represented range-restricted movement, we can proceeded with model fitting
and selection. It is necessary to confirm range-residency before conducting home range estimation because,
while ctmm is capable of fitting both range-resident (the default) and endlessly diffusing movement models,
only the first set are appropriate for home range estimation.

SVF <- variogram(DATA, dt = c(1,10) %#% "hour") # dt argument changes the width of the
time-lag bins (makes variogram smoother)↪

plot(SVF, main = "Empirical Variogram")
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Figure 2: Empirical variogram from the complete segment of SP group

This is a plot of the empricial varigram. The line asymptotes at approximately three days. This is roughly
the average home range crossing time. This is also approximately how far apart locations need to be in time
for them to be independent (https://ctmm-initiative.github.io/ctmm/articles/variogram.html).

IV. Movement Model Selection

Model fitting also involves two steps: first the ctmm.guess function uses the shape of the empirical variogram
to generate starting values required for the non-linear models, and second, the ctmm.select function uses the
values calculated from ctmm.guess to fit a range of alternative stationary (and range-restricted) movement
models using Maximum Likelihood (Christen H. Fleming et al. 2014). Models are ranked by AICc (Akaike
information criterion) allowing us to evaluate which model or models best predict the data. This process
permits identification and fit of a stationary movement model that corresponds to the observed movement
behavior of the animal (Christen H. Fleming et al. 2014).

It is worth noting that here, stationary means that the underlying movement processes are assumed to
be consistent throughout the duration of the data. Movement model parameters represent time-averaged
values, which has important implications on how data should be segmented for home range analysis. If
the underlying parameters change drastically within the sample—particularly the mean location—then the
stationary assumption has been violated. Therefore, it is common practice to segment the data when the
parameters change and estimate separate ranges. This is consistent with Burt’s original concept of the home
range where, for example, he stated winter and summer ranges for migratory species should be considered
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separately with the travel between as transit (Burt 1943). In our case, all sampling regimes were from single,
stationary ranges which negated any need for further segmentation.
The pool of potential movement models which involve home range behavior include:

1) Independent and Identically Distributed (IID) – location data has uncorrelated positions and velocities.

2) Ornstein–Uhlenbeck (OU) – location data has autocorrelated positions and uncorrelated velocities.

3) OU Foraging (OUF) – location data has autocorrelated positions and velocities (Calabrese, Fleming,
and Gurarie 2016; C. Fleming et al. 2014; Christen H. Fleming et al. 2014)

OU and OUF can be further specified with isotropic or anisotropic versions of each. Isotropic means diffusion
is equal on every extent of the home range, while anisotropic means diffusion is asymmetrical (Silva et al.
2021).
Endlessly diffusing movement models (non-HR models) such as brownian motion (BM) or integrated OU
(IOU) cannot be statistically compared to HR models using maximum likelihood (see ?ctmm.select). To
fit these movement models, one must manually specify them.

# get starting values for models
GUESS <- ctmm.guess(DATA,interactive=FALSE, variogram = SVF)

# fit models and select top one, trace = 2 allows you to see progress
FIT <- ctmm.select(DATA,GUESS,trace=2)

# see model summary for top model
summary(FIT)

## $name
## [1] "OUF anisotropic"
##
## $DOF
## mean area diffusion speed
## 49.56111 81.16699 346.58408 1183.63214
##
## $CI
## low est high
## area (square kilometers) 2.054622 2.586565 3.178821
## �[position] (hours) 10.561126 13.624460 17.576337
## �[velocity] (minutes) 21.251008 23.651631 26.323441
## speed (kilometers/day) 5.282984 5.437900 5.592755
## diffusion (hectares/day) 39.214897 43.694482 48.412835

The top model selected for our practice dataset was OUF anisotropic. Above is the summary information for
that model. The $DOF specifies the effective sample sizes. The most important one for home range estimation
being under area which indicates the number of statistically independent points (or approximately the
number of home range crossings – see Methods in the main text).
The area (square kilometers) slot indicates the Gaussian area, which is an estimate of spatial variance,
but is not our AKDE area. tau[position] (hours) is the tau referenced in the main text. This is time
necessary between locations for them to be independent, or approximately the home range crossing timescale.
tau[velocity] (minutes) is the timescale necessary for the velocities to be independent. Estimates of speed
(i.e. proportional to average daily travel distance) and diffusion rate are also included.
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# plot empirical variogram with best model
plot(SVF, CTMM = FIT, main = "Variogram and Fitted Model")

Figure 3: Top movement model fitted to the empirical variogram

V. AKDE Home Range Estimation

The final step is to calculate an autocorrelated kernel density home-range estimate (AKDE) using the epony-
mously named akde function (Calabrese, Fleming, and Gurarie 2016). This function takes the movement
data and the corresponding fitted model and returns: a utilization distribution (UD) object corresponding to
the range distribution, information on the optimal bandwidth, point estimates and confidence intervals for
HR area, and a measure of the effective sample size of the data for home range estimation. For the sampling
regimes in our study, we also included the weights = TRUE option, which helps correct for irregular and
missing data by down-weighting over-sampled portions of the data and up-weighting under-sampled portions
(C. H. Fleming et al. 2018). This helps to offset sampling bias, but is not sufficient if large portions of the
true range are missing from the sampled data.

# get UD using AKDE
UD <- akde(DATA, FIT, weights = TRUE)
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# plot UD over location data
plot(DATA,UD = UD, main = "AKDE Home Range Estimate")

Figure 4: Home range estimate (95% utilization distribution) mean contour and 95% confidence intervals
plotted over location data

Below is the summary information:

summary(UD)

## $DOF
## area bandwidth
## 81.16699 145.73448
##
## $CI
## low est high
## area (square kilometers) 1.745174 2.197001 2.700057
##
## attr(,"class")
## [1] "area"
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The effective sample size (DOF area) is the same as from the fitted model. In this case, there was about
81 observed home range crossings in the data. The area (square kilometers) slot shows the estimated
home range area and 95% confidence intervals.

VI. Bulk analysis for several individuals or groups

Below is code to demonstrate how to perform the above analysis with multiple individuals or groups in one
step using a loop (may take a little while to run, ~20min).

## PREPARE DATA
# take only complete segments (all)
# make group the new individual.local.identifer (ILI)
# change to tele object
DATA_bulk <- read.csv("Data/CH1_GPS_data.csv", row.names = NULL) %>%

filter(individual.local.identifier == "all") %>% # take only complete segments
dplyr::select(-individual.local.identifier) %>% # remove prev ILI column
rename(individual.local.identifier = group) %>% # make group the new ILI
as.telemetry(projection = "+proj=utm +zone=16 +north +datum=WGS84 +units=m +no_defs

+ellps=WGS84 +towgs84=0,0,0")↪

# note: when there are multiple individual.local.identifiers, as.telemetry makes a list,
with each↪

# individual.local.identifier being an element in the list
# variograms, model fits, and UDs follow the same list format

# make empty lists to be filled by below loop
UDs <- FITs <- SVFs <- list()

## BULK CALCULATIONS
# for every ILI, make a variogram (SVF), get starter values (GUESS), select model (FIT),

and calculate AKDE (UD)↪

# grid argument in akde aligns UDs so that overlap function is possible if desired later
on↪

for(i in 1:length(DATA_bulk)){
SVFs[[i]] <- variogram(DATA_bulk[[i]])
GUESS <- ctmm.guess(DATA_bulk[[i]],interactive=FALSE, variogram = SVFs[[i]])
FITs[[i]] <- ctmm.select(DATA_bulk[[i]],GUESS,trace=2)
UDs[[i]] <- akde(DATA_bulk[[i]],FITs[[i]], weights = TRUE,

grid=list(dr=10,align.to.origin=TRUE))↪

}

# make names of variograms, fits, and UDs the same as data
names(UDs) <- names(FITs) <- names(SVFs) <- names(DATA_bulk)

# make color blind pallette
colorblind_pal <- c("#E69F00", "#56B4E9", "#009E73", "#F0E442", "#D55E00", "#CC79A7")

# plot together
plot(UDs, col.DF=colorblind_pal)
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Figure 5: Home range estimate (95% utilization distribution) mean contours and 95% confidence intervals
from the six complete segments

# plot seperate
par(mfrow = c(2,3))
for(i in 1:length(UDs)){

plot(DATA_bulk[[i]], UDs[[i]],
col = colorblind_pal[[i]],
col.DF=colorblind_pal[[i]],
main = names(UDs[i]))

}
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Figure 6: Home range estimate (95% utilization distribution) contours and 95% confidence intervals from
the six complete segments plotted separately

You can compare home range areas using:

meta(UDs, variable = "area", main = "HR areas" col = colorblind_pal)
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Figure 7: Plot showing the comparison of home range area and confidence intervals for all six complete
segments. The colors correspond to the same colors in the home range plots. The mean area across the six
complete segments is shown in black on the bottom
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Appendix 2: Home Range Analysis for the 60 Sampling Regimes

April 28, 2023

Background

The purpose of this document is to show the full results of the home range analysis from the 60 sampling
regimes (i.e. the results of applying the analytical workflow presented in Appendix 1 to our study). This
includes the: 1) variogram regressions with the fitted movement models, 2) the movement model summary
information, and 3) home range estimates (See Appendix 1 for a detailed description of how home range
analysis in ctmm works).

As a reminder, the 60 sampling regimes were generated from portions of our longitudinal movement dataset
that were of the highest quality (two or more months of consistent data with very few temporal gaps), which
we call “complete segments”. There are six complete segments from five groups because two of the complete
segments came from the same group at different time periods (AA and AA2). How the sampling regimes
were generated from the complete segments is described in the Methods section of the main text. We include
the important information for every complete segment (i.e. labelled as “all”) and every sampling regime.
The names of the sampling regimes are labelled with (C) for concentrated or (S) for spread, followed by the
number of days in the data (e.g. C10).

Note on variograms: These plots are used as visualization tools to see if the data are sufficient to show
range residency. Generally, what we are looking for is whether the empirical variograms plateau indicating
range residency. If the variograms continue to increase, then this is an immediate sign that the data is
not suitable for home range estimation. With irregular data, the variograms can look quite messy, which
is generally not a problem. Also, they tend to be a bit more unpredictable toward larger time-lags which
also is not normally an issue. In these plots, we also include the mean and confidence intervals for the top
movement model (determined by AICc) fitted to the empirical variogram.

Note on model summaries: For the complete segments and sampling regimes from each group, we show
a table showing the name of the selected movement model, the home range crossing time and the effective
sample size. Overall, the Ornstein–Uhlenbeck Foraging (OUF) model was always selected, meaning that the
data showed autocorrelated positions and velocities (See Appendix 1 for decriptions of the possible movement
models). The effective sample sizes generally decrease with less days in the data. The effective sample sizes
were generally above 10 for sampling regimes that had at least six days (e.g. C6, S6), but dropped to worrying
low quantities with only 3 days (e.g. C3, S3).

Note on home range plots: These plots show the 95% UD estimates with 95% CIs of the AKDE home
range estimates for the 60 sampling regimes. Each plot shows the total locations from the complete, but
the closed green points are the locations that were selected in the regimes, and the open pink points are the
locations that were thinned out.

The below figures and tables show the above information for each of the six groupings of sampling regimes
(AA, AA2, RR, CE, SP, FL).
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I. AA Group

Figure 1: AA Variograms and Model Fits

Table 1: Model summary information for AA group

individual.local.identifier Model Name HR Crossing Time (hours) Effective Sample Size
all OUF anisotropic 11.371441 74.355955
C30 OUF anisotropic 11.411160 50.743983
C20 OUF 12.207090 33.361336
C10 OUF anisotropic 13.565069 12.821228
C6 OUF anisotropic 13.026774 8.754520
C3 OUF anisotropic 7.722914 5.405608
S30 OUF anisotropic 11.430881 55.372453
S20 OUF 10.920601 33.785164
S10 OUF 16.476402 17.054786
S6 OUF 10.689319 13.894728
S3 OUF 15.627924 4.502154
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Figure 2: Home Range Estimates from AA sampling regimes plotted over data

3



II. RR Group

Figure 3: RR Variograms and Model Fits

Table 2: Model summary information for RR group

individual.local.identifier Model Name HR Crossing Time (hours) Effective Sample Size
all OUF anisotropic 18.978032 46.095745
C30 OUF anisotropic 14.940166 42.308345
C20 OUF anisotropic 18.378469 21.158712
C10 OUF anisotropic 18.983334 12.050660
C6 OUF anisotropic 15.490440 8.136280
C3 OUF anisotropic 19.279959 2.775899
S30 OUF anisotropic 19.606929 35.785444
S20 OUF anisotropic 21.798724 24.326656
S10 OUF anisotropic 9.871898 15.892846
S6 OUF anisotropic 15.080781 11.807712
S3 OUF anisotropic 24.882872 4.536988
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Figure 4: Home Range Estimates from RR sampling regimes plotted over data
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III. CE Group

Figure 5: AA Variograms and Model Fits

Table 3: Model summary information for CE group

individual.local.identifier Model Name HR Crossing Time (hours) Effective Sample Size
all OUF anisotropic 8.7813209 73.193752
C30 OUF 7.8875677 57.588565
C20 OUF 3.1045567 71.052081
C10 OUF anisotropic 3.8892913 23.890902
C6 OUf 1.2448895 31.505435
C3 OUf 0.8695337 6.541128
S30 OUF anisotropic 8.3635957 57.523148
S20 OUF 8.1590701 40.592830
S10 OUF anisotropic 6.5044688 23.701797
S6 OUF anisotropic 8.7724103 12.174717
S3 OUF 24.8253527 3.605531
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Figure 6: Home Range Estimates from AA sampling regimes plotted over data
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IV. AA2 Group

Figure 7: AA2 Variograms and Model Fits

Table 4: Model summary information for AA2 group

individual.local.identifier Model Name HR Crossing Time (hours) Effective Sample Size
all OUF anisotropic 9.273814 81.297831
C30 OUF anisotropic 10.385718 54.182818
C20 OUF anisotropic 6.939681 39.549168
C10 OUF anisotropic 9.232590 15.629816
C6 OUF 4.543344 15.999752
C3 OUF 9.248229 4.635231
S30 OUF anisotropic 7.992799 63.016910
S20 OUF anisotropic 5.932028 40.313983
S10 OUF 7.153679 27.176787
S6 OUF 4.132458 20.193451
S3 OUF anisotropic 17.471853 3.859595
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Figure 8: Home Range Estimates from AA2 sampling regimes plotted over data
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V. SP Group

Figure 9: SP Variograms and Model Fits

Table 5: Model summary information for SP group

individual.local.identifier Model Name HR Crossing Time (hours) Effective Sample Size
all OUF anisotropic 13.624460 81.166993
C30 OUF anisotropic 14.526307 48.709825
C20 OUF 13.140053 31.818670
C10 OUF anisotropic 12.526639 15.743796
C6 OUF 4.702017 17.339935
C3 OUF 6.382257 6.674316
S30 OUF 11.509796 56.465935
S20 OUF anisotropic 11.075058 37.868752
S10 OUF anisotropic 9.578686 21.394681
S6 OUF anisotropic 8.567690 12.396154
S3 OUF 15.302549 4.384725
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Figure 10: Home Range Estimates from SP sampling regimes plotted over data
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VI. FL Group

Figure 11: FL Variograms and Model Fits

Table 6: Model summary information for FL group

individual.local.identifier Model Name HR Crossing Time (hours) Effective Sample Size
all OUF anisotropic 12.992068 95.955636
C30 OUF anisotropic 15.395619 35.198133
C20 OUF anisotropic 7.218778 38.959380
C10 OUF anisotropic 13.643672 12.552170
C6 OUF anisotropic 5.710013 13.713607
C3 OUF anisotropic 8.373327 4.471325
S30 OUF anisotropic 12.263379 50.788178
S20 OUF anisotropic 7.592231 39.964504
S10 OUF anisotropic 14.236334 15.236985
S6 OUf anisotropic 2.445047 12.805342
S3 OUF anisotropic 6.705427 5.509169
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Figure 12: Home Range Estimates from FL sampling regimes plotted over data
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Appendix 3: Varying Effects Plots and Model Posteriors

April 28, 2023

I. Background

This supplementary document presents additional information related to our statistical analysis. Our aim
was to model the performance of home range estimation, as defined in the Methods section, based on different
characteristics of the sampling regimes. To achieve this, we employed three binomial Bayesian generalized
linear mixed models.

The first model utilized a binary predictor variable to indicate whether the data in the sampling regimes
were concentrated or spread, to predict performance. The second model used the number of locations as
the predictor, while the third model used the number of unique weeks. We included an interaction between
the predictors and the binary variable indicating spread or concentrated data in the last two models, and all
models have varying slopes and intercepts per group.

In this document, we provide varying effects plots as referred to in the main text (but not presented there),
along with the posterior distributions for all three statistical models.
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II. Model 1: HR Performance ~ Binary Predictor (spread vs. concentrated)

Figure 1: Group effects (varying slopes and intercepts) for binomial model predicting home range estimation
performance by a binary variable indicating whether the data in the sampling regimes are concentrated or
spread.

2



Figure 2: Posterior distributions for parameters in binomial model predicting home range estimation perfor-
mance by a binary variable indicating whether the data in the sampling regimes are concentrated or spread.
Group is included as a random effect (random slopes and intercepts). Posteriors include the median and
80% credible intervals.
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III. Model 2: HR Performance ~ Number of Locations

Figure 3: Group effects (varying slopes and intercepts) for binomial model predicting home range estimation
performance by number of locations as predictor with an interaction with the concentrated vs spread variable.
Notice that FL and CE require the most locations to achive optimal performance, and are the least robust
to low quantities of locations. These groups also have the most fragmented habitats (see Discussion section
in the main text).
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Figure 4: Posterior distributions for parameters in binomial model predicting home range estimation per-
formance by number of locations as predictor with an interaction with the concentrated vs spread variable.
Group is included as a random effect (random slopes and intercepts). Posteriors include the median and
80% credible intervals.
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IV. Model 3: HR Performance ~ Number of Unique Weeks

Figure 5: Group effects (varying slopes and intercepts) for binomial model predicting home range estimation
performance by number of unique weeks as predictor with an interaction with the concentrated vs spread
variable. Notice that FL and CE require the most weeks to achive optimal performance, and are the least
robust to low quantities of weeks. These groups also have the most fragmented habitats (see Discussion
section in the main text).
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Figure 6: Posterior distributions for parameters in binomial model predicting home range estimation perfor-
mance by number of unique weeks as predictor with an interaction with the concentrated vs spread variable.
Group is included as a random effect (random slopes and intercepts). Posteriors include the median and
80% credible intervals.
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