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Abstract 1 

• Leaf size varies within and between species, and previous work has linked this 2 

variation to the environment and evolutionary history separately. However, many 3 

previous studies fail to interlink both factors and are often data limited.  4 

• To address this, our study developed a new workflow using machine learning to 5 

automate the extraction of leaf traits (leaf area, largest in-circle area and leaf 6 

curvature) from herbarium collections of Australian eucalypts (Eucalyptus, 7 

Angophora and Corymbia). Our dataset included 136,599 measurements, expanding 8 

existing data on this taxon’s leaf area by roughly 50-fold.  9 

• With this dataset, we were able to confirm global positive relationships between leaf 10 

area and mean annual temperature and precipitation. Furthermore, we linked this trait-11 

climate relationship to phylogeny, revealing large variation at the within-species level, 12 

potentially due to gene flow suppressing local adaptation. At deeper phylogenetic 13 

levels, the relationship strengthens and the slope converges towards the overall 14 

eucalypt slope, suggesting that the effect of gene flow relaxes just above the species 15 

level. 16 

• The strengthening of trait-climate correlations just beyond the intraspecific level may 17 

represent a widespread phenomenon across various traits and taxa. Future studies may 18 

unveil these relationships with the larger sample sizes of new trait datasets generated 19 

through machine learning.  20 
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Introduction 21 

As a fundamental unit of photosynthesis, leaf area has impacts across a variety of processes. 22 

This has led to an extensive body of research, ranging from regulating carbon flux over vast 23 

areas of the earth (Reich 2012), to influencing ecosystem dynamics by affecting the plant’s 24 

individual growth and survival (Wang et al. 2019, Wright et al. 2017, Leigh et al. 2017). 25 

Therefore, an improved understanding of leaf area variation can facilitate better predictions 26 

for plant adaptation to changing climates (Wang et al. 2022, Pritzkow et al. 2020). This, in 27 

turn, will enable better comprehension of leaf energy balances (Wright et al. 2017) and their 28 

relationship with models of forest productivity and plantation growth (Madani et al. 2018, 29 

Reich 2012, Battaglia et al. 1998). 30 

The distribution of a plant’s traits may be tied to their environment (Li et al. 2020, Souza et 31 

al. 2018, Wright et al. 2017, Moles et al. 2014), and this link may manifest in different forms. 32 

One potential form of a trait-climate relationship is when variation is constrained by one or 33 

more limits that shift with climate. In this case, two limits may form a tight relationship (e.g., 34 

Reich 2003), and one limit forms a ‘constraint triangle’ that contains a probabilistic 35 

distribution of traits across the landscape (e.g., Wright et al. 2017, Guo et al. 2000, 36 

Cornelissen 1999). For leaf area, mean annual precipitation and temperature are two key 37 

environmental drivers that affect this triangle. However, current research suggests that there is 38 

a significant constraint on maximum leaf area that shifts with climate, whereas there is no 39 

corresponding constraint on minimum leaf area (Wright et al. 2017). 40 

Across climatic gradients, leaf area has been found to increase from dry to wet environments 41 

and from colder to hotter climates (Souza et al. 2018, Wright et al. 2017, Moles et al. 2014, 42 

Peppe et al. 2011). One proposed explanation is that smaller leaves, particularly leaves with 43 

narrow effective widths, possess more effective thermal regulation and reduced water loss 44 

through a smaller boundary layer. This layer is a thin space around the leaf with reduced air 45 

movement, promoting cooling (Leigh et al. 2017, Nobel 2009). However, the relationship 46 

between leaf area and climate is complex. For instance, studies have shown thermal 47 

constraints on leaf area to be ineffective in ever-wet conditions (Souza et al. 2018. Wright et 48 
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al. 2017). Therefore, while a general relationship exists between leaf area and climate, it is 49 

influenced by various factors. 50 

Empirical research at differing geographical and taxonomic scales have yielded varied results 51 

on the relative importance of temperature and precipitation in influencing leaf traits; with 52 

regional trait-climate correlations possibly being decoupled at local scales (Ackerly et al. 53 

2007). For instance, in Australian eucalypt vegetation stands, Ellis & Hatton (2008) found 54 

water availability to play a greater part than temperature in explaining leaf area index. On the 55 

other hand, in central Europe, Meier & Leuschner (2008) found leaf expansion of Fagus 56 

sylvatica (L.) stands primarily controlled by temperature, consistent with a global meta-57 

analysis (Moles et al. 2014). Similarly, leaf area index in Melaleuca lanceolata (Otto) in 58 

southern Australia was found to have a stronger association to mean maximum temperature 59 

than precipitation (Hill et al. 2014). Here, our study aims to clarify this relationship between 60 

both climatic variables and leaf traits of Australian eucalypts through a unique workflow. In 61 

turn, this can contribute to a better local understanding of ecological processes and improved 62 

predictions of trait composition (Peppe et al. 2011, Violle et al. 2007). 63 

When studying the variation in leaf area across climate, it is important to also consider the 64 

influence of evolutionary history (e.g., Milla & Reich 2007, McDonald et al. 2003, Ackerly et 65 

al. 2002). Varying effects of phylogeny, and contemporary demography (intraspecific gene 66 

flow) may result in trait-climate relationships within species being weaker, unrelated, or even 67 

following opposite directions to that reported among species (with various potential scenarios 68 

illustrated in Fig. 1) (Wilde et al. 2023, An et al. 2021, McDonald et al. 2003, Ackerly et al. 69 

2002). For instance, in Figure 1 Scenario 2, gene flow between populations may prevent 70 

adaptation to local environments, counteracting environmental pressures (reviewed at 71 

Alexander et al. 2022, Leimu & Fischer 2008). Additionally, an individual’s evolutionary 72 

history may constrain phenotype and local adaptive capacity (Fig. 1 Scenario 3, An et al. 73 

2021, Leimu & Fischer 2008). This intraspecific trait variation (ITV) has been debated in 74 

previous studies. Some have suggested that ITV may obscure general trends (Bastias et al. 75 

2017, Ackerly et al. 2002), while others argue that it does not have such an impact 76 

(Westerband et al. 2021, Li et al. 2020, Mudrák et al. 2019). This conflict is potentially due to 77 

the limitations of datasets generated using traditional methods (also suggested by Li et al. 78 
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2020, Bastias et al. 2017). Regardless, studies of links of leaf traits and climatic variables 79 

across varying evolutionary scales, from ITV (e.g., An et al. 2021) to major plant families 80 

(e.g., Wilde et al. 2023, Ackerly & Reich 1999), is critical to predicting phenotypic evolution 81 

and shifts in traits under a changing climate.  82 

 83 

Figure 1. Three scenarios illustrating impacts of evolutionary divergence and intraspecific gene flow 84 

on trait-climate relationships. Groups A and A* are populations of a species and remain connected by 85 

gene flow, while groups C and D are quite recently, but completely, diverged and have limited recent 86 

gene flow. The circles represent different internal nodes within the hypothetical phylogenetic tree. In 87 

all three scenarios, there is a positive overall trait-climate association.  88 

In Scenario 1, there is a strong trait-climate relationship within each of the two recently diverged 89 

clades, resulting in roughly similar slopes in each clade. 90 

In Scenario 2, gene flow strongly suppresses local adaptation within species, potentially causing 91 

divergence from overall trait-climate trends. This effect is however relaxed in recently diverged 92 

groups. Therefore, the clade consisting of A and A* does not exhibit a trait-climate relationship, and 93 

the clade containing groups C and D exhibits a strong trait-climate relationship.  94 

In Scenario 3, trait evolution is more constrained, so that strong adaptation is observed only among 95 

longer diverged groups. Here, there is no trait-climate relationships within the clade containing A and 96 

A* or C and D, but there is an association overall, reflecting adaptation over longer time scales.  97 
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Understanding evolution of leaf morphology has a recognised importance (Mudrák et al. 98 

2019, Souza et al. 2018, Leimu et al. 2008). Despite this, there is a paucity of research that 99 

examines leaf variation in the perspective of phylogeny and ITV simultaneously. One 100 

potential reason lies in the laborious and time-intensive nature of data collection (Li et al. 101 

2020, Bastias et al. 2017), which traditionally involve manual measurements of each data 102 

point. This makes it difficult to gather datasets with high intraspecific sampling within and 103 

across different clades and climates (Li et al. 2020, Bastias et al. 2017). As a consequence, 104 

few studies spanning both intraspecific and phylogenetic scales simultaneously have been 105 

conducted (see also Wilde et al. 2023, Cutts et al. 2021, Goëau et al. 2020, Pearson et al. 106 

2020, Brenskelle et al. 2020). 107 

This study addresses this by using machine learning (ML) paired with herbarium records. 108 

Herbarium specimens are pressed plants of various taxa collected globally. These specimens 109 

provide a holistic representation of plant shoots and include both mature and juvenile leaves 110 

(Kozlov et al. 2021). As a consequence, trait measurements from these sheets will encompass 111 

leaves at different developmental stages, propagating into resulting datasets. Herbarium 112 

specimens provide extensive phylogenetic and geographic sampling. However, their potential 113 

has remained underutilised due to the impracticality of extracting trait data using traditional 114 

methods (Heberling 2022). Thus, we employed ML as a new tool to automate the extraction 115 

of trait data from these specimens. Previous studies have used ML to extract leaf traits from 116 

digital herbarium specimen images (Hussein et al. 2021, Weaver et al. 2020, Younis et al. 117 

2018). However, to our knowledge, this approach is the first to utilise machine learning 118 

operationally in trait ecology, allowing us to create a comprehensive dataset that spans 119 

various taxonomic levels across Australia. By pairing this dataset with a fully resolved 120 

phylogenetic tree (Thornhill et al. 2019), we could link microevolution to macroevolution, 121 

enabling a better observation of the shift in trait-climate relationships across different clades 122 

and evolutionary depths.  123 
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Overall, leaf morphological traits enable better comprehension of leaf energy balances 124 

(Wright et al. 2017), improving our understanding of ecosystem dynamics (Pritzkow et al. 125 

2020) and global vegetation models (Madani et al. 2018, Reich 2012, Battaglia et al. 1998). 126 

Despite this, there is a paucity of datasets spanning a wide phylogenetic and spatial range 127 

(Moran et al. 2016). Our study proposes a method to address this gap by using ML to bypass 128 

traditional trait-collection methods. In particular, we sought to address the following 129 

questions: 130 

a) Could ML be used to automatically extract various commonly measured leaf 131 

morphological traits, including leaf area, and the largest in-circle area? This will allow us to 132 

build a large dataset, unique in its ability in allowing us to answer the following questions 133 

simultaneously in the study taxa.  134 

 b) How do leaf traits shift across the Australian climate? We hypothesise that leaf area 135 

and largest in-circle area will correlate positively with mean annual precipitation and 136 

temperature. 137 

  c) To what extent does phylogeny shape leaf traits? We hypothesise that gene flow 138 

will resolve in large trait variability at a shallow phylogenetic level (within species), which 139 

will gradually resolve to a trait-climate relationship at deeper levels (for example, among 140 

species). 141 

Our study and its findings help reveal the relationship between traits and their influences, in 142 

addition to formulating a more efficient method of trait data collection, applicable to 143 

additional taxa and traits in the future.  144 
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Method 145 

Study clade and design 146 

This study focused on eucalypts, which are the dominant canopy trees throughout many 147 

Australian forests and shrublands (Booth et al. 2015, Govindan 2005). The eucalypt clade 148 

consists of three genera, Eucalyptus (L’Hér.), Angophora (Cav.), and Corymbia (K.D. Hill & 149 

L.A.S. Johnson). They were selected as the study genera for their wide distribution across 150 

Australia’s temperature and precipitation range (Fig. 2), the availability of a molecular 151 

phylogeny for the clade (Thornhill et al. 2019), and characteristic simple leaves with entire 152 

margins. These features allowed us to explore the impact of climate and phylogeny as drivers 153 

of leaf trait variation at different evolutionary scales, with the aid of machine learning (ML). 154 

Digital images of herbarium sheets from the National Herbarium of New South Wales 155 

(downloaded from https://herbariumnsw-pds.s3-ap-southeast-2.amazonaws.com/images/) 156 

were used to capture trait variation across wide spatial and environmental ranges (Fig. 2). 157 

This enabled the study of traits in a broader range of lineages and biomes than data collected 158 

using observational approaches (Heberling 2022). Herbarium specimens are collected with 159 

the aim to record traits present in the population (Kozlov et al. 2021) and thus include both 160 

mature and immature leaves. As such, our workflow uses a novel approach of trait sampling 161 

that diverges from conventional sampling methods of physiologists, which target fully 162 

expanded leaves (e.g., in Wright et al. 2017 and Pérez-Harguindeguy et al. 2013). This 163 

distinction is critical within eucalypts due to the significance of ontogeny in leaf morphology, 164 

and it is worth noting the important implications it plays in the analysis.  165 

https://herbariumnsw-pds.s3-ap-southeast-2.amazonaws.com/images/
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Our project aimed to generate a large dataset of leaf measurements from digital images of 166 

eucalypt herbarium specimens and use it to test ecological associations. This dataset would be 167 

unusual in its combination of wide spatial distribution (Fig. 2a) and its deep intra- and 168 

interspecific sampling. To do this, the method consisted of three separate parts. (i) Develop 169 

and refine a leaf masking model, (ii) develop and refine a leaf classification model, (iii) 170 

application of models to produce a large trait dataset and carry out quantitative analysis of 171 

trait-climate relationships in a phylogenetic framework. An overview of this workflow is 172 

found at Figure 4, and relevant data and scripts are available in the Supplementary 173 

Information. 174 

 175 

 176 

Figure 2. The spatial distribution of sampling. a) The location of each data point of leaf trait 177 

measurement. b) The mean annual precipitation across Australia as sourced from WorldClim. c) The 178 

mean annual temperature across Australia as sourced from WorldClim, indicating the range of 179 

climatic variables the sampling encompasses.  180 
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Leaf Masking Model 181 

A convolutional neural network (CNN) model was trained to find leaves and pixels that 182 

belonged to each ‘instance’ of a leaf (known as instance segmentation). The CNN model used 183 

a ResNet50 architecture (He et al. 2015) and was implemented in Detectron2 (Wu et al. 184 

2019). Transfer learning was performed to reduce the amount of training required. It was 185 

conducted from a pretrained model, a Mask R-CNN model with a ResNet50-FPN backbone 186 

that was pretrained on the COCO dataset (Lin et al. 2014). Extra details of the model and 187 

methods used to train, validate, and test can be found in Supplementary Information A and B. 188 

A table of definitions has also been provided in Table 1. 189 

ML models 'learn' patterns through a set of training data that has been manually annotated. In 190 

this case, our model is 'learning' to identify pixels of a leaf using annotated images of 191 

herbarium specimens. Generating these manual annotations involved creating a polygon 192 

around each instance of a leaf following a protocol provided in Supplementary Information B. 193 

All annotations were made using the program LabelMe (v 5.01, Wada 2022). In total, 113 194 

manually annotated herbarium sheets were used to train the model, a further 28 were used for 195 

validation during training (for adjustment of hyper-parameters by Detectron2) and 20 were 196 

used for testing the performance of models after training (for manual adjustment of training 197 

parameters). 198 

The final model was refined using an optimisation process. This involved: (i) Training the 199 

initial model using the manually annotated training and validation data set, (ii) Predicting 200 

leaves for images of the testing data set using the trained model, (iii) Gathering quantitative 201 

and qualitative measures of model accuracy from part ii, (iv) altering the model’s training 202 

parameters and repeating the cycle at part (i) with a new model. Different iterations of the 203 

model are described in Table SA_1.  204 
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As part of step iii) of the optimisation process, we calculated a set of standard metrics of 205 

model quality, based on the predictions the model made on the test dataset. These metrics 206 

were calculated by comparing the masks predicted by the model, to the ground-truth that we 207 

manually annotated. 208 

First, Intersection Over Union (IoU) was calculated for each predicted mask generated by the 209 

model (Pmask) and each ground-truth mask that was labelled (Gmask) (Eqn. 1). 210 

𝐼𝑜𝑈 =
𝑎𝑟𝑒𝑎(𝑃𝑚𝑎𝑠𝑘  ∩  𝐺𝑚𝑎𝑠𝑘)

𝑎𝑟𝑒𝑎 (𝑃𝑚𝑎𝑠𝑘 ∪ 𝐺𝑚𝑎𝑠𝑘)
 211 

Leaf pairs with an IoU of greater than 70% were regarded as a correct prediction. These were 212 

used to calculate precision and recall. Precision is the number of correct predictions compared 213 

to all predictions made (Eqn. 2).  214 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝐴𝑙𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
  215 

Recall is the measure of the number of true positive masks present compared to how many 216 

there were actually in the ground-truth (Eqn. 3).  217 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝐴𝑙𝑙 𝑔𝑟𝑜𝑢𝑛𝑑𝑡𝑟𝑢𝑡ℎ
 218 

The F1-score combines precision and recall into a single score, allowing it to be evaluated 219 

simultaneously (Eqn. 4).  220 

𝐹1 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 221 

We used these metrics of accuracy, as well as visual inspections of predictions, to make 222 

changes to the model’s training parameters and improve performance. We note that we placed 223 

greater emphasis on obtaining high levels of precision than recall. This is because we 224 

expected that missing real leaves would have a smaller effect on our downstream analyses of 225 

leaf area than erroneously including incomplete leaves.  226 

 

(Eqn. 1) 
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Table 1. A table of definition of commonly used terms 227 

Phrase Definition 

Convolutional 

neural 

network (CNN) 

A neural network (algorithms) specifically tailored for image 

analyses 

Instance 

segmentation 

The finding of objects and their segmentation mask, a path that 

indicates the outline of a polygon that masks the object in question 

Annotation The process of labelling input data to indicate the desired variable. 

In this case this involved tracing each individual leaf with a polygon 

Ground-truth Ground-truth refers to the correct value of the labels for a given 

dataset. It is determined through manual annotation and used as a 

comparison against the model’s prediction 

Train The provision of the training dataset to the model’s algorithm to 

allow it to learn the designated task 

Validation The process of evaluating a model’s performance and adjusting its 

hyper-parameters during the training process 

Test Testing the trained model on a testing dataset to evaluate 

performance 

Intersection over 

union (IoU) 

A value that defines how similar the predicted label is to the ground-

truth label. Where it is calculated by the intersection of the two 

labels over the union of the two labels (Eqn. 1). The best value for 

this measure is 1 or 100% 

Recall  The measure of the number of true positives. It is the proportion of 

actual positive cases that were correctly identified by the model as 

positive (Eqn. 2) 

Precision The ratio of true positive cases compared to the total number of 

cases that the model predicted as positive (Eqn. 3) 

F1-score Also called the harmonic mean of recall and precision. Used to 

generate a value that balances precision and recall (Eqn. 4) 

True positive (TP) 

True negative (TN) 

True positive: Correct prediction of a positive class, for example 

correctly identifying a valid leaf 
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False positive (FP)  

False negative (FN) 

True negative: Correct prediction of a negative class, for example 

correctly identifying an invalid leaf 

False positive: Incorrect prediction of a positive class 

False negative: Incorrect prediction of a negative class 

Training parameters May also be called hyper-parameters. Values that are set prior to 

training by the researcher and defines how the model operates 

during training. 

Hyper-parameters Values that are changed automatically during the training and 

validation stage when creating a machine learning model. These 

include ‘weights’ that are used to adjust the model's parameters to 

improve accuracy. These values are not adjusted manually. 

Leaf Classification Model 228 

A CNN model of ResNet50 architecture (He et al. 2015), implemented in PyTorch (Paszke et 229 

al. 2019) and pretrained on ImageNet data (Deng et al. 2009), was trained to classify images 230 

of leaves as valid or invalid. This classifier was applied to the leaves predicted from the leaf 231 

masking model as another level of filtration to increase the final precision of our workflow. 232 

Here, valid leaves were defined as having more than 90% of the whole blade visible, along 233 

with other criteria (Supplementary Information A). Extra details on the model are located in 234 

Supplementary Information A. 235 

Digital images of herbarium sheets were used to generate the training, validation, and testing 236 

datasets. This was done by first using the leaf masking model, described above, to create 237 

predicted leaf masks from herbarium sheets (examples in Fig. 3). Each separate leaf mask was 238 

then manually classified as ‘valid’ or ‘invalid’, then split into their respective datasets. To 239 

prevent an imbalance of training data, the final training dataset was truncated to an equal 240 

number of valid and invalid images, totalling to 447 images of each category.  241 

242 
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To test the model, we used it to classify the images in the testing dataset. These predictions 243 

were then compared to our manual classifications. From this, we generated similar evaluation 244 

metrics, calculated using Equations 5. Here, true positives are ‘valid’ classifications that 245 

matched the ground-truth, and true negatives are ‘invalid’ classifications that matched the 246 

ground-truth. 247 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 248 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 249 

𝐹1 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 250 

Similar to the leaf masking model, we carried out a process of optimisations where we 251 

changed different training parameters following the qualitative and quantitative evaluation 252 

metrics. All iterative steps in the model generation can be found in Table SA_3, and vary in 253 

training epochs, classification criteria, and the volume of training dataset used. 254 

The same testing dataset (i.e., same herbarium sheets) was used in both the leaf masking and 255 

leaf classification models. This enabled us to examine how the classifier affected the 256 

evaluation metrics of the workflow. This was done by using the classifier to filter out invalid 257 

leaves from the leaf masking model’s predictions. Precision, recall and, the F1-score of the 258 

results were then recalculated from the ground-truth. These values thus reflected the 259 

combination of predictions of the leaf masking model, and filtering by the classification 260 

model.  261 

Trait Extraction 262 

From each predicted leaf mask, we extracted three key traits including i) the area of the mask, 263 

ii) the area of the largest in-circle within the mask (similar to Leigh et al. 2017), and iii) the 264 

curvature of the leaf. Area measurements were calculated by converting the number of pixels 265 

(Eqns. 5) 
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in the mask into cm2 using the known resolution of the images (561 x 561 dpi). The area of 266 

the largest in-circle was calculated using the radius from the Pole of Inaccessibility (from 267 

package polylabelr v 0.2.0, Larsson 2020) a geographical point furthest from the edges, 268 

correlating to the visual centre of the polygon. Leaf curvature was calculated through a proxy 269 

of the ratio between the area of the concave hull : leaf area (more curved leaves have higher 270 

values). However, leaf curvature is not a focus of this paper, and all analyses conducted for 271 

this trait are reported in Supplementary Information C. All trait extractions and analyses were 272 

carried out in R (v 4.2.2, R Core Team 2022) and are further elaborated in Supplementary 273 

Information A. The masks used to generate these measurements were predicted by the leaf 274 

masking model and classified as valid by the leaf classification model. They were then subject 275 

to a 4-connected component analysis. Duplicate predicted masks sometimes occurred and 276 

were filtered out by calculating IoU values between predictions of leaf masks on the same 277 

herbarium sheet. IoU values greater than 70% between two predicted masks were considered 278 

duplicates. 279 

Leaves shrink in size when drying. As leaf area is conventionally measured on fresh leaves, 280 

we addressed this by dividing the values for leaf area and largest in-circle area by 0.8973. 281 

This value is sourced from the Terrestrial Ecosystem Research Network (TERN), Australia's 282 

national land ecosystem observatory, who determined shrinkage to be consistent across 283 

Eucalyptus leaves (Morgan et al. 2021). We note that the application of a constant multiplier 284 

should not affect the slopes or the significance values of any statistical analyses.  285 

Trait values for each leaf were then aggregated into a final dataset through joining the 286 

metadata (located at https://herbariumnsw-pds.s3-ap-southeast-2.amazonaws.com/dwca-287 

nsw_avh-v1.0.zip). Metadata fields included the sheet’s genus, specific epithet, decimal 288 

latitude, and decimal longitude. Climatic data for each sheet were sourced from WorldClim 289 

v2 at resolution 2.5 minutes (Fick & Hijmans 2017) by each sheet’s geolocation. This 290 

included the variables Annual Precipitation (BIO12) and Annual Mean Temperature (BIO1) 291 

and are referred to as mean annual precipitation and mean annual temperature, respectively.  292 
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Analysis 293 

This study aimed to examine the relationship between traits and climate. This was analysed 294 

using i) a linear model between the trait and climatic variables (Eqn. 6). ii) A similar linear 295 

model, with the mean trait value of each species as a data point (Eqn. 7). This analysis 296 

allowed us to account for errors in sampling bias of certain species, improving the generality 297 

of the trait-climate relationships. iii) A linear mixed model with the species as a random 298 

effect, and herbarium sheet nested within species (Eqn. 8). This examined trait-climate 299 

associations while accounting for inter- and intraspecific variation, whilst also appropriately 300 

modelling the variation from leaves in the same herbarium sheets, iv) Linear quantile 301 

regressions between trait and climatic variables (Eqn. 6 at different quantiles), were used to 302 

estimate the limits of the environmental constraint on the trait variables. This method of 303 

analysis was as suggested by Guo et al. (2000) to illustrate a ‘constraint triangle’.  304 

𝑇𝑟𝑎𝑖𝑡 ~ 𝐶𝑙𝑖𝑚𝑎𝑡𝑒 305 

𝑀𝑒𝑎𝑛 𝑇𝑟𝑎𝑖𝑡 𝑉𝑎𝑙𝑢𝑒 ~ 𝐶𝑙𝑖𝑚𝑎𝑡𝑒 306 

𝑇𝑟𝑎𝑖𝑡 ~ 𝐶𝑙𝑖𝑚𝑎𝑡𝑒 +  1|𝑆𝑝𝑒𝑐𝑖𝑒𝑠/𝑆ℎ𝑒𝑒𝑡𝐼𝐷 307 

Prior to all analyses, data points outside Australia were removed using the package 308 

CoordinateCleaner (v 2.0-20, Zizka et al. 2019) and right-skewed variables (leaf area, largest 309 

in-circle area, and mean annual precipitation) were log-transformed to satisfy the analyses’ 310 

assumptions. Furthermore, an inclusivity criterion was applied for analyses ii) and iii), where 311 

species with fewer than 10 data points were removed from the dataset. This was done to 312 

ensure that the model was based on groups with sufficient sample sizes. 313 

Across analyses i) to iv), comparisons of slope, R-squared, and standard error, were made to 314 

larger global datasets including that used in Wright et al.’s (2017) analysis and eucalypts in 315 

the AusTraits (Falster et al. 2021) database. These comparisons revealed how eucalypt's trait-316 

climate relationship shifted in comparison to global taxa, and the implications of the study’s 317 

trait sampling method. 318 

(Eqn. 6) 

(Eqn. 7) 

(Eqn. 8) 
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An additional set of analyses was performed to ask whether trait-climate relationships were 319 

consistent at different evolutionary scales (Figure 1). To do this, our phylogenetic analyses 320 

used the dated maximum likelihood (ML2) tree from Thornhill et al. (2019), pruned to 321 

contain only the species present within our trait dataset. We first investigated whether 322 

phylogeny impacted leaf trait variation through determining the phylogenetic signal. This was 323 

carried out using the function phylosig, from the package phytools (v 1.5-1, Revell 2012), 324 

which measured how closely the traits reflect a taxa’s evolutionary history. This avenue was 325 

further explored through observing how the trait-climate relationship altered throughout the 326 

taxonomic levels. To do this, a linear model was conducted where the groups at each 327 

respective level were designated as random effects. A final novel analysis was carried out. 328 

Thornhill et al.’s phylogeny was split at 20 evenly spaced time intervals along the entire 329 

length of the tree. At each time interval, tips that had split prior to the point were kept as 330 

individual unique lineages, while those that had split after the time interval was merged by 331 

common ancestry into a single ‘lineage’. For instance, the 1st interval was at 0 million years 332 

ago and included every tip of the tree as a lineage (418 lineages). Whereas, at the 3rd interval, 333 

8.57 million years ago, 77 lineages were present. These included groups comprising of 334 

individual species and others containing multiple species aggregated into one lineage. A 335 

mixed model analysis with each lineage as a random effect, was then performed at each of the 336 

20 intervals. This was done to estimate the average slope of the trait-climate relationships 337 

within these lineages.  338 
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 339 

Figure 3. Workflow of the process to create the trained models and the subsequent dataset. Illustrating 340 

the generation of the two key models, a leaf masking model and a leaf classification model, followed 341 

by their application.  342 
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Results 343 

Machine learning produces a large leaf trait dataset with high precision 344 

Our workflow generated a large leaf trait dataset of eucalypts across Australia. Here, we first 345 

describe the dataset, including the validity and accuracy of our workflow, before exploring 346 

the analyses performed on our dataset. Error validation and extra analyses, including those 347 

based on conventional methods used by physiologists, are located in Supplementary 348 

Information C and D. 349 

The final leaf trait dataset contained 139,599 measurements across 1,534 separate taxa 350 

(including species, hybrids, subspecies, and collector identifications). The number of leaves 351 

detected in a species ranged from 1 to 2,430, before the inclusivity criterion was applied. 352 

Examples of leaf masks are shown in Figure 4. A comparison of the distribution and volume 353 

of our leaf area against AusTraits and Wright et al. (2017) for several exemplar species has 354 

been illustrated in Figure 5. This study’s sampling method resulted in greater variation in leaf 355 

area measurements and a greater representation of smaller leaves (Fig. 5b). This is further 356 

reinforced with the quantile regressions explored later. 357 

The leaf masking model had a precision value of 77%, meaning this percentage of leaves 358 

predicted onto the testing dataset were valid leaves. When the leaf classifier, with a precision 359 

of 67%, was applied to the outcomes of these predictions, the overall workflow’s precision 360 

increased to 82%. The recall value indicates the percentage of valid leaves that were 361 

identified. Of the leaf masking model, this was initially at 68% and the leaf classification 362 

model at 63%. When applied together, the workflow’s recall reduced to 34%. F1-scores were 363 

73% for the leaf masking model, 65% for the leaf classifier model and together the overall 364 

workflow’s score was 48%. 365 
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 366 

Figure 4. Example of predicted leaves on an herbarium sheet carried out by the leaf masking model. 367 

An example of a juvenile leaf being masked can be seen in purple. 368 
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 369 

Figure 5. a) Frequency histograms of leaf area measurements for the four most sampled species that 370 

are shared in all three datasets (this study (ML), AusTraits, Wright et al. 2017 (Wright)). The present 371 

study generated a much greater number of measurements for each species. b) Density frequency 372 

distributions for the same species, illustrating the greater representation of smaller leaves in the 373 

present study. The dashed lines represent the mean value of the dataset.  374 

Leaf area is positively associated with precipitation and temperature among eucalypts  375 

Leaf area and largest in-circle area were positively associated with mean annual temperature 376 

and precipitation in the present study, however, only weakly with the former (Fig. 6). The R2 
377 

value and slopes for the linear models were smaller in comparison to Wright et al.’s (2017) 378 

and AusTraits eucalypt datasets (Tbl. 2). Additionally, each of the three eucalypt datasets had 379 

a shallower slope than the results for the global study of Wright et al. (2017) (Tbl. 2).  380 
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 381 

Figure 6. Relationships between the climatic variables (log mean annual precipitation and 382 

temperature) against trait values (log leaf area and log largest in-circle area). Plots a and c are log-383 

log relationship plots, while plots b and d are semi-log relationship plots. The blue dashed lines 384 

represent the linear model results. The red dashed lines represent the results found in the Wright et al. 385 

(2017) analysis of global leaf traits. Values reported are for their respective linear model, where 386 

‘Wright et al.’ corresponds to the red dashed line and ‘ML’ corresponds to the blue dashed line, our 387 

machine learning dataset.   388 
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Table 2. Coefficients of models for log leaf area against log mean annual precipitation and mean 389 

annual temperature in comparison to other datasets. Coefficients for Wright’s data were sourced from 390 

the supplementary information of Wright et al. (2017), which used a mixed regression model. 391 

 

Slope R-squared Relative standard error 

Log leaf area ~ log mean annual precipitation 

Overall 0.38 0.072 0.0037 

AusTraits eucalypts 0.69 0.27 0.021 

Wright et al.’s eucalypts 0.45 0.25 0.066 

Wright et al.’s all taxa 1.08 0.24 0.052 

Log leaf area ~ mean annual temp 

Overall 0.0027 0.0011 0.00022 

AusTraits eucalypts 0.011 0.022 0.0011 

Wright et al.’s eucalypts 0.011 0.0069 0.0078 

Wright et al.’s all taxa 0.043 0.15 0.054 

For conciseness, the following sections are focused on the associations between leaf area and 392 

precipitation. Further leaf trait results are presented in Supplementary Information C. The 393 

focus on leaf area will allow for comparison to other datasets (Wright et al. 2017 and 394 

AusTraits). Though we note here that leaf area and largest in-circle area were strongly and 395 

positively associated, and that largest in-circle area exhibited similar associations with climate 396 

to leaf area. Likewise, results for mean annual temperature are also located in Supplementary 397 

Information C, however not presented here due to the weak correlation found.   398 
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When the relationship between leaf area and mean annual precipitation was examined with 399 

quantile regression analyses, the slope increased from the 1st quantile (0.17 ± 0.027) to the 400 

99th quantile (0.53 ± 0.0013) (Fig. 7). At the largest quantiles, the regression slopes were 401 

similar to the slopes estimated for AusTraits (0.69 ± 0.27) and Wright et al.’s (2017) eucalypt 402 

datasets (0.45 ± 0.023). 403 

 404 

Figure 7. Quantile regression analysis model results. An increase in slope steepness from the 1st to the 405 

99th quantile show a lower range of leaf area variation in drier than wetter conditions as observed. 406 

Eucalypt’s leaf trait-climate relationship is constrained by evolutionary history 407 

We next performed several different analyses to consider the effects of taxonomy or 408 

phylogeny on the relationship between leaf area and precipitation. When a linear model was 409 

fit using the mean trait values of species, the slope was greater and better reflected those of 410 

other datasets (Tbl. 3). Additionally, a mixed model with species as a random effect, resulted 411 

in an estimate for the mean slope within species. This exhibited a slope smaller than the 412 

overall linear model and Wright et al.’s (2017) dataset (Tbl. 3).  413 
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Table 3. Coefficients of log leaf area and log mean annual precipitation following Equation 6-8. An 414 

overall linear model, a linear model using average species mean, a mixed model with species as a 415 

random effect and each herbarium sheet nested within, and Wright et al.’s (2017) results. 416 

 
Slope R-squared Relative standard error 

Overall 0.38 0.072 0.0037 

Mean species model 0.47 0.2 0.031 

Mixed model 0.17 N/A N/A 

Wright et al.’s all taxa 1.08 0.24 0.052 

Mixed models were also used to examine the relationship between leaf area and precipitation 417 

within groups at levels of taxonomic classifications greater than species. The mean slope for 418 

the relationship between leaf area and precipitation was greater within subgenera than within 419 

species, and similar to the slopes observed within genera and in the overall model (Fig. 8b). A 420 

phylogeny was then used to test the mean slope of the relationship between leaf area and 421 

precipitation within lineages at different levels of evolutionary depth in the eucalypts (Fig. 422 

8a). Significant phylogenetic signal, based on the tree estimated by Thornhill et al. (2019), 423 

was exhibited for both leaf area (K=0.0021, P=0.001) and mean annual precipitation 424 

(K=0.0030, P=0.001). From the shallowest depths of this phylogeny to the deepest, there was 425 

an overall increase in the mean slope of the association between leaf area and precipitation 426 

within lineages (Fig. 8). At 8.5 MY, the slope drastically increased to a value comparable to 427 

that at deeper levels. 428 
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 429 

Figure 8. a) The phylogenetic tree was split at 20 intervals at evenly spaced time periods. The mean 430 

slope within the lineages at each time point was calculated. For example, 0 MY had each species as a 431 

random effect, whereas 55 MY had two groups of species, corresponding to the deepest branch among 432 

the eucalypts. A convergence towards an approximate average slope was observed roughly 8.5 MY. b) 433 

The average slope and standard error where the respective taxonomic level was used as the random 434 

effect in a mixed model. The ‘overall’ model has no random effect. Species: 0.15 ± 0.0077. Subgenus: 435 

0.41 ± 0.0042. Genus: 0.38 ± 0.0038. Overall: 0.38 ± 0.0037. c-f) Each lineage’s linear models at four 436 

different intervals (0 MY, 8.57 MY, 28.58 MY, 54.3 MY) are illustrated. Where each colour represents 437 

a lineage.  438 
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Discussion 439 

Here, we developed, tested, and applied a machine learning (ML) workflow to generate 440 

136,599 leaf trait measurements spanning all species of eucalypts across Australia (Fig. 2). A 441 

dataset of this magnitude would not have been feasible using traditional sampling methods, 442 

demonstrating the potential of ML in trait ecology. This dataset enabled the analysis of leaf 443 

dimensions shaped by climate and phylogeny. We observed a positive relationship between 444 

leaf area and both mean annual rainfall and mean annual temperature, which was broadly 445 

consistent with previous global observations (Wright et al. 2017, Moles et al. 2014), albeit 446 

shallower in eucalypts. Two additional observations offer useful perspectives on this 447 

relationship. First, quantile regression models suggest the link between leaf area and 448 

precipitation forms a constraint triangle (also seen in Guo et al. 2000). Second, the 449 

examination of this trait-climate relationship at different evolutionary scales suggests that, on 450 

average, this relationship was not observed within species, but within subgenera and higher 451 

taxonomic levels. When examined in relation to phylogenetic depth rather than taxonomy, an 452 

association within groups having an age of around 8.5 MY (or between 5 and 10 MY) was 453 

found, but not within groups at shallower scales (including within species). Overall, our 454 

dataset provides a unique opportunity to study the link between leaf traits and evolutionary 455 

history at a scale rarely done in previous studies. 456 

Analysis of this large eucalypt dataset found associations with climate that were largely 457 

consistent with previous studies (An et al. 2021, Wang et al. 2019, Souza et al. 2018, Leigh et 458 

al. 2017, Wright et al. 2017). We found eucalypt leaf area to have a stronger association with 459 

mean annual precipitation than with mean annual temperature, supporting the findings of Ellis 460 

& Hatton (2008). The relationship between leaf area and mean annual precipitation formed a 461 

constraint triangle (see Fig. 7). This triangle is in contrast to the alternative outcome of a 462 

linear relationship between the trait and climatic variables (seen in Cornelissen 1999, Guo et 463 

al. 1998), and is broadly consistent with Wright et al.'s (2017) observation that maximum leaf 464 

size is associated with rainfall. This likely suggests that larger leaves are excluded from dry 465 

environments, but in wet environments smaller leaves are not necessarily disadvantaged. In 466 

addition, we note that the machine learning approach used a more comprehensive trait 467 

sampling method for leaf selection, as opposed to the traditional approach by physiologists 468 
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(Pérez-Harguindeguy et al. 2013). As a result of this, the greater representation of juvenile 469 

leaves may have potentially contributed to the triangular shape of the association. However, 470 

despite this difference, our analyses support a similar conclusion to Wright et al. (2017). This 471 

is further reinforced by the quantitative agreement of our trait-climate relationships to that of 472 

other databases, especially at higher quantiles (Fig. 7). Further implications of this sampling 473 

method are explored later. Overall, our analysis confirms the association between leaf traits 474 

and climate, and the novel workflow and sampling approach offer potentially new 475 

perspectives on these relationships. 476 

Our study also revealed the link between traits and climate from both a macroevolutionary 477 

and microevolutionary scale. This corresponds to a recent review of Anderegg (2023), which 478 

stresses the importance of trait-climate analyses that aim to improve our understanding of the 479 

influences of physiology and evolution across different scales. Our dataset’s unique 480 

characteristic of vast intra- and interspecific sampling, paired with the availability of a fully 481 

resolved phylogeny (Thornhill et al. 2019), made it possible to examine evolutionary 482 

processes at both of these scales. In particular, the association between leaf area and mean 483 

annual precipitation at the broadest scale in our study was not on average replicated within 484 

eucalypt species (Fig. 8), consistent with recent observations in Syzygium and Ficus (Wilde et 485 

al. 2023). This raised the question of where, from the deepest to the shallowest evolutionary 486 

scales, does the association between leaf area and precipitation weaken? This change in 487 

association occurs rather abruptly in analyses within young lineages of approximately 8.5 488 

million years of age, indicating that the absence of association between leaf area and 489 

precipitation is mostly confined to the intraspecific analyses (Fig. 8). This observation was 490 

consistent with findings in other taxa, which suggest that community-level relationships are 491 

predominantly driven by weak intraspecific relationships (Mudrák et al. 2019, McDonald et 492 

al. 2003, Ackerly et al. 2002, Guo et al. 2000). This validates the notion that the effects of 493 

gene flow in the homogenising of traits, reduces the capacity to adapt locally to climate 494 

(Alexander et al. 2022, Leimu & Fischer 2008, Kirkpatrick & Barton 1997). As such, the 495 

hypothesis proposed in Figure 1 Scenario 2 is supported, as trait-climate relationships with 496 

similar slopes to the whole eucalypt clade is observed within groups of samples that include 497 

recently diverged lineages. These groups presumably have much less gene flow between 498 

populations in contrasting climate conditions (Fig. 8c). This is unlike Scenario 1 in which 499 

each lineage, including single species, reflect the overall trend. It is also unlike Scenario 3, 500 
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where no lineages are locally adapted, and the association between trait and climate only 501 

manifests among more deeply diverged groups. Understanding the phylogenetic constraint in 502 

a trait is critical to improve the conclusions of the numerous trait-environment studies that 503 

have been carried without a phylogenetic framework. This highlights the importance of 504 

studying a range of taxa to determine general ecological trends, and the need for more 505 

datasets with wide scopes across time, space, and phylogeny. 506 

Our dataset was generated using a novel approach for trait measurement and sampling from 507 

herbarium specimens. This had several important consequences for downstream analyses of 508 

the data. First, the great size of the dataset was expected to provide a robust buffer against 509 

uncontrollable stochastic variation that arises when working with herbarium sheets, as 510 

recognised in other studies (Goëau et al. 2020, Willis et al. 2017). These included trait and 511 

spatial biases in the biological sampling, shrinkage effects of dried leaf material, size 512 

limitations of herbarium sheets, and innate errors in measurements (Heberling 2022, Daru et 513 

al. 2018) (see Supplementary Information D for analyses for further error validation). Second, 514 

we observed that for several species, our approach resulted in leaf area data with greater 515 

numbers of smaller leaves, relative to other datasets (Fig 5b). Our model’s high level of 516 

precision suggests this was likely due to differences in trait sampling methods, rather than 517 

measurement errors. In particular, this may be attributed to our leaf masking model being 518 

trained to measure all leaves of an herbarium specimen, whereas conventional plant trait 519 

ecology protocols target fully expanded leaves (Pérez-Harguindeguy et al. 2013). The use of 520 

quantile regressions supported this idea. We observed a convergence of our slopes to other 521 

datasets that employed traditional sampling methods, in the higher quantiles of our quantile 522 

regression analyses (Fig. 7) and by temporarily filtering out the bottom 50% of results per 523 

species (results in Supplementary Information C, suggested by Corney et al. 2012). These 524 

analyses explain the quantitative discrepancies between results from our dataset and others 525 

and suggest a useful approach for downstream analyses of data generated in this way. It 526 

would be worthwhile for future studies to isolate the degree of influence of ecological 527 

constraints and ontogeny on these triangular associations. In conclusion, our approach can be 528 

perceived as a feasible prototype that can be extended and modified to create large datasets in 529 

different taxa and traits.  530 

531 
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More generally, the rapid development of technology has opened up a new avenue of 532 

information extraction, facilitating the gathering of large volumes of relatively unfiltered data. 533 

This study highlights what we predict will be a recurring theme in the use of ML. Contrary to 534 

traditional collections that often use high levels of selectivity during data collection (Pérez-535 

Harguindeguy et al. 2013), new collections using ML approaches will have little selection as 536 

the data source is typically untailored to the workflow. As a result, we predict that ML 537 

generated data may not always be used interchangeably with data collected by traditional 538 

methods. We recommend careful validation prior to use, and the adoption of clear definitions 539 

in databases (e.g., TRY (Kattge et al. 2020), AusTraits (Falster et al. 2021)) that will 540 

potentially include records generated by both traditional methods and approaches based on 541 

ML.  542 

In summary, our workflow has linked three key factors: plant traits, climate, and the effects of 543 

evolutionary depth. As one of the first operational studies of ML in trait ecology, our 544 

workflow represents an exciting advancement. Here, it examined how leaf traits in eucalypts 545 

shifted across precipitation and temperature and found associations that confirmed relevant 546 

global analyses (Wright et al. 2017, Moles et al. 2014). Our study also extends our 547 

understanding of these relationships, suggesting they are underpinned by turnover among 548 

species across environments, including recently diverged species, but with little evidence of 549 

adaptation to climate among populations still connected by gene flow. Given eucalypt’s 550 

uniquely low levels of genetic differentiation and high gene flow across geographically 551 

distant populations (Jordan et al. 2023, Fahey et al. 2022, Supple et al. 2018), a valuable 552 

future development would involve exploring the generality of these observations in other 553 

major taxa using the abundance of data available in herbaria. This will allow researchers to 554 

create datasets that span different patterns of population genetic variation, as well as wide 555 

phylogenetic scopes and multiple traits. In turn, with these new datasets, we may reveal a 556 

widespread phenomenon of intraspecific variation within trait-environment correlations 557 

similar to ours, across various taxa.  558 
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Supplementary Information 825 

The following Supporting Information is available for this article: 826 

Supplementary Information A - Model Creation 827 

Table SA_1. Iterations carried out in the optimisation cycle to generate the final leaf masking 828 

model. 829 

Figure SA_2. Examples of classifier’s invalid leaves 830 

Table SA_3. Iterations carried out in the optimisation cycle to generate the final leaf 831 

classification model. 832 

Supplementary Information B - Leaf masking model’s labelling protocol 833 

Figure SB_1. An example of a manually annotated herbarium sheet. 834 

Supplementary Information C - Extra Analyses 835 

 Leaf area x Temperature 836 

Figure SC_1. Quantile regression analysis model.  837 

Table SC_2. Coefficients for the overall linear model, and the different levels of regression 838 

quantiles. 839 

Table SC_3. Coefficients following Equation 6-8. An overall linear model, a linear model 840 

using average species mean, and a mixed model with species as a random effect and each 841 

herbarium sheet nested within, and Wright et al.’s (2017) results. 842 

Figure SC_4. Phylogenetic analysis split at 20 intervals, and by taxonomic levels. 843 

 Reflecting Physiologist Sampling - Leaf area  844 

Figure SC_5. Relationships between the climatic variables (log mean annual precipitation 845 

and temperature) against log leaf area. 846 

Table SC_6. Coefficients of models for log leaf area against log mean annual precipitation 847 

and mean annual temperature in comparison to other datasets.  848 

 Reflecting Physiologist Sampling - Leaf area x Precipitation 849 

Figure SC_7. Quantile regression analysis model results.  850 

Table SC_8. Coefficients for the overall linear model, and the different levels of regression 851 

quantiles. 852 

Table SC_9. Coefficients following Equation 6-8. An overall linear model, a linear model 853 

using average species mean, and a mixed model with species as a random effect and each 854 
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herbarium sheet nested within, and Wright et al.’s (2017) results. 855 

 Reflecting Physiologist Sampling - Leaf area x Temperature  856 

Figure SC_10. Quantile regression analysis model results.  857 

Table SC_11. Coefficients for the overall linear model, and the different levels of regression 858 

quantiles. 859 

Table SC_12. Coefficients following Equation 6-8. An overall linear model, a linear model 860 

using average species mean, and a mixed model with species as a random effect and each 861 

herbarium sheet nested within, and Wright et al.’s (2017) results. 862 

 Largest in-circle area 863 

Figure SC_13. Comparison between leaf area to largest in-circle area. 864 

Table SC_14. Phylogenetic signals for log largest in-circle area. 865 

 Largest in-circle area x Precipitation 866 

Figure SC_15. Quantile regression analysis model results.  867 

Table SC_16. Coefficients for the overall linear model, and the different levels of regression 868 

quantiles. 869 

Table SC_17. Coefficients following Equation 6-8. An overall linear model, a linear model 870 

using average species mean, and a mixed model with species as a random effect and each 871 

herbarium sheet nested within. 872 

Figure SC_18. Phylogenetic analysis split at 20 intervals, and by taxonomic levels. 873 

 Largest in-circle area x Temperature 874 

Figure SC_19. Quantile regression analysis model results.  875 

Table SC_20. Coefficients for the overall linear model, and the different levels of regression 876 

quantiles. 877 

Table SC_21. Coefficients following Equation 6-8. An overall linear model, a linear model 878 

using average species mean, and a mixed model with species as a random effect and each 879 

herbarium sheet nested within. 880 

Figure SC_22. Phylogenetic analysis split at 20 intervals, and by taxonomic levels. 881 

 Leaf curvature 882 

Figure SC_22. Relationships between the climatic variables against leaf curvature.  883 

Table SC_23. Phylogenetic signals for leaf curvature 884 

 Leaf curvature x Precipitation 885 

Figure SC_27. Quantile regression analysis model results.  886 

Table SC_28. Coefficients for the overall linear model, and the different levels of regression 887 

quantiles. 888 
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Figure SC_29. Phylogenetic analysis split at 20 intervals, and by taxonomic levels. 889 

Table SC_30. Coefficients following Equation 6-8. An overall linear model, a linear model 890 

using average species mean, and a mixed model with species as a random effect and each 891 

herbarium sheet nested within. 892 

 Leaf curvature x Temperature 893 

Figure SC_31. Quantile regression analysis model results.  894 

Table SC_32. Coefficients for the overall linear model, and the different levels of regression 895 

quantiles. 896 

Figure SC_33. Phylogenetic analysis split at 20 intervals, and by taxonomic levels. 897 

Table SC_34. Coefficients following Equation 6-8. An overall linear model, a linear model 898 

using average species mean, and a mixed model with species as a random effect and each 899 

herbarium sheet nested within. 900 

Supplementary Information D - Error Validation 901 

Figure SD_1. Residual plot of log leaf area and log mean annual precipitation. 902 

Figure SD_2. Plotting the normalised frequency count across the different leaf areas. 903 

Figure SD_3. Comparing the mean leaf area across databases, where each data point is a 904 

species.  905 
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Supplementary Information A - Model creation 906 

Training, validating, and testing our models 907 

Determining datasets for both models 908 

Three key datasets were created for training, validation, and testing. Sampling for all datasets 909 

was done by first separating the whole image dataset into their different genera and for 910 

Eucalyptus, dividing further by subgenera. Separation of species into their taxonomic 911 

grouping first followed Nicolle 2022, then Slee et al. 2020 then Thornhill et al. 2019. Hybrid 912 

Eucalyptus specimens were placed into a ‘Hybrid’ subgenus, with a number of Eucalyptus 913 

species left as ‘NA’ subgenus if no data could be located. Random sampling using the 914 

function slice_sample from tidyverse (v 2.0.0, Wickham et al. 2019) was then carried out 915 

within these groups (genera and subgenera), with the number of sheets reflective of the size of 916 

groups. This method allowed a vast representation of different forms of eucalypts. 917 

Leaf masking model 918 

           Model 919 

The leaf masking model used a ResNet50 architecture (He et al. 2015) and was implemented 920 

via Detectron2 (Wu et al. 2019). ResNet is a deep convolutional neural network developed 921 

explicitly for image classification tasks, and Detectron2 is an open-source machine learning 922 

library developed by Facebook's AI Research team. 923 

ResNet50 is constructed of 50 layers - 48 convolutional layers, 1 MaxPool layer and 1 924 

average pool layer (He et al. 2015 for a detailed description of ResNet’s architecture). Each 925 

convolutional layer undergoes a batch normalisation to reduce overfitting and improve 926 

generalisation. ResNet50 was selected due to 1) ResNet’s focus on image detection and 2) the 927 

number of layers were selected to balance between the task’s complexity and limiting 928 

overfitting  929 
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      Manual annotation of datasets 930 

The labelling of data for training, manual annotation, used the graphic program LabelMe (v 931 

5.01, Wada 2022), and followed the protocol outlined in SI. The use of a bounding box here 932 

was suggested by preliminary trials and allowed us to create a pseudo-image of a whole sheet. 933 

This in turn enabled a greater range of different leaf types to be used for training. This dataset 934 

was later supplemented with manually annotated full sheets, as suggested by improved 935 

performances during the cycles of model optimisation undertaken. 936 

      Training 937 

Optimisation of the model was carried out to determine the final selection of the training 938 

parameters that gave the best performance in terms of prediction and testing. Different 939 

training parameters allow altering a model’s training. These include the model’s base learning 940 

rate, max iterations, batch size, and the number of classes, and are defined in Table 1. 941 

The overall steps for optimisation were as followed: (i) Train the initial model using the 942 

manually annotated training and validation data set, (ii) Predict the leaves onto the testing 943 

data set, (iii) Gather quantitative and qualitative measures of model accuracy from part (ii), 944 

(iv) alter the training parameters and repeat the cycle at part (i) with the new model. 945 

Part ii and iii of the optimisation cycle involved carrying out a testing process. This included 946 

using the current iteration’s model to predict onto the 20 full sheets in the testing dataset. 947 

From these predictions, we noted i) the area of the predicted bitmask and how it compared to 948 

the ground-truth mask, ii) the number of correct predictions made, iii) the number of incorrect 949 

predictions made, iv) a visual check for biases. These were then used to generate evaluation 950 

metrics standardised in this field, and include Intersection Over Union (IoU), precision, recall 951 

and the harmonic mean of precision and recall (F1-score), defined in Table 1. Using these 952 

metrics, we repeated the process of optimisation to improve the model quality. 953 
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Iterations: 954 

Our initial model was trained on 7 different classes including Leaf100, Leaf100B, 955 

Leaf100UM, Leaf90, Leaf90UM, Leaf50, Leaf50UM, with each class representing a leaf of 956 

different coverage and age. Definitions of these categories are found in the protocol. Through 957 

the iterations of the optimisation process, we reduced the number of classes to just one, where 958 

it joined Leaf90, Leaf100, Leaf100B, Leaf100UM and Leaf90UM labels, and excluded 959 

Leaf50 and Leaf50UM. This selection was done based on a balance between data accuracy 960 

and volume of leaves detected. The merging of Leaf90 and Leaf100 leaves were executed as 961 

the accuracy of the predicted masks had an innate 10% error. Thus, merging allowed a 962 

significantly increased number of leaves detected with what we saw as an acceptable rate of 963 

error, especially in light of the total volume of leaves detected. As we progressed through the 964 

iterations, we increased the training data until we were satisfied with our model’s 965 

performance. 966 
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Table SA_1. Iterations carried out in the optimisation cycle to generate the final leaf masking model. 967 

Test 

Numbe

r 

Batch 

Size 

Learnin

g Rate 

Number 

of 

iterations 

Number of classes Number of 

sheets 

Evaluation Metrics Process 

IoU Precision Recall F1 Score Visual Notes 

1 12 0.0001 8000 8 

Leaf100, 

Leaf100B, 

Leaf90, Leaf50, 

Leaf100UM, 

Leaf100BUM, 

Leaf90UM, 

Leaf50UM 

Training: 43 

Validation: 20 

Not conducted High visual IoU 

however assigned 

categories incorrectly, 

high proportion of 

labels assigned as 

L100UM even if L50 

(increases error) 

Decrease 

number of 

categories 

2 8 0.0001 8000 4 

Leaf100, 

Leaf100B, 

Leaf90, Leaf50 

Where UM 

classes were 

merged into their 

respective 

categories 

Training: 43 

Validation: 20 

Testing: 20 

0.43 0.92** 

  

0.31 0.46 Similar error, where 

categories were not 

correctly assigned. 

Decrease 

number of 

categories 
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3 8 0.0001 8000 3 

Leaf100, Leaf90, 

Leaf50 

Where Leaf100B 

was merged into 

Leaf100, and UM 

classes were 

removed 

Training: 43 

Validation: 20 

Testing: 20 

0.43 0.96** 0.32 0.48 Similar error, where 

categories were not 

correctly assigned. 

  

Increased number of 

leaves detected but 

more visual errors in 

incorrect masks 

Removal of 

‘UM’ classes 

4 8 0.0001 8000 3 

Leaf100, Leaf90, 

Leaf50 

Training: 43 

Validation: 20 

Testing: 20 

0.87 0.87** 0.29 0.44 Similar error, where 

categories were not 

correctly assigned. 

Change batch 

size to see 

difference 

5 15 0.0001 8000 3 

Leaf100, Leaf90, 

Leaf50 

Training: 43 

Validation: 20 

Testing: 20 

0.44 0.93** 0.33 0.49 Increased number of 

leaves detected. Large 

number of L50 

detected were 

incorrectly labelled as 

L100/90. 

Remove label 

L50. Decision 

to accept both 

L90 and L100 

as valid results 

as within 

margin of error. 
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6 15 0.0001 8000 2 

Leaf100, Leaf90 

Training: 43 

Validation: 20 

Testing: 20 

0.71 0.75 0.46 0.57 Broken and highly 

overlapping leaves 

were often wrongly 

masked 

Add extra 

training sheets 

to improve 

detection 

7 20 0.0001 8000 2 

Leaf100, Leaf90 

Training: 96* 

Validation: 20 

Testing: 20 

0.68 0.72 0.70 0.71 Reduced number of 

leaves detected. Less 

false positives detected 

  

8 20 0.0001 8000 1 

Leaf100 

Training: 96 

Validation: 20 

Testing: 20 

0.68 0.19 0.23 0.21 Removing L90 

significantly reduced 

detection rate 

Reintroduction 

of L90 

9 20 0.0001 8000 1 

Where Leaf90 

was merged into 

Leaf100 

Training: 96 

Validation: 20 

Testing: 20 

0.63 0.76 0.71 0.68 Merged category 

increased detection 

Increasing 

training dataset 
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10 20 0.0001 8000 1 

Where Leaf90 

was merged into 

Leaf100 

Training: 113* 

Validation: 28 

Testing: 20 

0.64 0.78 0.68 0.73 Reduced detection of 

half leaves 

  

* Included training data that were full sheets, instead of sheets restricted by a bounding box 968 

** Precision was not calculated with categories, only whether the predicted leaf mask matched a ground-truth mask. As such, the high precision 969 

was a result of the inclusion of the L50 category. This meant most leaves were true positives. However, due to the incorrect assignment of 970 

categories, precision was not a reliable indication of model quality971 
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Leaf classification 972 

The leaf classification model was used to separate the predicted masks of the previous model 973 

into valid and invalid leaves. It used a ResNet50 architecture (He et al. 2015), implemented in 974 

PyTorch (Paszke et al. 2019) and pretrained on ImageNet data (Deng et al. 2009). PyTorch 975 

was used to build our models. It was developed by Facebook’s AI research group and was 976 

selected from a balance of its ease of use and quality of output.  977 

Manual annotation of datasets 978 

The datasets were manually classified into valid and invalid leaves. The final iteration’s 979 

criteria of valid leaves were classed according to the criteria below: 980 

i) Leaves with the base or tip of the leaf were completely visible and not overlapped 981 

by an object,  982 

ii) Less than 5% of the leaf mask was missing from the true leaf,  983 

iii) Broken tips or folded sections (<5% of true leaf) was acceptable if they were 984 

rounded,  985 

iv) Edge divots were acceptable if radius was <50% of the shortest distance from the 986 

edge to the midrib (<5% of the total volume),  987 

v) Warped leaves (i.e. due to a gall) with rounded edge were accepted,  988 

vi) More than 5% of the total volume exceeding the leaf edge is not acceptable, 989 

especially if it is a prominently protruding mask.  990 
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a) b) c)  991 

d) e)  f)  992 

Figure SA_2. Examples of invalid leaves. a) Example of i. b) Example of ii. c) Example of iii. d) 993 

Example of iv. e) Example of v. f) Example of vi. 994 

Training 995 

This model was trained and validated on leaves that used the leaf masking model described 996 

above on a separate set of herbarium sheets, selected using the method detailed prior. To 997 

create the leaf masks for the training and validating dataset, we first carried out a connected 998 

component analysis (Otsu thresholding with a connection level of 4) to remove pixels 999 

disconnected from the main leaf mask. The herbarium sheet images were then cropped to the 1000 

area of the predicted mask and its colour converted to indicate the predicted mask (coloured) 1001 

and background (greyscale) (Fig. SA_2). These leaves were then manually annotated and 1002 

separated into valid and invalid leaves. Once the valid and invalid datasets were balanced to a 1003 

similar number of data points, they were fed into the model to train the classification model. 1004 

The trained model was then tested on the same testing dataset as the leaf masking model, 1005 

allowing us to see the change in evaluation metrics over both processes. 1006 

1007 
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 1008 

Table SA_3. Iterations carried out in the optimisation cycle to generate the final leaf classification model. 1009 

Test Number Number of 

iterations 

Number of leaf 

masks for training 

and validation 

 

Evaluation Metrics 

Notes Process 

Average 

accuracy of 

last epoch 

Precision Recall F1 Score 

Model 1) 

Criteria accepting 

only L100 

42 Y:151 N:155 0.64 0.68 0.9 0.78 Model only included L100 as 

valid leaves. 

Resulted in a high precision 

but excluded a large number 

of leaves from the dataset 

Include Both L90 and 

L100 as ‘valid’ leaves 

Model 2) 

Criteria accepting 

both L100 and 

L90 

42 Y:325 N:321 0.64 0.59 0.77 0.67 Model included both L100 

and L90 as valid leaves 

 

Model 3) 

Criteria accepting 

both L100 and 

L90 

Used less data to 

compare against 

Model 1) 

42 Y:151 N:157 0.68 0.24 0.57 0.34 Model same as above, but 

included roughly the same 

amount of training data to see 

the impact on evaluation 

criteria 

Model was deemed worse 

than L100 but may have 

been due to the larger 

variety in valid leaves 

Model 4.1) 42 Y:221 N:221 0.63 0.28 0.52 0.36 
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Criteria accepting 

only L100 

More training 

data was used 

Same number of 

valid and invalid 

leaves  

  

Model 4.2) 

Criteria accepting 

only L100 

More invalid 

leaves than valid 

42 Y:221 N:330 0.7 0.33 0.81 0.47 

  

Model same as above, but 

included more invalid leaves 

in the training dataset than 

valid leaves. 

Resulted in higher recall 

Rebalance the amount of 

training data in both 

categories 

Model 4.3) 

Criteria accepting 

only L100 

Same number of 

valid and invalid 

leaves 

Increase number 

of training 

epochs 

63 Y:221 N:221 0.76 0.22 0.76 0.34 

  

  

Model 5) 

Criteria accepting 

both L100 and 

L90 

More data 

63 Y:566 N:566 0.6 0.67 0.63 0.65 Model was chosen due to high 

precision. Chosen over 

Model_L100 due to the high 

recall metric in the latter. 

Adding extra data to 

improve classification 
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Model 6) 

New criteria 

accepting some 

L90 

63 Y:447 N:447 0.68 0.54 0.72 0.62 
  

* Few true positives due to selection criteria 1010 

1011 
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Trait extraction 1012 

The digitised herbarium sheets had standardised resolution which enabled the conversion 1013 

from pixels to centimetres squared. Leaf area was calculated from the number of pixels in the 1014 

predicted mask. The area of the largest in-circle was calculated using R (v 4.2.2, R Core Team 1015 

2022). To do this, the package concaveman (v 1.1.0, Gombin 2020) was used to create an 1016 

outline of the leaf. This was then converted into a polygon to find the Pole of Inaccessibility 1017 

from package polylabelr (v 0.2.0, Larsson 2020), a geographical point the furthest from the 1018 

edges correlating to the visual centre of the polygon. The shortest distance to the edge from 1019 

this point represented the radius of the circle and thus the area. This was done using the 1020 

function pointDistance from the package raster (v 3.6-14, Hijmans 2023). Curvature was 1021 

represented through calculating the convex hull of the leaf area and comparing it through a 1022 

ratio of area to the leaf mask area. Here the convex hull was calculated with chull from base 1023 

R. 1024 

Supplementary Information B - Leaf masking model’s 1025 

labelling protocol 1026 

Set up 1027 

Data setup (Eucalyptus only) 1028 

• Records of Eucalyptus sp. were assigned their respective subgenus according to the 1029 

species in question following the classification of Nicolle (2022), Slee et al. (2020), 1030 

Thornhill et al. (2019). 1031 

• The number of distinct species in each subgenus of Eucalyptus was counted. If there 1032 

were less than 10 distinct species, the subgenus would be classified as “small”, if there 1033 

were more, it would be classified as “big”.  1034 
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Labelling 1035 

• LabelMe (v 5.01, Wada 2022) was used to label the sheets under the respective labels 1036 

below using the ‘Create Polygons’ function. 1037 

• As we were aiming for measurements on solely the leaf blades, the petioles were 1038 

excluded. However, for eucalypts it was difficult to define where one segment started 1039 

and the other ended thus an approximation was used. 1040 

• Bounding boxes were first drawn to include at least one Leaf100 when possible. All 1041 

leaves with an area of greater than 50% were labelled with the labels below. 1042 

• It is to be noted that if the leaf was covered completely across by any object, the 1043 

labelling would not go around that object. 1044 

Labels used in various model iterations: 1045 

•  It is to be noted that the protocol illustrates the categories used for the first iteration of 1046 

the leaf masking model. Subsequent iterations of the model merged/removed 1047 

categories following SI. 1048 

• BB – Bounding box. This was selected to contain at least one Leaf100/Leaf100B 1049 

when possible. A suitable size was selected based on leaf area of specimen, with an 1050 

average of 6 total labelled leaves per sheet. 1051 

• Leaf100 – Complete leaves. No abnormal indentation that indicated herbivory, and no 1052 

part of the leaf was covered by another. An example can be seen in Figure SB_1 1053 

below. 1054 

• Leaf100B – Complete leaves, blemished. Minor abnormal indentation observed that 1055 

indicate herbivory or cracks. 1056 

• Leaf90 – Partial leaves. Leaves that had more than 90% of the blade visible, the 1057 

remaining 10% may be from herbivory, coverage or bending of the leaf tip. 1058 

• Leaf50 – Partial leaves. Leaves that had less than 90%, but more than 50%, of the 1059 

blade visible. 1060 

• Leaf##UM – Leaves that were the juvenile version of their respective groups. 1061 
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 1062 

Figure SB_1. An example of a manually annotated herbarium sheet  1063 
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Supplementary Information C - Extra Analyses 1064 

Leaf area  1065 

This analysis follows on from the main body text’s analysis. It supplements the analyses of 1066 

leaf area in its relationship to mean annual temperature, rather than mean annual precipitation. 1067 

Temperature 1068 

 1069 

Figure SC_1. Quantile regression analysis model results between leaf area and mean annual 1070 

temperature.  1071 
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Table SC_2. Coefficients for the overall linear model between leaf area and mean annual 1072 

temperature, and the different levels of regression quantiles. 1073 

 
Slope Relative standard error 

Overall 0.00269 0.000216 

99th quantile 0.0081 0.000888 

90th quantile 0.002 0.00035 

70th quantile 0.00119 0.000249 

40th quantile 0.00196 0.000259 

10th quantile 0.00397 0.000396 

1st quantile 0.012 0.00124 

AusTraits eucalypts 0.0108 0.00135 

Wright et al.’s eucalypts 0.011 0.00783 

Table SC_3. Coefficients of log leaf area and mean annual temperature following Equation 6-8. An 1074 

overall linear model, a linear model using average species mean, and a mixed model with species as a 1075 

random effect and each herbarium sheet nested within, and Wright et al.’s (2017) results. 1076 

 
Slope R-squared Relative standard error 

Overall 0.00269 0.00113 0.000216 

Mean species model 0.278 0.0145 0.0718 

Mixed model 0.0059 N/A N/A 

Wright’s all taxa 0.041 0.15 0.003  
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 1077 

Figure SC_4. a) The phylogenetic tree was split at 20 intervals at evenly spaced time periods. The 1078 

mean slope within the clades formed at each time point was calculated. For example, 0 MY had each 1079 

species as a random effect, whereas 55 MY had two groups of species, corresponding to the deepest 1080 

branch among the eucalypts. A convergence towards an approximate average slope was observed 1081 

roughly 8.5 MY. b) The average slope and standard error where the respective taxonomic level was 1082 

used as the random effect in a mixed model. The ‘overall’ model has no random effect. Species: 1083 

0.00574 ± 0.000487. Subgenus: 0.00421 ± 0.000252. Genus: -0.000585 ± 0.000234. Overall: 0.00269 1084 

± 0.000216. c-f) Each lineage’s linear models at four different intervals (0 MY, 8.57 MY, 28.58 MY, 1085 

54.3 MY) are illustrated. Where each colour represents a lineage.  1086 
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Reflecting Physiologist Sampling - Leaf area  1087 

Our dataset was also analysed in a way that reflects conventional sampling methods used by 1088 

physiologists. This was done through removing the bottom 50% of leaves by species, as 1089 

suggested by Corney et al. (2012). From these analyses, a significant increase in slopes 1090 

between leaf area and precipitation was observed. Furthermore, the physiologist sampling 1091 

method resulted in the loss of the constraint triangle, and a shift towards a more linear 1092 

relationship between leaf area and climate variables. These results illustrate how the trait 1093 

sampling method can significantly alter the outcome of the analyses. This set of analyses also 1094 

further reinforce the validity of our method as our trait-climate results converge to 1095 

relationships of other datasets. 1096 

 1097 

Figure SC_5. Relationships between log leaf area and the climatic variables (log mean annual 1098 

precipitation and temperature). The blue dashed lines represent the linear model results. The red 1099 

dashed lines represent the results found in the Wright et al. (2017) analysis of global leaf traits. The 1100 

dataset used for this analysis has undergone a filtering of the bottom 50% leaves by species.  1101 
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Table SC_6. Coefficients of models for log leaf area against log mean annual precipitation and mean 1102 

annual temperature in comparison to other datasets. Coefficients for Wright’s data was sourced from 1103 

the supplementary information of Wright et al. (2017), which used a mixed regression model. The 1104 

dataset used for this analysis has undergone a filtering of the bottom 50% leaves by species. 1105 

 
Slope R-squared Relative standard error 

Log leaf area ~ log mean annual precipitation 

Overall 0.510 0.203 0.00843 

AusTraits eucalypts 0.685 0.268 0.0214 

Wright et al.’s eucalypts 0.446 0.245 0.0655 

Wright et al.’s all taxa 1.08 0.24 0.052 

Log leaf area ~ mean annual temp 

Overall 0.00402 0.00376 0.000542 

AusTraits eucalypts 0.0108 0.0218 0.00114 

Wright et al.’s eucalypts 0.0110 0.00685 0.00783 

Wright et al.’s all taxa 0.043 0.15 0.054 

  1106 
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Precipitation 1107 

 1108 

Figure SC_7. Quantile regression analysis model results. A linear relationship between log leaf area 1109 

and log mean annual precipitation is observed. The dataset used for this analysis has undergone a 1110 

filtering of the bottom 50% leaves by species.  1111 
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Table SC_8. Coefficients for the overall linear model between log leaf area and log mean annual 1112 

precipitation, and the different levels of regression quantiles. The dataset used for this analysis has 1113 

undergone a filtering of the bottom 50% leaves by species. 1114 
 

Slope Relative standard error 

Overall 0.510 0.00843 

99th quantile 0.618 0.0246 

90th quantile 0.608 0.0159 

70th quantile 0.511 0.0103 

40th quantile 0.459 0.00883 

10th quantile 0.536 0.0182 

1st quantile 0.414 0.0327 

AusTraits eucalypts 0.685 0.0214 

Wright et al.’s eucalypts 0.446 0.0655 

Table SC_9. Coefficients of log leaf area and log mean annual precipitation following Equation 6-8. 1115 

An overall linear model, a linear model using average species mean, and a mixed model with species 1116 

as a random effect and each herbarium sheet nested within, and Wright et al.’s (2017) results. The 1117 

dataset used for this analysis has undergone a filtering of the bottom 50% leaves by species. 1118 

 
Slope R-squared Relative standard error 

Overall 0.510 0.203 0.00843 

Mean species model 0.576 0.261 0.0462 

Mixed model 0.0300 N/A N/A 

Wright et al.’s all taxa 1.08 0.24 0.052 

  1119 
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Temperature 1120 

 1121 

Figure SC_10. Quantile regression analysis model between log leaf area and mean annual 1122 

temperature. The dataset used for this analysis has undergone a filtering of the bottom 50% leaves by 1123 

species.  1124 
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Table SC_11. Coefficients for the overall linear model between log leaf area and mean annual 1125 

temperature, and the different levels of regression quantiles. The dataset used for this analysis has 1126 

undergone a filtering of the bottom 50% leaves by species. 1127 
 

Slope Relative standard error 

Overall 0.00402 0.000542 

99th quantile 0.00600 0.00169 

90th quantile 0.00605 0.00112 

70th quantile 0.00141 0.000672 

40th quantile 0.00287 0.000586 

10th quantile 0.00903 0.00103 

1st quantile 0.0178 0.00142 

AusTraits eucalypts 0.0108 0.00135 

Wright et al.’s eucalypts 0.0110 0.00783 

Table SC_12. Coefficients of log leaf area and mean annual temperature following Equation 6-8. An 1128 

overall linear model, a linear model using average species mean, and a mixed model with species as a 1129 

random effect and each herbarium sheet nested within, and Wright et al.’s (2017) results. The dataset 1130 

used for this analysis has undergone a filtering of the bottom 50% leaves by species. 1131 

 
Slope R-squared Relative standard error 

Overall 0.00402 0.00376 0.000542 

Mean species model 0.113 -0.0000951 0.115 

Mixed model 0.000515 N/A N/A 

Wright’s all taxa 0.041 0.15 0.003  

Largest in-circle area 1132 

The analysis was also repeated on measurements of other leaf traits collected in our dataset. 1133 

This includes the area of the largest circle able to be drawn within the leaf mask, similar to 1134 

Leigh et al. 2017.  1135 
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 1136 

Figure SC_13. Comparison between leaf area to largest in-circle area. A linear relationship between 1137 

the two variables is present. 1138 

Table SC_14. Phylogenetic signal for log largest in-circle area against the ML2 phylogeny estimated 1139 

by Thornhill et al. (2019). 1140 
 

K-value P-value (1000 randomisations) 

Log largest in-circle area 0.0227 0.001 

  1141 
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Precipitation 1142 

  1143 

Figure SC_15. Quantile regression analysis model results of log largest in-circle area and log mean 1144 

annual precipitation. An increase in slope steepness from the 1st to the 99th quantile, with a lower 1145 

range of leaf area variation in drier conditions than wetter is observed.   1146 
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Table SC_16. Coefficients for the overall linear model between log largest in-circle area and log 1147 

mean annual precipitation, and the different levels of regression quantiles. 1148 
 

Slope Relative standard error 

Overall 0.472 0.00455 

99th quantile 0.68 0.0191 

90th quantile 0.56 0.008 

70th quantile 0.488 0.00565 

40th quantile 0.452 0.00535 

10th quantile 0.411 0.00747 

1st quantile 0.278 0.0225  

Table SC_17. Coefficients of log largest in-circle area and log mean annual precipitation following 1149 

Equation 6-8. An overall linear model, a linear model using average species mean, and a mixed model 1150 

with species as a random effect and each herbarium sheet nested within. 1151 

 
Slope R-squared Relative standard error 

Overall 0.472 0.0731 0.00455 

Mean species model 0.609 0.173 0.0432 

Mixed model 0.213 N/A N/A  
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 1152 

Figure SC_18. a) The phylogenetic tree was split at 20 intervals at evenly spaced time periods. The 1153 

mean slope within the clades formed at each time point was calculated. For example, 0 MY had each 1154 

species as a random effect, whereas 55 MY had two groups of species, corresponding to the deepest 1155 

branch among the eucalypts. A convergence towards an approximate average slope was observed 1156 

roughly 12.5 MY. b) The average slope and standard error where the respective taxonomic level was 1157 

used as the random effect in a mixed model. The ‘overall’ model has no random effect. Species: 0.202 1158 

± 0.00892. Subgenus: 0.521 E-01 ± 0.00506. Genus: 0.469 ± 0.00459. Overall: 0.470 ± 0.004.58. c-f) 1159 

Each lineage’s linear models at four different intervals (0 MY, 8.57 MY, 28.58 MY, 54.3 MY) are 1160 

illustrated. Where each colour represents a lineage.  1161 
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Temperature 1162 

1163 

Figure SC_19. Quantile regression analysis model results of log largest in-circle area and mean 1164 

annual temperature. An increase in slope steepness from the 1st to the 99th quantile, with a lower range 1165 

of leaf area variation in drier conditions than wetter is observed.   1166 
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Table SC_20. Coefficients for the overall linear model between log largest in-circle area and mean 1167 

annual temperature, and the different levels of regression quantiles. 1168 
 

Slope Relative standard error 

Overall 0.00269 0.000268 

99th quantile 0.0081 0.000888 

90th quantile 0.002 0.00035 

70th quantile 0.00119 0.000249 

40th quantile 0.00196 0.000259 

10th quantile 0.00397 0.000396 

1st quantile 0.012 0.000124 

Table SC_21. Coefficients of log largest in-circle area and mean annual temperature following 1169 

Equation 6-8. An overall linear model, a linear model using average species mean, and a mixed model 1170 

with species as a random effect and each herbarium sheet nested within. 1171 

 
Slope R-squared Relative standard error 

Overall 0.000737 0.0000481 0.000268 

Mean species model 0.0105 0.017 0.00253 

Mixed model 0.00395 N/A N/A 

  1172 
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 1173 

 1174 

Figure SC_22. a) The phylogenetic tree was split at 20 intervals at evenly spaced time periods. The 1175 

mean slope within the clades formed at each time point was calculated. For example, 0 MY had each 1176 

species as a random effect, whereas 55 MY had two groups of species, corresponding to the deepest 1177 

branch among the eucalypts. A convergence towards an approximate average slope was observed 1178 

roughly 12.5 MY. b) The average slope and standard error where the respective taxonomic level was 1179 

used as the random effect in a mixed model. The ‘overall’ model has no random effect. Species: 1180 

0.00369 ± 0.000578. Subgenus: 0.000853 ± 0.000313. Genus: -0.00329 ± 0.000290. Overall: 1181 

0.000291 ± 0.000268. c-f) Each lineage’s linear models at four different intervals (0 MY, 8.57 MY, 1182 

28.58 MY, 54.3 MY) are illustrated. Where each colour represents a lineage.  1183 
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Leaf curvature 1184 

The analysis was also repeated on measurements of other leaf traits collected in our dataset. 1185 

This includes the leaf curvature, which is represented by the area of a convex hull of the leaf 1186 

over the total leaf mask area.  1187 

 1188 

Figure SC_22. Relationships between the climatic variables (mean annual temperature and 1189 

precipitation) against leaf curvature. Where the blue dashed line represents a linear model.  1190 

Table SC_23. Phylogenetic signal for leaf curvature against the ML2 phylogeny estimated by 1191 

Thornhill et al. (2019) 1192 

 
K-value P-value (1000 randomisations) 

Curvature ratio 0.0158 0.203 

  1193 
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Precipitation 1194 

 1195 

Figure SC_27. Quantile regression analysis model results of leaf curvature and log mean annual 1196 

precipitation. An increase in slope steepness from the 1st to the 99th quantile is observed.  1197 

Table SC_28. Coefficients for the overall linear model between leaf curvature and log mean annual 1198 

precipitation, and the different levels of regression quantiles. 1199 

 
Slope Relative standard error 

Overall 0.0319 0.00144 

99th quantile 0.214 0.0196 

90th quantile 0.1 0.00474 

70th quantile 0.0303 0.00172 

40th quantile 0.00454 0.000601 

10th quantile 0.000417 0.000251 

1st quantile 0.00116 0.000242  
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 1200 

Figure SC_29. a) The phylogenetic tree was split at 20 intervals at evenly spaced time periods. The 1201 

mean slope within the clades formed at each time point was calculated. For example, 0 MY had each 1202 

species as a random effect, whereas 55 MY had two groups of species, corresponding to the deepest 1203 

branch among the eucalypts. A convergence towards an approximate average slope was observed 1204 

roughly 15 MY. b) The average slope and standard error where the respective taxonomic level was 1205 

used as the random effect in a mixed model. The ‘overall’ model has no random effect. Species: 1206 

0.0133 ± 0.00305. Subgenus: 0.0361 ± 0.00161. Genus: 0.0322 ± 0.00146. Overall: 0.0319 ± 0.126. c-1207 

f) Each lineage’s linear models at four different intervals (0 MY, 8.57 MY, 28.58 MY, 54.3 MY) are 1208 

illustrated. Where each colour represents a lineage.  1209 
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Table SC_30. Coefficients of leaf curvature and log mean annual precipitation following Equation 6-1210 

8. An overall linear model, a linear model using average species mean, and a mixed model with 1211 

species as a random effect and each herbarium sheet nested within. 1212 

 
Slope R-squared Relative standard error 

Overall 0.0319 0.00357 0.00144 

Mean species model 0.0315 0.0286 0.00586 

Mixed model 0.0159 N/A N/A 

Temperature 1213 

 1214 

Figure SC_31. Quantile regression analysis model results of leaf curvature and mean annual 1215 

temperature. An increase in slope steepness from the 1st to the 99th quantile is observed.  1216 
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Table SC_32. Coefficients for the overall linear model between leaf curvature and mean annual 1217 

temperature, and the different levels of regression quantiles. 1218 

 
Slope Relative standard error 

Overall 0.00117 0.0126 

99th quantile 0.00629 0.0012 

90th quantile 0.00239 0.000282 

70th quantile 0.00131 0.000103 

40th quantile 0.00059 0.0000354 

10th quantile 0.000162 0.0000143 

1st quantile 0.0000526 0.0000131 

  1219 
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 1220 

Figure SC_33. a) The phylogenetic tree was split at 20 intervals at evenly spaced time periods. The 1221 

mean slope within the clades formed at each time point was calculated. For example, 0 MY had each 1222 

species as a random effect, whereas 55 MY had two groups of species, corresponding to the deepest 1223 

branch among the eucalypts. b) The average slope and standard error where the respective taxonomic 1224 

level was used as the random effect in a mixed model. The ‘overall’ model has no random effect. 1225 

Species: 0.00131 ± 0.000188. Subgenus: 0.00150 ± 0.0000958. Genus: 0.000925 ± 0.00008.91. 1226 

Overall: 0.00117 ± 0.00008.17. c-f) Each lineage’s linear models at four different intervals (0 MY, 1227 

8.57 MY, 28.58 MY, 54.3 MY) are illustrated. Where each colour represents a lineage. 1228 

Table SC_34. Coefficients of leaf curvature and mean annual temperature following Equation 6-8. An 1229 

overall linear model, a linear model using average species mean, and a mixed model with species as a 1230 

random effect and each herbarium sheet nested within. 1231 
 

Slope R-squared Relative standard error 

Overall 0.00117 0.00149 0.0000817 

Mean species model 0.00105 0.0103 0.000319 

Mixed model 0.00127 N/A N/A 

 1232 
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Supplementary Information D - Error Validation 1233 

The study conducted a linear regression analysis between log leaf area and log mean annual 1234 

precipitation. Prior to this, residuals were checked to ensure the assumptions of linearity were 1235 

met. Through this we determined residuals were normally distributed and linearly related. 1236 

 1237 

Figure SD_1. Residual plot of log leaf area and log mean annual precipitation, showing homogeneity 1238 

of variance and linearity. 1239 

Quality control was also conducted. This data was sourced from retrieving 100 random leaves 1240 

that passed the classifier model. These 100 leaves were manually sorted into valid and invalid 1241 

leaves to see whether there was a bias in error towards bigger or smaller leaves. We 1242 

determined that no significant bias in leaf area was present, as indicated by the significant 1243 

overlap in leaf area of both categories. 1244 
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 1245 

Figure SD_2. Examining the presence of bias in leaf areas of invalid/valid leaves. Plotting the 1246 

normalised frequency count across the different leaf areas. 1247 

The fitted slope between the two datasets (Wright et al.’s 2017 and AusTraits) compared to 1248 

this study’s, was observed to be shallower than the one-to-one relationship. This was 1249 

attributed to our dataset’s more complete sampling method.  1250 
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 1251 

Figure SD_3. Plotting the mean leaf area of shared species across databases, where each data point 1252 

is a species. The black line is a one-to-one relationship between the two datasets (indicating an 1253 

identical species mean). Whereas the blue line is the linear relationship between the two datasets. a) 1254 

Plotting shared eucalypt species of AusTraits and Wright. b) Plotting shared eucalypt species of our 1255 

dataset and AusTraits. c) Plotting shared eucalypt species of our dataset and Wright et al.’s (2017). 1256 


