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Abstract 8 

Biodiversity monitoring usually involves drawing inferences about some variable of interest 9 

across a defined landscape from observations made at a sample of locations within that 10 

landscape. If the variable of interest differs between sampled and non-sampled locations, and 11 

no mitigating action is taken, then the sample is unrepresentative and inferences drawn from 12 

it will be biased. It is possible to adjust unrepresentative samples so that they more closely 13 

resemble the wider landscape in terms of “auxiliary variables”. A good auxiliary variable is a 14 

common cause of sample inclusion and the variable of interest, and if it explains an 15 

appreciable portion of the variance in both, then inferences drawn from the adjusted sample 16 

will be closer to the truth. We applied six types of survey sample adjustment—subsampling, 17 

quasi-randomisation, poststratification, superpopulation modelling, a “doubly robust” 18 

procedure, and multilevel regression and poststratification—to a simple two-part biodiversity 19 

monitoring problem. The first part was to estimate mean occupancy of the plant Calluna 20 

vulgaris in Great Britain in two time-periods (1987-1999 and 2010-2019); the second was to 21 

estimate the difference between the two (i.e. the trend). We estimated the means and trend 22 

using large, but (originally) unrepresentative, samples from a citizen science dataset. 23 

Compared to the unadjusted estimates, the means and trends estimated using most adjustment 24 

methods were more accurate, although standard uncertainty intervals generally did not cover 25 

the true values. Completely unbiased inference is not possible from an unrepresentative 26 

sample without knowing and having data on all relevant auxiliary variables. Adjustments can 27 

reduce the bias if auxiliary variables are available and selected carefully, but the potential for 28 

residual bias should be acknowledged and reported.  29 

Introduction 30 

As the data revolution gathers pace, it is not surprising to see “big data” being used to 31 

monitor biodiversity. Examples include observations submitted to mobile phone apps by 32 

amateur naturalists (Johnston et al., 2022) and digitised specimens from museums and 33 

herbaria (Nelson & Ellis, 2019). Such data become bigger still when combined in data 34 

aggregators such as the Global Biodiversity Information Facility (GBIF; 35 

https://www.gbif.org/) or metadatabases such as PREDICTS (Hudson et al., 2014). 36 

Unfortunately, quantity of data does not necessarily imply quality of insight. 37 

Monitoring biodiversity is typically a matter of descriptive statistical inference. It is 38 

inferential in that the goal is to infer something about a target population from a sample of 39 

that population (Boyd, Powney, et al., 2023). The population might comprise, say, all areal 40 

units across some landscape (“sites”), in which case the sample would be a subset of those 41 

sites. The inference is descriptive in that the aim is to describe (rather than explain) a variable 42 

of interest in the population. A common example is the proportion of sites occupied by some 43 

species (Bowler et al., 2021; Outhwaite et al., 2020; Powney et al., 2019; Stroh et al., 2023; 44 

van Strien & van Grunsven, 2023), but there are many others.  45 
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Of more importance than the size of a sample for descriptive inference is whether it is 46 

representative of the population about which inferences are to be drawn (Meng, 2018). In a 47 

representative sample, the distribution of the variable of interest is similar to its distribution 48 

in the population (Bethlehem et al., 2008). An equivalent definition is that there is little to no 49 

correlation between inclusion in the sample and the variable of interest—the “data defect 50 

correlation”, or ddc (Meng, 2018). Intuitively, statistics derived from a representative sample, 51 

such as means and proportions, will be similar to their population equivalents.  52 

Unfortunately, ddc’s are likely to be appreciable in big biodiversity datasets. For one, 53 

naturalists preferentially visit and collect data at sites where they are likely to see species that 54 

interest them (Bowler et al., 2022; Forister et al., 2023). Where those species’ abundances or 55 

distributions are the variables of analytic interest, preferential sampling naturally results in a 56 

positive ddc (McClure & Rolek, 2023). On the other hand, naturalists might be constrained to 57 

visiting and collecting data in, say, built up areas, which are easier to access than remote 58 

locations (Geldmann et al., 2016; Hughes et al., 2020; Mandeville et al., 2022). Built-up areas 59 

generally have low quality habitat, meaning that species are less likely to occupy them in 60 

large numbers and that the ddc might be negative.   61 

Inferences from unrepresentative samples, with appreciable ddc’s, are likely to be misleading. 62 

Imagine a researcher who wants to estimate the average abundance of some species across a 63 

landscape. An obvious (but naïve) approach would be to calculate its mean abundance across 64 

sampled sites and assume that this is similar to its average abundance across the wider 65 

landscape. However, if the locations at which the species is most abundant were 66 

preferentially sampled, then the sample-based estimate of its mean abundance will be 67 

upwardly biased. To use the analogy of Forister et al. (2023), sampled locations would be life 68 

rafts; non-sampled locations would be the sinking ship.  69 

It is simple to counteract the biasing effect of the ddc if the probability that each site was 70 

included in the sample is known; that is, if a probability sample is available. In this case, 71 

more weight can be placed on the data from sites that were less likely to be included. The 72 

effect of this type of weighting is easiest to explain heuristically: the sample is augmented 73 

with “copies” of the data from sites that were less likely to be sampled, effectively bringing 74 

sample inclusion probabilities across sites to parity. Two variables cannot be correlated if one 75 

of them is constant, which means there can be no correlation between the weighted sample 76 

inclusion probabilities and the variable of interest across sites. It follows that the ddc, which 77 

is the correlation between actual (weighted) sample inclusion and the variable of interest, is 78 

zero in expectation (Meng, 2022), and the sample can be considered representative (Lohr, 79 

2022). Weighting of this type is known as “design-based” inference, because the inclusion 80 

probabilities are a feature of the sampling design.  81 

Design-based inference is not applicable for the types of big biodiversity datasets we consider 82 

here, because they were not collected according to a probabilistic sampling design. We do not 83 

know the probabilities that sites were visited by the collectors of specimens now held in 84 

museums and on GBIF. Nor do we know the probabilities that citizen scientists visited and 85 

collected data at each site across most landscapes. Matters are simpler when using data from 86 

structured monitoring schemes, which often aim for a probability sample (e.g PoMS). 87 

However, incomplete uptake of sites that were selected for inclusion (Pescott et al., 2015, 88 

2019) means that, in practice, these samples too are non-probabilistic. [Incomplete uptake in 89 

biodiversity monitoring is analogous to the issue of non-response in survey sampling (e.g. 90 

Bethlehem et al., 2008).] Where sample inclusion probabilities are not known, an alternative 91 

to design-based inference is needed.   92 



Most approaches to inference from nonprobability samples involve estimating the inclusion 93 

probabilities. A relatively simple example is poststratification, where the observations (for 94 

each site) are split into strata based on covariates, and sites in strata that are underrepresented 95 

in the population (based on the population totals of the covariates) are given more weight 96 

(Valliant et al., 2018). Using covariates to estimate sample inclusion probabilities is 97 

equivalent to adjusting the samples in such a way that the distributions of those covariates in 98 

the sample more closely resemble their distributions in the population (i.e. across all sites in 99 

the wider landscape). If the covariates affect both the variable of interest and sample 100 

inclusion, then inferences drawn from the adjusted sample will be closer to the truth than 101 

those from the original (naïve) sample. In the context of inference from nonprobability 102 

samples, covariates affecting both sample inclusion and the variable of interest, which are not 103 

of direct analytic interest themselves, are known as “auxiliary variables” (Thoemmes & 104 

Mohan, 2015; Thoemmes & Rose, 2014). 105 

Before going further, it is important to note that most approaches to inference from 106 

nonprobability samples rest on the bold assumption that the variable of interest is 107 

independent of sample inclusion after accounting for the auxiliary variables (Bailey, 2022); 108 

that is, non-sampled sites are “Missing At Random” (MAR; Rubin, 1976). If the MAR 109 

assumption holds, then unbiased inference is possible. In reality, the MAR assumption is 110 

likely to be violated, because data are not available on all relevant auxiliary variables, so the 111 

best we can hope for is a reduction in bias relative to naïve inferences drawn from the 112 

unadjusted sample.   113 

Use of sample adjustments in biodiversity monitoring is variable. It is common for 114 

monitoring schemes to weight samples in such a way that the relative frequencies of habitats 115 

or geographic areas in the sample are similar to those in the population (Gregory et al., 2005; 116 

Van Swaay et al., 2002, 2008; Weiser et al., 2020). But it is also common to see samples 117 

treated as though they are representative despite clear evidence to the contrary. For example, 118 

Vellend et al. (2013) and Dornelas et al. (2014) purported to document globally 119 

representative time trends in species richness, but Gonzalez et al. (2016) showed that their 120 

samples were highly unrepresentative with respect drivers of biodiversity change and species 121 

richness itself. (See Boyd, Powney, et al. (2023) for a review of this debate and others like it.) 122 

We suspect that many of those who do not deal with issues of sample representativeness are 123 

not familiar with the gravity of the problem or the relevant theory and adjustment methods. 124 

In this paper, we introduce six approaches to descriptive inference using unrepresentative 125 

nonprobability samples and demonstrate how they relate to each other (conceptually and 126 

mathematically). We apply each approach to a simple two-part biodiversity monitoring 127 

problem. The first part is to estimate mean occupancy of the plant C. vulgaris across 1 km 128 

grid squares in Britain in two time-periods; the second is to estimate the difference between 129 

the two (i.e. the time trend). Calluna vulgaris is an attractive case study because we have 130 

good estimates of its true geographic distribution in both periods from satellite (amongst 131 

other sources). The approaches to inference that we demonstrate are subsampling, quasi-132 

randomisation (Elliott and Valliant, 2017), poststratification (Little, 1993), superpopulation 133 

modelling (Valliant, 2009), a “doubly robust” estimator (Chen et al., 2020), and Multilevel 134 

Regression and Poststratification (MRP; Gelman, 2007; Gelman and Little, 1997). Each can 135 

be (MRP more loosely than the rest) interpreted as an attempt to weight the sample in such a 136 

way that it more closely resembles the population, in the hope that this results in more 137 

accurate descriptive inferences. We demonstrate the effects of each approach on the 138 

distributions of auxiliary variables in the sample, as well as on the resulting estimates of 139 

mean occupancy in each period and the time trend between the two. Applying the adjustment 140 



methods to a real-world example reveals challenges that ecologists are likely to face, and we 141 

discuss these in detail.  142 

Methods 143 

True distribution of Calluna vulgaris  144 

We approximated the true distribution of the dwarf shrub vascular plant Calluna vulgaris 145 

(Heather) in two time periods: 1987–1999 and 2010–2019. For the first period, we used the 146 

1990 UKCEH land cover map (Rowland et al., 2020); for the second, we used the 2018 147 

version (Morton et al., 2022). The land cover maps are derived from satellite, which means 148 

that they provide information for every 1 km grid square. From these maps, we identified 1 149 

km grid squares (British National Grid, EPSG:27700) with >0% heather or heather grassland 150 

cover. To these, we added 1 km squares in which C. vulgaris was recorded in each time 151 

period by the Botanical Society of Britain and Ireland (BSBI). The time periods considered 152 

cover the main periods of recording for two national distribution atlases, which involved a 153 

concerted effort by volunteers (citizen scientists) to document vascular plants across the 154 

United Kingdom (Preston, C.D., Pearman, D.A. & Dines, 2002; Stroh et al., 2023). 155 

Acknowledging that some 1 km squares may have been erroneously classed as having some 156 

heather or heather grassland coverage by the land cover maps, we removed any 1 km squares 157 

that fell within 10 km grid squares in which C. vulgaris had not been recorded by the BSBI in 158 

the period 1950–2019. Given that this period includes recording for three national 159 

distribution atlases (the two cited above plus Perring & Walters, 1962), we assume that the 160 

union of all 10 km occurrences within this period encompasses all known populations 161 

irrespective of finer scale changes. Figure 1 maps the resulting estimates of the true 1 km 162 

distributions of C. vulgaris in both time-periods. 163 

 164 



 165 

Figure 1. Left column: the distribution of Calluna vulgaris in both time-periods. Green 166 

squares are occupied and grey squares are not. �̅�𝑁 is mean occupancy or, equivalently, the 167 

proportion of squares occupied. The ddc’s are the correlations between sample inclusion (1 if 168 

the square is in the sample and 0 otherwise) and occupancy. Right column: the nonprobability 169 

1 km samples for each time-period. Purple squares were sampled and grey squares were not. 170 

n is the number of squares sampled. We assume that C. vulgaris was recorded in all sampled 171 

grid squares that it occupied in the relevant time-period. The true trend is the difference 172 

between population means, and the sample trend is the difference between sample means (i.e. 173 

mean occupancy across purple squares). 174 

Sample data on Calluna vulgaris occupancy 175 

The 1 km samples for both time periods (“Sampled squares in Fig. 1) encompass any vascular 176 

plant data for which the date of collection is known (i.e. the record is resolved to the day), 177 

either at the 1 km scale or finer, collected by the BSBI for the national distribution atlases of 178 

Preston et al. (2002) and Stroh et al. (2023). Having been collected by volunteers, the data 179 

come under the banner of citizen science.   180 

Auxiliary data  181 

We used two auxiliary variables for which data are available for all 1 km grid squares in 182 

Great Britain: the proportion of each 1 km grid square that falls within some form of 183 

protected area (including everything from SSSI’s to local nature reserves; UNEP-WCMC & 184 

IUCN, 2020) and the average elevation of each 1 km square (Intermap, 2009). New protected 185 

areas are designated periodically, so we used the set that were designated prior to 1987 for 186 

the first time-period and prior to 2010 for the second (i.e. the beginning of each period). We 187 



suspect that 1 km squares with more protected area coverage are more likely to be visited by 188 

naturalists (Girardello et al., 2019) and, because protected areas tend to have higher quality 189 

habitat, are also more likely to be occupied by C. vulgaris. Likewise, elevation should affect 190 

both sample inclusion and C. vulgaris occupancy. Sites at higher elevations are harder to 191 

access on account of their relatively harsh terrain and remoteness, and elevation is a known 192 

predictor of C. vulgaris occupancy (Stroh et al., 2023).  193 

One of the adjustment methods that we describe below, quasi-randomisation, requires 194 

additional covariates (we use the term “covariate” to distinguish these from the auxiliary 195 

variables as defined earlier). The method involves the estimation of sample inclusion 196 

probabilities for every 1 km grid square in Britain. This is a matter of prediction rather than 197 

inference, because we know whether each 1 km square was sampled (i.e. there is no missing 198 

data), so it was sensible to use a wider range of covariates. See Table 1 in Boyd, Stewart, et 199 

al. (2023) for a list of the additional covariates used in this model.  200 

Estimating the per-period population mean 201 

The first step in our biodiversity monitoring problem is to estimate mean occupancy of C. 202 

vulgaris in each time-period. Although not usually written this way, it is helpful for what 203 

comes later to re-express the population mean as a weighted sum 204 

 �̅�𝑁 =
1

𝑁
∑ 𝑦𝑖 = ∑

𝑦𝑖 

𝑁
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𝑁
𝑖=1  𝑁

𝑖=1 , equation 1 

 205 

where 𝑦 is occupancy (1 = occupied and 0 = unoccupied), 𝑁 is the population size, 𝑖 indexes 206 

1 km grid squares and 𝑤𝑖 = 1/𝑁 (𝑁 is the same in both time-periods). The denominator in 207 

the rightmost expression might seem unnecessary, because it equals one. We have retained it 208 

to illustrate the similarity between this expression and the sample-based estimators below, 209 

which have a similar form but whose sampling weights 𝑤 do not necessarily sum to one. (We 210 

use the term “estimator” to describe a rule for estimating some quantity from a sample; here, 211 

that quantity is the population mean.) For notational simplicity, we do not index the time-212 

period, and the reader should remember that �̅�𝑁 is time-period specific. In practice, 𝑦 is not 213 

known for all 𝑖 in the population, so sample-based estimators of �̅�𝑁  are needed.  214 

The design-based estimator 215 

The design-based estimator of the population mean, which is applicable only where a 216 

probability sample of some sort is available (Lohr, 2022), has a similar form to eq. 1  217 

 
𝑦

𝑑𝑏
= ∑

𝑦𝑖  𝑤𝑖

∑ 𝑤𝑖𝑛

𝑛

𝑖=1

. 
equation 2 

The differences are that the sums are over the sample size 𝑛 rather than 𝑁 and that the 218 

weights 𝑤𝑖 are not necessarily constant. Rather, the weight for unit 𝑖, 𝑤𝑖, is equal to the 219 

reciprocal of the probability that it was included in the sample = 1/𝑝𝑖.   220 

Sample inclusion probabilities are, by definition, not known for nonprobability samples, so 221 

alternative estimators are required. We present six such estimators below, three of which–222 

quasi-randomisation, poststratification and superpopulation modelling–are explicit attempts 223 

to come up with a set of weights 𝑤𝑖 that produce a reasonable estimate of �̅�𝑁 under eq. 2. The 224 

other three—a “doubly robust” estimator, subsampling and MRP—are not, but they are 225 

conceptually similar. 226 



Estimators for nonprobability samples 227 

The following estimators are used in survey sampling to estimate population means from 228 

nonprobability samples. More detail on each can be found in Valliant et al. (2018), Lumley 229 

(2010) and Lohr (2022). See supplementary material 1 for an R Markdown document 230 

containing the code to implement each of the adjustment methods.  231 

Naïve sample mean 232 

Where sample inclusion probabilities are unavailable, a simple option is to assume that 𝑤𝑖 =233 

1/𝑛 for all 𝑖. In this case, eq. 2 gives the (naïve) sample mean. As the weights are constant, 234 

the sample mean does not adjust for differences in 𝑦 between the sampled and non-sampled 235 

population units. It is nevertheless widely used in biodiversity monitoring.  236 

Quasi-randomisation 237 

An alternative approach is to imagine that the nonprobability sample was selected 238 

probabilistically and to estimate the implied inclusion probabilities. Any binary model and 239 

covariates can be used. Once inclusion probabilities 𝑝𝑖 have been estimated, the weights 𝑤𝑖 =240 

1/𝑝𝑖  (as in the design-based estimator). In our example, we used random forests and several 241 

covariates (including the auxiliaries) to estimate pseudo-inclusion probabilities. More 242 

complex appraoches are possible and have been used to map species distributions (Johnston 243 

et al., 2020). 244 

Poststratification 245 

Another approach to estimating sampling weights is poststratification. Poststratification 246 

requires categorical auxiliary data, so continuous variables must be discretized prior to 247 

analysis (Valliant, 2020). The auxiliary variables are crossed (think contingency tables) to 248 

create poststrata. Each poststratum 𝑗 has a sample size 𝑛𝑗  and population size 𝑁𝑗. The 249 

sampling weight 𝑤𝑖 for population unit 𝑖 in poststratum 𝑗 is given by 𝑁𝑗/𝑛𝑗.  250 

In our example, we split elevation into ten categories using its deciles (i.e. cut points at the 251 

10th and 20th percentiles, etc.). This did not make sense for the variables denoting the 252 

proportion of each grid square that falls within a protected area, because most squares took 253 

the value one or zero. We split this variables into two categories, 0 and >0, i.e. whether or not 254 

there is some protected land in the grid square. Discretization gave 10 ×  2 = 20 poststrata.  255 

It is sensible to discretize the auxiliary variables in such a way that the variable of interest 256 

varies among categories. Otherwise, the adjustment from poststratifying will be minor (or 257 

unnecessary!). Fig. 2 shows that mean occupancy of C. vulgaris in the samples differs 258 

appreciably among levels of the auxiliary variables.  259 



 260 

Figure 2. Mean occupancy of Calluna vulgaris for each level of the auxiliary variables in 261 

each time-period. The auxiliary variables were originally on a continuous scale, but we 262 

discretized them to enable poststratification. See the main text for details.  263 

Superpopulation modelling 264 

Superpopulation modelling is conceptually different to the adjustment methods described 265 

above. The premise is that there exists some model that describes the variable of interest in 266 

the population. If this model can be recovered from the sampled outcome variable 𝑦 and the 267 

auxiliary data, it can be used to predict the variable of interest in non-sampled units. Given a 268 

prediction for each non-sampled 𝑖, it is then simple to estimate the population mean. 269 

A general (i.e. multiple) linear regression model of 𝑦 has the form  270 

 𝐸𝑀(𝑦𝑖) = 𝒙𝑖
𝑇 𝛽, equation 3 

where the subscript 𝑀 indicates that the expectation (mean) is with respect to the model, 𝒙𝑖  is 271 

the vector of auxiliary variables for unit 𝑖, the superscript 𝑇 indicates that the vector 𝒙𝑖 has 272 

been transposed (to a row vector) and 𝛽 is a column vector of parameters. A prediction of 𝑦 273 

for unit 𝑖 is 274 

 

 
�̂�𝑖 = 𝑥𝑖

𝑇 �̂�. equation 4 

 

The accent on 𝛽 indicates that it is an estimate (the least squares estimate in this case). If �̅� is 275 

the set of non-sampled population units, the superpopulation model prediction of the 276 

population mean is 277 

 �̅�𝑠𝑝 =
∑ 𝑦𝑖∈𝑠 +∑ �̂�𝑖∈�̅�

𝑁
.  equation 5 

That is, it is the sum of the known outcome values in the sample and those predicted by the 278 

model for the remainder of the population divided by the population total.  279 

A feature of �̅�𝑠𝑝 is that it can be expressed in the same form as the design-based estimator in 280 

eq. 2, with the weights 𝑤𝑖 being a function of the auxiliary variables in sampled and non-281 

sampled population units (Elliott & Valliant, 2017). (Code to verify this numerically is 282 

available at https://github.com/robboyd/selectionBiasEffects/tree/master/R.) Like the other 283 



adjustment models, then, the superpopulation estimator is an approach to estimating the 284 

sampling weights 𝑤𝑖.  285 

Linear regression might seem like an unusual choice of model for a binary outcome 286 

(occupancy), but we felt that it was the best option here. One reason is that the implied model 287 

is actually linear for an estimator with the form of eq. 2 (Valliant, 2020). Most important, 288 

however, is that the use of a linear model enables the estimation of sampling weights 289 

(Valliant et al., 2018; supplementary material 1; 290 

https://github.com/robboyd/biasAdjustments). This is helpful, because those weights can be 291 

used to show the effects of superpopulation modelling on the distributions of the auxiliary 292 

variables in the sample (see “Evaluating the effects of the adjustments” below). Alternative 293 

models can be used where weights are not required (e.g. Wu and Sitter, 2001). In our 294 

example superpopulation model, we used the auxiliary variables as predictors. 295 

Doubly robust estimator 296 

The doubly robust estimator combines the superpopulation model and the sample inclusion 297 

model from the quasi-randomisation procedure in such a way that if either is correct, and the 298 

sample size is large, then the estimate of the population mean unbiased (Valliant, 2020). It 299 

has the general form (Wu, 2022) 300 

 �̅�𝑑𝑟 =
1

𝑁
∑

𝑟𝑖

𝑝𝑖
+

1

𝑁𝑖∈𝑠 ∑ �̂�𝑖
𝑁
𝑖=1 ,  equation 6 

where 𝑟𝑖 = 𝑦𝑖 − �̂�𝑖 (i.e. the residuals of superpopulation model). The second term on the right 301 

is the superpopulation model prediction of �̅�𝑁. If the superpopulation model is correctly 302 

specified, then it is an unbiased estimate of �̅�𝑁. However, if the superpopulation model is 303 

misspecified, then the second term needs to be corrected, which is where the first term comes 304 

in. If the quasi-randomisation sample inclusion model is correctly specified, the first term 305 

corrects the second by adding the residuals of the superpopulation model divided by the 306 

(correctly) estimated pseudo inclusion probabilities. This is sufficient to produce an unbiased 307 

estimate of �̅�𝑁 even where the superpopulation model is wrong. Where the superpopulation 308 

model is correct, the first term is 0, because 𝑟𝑖 =0. Where neither model is correct, �̅�𝑑𝑟 is a 309 

biased estimator of �̅�𝑁. See Chen et al. (2020), who combined probability and nonprobability 310 

samples, for a similar approach. 311 

Subsampling 312 

Perhaps more familiar to ecologists than the above approaches is subsampling (Beck et al., 313 

2014; Steen et al., 2020). The idea is to create a representative “miniature” of the population 314 

out of the sample (Meng, 2022) and to calculate the quantity of interest (mean occupancy) 315 

from this subsample. Subsampling trades sample size for representativeness.   316 

Our approach was to draw stratified random samples of size 𝑁 10⁄ = 22,958 with 317 

replacement from the original samples. We used the same strata as described above (under 318 

Poststratification). The decision to set 𝑛 = 𝑁/10 was somewhat arbitrary, but changing the 319 

subsample size makes little difference to the point estimates of the population means 320 

(although they become more precise with increasing subsample size; supplementary material 321 

1). The subsample mean is the estimator of the population mean. 322 

Multilevel regression and poststratification (MRP) 323 

MRP is an extension of poststratification and a variation of superpopulation modelling 324 

(Gelman, 2007; Gelman & Little, 1997; Valliant et al., 2018). A hierarchical model is used to 325 

estimate mean occupancy in each poststratum. The advantage of using a hierarchical model is 326 

that cells with few or no data borrow information from cells with more data (i.e. partial 327 



pooling or shrinkage is exploited). The population mean is the weighted mean of the stratum 328 

means, where the weights are equal to the proportion of the population in each stratum.  329 

Our hierarchical model is a binomial GLM with a logit link function, a fixed intercept and 330 

random intercepts for the auxiliary variables and their interaction (see https://mc-331 

stan.org/rstanarm/articles/mrp.html for a similar formulation).  We fitted the model in a 332 

Bayesian framework using 5 Markov Chain Monte Carlo (MCMC) chains, each with 1000 333 

iterations. This was sufficient to achieve convergence on all parameters in both time-periods.  334 

Confidence intervals 335 

We present 95% confidence/credible intervals for all estimates of mean occupancy (credible 336 

intervals for MRP, which we implemented in a Bayesian framework). For most methods—337 

superpopulation modelling, quasi-randomisation, subsampling and the doubly robust 338 

estimator—we constructed bootstrap confidence intervals. Resampling the original data with 339 

replacement, we created 1000 bootstrap samples, from which we obtained a distribution of 340 

estimates from each method and calculated percentile intervals. For MRP, we extracted 341 

credible intervals from the posterior distributions of mean occupancy. We used the 342 

confidence intervals provided by the survey package (Lumley, 2010) for the poststratified and 343 

naïve (i.e. unadjusted) estimates. 344 

Estimating the trend in mean occupancy 345 

Having estimated mean occupancy in each time-period, the next step was to estimate the 346 

difference between the two = �̅�2 − �̅�1 (i.e. the trend). We constructed a confidence interval 347 

for the trend estimated using each method in one of two ways depending on whether the 348 

method produced one estimate or a distribution. The methods that produced a distribution of 349 

�̅�2 − �̅�1 include those that we bootstrapped and MRP, which we fitted in a Bayesian 350 

framework (meaning we have a posterior distribution). For these methods, we extracted 351 

percentile confidence intervals (95%) from the distributions of estimated trends. For the 352 

others, poststratification and the naïve estimator (the sample mean), we used the normal 353 

approximation of the 95% confidence interval, given by ± 1.96 × the standard errors, where 354 

the standard errors are √𝑣𝑎𝑟(�̅�2) + 𝑣𝑎𝑟(�̅�1) (Gelman, 2007).   355 

Evaluating the effects of the adjustments 356 

We used relative frequency plots (Cf. Makela et al., 2014) to assess whether the adjustments 357 

brought the distributions of the auxiliary variables in the samples closer to their distributions 358 

in the population. The first step was to split each auxiliary variable into fifty bins of equal 359 

width spanning its range. The relative frequency of grid squares (the 𝑖’s) in each bin 𝑘 is 360 

𝑁𝑖,𝑘/𝑁, where 𝑁𝑖,𝑘 is the number of grid squares in each bin 𝑘 in the population and 𝑁 is the 361 

population size (we use 𝑘 to index the bins to distinguish them from the strata described 362 

earlier). Similarly, the relative frequency of sampled grid squares in each 𝑘 is 𝑛𝑖,𝑘/𝑛, where 363 

𝑛𝑖,𝑘 is the number of sampled grid squares in bin 𝑘 and 𝑛 is the total sample size. In the 364 

adjusted samples, the equivalent relative frequency is 
∑ 𝑤𝑖𝑖∈𝑘

∑ 𝑤𝑖𝑁
 (slightly different for 365 

subsampling; see below). We compared the original and adjusted samples’ deviations from 366 

the population using the Mean Absolute Error (MAE) of the relative frequencies across all 𝑘. 367 

If the MAE from the adjusted sample is smaller than the original sample, then the adjustment 368 

brought the distribution of the auxiliary variable closer to its population distribution.  369 

We were not able to produce adjusted relative frequency plots based on the doubly robust 370 

estimator or MRP. The problem was that could not estimate reasonable sampling weights 371 

from either method, which are needed to adjust the relative frequencies of the auxiliaries. 372 

Whilst it has been shown how to derive unit-level sampling weights where the MRP 373 

https://mc-stan.org/rstanarm/articles/mrp.html
https://mc-stan.org/rstanarm/articles/mrp.html


multilevel model is linear (Gelman, 2007), no formula has yet been derived for the case of the 374 

binomial GLM (Valliant et al., 2018). As for the doubly robust estimator, Valliant (2020) 375 

showed how to derive “model-assisted” weights. Unfortunately, in our case, many of the 376 

model-assisted weights were very large and negative. The extreme weights appear to be 377 

caused by the pattern of residuals from the superpopulation model (recalling that we used a 378 

linear regression despite the fact that occupancy is binary), but it is beyond the scope of this 379 

paper to definitively diagnose the problem. There is no obvious way to derive weights from 380 

the subsampling estimator either. However, for this estimator, the adjusted relative 381 

frequencies of the auxiliaries are simply their distributions in the subsamples so are simple to 382 

obtain.  383 

Assessing whether the estimates of mean occupancy in each period and the trend were 384 

improved by each adjustment method was simpler. We measured the difference between the 385 

point estimates of mean occupancy and the truth using the absolute error = |�̅�𝑁 − �̅�𝑒𝑠𝑡|, where 386 

�̅�𝑒𝑠𝑡 is the estimate. For the trends, whose signs are of interest, we simply used the 387 

differences between the estimates and the truth. We also assessed whether the 388 

confidence/credible intervals produced by each method covered the true means and trend. We 389 

did not consider the power to detect the trend—that is, whether the methods’ uncertainty 390 

intervals span zero at some percentile—because many biodiversity applications are 391 

descriptive-inferential rather than decision-theoretic.  392 

Results 393 

Per-period sample representativeness and estimated mean occupancy 394 

The samples are large but somewhat unrepresentative (Fig. 1). Forty-three percent of grid 395 

squares were sampled in period one, and the ddc is -0.115; in period two, 62% of grid squares 396 

were sampled, and the ddc is -0.057. A consequence of these ddc’s is that the naive sample 397 

means underestimate the population means, especially in period one where the magnitude of 398 

the ddc is greater (Fig. 3).  399 

With the exception of the doubly robust estimate in period two, the estimates of mean 400 

occupancy from all adjustment methods in both time-periods had lower absolute errors than 401 

the naïve sample mean (Fig. 3; mean absolute errors are provided in supplementary material 402 

2). The confidence intervals for the poststratified, subsample and quasi-randomisation 403 

estimates covered the true population mean in period one. In period two, no method’s 404 

confidence/credible interval covered the population mean.  405 

 406 



Figure 3. Naive (i.e. unadjusted) and adjusted sample-based estimates of mean occupancy in 407 

each time-period. The shaded regions are 95% confidence/credible intervals (see the main 408 

text for information on we constructed these for each method). The large black circles are the 409 

true population means in each time-period. 410 

Estimated trend in mean occupancy 411 

Estimates of the trend in mean occupancy from all adjustment methods were more accurate 412 

than the difference in sample means (i.e. the naïve estimate; Fig. 4). However, no method’s 413 

point estimate came close to the true trend of -0.047, and their confidence/credible intervals 414 

did not cover it.  415 

 416 

Figure 4. Trends in mean occupancy between periods one and two produced by the estimator 417 

from each adjustment method, in addition to the naive sample estimate. Error bars delimit 418 

95% confidence/credible intervals. The solid vertical black line denotes the true population 419 

trend (-0.047). 420 

Distributions of auxiliary variables 421 

As measured using Mean Absolute Errors (MAEs), the adjustment methods were generally 422 

very good at bringing the distributions of the auxiliaries in the samples closer to those in the 423 

population. Fig 5 shows the sample and population distributions of elevation, but the MAEs 424 

for this and the proportion of each grid square that falls within a protected area can be found 425 

in supplementary material 2.  426 



427 
Figure 5. Sample, population and weighted sample distributions of the auxiliary variable road 428 

length (Table 1) in periods one and two.  429 

Discussion 430 

We applied six approaches to descriptive inference from nonprobability samples to a simple 431 

biodiversity monitoring problem: the estimation of mean occupancy of the plant C. vulgaris 432 

in two time-periods and the trend between the two. The methods generally worked well in the 433 

sense that they brought the distributions of auxiliary variables in the samples closer to their 434 

distributions in the population (all 1 km grid squares in Britain). Successful redistribution of 435 

the auxiliaries translated into improvements of the estimates of mean occupancy in both time-436 

periods and the trend between the two. Importantly, however, no method was completely 437 

unbiased, and their uncertainty intervals did not cover the true values of occupancy in the 438 

second period or the trend. An abatement rather than an elimination of bias is probably the 439 

best outcome that can be expected, because most adjustment methods rest on the untenable 440 

assumption that non-sampled locations are “Missing At Random” (MAR); that is, the 441 

variable of interest is completely independent of sample inclusion given the auxiliary 442 

variables.  443 

Unlike most practical situations, we were able to test the MAR assumption, because we know 444 

the true distribution of C. vulgaris in Britain. In the first time-period, the partial correlation 445 

between sample inclusion and occupancy, conditional on elevation and protected area 446 

coverage, is -0.018; in period two, it is 0.035 (supplementary material 1). These “adjusted” 447 

ddc’s are lower in magnitude than the original ddc’s, -0.115 and -0.058, which means that 448 

accounting for elevation and protected area coverage increased the representativeness of the 449 

samples (recalling that a smaller ddc means a more representative sample). That is not to say 450 

that the samples became fully representative, which would be the case in expectation in a 451 

MAR scenario. The usual yardstick for a representative sample is the simple random sample, 452 

whose ddc is of the order 𝑁−1/2 (Meng, 2018). In our example, 𝑁−1/2 =  2.2−6, which is 453 

several orders of magnitude smaller than the “adjusted” ddc’s. This goes to show that without 454 

a truly miniscule ddc, which would only be induced (in expectation) where the MAR 455 

assumption holds or under random sampling, sample means as estimators of population 456 

means will be appreciably biased (especially where 𝑁 is large).  457 



It might seem wise to include as many potential auxiliaries as possible to reduce the chance 458 

of missing a genuine one. For example, Collins et al. (2001) advocated for including all 459 

variables exceeding some prescribed correlation with sample inclusion and the variable of 460 

interest. This strategy can be a dangerous one, however. Thoemmes & Rose (2014) show that 461 

including correlates of sample inclusion and the variable of interest, rather than theoretically 462 

justifiable causes, can increase the bias in estimates of population means (also see Thoemmes 463 

& Mohan, 2015). Indeed, in a previous version of this manuscript (Boyd, Stewart, et al., 464 

2023), we took a more inclusive approach to the selection of auxiliary variables, and our 465 

estimates of C. vulgaris occupancy in period two were generally more biased than the naïve 466 

estimate from the unadjusted sample.  467 

Identifying appropriate auxiliary variables is likely to be the most challenging part of 468 

adjusting samples in biodiversity monitoring. In many situations, causes of the variable of 469 

interest and sample inclusion are not known. Taxon and dataset experts might be able to 470 

identify potential auxiliary variables, but it is unlikely that they can identify them all (which 471 

would be needed to satisfy the MAR assumption). The experts might also erroneously 472 

identify auxiliary variables that are not suitable, in which case adjusting for those variables 473 

might do more harm than good (Thoemmes & Rose, 2014). Even if experts were able to 474 

correctly identify all relevant auxiliaries, those variables might not be reflected in available 475 

data. Transparency regarding availability and choice of auxiliary variables should be an 476 

important component of reporting for all biodiversity monitoring.  477 

Acknowledging that variables of interest in biodiversity monitoring are likely to be dependent 478 

on sample inclusion even after controlling for the available auxiliaries, it might be worth 479 

considering adjustment methods that forgo the MAR assumption. For example, Tchetgen 480 

Tchetgen & Wirth (2017) showed it is possible to recover a true population regression model 481 

(and therefore the population mean) by incorporating “instrumental variables”. They define 482 

instrumental variables as those that are predictive of sample inclusion, independent of the 483 

variable of interest and independent of “selection bias” (the latter defined as the mean of the 484 

variable of interest in the sample minus the mean of the variable of interest in non-sampled 485 

population units). We screened three additional variables—the proportion of each grid square 486 

that is accessible to the public, the density of postcodes in each grid square and its nearest 487 

neighbours, and the length of major roads in each grid square and its nearest neighbours—to 488 

see if they satisfied these three assumptions, but none did (supplementary material 1). In 489 

practical situations, where the variable of interest is not known for non-sampled population 490 

units, testing these assumptions would be challenging.  491 

Whilst we are confident that the availability of data on auxiliary variables was the limiting 492 

factor in our example, it is possible that improvements to the adjustment methods themselves 493 

could have improved matters. Where sampling weights are not of interest, for example, it 494 

might be sensible to use a binomial generalised linear model, rather than a general linear 495 

regression, for the superpopulation model (Wu & Sitter, 2001). The multilevel modelling 496 

component of MRP exploits partial pooling, so we could have used more finely resolved 497 

strata on the basis that estimates for sparse strata (with low sample sizes) would be shrunk 498 

towards those from strata with more data. The question is whether fine-tuning the adjustment 499 

methods is likely to result in large improvements in accuracy. As Mercer et al., (2018), 500 

writing in the context of adjusting survey samples, put it, “[t]he right variables make a big 501 

difference for accuracy. Complex statistical methods, not so much.” The fact that most 502 

adjustment methods performed almost similarly in our example is further evidence that the 503 

choice of auxiliary variables matters more than the specifics of the adjustment method.  504 



Given that the methods performed similarly in terms of accuracy, it would be sensible to 505 

consider those that are quickest to run. As we implemented it, MRP took by far the longest to 506 

run of all the methods—about ten hours per time-period on a computer cluster. Bootstrapping 507 

to estimate confidence intervals meant that other methods, too, were quite expensive to run. 508 

This was particularly true for the quasi-randomisation and doubly robust procedures, both of 509 

which involved repeatedly fitting the sample inclusion model—itself a time consuming 510 

process. The remainder of the methods—superpopulation modelling, subsampling and 511 

poststratification—took a negligible amount of time to run.     512 

Although we have only considered one species and dataset, previous studies (in other 513 

disciplines) shed light on the factors that affect the accuracy of inference from nonprobability 514 

samples more generally. Omitting genuine auxiliary variables in the adjustment process is 515 

more problematic where those variables explain larger proportions of the variance in the 516 

variable of interest and sample inclusion (Collins et al., 2001). Equally, inclusion of certain 517 

variables that are not appropriate auxiliaries becomes more problematic where they explain 518 

larger proportions of the variance in the variable of interest and sample inclusion (Thoemmes 519 

& Rose, 2014). In practice, we do not know the strengths of the effects potential auxiliaries 520 

on the variable of interest and sample inclusion, or whether they have effects at all, but it is 521 

clear that the selection of auxiliary variables will be a critical component of adjusting samples 522 

in biodiversity monitoring. 523 

Given the importance of selecting appropriate auxiliary variables, we propose the following 524 

general strategy for analysts intending to draw inferences about biodiversity change from 525 

geographically unrepresentative nonprobability samples. The first step should be to consult 526 

taxon and dataset experts, who might be able to identify relevant auxiliary variables. Where 527 

possible, consulting multiple experts to capture their uncertainty about what affects sample 528 

inclusion and the variable of interest would be desirable. If data are available on these 529 

variables, then their distributions in the sample and population should be compared to assess 530 

whether the data are representative with respect to that variable. Several tools are available to 531 

perform such comparisons (Boyd et al., 2021; Ruete, 2015). The next step should be to adjust 532 

the sample based on the relevant auxiliaries and to draw inferences from the adjusted 533 

samples. Like others (e.g. Mercer et al., 2018), we found that it is of little consequence which 534 

adjustment method is used, so it is sensible to pick one that is quick to run. Rather than 535 

assuming the adjustment worked perfectly, it is important to acknowledge and report the 536 

potential for residual bias. As we have shown, traditional uncertainty intervals are not 537 

guaranteed (or even likely) to cover the true population parameters of interest unless all 538 

relevant auxiliaries are known and reflected in available data (Meng, 2018). Where there is 539 

doubt about the relevant auxiliary variables, a safer strategy is to assess the risk of bias 540 

qualitatively and to ensure it is reflected in the way that findings are reported (Boyd et al., 541 

2022; Meineke & Daru, 2021; Pescott et al., 2022). 542 

 543 
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