
Descriptive inference using large, unrepresentative 1 

nonprobability samples: An introduction for ecologists 2 

*1Robin J. Boyd, 2Gavin B. Stewart and 1Oliver L. Pescott 3 

1UK Centre for Ecology & Hydrology, Benson Lane, Wallingford, OX108BB 4 

2 Evidence Synthesis Lab, School of Natural and Environmental Science, University of Newcastle, Newcastle-5 
upon-Tyne, NE1 7RU 6 

*corresponding author email: robboy@ceh.ac.uk 7 

Abstract 8 

In the age of big data, it is essential to remember that the size of a dataset is not all that matters. This 9 

is particularly true where the goal is to draw inferences about some wider population, in which case it 10 

is far more important that the data are representative of that population. It is possible to adjust 11 

unrepresentative samples so that they more closely resemble the population in terms of “auxiliary 12 

variables”. If the auxiliaries predict sample inclusion and/or the variable of interest well, then the 13 

adjusted sample estimates will be closer to the truth. Several survey sampling techniques exist to 14 

perform such adjustments, but most are not familiar to ecologists. We applied five types of 15 

adjustment—subsampling, quasi-randomisation, poststratification, superpopulation modelling, and 16 

multilevel regression and poststratification—to a simple two-part biodiversity monitoring problem. 17 

The first part was to estimate mean occupancy of the plant Calluna vulgaris in Great Britain in two 18 

time-periods (1987-1999 and 2010-2019); the second was to estimate the difference between the two 19 

(i.e. the trend). Calluna vulgaris is an attractive case study because we have good estimates of its true 20 

distribution in both time-periods. We estimated the means and trend using large, but (originally) 21 

unrepresentative, samples. Compared to the unadjusted estimates, the means and trends estimated 22 

using most adjustment methods were more accurate, although their uncertainty intervals generally did 23 

not cover the true values. Quasi-randomisation performed especially poorly, and we explain why. 24 

Most adjustments were far more successful at bringing the distributions of the auxiliary variables in 25 

the samples closer to those in the population than they were at improving the estimates of population 26 

means and trends. This implies that the major challenge for adjusting unrepresentative samples in 27 

biodiversity monitoring is assembling a suitable set of auxiliary variables (i.e. predictors of sample 28 

inclusion and the variable of interest). This challenge will be particularly acute for poorly studied taxa 29 

and those whose habitat requirements or sampling biases are not reflected in available data. 30 

Introduction 31 

As the data revolution gathers pace, it is not surprising to see “big data” being used to monitor 32 

biodiversity. Examples include observations submitted to mobile phone apps by amateur naturalists 33 

(Johnston et al., 2022) and digitised specimens from museums and herbaria (Nelson & Ellis, 2019). 34 

Such data become bigger still when combined in data aggregators such as the Global Biodiversity 35 

Information Facility (GBIF; https://www.gbif.org/) or metadatabases such as PREDICTS (Hudson et 36 

al., 2014). Unfortunately, quantity of data does not necessarily imply quality of insight. 37 

Monitoring biodiversity is typically a matter of descriptive statistical inference. It is inferential in that 38 

the goal is to infer something about a target population from a sample of that population (Boyd, 39 

Powney, et al., 2023). The population might comprise, say, all areal units across some landscape, in 40 

which case the sample would be a subset of those units. The inference is descriptive in that the aim is 41 

to describe (rather than explain) a variable of interest in the population. A common example is the 42 

proportion of patches of land occupied by some species (Bowler et al., 2021; Outhwaite et al., 2020; 43 

Powney et al., 2019; Stroh et al., 2023; van Strien & van Grunsven, 2023), but there are many others.  44 



More important than the size of a sample for descriptive inference is whether it is representative of the 45 

population (X. L. Meng, 2018). In a representative sample, the distribution of the variable of interest 46 

is similar to its distribution in the population (Bethlehem et al., 2008). An equivalent definition is that 47 

there is little to no correlation between inclusion in the sample and the variable of interest—the “data 48 

defect correlation” (ddc; Meng, 2018). Intuitively, statistics derived from a representative sample, 49 

such as means and proportions, will be similar to their population equivalents. The challenge is that 50 

the variable of interest is unknown in non-sampled population units, so it is typically impossible to 51 

calculate a sample’s representativeness exactly.  52 

Rather than measuring sample representativeness in terms of the variable of interest, which is not 53 

known for all population units, it is possible to approximate it using “auxiliary variables”. Auxiliary 54 

variables are those that are thought to predict the variable of interest or the probability that each 55 

population unit was sampled. Such variables might be available for every population unit. For 56 

example, climate variables might explain a species’ occupancy, and data on these variables are 57 

available for every 1 km2 grid square across the globe (Fick & Hijmans, 2017). If the distributions of 58 

auxiliary variables in the sample are different to those in the population, then the sample is likely to be 59 

unrepresentative, at least with respect to those variables (Bethlehem et al., 2008).  60 

It is possible to adjust an unrepresentative sample by placing more weight on population units that 61 

were less likely to be sampled. Weighting is simple where the probability that each population unit 62 

was sampled is known (i.e. in a probability sample). For example, rather than using a sample mean to 63 

estimate a population mean, the researcher would use a weighted mean with the weights being the 64 

inverses of the inclusion probabilities (Lohr, 2022). Weighting of this type is known as “design-based 65 

inference”, because the inclusion probabilities are a feature of the sampling design. Unfortunately, 66 

design-based inference is not applicable for many “big” biodiversity datasets, whose sample inclusion 67 

probabilities are not known (i.e. they are nonprobability samples), so alternatives are required.  68 

Most approaches to descriptive inference from nonprobability samples make use of auxiliary 69 

variables. The details differ, but the general strategy is to weight the sample in such a way that the 70 

distributions of the auxiliary variables in the sample more closely resemble those in the population 71 

(Valliant et al., 2018). If the auxiliaries predict the variable of interest and sample inclusion well, then 72 

this is essentially the same as bringing the distribution of the variable of interest in the sample closer 73 

to its distribution in the population (i.e. making the sample more representative; see X. Meng, [2022], 74 

who demonstrates this mathematically).  75 

Use of sample adjustments in biodiversity monitoring is variable. It is common for monitoring 76 

schemes to weight samples in such a way that the relative frequencies of habitats or geographic areas 77 

in the sample are similar to those in the population (Gregory et al., 2005; C.A.M. Van Swaay et al., 78 

2002; Chris A.M. Van Swaay et al., 2008; Weiser et al., 2020). But it is also common to see sample 79 

representativeness ignored, an issue that has led to some high-profile controversies in the biodiversity 80 

monitoring literature (Boyd, Powney, et al., 2023). We suspect that many of those who do not deal 81 

with issues of sample representativeness are not familiar with the gravity of the problem or the 82 

relevant theory and adjustment methods. 83 

In this paper, we introduce five approaches to descriptive inference using unrepresentative 84 

nonprobability samples and demonstrate how they relate to each other (conceptually and 85 

mathematically). We apply each approach to a simple two-part biodiversity monitoring problem. The 86 

first part is to estimate mean occupancy of the plant C. vulgaris across 1 km grid squares in Britain in 87 

two time-periods; the second is to estimate the difference between the two (i.e. the trend). Calluna 88 

vulgaris is an attractive case study because we have good estimates of its true geographic distribution 89 

in both periods from several sources. The approaches to inference that we demonstrate are 90 

subsampling, quasi-randomisation (Elliott and Valliant, 2017), poststratification (Little, 1993), 91 



superpopulation modelling (Valliant, 2009) and Multilevel Regression and Poststratification (MRP; 92 

Gelman, 2007; Gelman and Little, 1997). Each can be (MRP more loosely than the rest) interpreted as 93 

an attempt to weight the sample in such a way that it more closely resembles the population, in the 94 

hope that this results in more accurate descriptive inferences. We demonstrate the effects of each 95 

approach on the distributions of auxiliary variables in the sample, as well as on the resulting estimates 96 

of mean occupancy in each period and the time trend between the two. Applying the adjustment 97 

methods to a real-world example reveals challenges that ecologists are likely to face, and we discuss 98 

these in detail.  99 

Methods 100 

Estimating the true distribution of Calluna vulgaris  101 

We approximated the true distribution of the dwarf shrub vascular plant Calluna vulgaris (Heather) in 102 

two time periods: 1987–1999 and 2010–2019. For the first period, we used the 1990 UKCEH land 103 

cover map (Rowland et al., 2020); for the second, we used the 2018 version (Morton et al., 2022). 104 

From these maps, we identified 1 km grid squares (British National Grid, EPSG:27700) with >0% 105 

heather or heather grassland cover. To these, we added 1 km squares in which C. vulgaris was 106 

recorded in each time period by the Botanical Society of Britain and Ireland (BSBI); the time periods 107 

used cover the main periods of recording for two national distribution atlases (Preston, C.D., Pearman, 108 

D.A. & Dines, 2002; Stroh et al., 2023). Acknowledging that some 1 km squares may have been 109 

erroneously classed as having some heather or heather grassland coverage by the land cover maps, we 110 

removed any 1 km squares that fell within 10 km grid squares in which C. vulgaris had not been 111 

recorded by the BSBI in the period 1950–2019. Given that this period includes recording for three 112 

national distribution atlases (the two cited above plus Perring & Walters, 1962), we assume that the 113 

union of all 10 km occurrences within this period encompasses all known populations irrespective of 114 

finer scale changes. Figure 1 maps the resulting estimates of the true 1 km distributions of C. vulgaris 115 

in both time-periods. 116 

 117 



 118 

Figure 1. Left column: the distribution of Calluna vulgaris in both time-periods. Green squares are 119 

occupied and grey squares are not. �̅�𝑁 is mean occupancy or, equivalently, the proportion of squares 120 

occupied. The ddc’s are the correlations between sample inclusion (1 if the square is in the sample 121 

and 0 otherwise) and occupancy. Right column: the nonprobability 1 km samples for each time-122 

period. Purple squares were sampled and grey squares were not. n is the number of squares sampled. 123 

We assume that C. vulgaris was recorded in all sampled grid squares that it occupied in the relevant 124 

time-period. The true trend is the difference between population means, and the sample trend is the 125 

difference between sample means (i.e. mean occupancy across purple squares). 126 

Sample data on Calluna vulgaris occupancy 127 

The 1 km samples for both time periods (“Sampled squares in Fig. 1) encompass any vascular plant 128 

data assigned to a single day, either at the 1 km scale or finer, collected by the BSBI for the national 129 

distribution atlases of Preston et al. (2002) and Stroh et al. (2023).  130 

Auxiliary data 131 

We used five auxiliary variables for which data are available for all 1 km grid squares in Great Britain 132 

(Table 1). Most of the auxiliary variables indicate the accessibility or attractiveness of grid squares, 133 

which tend to be associated with site selection in citizen science datasets (Geldmann et al., 2016). 134 

Elevation is a potential predictor of C. vulgaris occupancy.  135 

Originally, we included three additional predictors of C. vulgaris occupancy—the first and third 136 

principal components of climate space in Britain and soil pH—but later omitted them. We had 137 

previously found the climate variables to be important predictors of 1 km habitat suitability for C. 138 

vulgaris using species distribution models (Boyd, Harvey, et al., 2023). Including these predictors did 139 

not improve the estimates of mean occupancy, a point that we expand on in the discussion. Reducing 140 



the set of auxiliary variables simplifies matters for some of the adjustment methods that we present 141 

below. 142 

For simplicity, we assume that the auxiliary variables are constant between time-periods. This 143 

assumption is obviously violated for some variables (e.g. road length and postcode density). However, 144 

this should not matter if, in reality, the variables in period one are correlated with those in period two, 145 

because any given grid square will generally have a higher or lower value than the others regardless of 146 

the period. We think that this situation is plausible: for example, there is a higher density of postcodes 147 

in London in period two than in period one, but in either period, it has a higher density than 148 

elsewhere. Another reason to use one set of auxiliary data for both time-periods is to make our 149 

findings more applicable to situations in which temporally resolved data are not available (e.g. in data 150 

poor countries or periods in the distant past).  151 

Table 1. Auxiliary variables used for sample adjustment.  152 

Variable Reason for inclusion Details Reference(s)  

Postcode density Indicates population 

density in vicinity 

Total number of 

postcodes in the focal 

grid square and its 299 

nearest neighbours 

ONS (2021) 

Road length  Indicates accessibility The total length of all 

“Roads” and “Link 

roads” (“Highways” 

class of the 

OpenStreetMap 

ontology) in the focal 

grid square and its 299 

nearest neighbours 

Data from 

https://www.openstree

tmap.org/ under an 

open database license 

Proportion in 

protected area 

Indicates potential 

attractiveness to surveyor 

Proportion of the focal 

grid square with some 

level of “protection”. 

Includes everything 

from SSSIs to e.g. 

local nature reserves 

UNEP-WCMC & 

IUCN (2020) 

Proportion open 

access land  

Indicates accessibility Proportion of land 

legally designated as 

open access within 1 

km grid square 

All open access land 

datasets in GB are 

available via an Open 

Government License. 

For England, we used 

the CRoW act 2000 

layer. For Wales, we 

combined the 

registered common 

land, other statutory 

access land, open 

country and public 

forest datasets. All of 

the Scottish 

countryside is open 

access.   

Average elevation Predictor of C. vulgaris 

occupancy 

Average elevation of 1 

km grid square 

calculated from 50 m 

digital terrain model 

Intermap (2009) 
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https://www.openstreetmap.org/
https://www.openstreetmap.org/
file:///C:/Users/robboy/Documents/openstreetmap.org/copyright
https://www.data.gov.uk/dataset/05fa192a-06ba-4b2b-b98c-5b6bec5ff638/crow-act-2000-access-layerhttps:/www.data.gov.uk/dataset/05fa192a-06ba-4b2b-b98c-5b6bec5ff638/crow-act-2000-access-layer
https://www.data.gov.uk/dataset/05fa192a-06ba-4b2b-b98c-5b6bec5ff638/crow-act-2000-access-layerhttps:/www.data.gov.uk/dataset/05fa192a-06ba-4b2b-b98c-5b6bec5ff638/crow-act-2000-access-layer
https://datamap.gov.wales/layers/inspire-nrw:NRW_COMMON_LAND_2014
https://datamap.gov.wales/layers/inspire-nrw:NRW_COMMON_LAND_2014
https://www.data.gov.uk/dataset/ae19c619-4b7c-42a8-af90-003bff30ea09/open-access-other-statutory-access-land-crow-act
https://www.data.gov.uk/dataset/ae19c619-4b7c-42a8-af90-003bff30ea09/open-access-other-statutory-access-land-crow-act
https://datamap.gov.wales/layers/inspire-nrw:NRW_OPEN_COUNTRY_2014
https://datamap.gov.wales/layers/inspire-nrw:NRW_OPEN_COUNTRY_2014
https://datamap.gov.wales/layers/inspire-nrw:NRW_PUBLIC_FOREST_2014
https://datamap.gov.wales/layers/inspire-nrw:NRW_PUBLIC_FOREST_2014


Estimating the per-period population mean 154 

The first step in our biodiversity monitoring problem is to estimate mean occupancy of C. vulgaris in 155 

each time-period. Although not usually written this way, it is helpful for what comes later to re-156 

express the population mean as a weighted sum 157 

 �̅�𝑁 =
1

𝑁
∑ 𝑦𝑖 = ∑

𝑦𝑖 

𝑁
𝑁
𝑖=1 = ∑

𝑦𝑖 𝑤𝑖

∑ 𝑤𝑖𝑁

𝑁
𝑖=1  𝑁

𝑖=1 , 1) 

 158 

where y is occupancy (1 = occupied and 0 = unoccupied), N is the population size, i indexes 1 km grid 159 

squares and 𝑤𝑖 = 1/𝑁 (𝑁 is the same in both time-periods). The denominator in the rightmost 160 

expression might seem unnecessary, because it equals one. We have retained it to illustrate the 161 

similarity between this expression and the sample-based estimators below, which have a similar form 162 

but whose sampling weights 𝑤 do not necessarily sum to one. For notational simplicity, we do not 163 

index the time-period, and the reader should remember that �̅�𝑁 is time-period specific. In practice, 𝑦 164 

is not known for all 𝑖 in the population, so sample-based estimators of �̅�𝑁  are needed.  165 

The design-based estimator 166 

The design-based estimator of the population mean, which is applicable only where a probability 167 

sample of some sort is available (Lohr, 2022), has a similar form to 1)  168 

 
𝑦𝑑𝑏 = ∑

𝑦𝑖  𝑤𝑖

∑ 𝑤𝑖𝑛

𝑛

𝑖=1

. 
2) 

The differences are that the sums are over the sample size 𝑛 rather than 𝑁 and that the weights 𝑤𝑖 are 169 

not necessarily constant. Rather, the weight for unit 𝑖, 𝑤𝑖, is equal to the reciprocal of the probability 170 

that it was included in the sample = 1/𝑝𝑖.   171 

Sample inclusion probabilities are, by definition, not known for nonprobability samples, so alternative 172 

estimators are required. We present five such estimators below, three of which–quasi-randomisation, 173 

poststratification and superpopulation modelling–are explicit attempts to come up with a set of 174 

weights wi that produce a reasonable estimate of �̅�𝑁 under 2). The other two, subsampling and MRP, 175 

are conceptually similar. 176 

Estimators for nonprobability samples 177 

The following estimators are used in survey sampling to estimate population means from 178 

nonprobability samples. More detail on each can be found in Valliant et al. (2018), Lumley (2010) 179 

and Lohr (2022). 180 

Naïve sample mean 181 

Where sample inclusion probabilities are unavailable, a simple option is to assume that 𝑤𝑖 = 1/𝑛 for 182 

all 𝑖. In this case, 2) is the (naïve) sample mean. As the weights are constant, the sample mean does 183 

not adjust for differences in 𝑦 between the sampled and non-sampled population units. It is 184 

nevertheless widely used in biodiversity monitoring.  185 

Quasi-randomisation 186 

An alternative approach is to imagine that the nonprobability sample was selected probabilistically 187 

and to estimate the implied inclusion probabilities. Any binary model and auxiliary data can be used. 188 

Once inclusion probabilities pi have been estimated, the weights 𝑤𝑖 = 1/𝑝𝑖  (as in the design-based 189 

estimator). In our example, we used random forests and the auxiliary data in Table 1 to estimate 190 

pseudo-inclusion probabilities. More complex appraoches are possible and have been used to map 191 

species distributions (Johnston et al., 2020). 192 



Poststratification 193 

Another approach to estimating sampling weights is poststratification. Poststratification requires 194 

categorical auxiliary data, so continuous variables must be discretized prior to analysis (Valliant, 195 

2020). The auxiliary variables are crossed (think contingency tables) to create poststrata. Each 196 

poststratum 𝑗 has a sample size 𝑛𝑗 and population size 𝑁𝑗. The sampling weight 𝑤𝑖 for population unit 197 

𝑖 in poststratum 𝑗 is given by 𝑁𝑗/𝑛𝑗.  198 

In our example, we split most auxiliary variables into three categories using their terciles (i.e. cut 199 

points at the 33rd and 67th percentiles). This did not make sense for the variables denoting the 200 

proportion of each grid square that is open access land and protected area, because most squares took 201 

the value one or zero. We split these variables into two categories, 0 and >0, i.e. whether or not there 202 

is some open or protected land in the grid square. Discretization initially gave 3 ×  3 ×  3 ×  2 ×203 

 2 = 108 poststrata, from which we subtracted one poststratum that contained no population units, 204 

leaving 107.  205 

It is sensible to discretize the auxiliary variables in such a way that the variable of interest varies 206 

among categories. Otherwise, the adjustment from poststratifying will be minor (or unnecessary!). 207 

Fig. 2 shows that mean occupancy of C. vulgaris in the samples differs appreciably among levels of 208 

the auxiliary variables.  209 

 210 

Figure 2. Mean occupancy of Calluna vulgaris for each level of the auxiliary variables (Table 1) in 211 

each time-period. The auxiliary variables were originally on a continuous scale, but we discretized 212 

them to enable poststratification. See the main text for details.  213 

Superpopulation modelling 214 

Superpopulation modelling is conceptually different to the adjustment methods described above. The 215 

premise is that there exists some model that describes the variable of interest in the population. If this 216 

model can be recovered from the sampled outcome variable y and the auxiliary data, it can be used to 217 

predict the variable of interest in non-sampled units. Given a prediction for each non-sampled 𝑖, it is 218 

then simple to estimate the population mean. 219 

A general (i.e. multiple) linear regression model of 𝑦 has the form  220 



 𝐸𝑀(𝑦𝑖) = 𝒙𝑖
𝑇 𝛽, 3) 

where the subscript 𝑀 indicates that the expectation (mean) is with respect to the model, 𝒙𝑖  is a vector 221 

of predictors for unit 𝑖, the superscript 𝑇 indicates that the vector 𝒙𝑖 has been transposed (to a row 222 

vector) and 𝛽 is a column vector of parameters. There is some matrix notation in 3) and what follows, 223 

but the logic should be apparent to those who do not understand the precise detail. A prediction of 𝑦 224 

for unit 𝑖 is 225 

 

 
�̂�𝑖 = 𝑥𝑖

𝑇 �̂�. 4) 

 

The accent on β indicates that it is an estimate. Given a sample s, one estimator of 𝛽 is �̂� = 𝐴𝑠
−1𝑋𝑠

𝑇𝑦𝑠, 226 

where 𝐴𝑠 = 𝑋𝑠
𝑇𝑋𝑠, 𝑋𝑠 is an 𝑛 𝑥 𝑝 matrix of covariates and 𝒚𝑠 is an 𝑛 vector of 𝑦’s (Valliant, 2020). If 227 

�̅� is the set of non-sampled population units, the superpopulation model prediction of the population 228 

mean is 229 

 �̅�𝑠𝑝 =
∑ 𝑦𝑖∈𝑠 +∑ �̂�𝑖∈�̅�

𝑁
.  5) 

That is, it is the sum of the known outcome values in the sample and those predicted by the model for 230 

the remainder of the population divided by the population total. A feature of �̅�𝑠𝑝 is that it can be 231 

expressed in the same form as the design-based estimator in 2), with 𝑤𝑖 = 1 + 𝒕𝑠̅
𝑥𝐴𝑠

−1𝑥𝑖 and 𝒕𝑠̅
𝑥 being 232 

the vector of population totals of the auxiliary variables in non-sampled population units (Elliott and 233 

Valliant, 2017). (Code to verify this numerically is available at 234 

https://github.com/robboyd/selectionBiasEffects/tree/master/R.) Like the other adjustment models, 235 

then, the superpopulation estimator is an approach to estimating the sampling weights 𝑤𝑖.  236 

Linear regression might seem like an unusual choice of model for a binary outcome (occupancy), but 237 

we felt that it was the best option here. One reason is that the implied model is actually linear for an 238 

estimator of the form 2) (Valliant, 2020). Most important, however, is that the use of a linear model 239 

enables the estimation of sampling weights (Valliant et al., 2018; supplementary material 1). This is 240 

helpful, because those weights can be used to show the effects of superpopulation modelling on the 241 

distributions of the auxiliary variables in the sample (see “Evaluating the effects of the adjustments” 242 

below). Alternative models can be used where weights are not required (e.g. Wu and Sitter, 2001). In 243 

our example superpopulation model, we used the auxiliary variables in Table 1 as predictors. 244 

Subsampling 245 

Perhaps more familiar to ecologists than the above approaches is subsampling (Beck et al., 2014; 246 

Steen et al., 2020). The idea is to create a representative “miniature” of the population out of the 247 

sample (Meng, 2022) and to calculate the quantity of interest (mean occupancy) from this subsample. 248 

Subsampling trades sample size for representativeness.   249 

Our approach was to draw weighted random samples of size 500 with replacement from the original 250 

samples [note that these weights are different to sampling weights in 2)]. The decision to set 𝑛 = 500 251 

was somewhat arbitrary, but changing the subsample size makes little difference to the point estimates 252 

of the population means (although they become more precise with increasing subsample size; 253 

supplementary material 1). We assigned each grid square 𝑖 in poststratum 𝑗 (using the same strata as 254 

described above under Poststratification) a weight of 𝑛𝑗/𝑁𝑗. The result was subsamples whose 255 

members were more likely to be from strata comprising a larger fraction of the population. The 256 

subsample mean is the estimator of the population mean. 257 

Rather than using a single subsample, we repeated the process 1000 times and used the mean of the 258 

estimated means (i.e. bootstrapping). This was necessary, because the estimated means were sensitive 259 

to the random component of the subsampling.  260 



Multilevel regression and poststratification (MRP) 261 

MRP is an extension of poststratification and a variation of superpopulation modelling (Gelman, 262 

2007; Gelman & Little, 1997; Valliant et al., 2018). A hierarchical model is used to estimate mean 263 

occupancy in each poststratum. The advantage of using a hierarchical model is that cells with few or 264 

no data borrow information from cells with more data (i.e. partial pooling or shrinkage is exploited). 265 

The population mean is the weighted mean of the stratum means, where the weights are equal to the 266 

proportion of the population in each stratum.  267 

Our hierarchical model is a simple one. It is a binomial GLM with a logit link function, a fixed 268 

intercept and a random intercept for each auxiliary variable (see https://mc-269 

stan.org/rstanarm/articles/mrp.html for a similar formulation). A more complex model might include 270 

interactions among the auxiliaries (e.g. Ghitza and Gelman, 2013), but we found these take several 271 

times longer to run. Long run times may be undesirable for production-type statistical workflows in 272 

biodiversity monitoring, where models might need to be fitted for thousands of species in tens of 273 

time-periods. Even without interactions, and on a computer cluster, the models took around ten hours 274 

to run per time-period. We fitted the model in a Bayesian framework using 5 Markov Chain Monte 275 

Carlo (MCMC) chains, each with 1000 iterations. This was sufficient to achieve convergence on all 276 

parameters in both time-periods.  277 

Confidence intervals 278 

We present 95% confidence/credible intervals for all estimates of mean occupancy (credible intervals 279 

for MRP, which was implemented in a Bayesian framework). The survey package (Lumley, 2010), 280 

which we used to calculate the sample means, the superpopulation model estimates and the 281 

poststratified estimates, calculates the confidence intervals automatically. It accounts for the sampling 282 

weights where relevant. We used percentile confidence intervals from the bootstrapped subsamples.  283 

Estimating the trend in mean occupancy 284 

Having estimated mean occupancy in each time-period, the next step was to estimate the difference 285 

between the two = �̅�2 − �̅�1 (i.e. the trend). The standard errors of the trends are 286 

√𝑣𝑎𝑟 (𝑦2) + 𝑣𝑎𝑟 (𝑦1) (Gelman, 2007), where the variances are sampling not sample variances (i.e. 287 

the square of the standard error rather than a measure of variability in the samples). We used the 288 

standard errors returned by the survey package, which accounts for the sampling weights. We present 289 

95% confidence intervals for the trends from most estimators (± 1.96 × the standard errors). MRP is 290 

one exception, because the 95% credible interval can be calculated directly from the posterior 291 

distribution of �̅�2 − �̅�1. Similarly, we extracted percentile 95% confidence intervals for the 292 

subsampling estimator from the bootstrapped distribution of trends.  293 

Evaluating the effects of the adjustments 294 

We used relative frequency plots (c.f. Makela et al., 2014) to assess whether the adjustments brought 295 

the distributions of the auxiliary variables in the samples closer to their distributions in the population. 296 

The first step was to split each auxiliary variable into fifty bins of equal width spanning its range. The 297 

relative frequency of grid squares (the 𝑖’s) in each bin k is 𝑁𝑖,𝑘/𝑁, where 𝑁𝑖,𝑘 is the number of grid 298 

squares in each bin 𝑘 in the population and 𝑁 is the population size (we use 𝑘 to index the bins to 299 

distinguish them from the strata described earlier). Similarly, the relative frequency of sampled grid 300 

squares in each 𝑘 is 𝑛𝑖,𝑘/𝑛, where 𝑛𝑖,𝑘 is the number of sampled grid squares in bin 𝑘 and 𝑛 is the 301 

total sample size. In the adjusted samples, the equivalent relative frequency is 
∑ 𝑤𝑖𝑖∈𝑘

∑ 𝑤𝑖𝑁
 (slightly 302 

different for subsampling; see below). We compared the original and adjusted samples’ deviations 303 

from the population using the Mean Absolute Error (MAE) of the relative frequencies across all 𝑘. If 304 

the MAE from the adjusted sample is smaller than the original sample, then the adjustment brought 305 

the distribution of the auxiliary variable closer to its population distribution.  306 

https://mc-stan.org/rstanarm/articles/mrp.html
https://mc-stan.org/rstanarm/articles/mrp.html


We were not able to construct adjusted relative frequency distributions from MRP so omit it from this 307 

portion of the analysis. The problem is that, whilst it has been shown how to derive unit-level 308 

sampling weights where the multilevel model is linear (Gelman, 2007), no formula has yet been 309 

derived for the case of the binomial GLM (Valliant et al., 2018). There is no obvious way to derive 310 

weights from the subsampling estimator either. However, for this estimator, the adjusted relative 311 

frequencies of the auxiliaries are simply their distributions in the subsamples so are simple to obtain.  312 

Assessing whether the estimates of mean occupancy in each period and the trend were improved by 313 

each adjustment method was simpler. We measured the difference between the point estimates of 314 

mean occupancy and the truth using the absolute error = |�̅�𝑁 − �̅�𝑒𝑠𝑡|, where �̅�𝑒𝑠𝑡 is the estimate. For 315 

the trends, whose signs are of interest, we simply used the differences between the estimates and the 316 

truth. We also assessed whether the confidence/credible intervals produced by each method covered 317 

the true means and trend.  318 

Results 319 

Per-period sample representativeness and estimated mean occupancy 320 

The samples are large but somewhat unrepresentative (Fig. 1). Forty-three percent of grid squares 321 

were sampled in period one, and the ddc is -0.115; in period two, 62% of grid squares were sampled, 322 

and the ddc is -0.058. A consequence of these ddc’s is that the naive sample means underestimate the 323 

population means, especially in period one where the magnitude of the ddc is greater (Fig. 3).  324 

The adjustment methods did not always result in improved point estimates of mean occupancy 325 

relative to the naive sample means (Fig. 3). In period one, the adjusted estimates were generally better 326 

in terms of absolute errors, with the exception of the subsample estimate, which was worse. In period 327 

two, on the other hand, the estimate from the subsample was the only one to get closer than the naive 328 

sample mean (again, in terms of absolute error). The absolute errors are provided in supplementary 329 

material 3.  330 

In terms of confidence/credible interval coverage, the estimators were generally very poor. With the 331 

exception of the subsample means, none covered the population mean in either period. The fact that 332 

the confidence intervals from the subsamples did cover the population means is not surprising: the 333 

subsamples are small (𝑛 =  500), so the confidence intervals are wide. Of course, increasing the size 334 

of the subsamples reduces the width of the confidence intervals, as we show in supplementary 335 

material 1. 336 



 337 

Figure 3. Naive (i.e. unadjusted) and adjusted sample-based estimates of mean occupancy in each 338 

time-period. The shaded regions are 95% confidence/credible intervals (see the main text for 339 

information on how these have been constructed for each method). The large black circles are the true 340 

population means in each time-period. 341 

Estimated trend in mean occupancy 342 

Three of the five adjusted point estimates of the trend in mean occupancy are closer than the 343 

difference in naive sample means to the true population trends. The other two, the trends from quasi-344 

randomisation and subsampling, are poor. Their point estimates even have the wrong sign. No 345 

estimator’s credible/confidence interval covers the true trend. The fact that the naïve sample trend 346 

underestimates the true trend is a consequence of the time varying representativeness (Bowler et al., 347 

2022; Oliver L. Pescott et al., 2019).  348 

 349 



Figure 4. Trends in mean occupancy between periods one and two produced by the estimator from 350 

each adjustment method, in addition to the naive sample estimate. Error bars delimit 95% 351 

confidence/credible intervals. The solid vertical black line denotes the true population trend (-0.047). 352 

Distributions of auxiliary variables 353 

As measured using Mean Absolute Errors (MAEs), the adjustment methods were generally very good 354 

at bringing the distributions of the auxiliaries in the samples closer to those in the population. Figs 5 355 

and 6 show the sample and population distributions of two auxiliary variables, road length and 356 

elevation, but the MAEs for these and the others can be found in supplementary material 3. 357 

Superpopulation modelling and poststratification performed particularly well. Quasi-randomisation 358 

offered only a minor improvement in period one. Subsampling was the only approach that did not 359 

bring the distributions of the auxiliaries in the sample closer to those in the population.  360 

 361 

Figure 5. Sample, population and weighted sample distributions of the auxiliary variable road length 362 

(Table 1) in periods one and two.  363 



 364 

Figure 6. Sample, population and weighted sample distributions of the auxiliary variable elevation 365 

(Table 1) in periods one and two. 366 

Discussion 367 

Our experience is that analysts using large, nonprobability samples to monitor biodiversity tend not to 368 

account for issues of representativeness. Even where such issues are dealt with, there has been little 369 

acknowledgement of the broader panoply of relevant survey sampling methods available to the 370 

analyst, no exploration of how these are conceptually (or mathematically) linked and no comparison 371 

of their performance in realistic (i.e. relatively data poor) biodiversity monitoring situations. Evidence 372 

that a method can work in some discipline, or in simulation studies, is not proof that it will work in all 373 

situations. We have demonstrated how such adjustments might be applied using a realistic example of 374 

distribution change in a vascular plant over a period of 32 years. This example is realistic in that we 375 

do not have access to perfect predictors of occupancy or of sample inclusion. However, it is still likely 376 

to be closer to a best-case scenario than otherwise, due to the intense survey effort expended on 377 

vascular plants over the British landscape in the recent past (Stroh et al., 2023) and the fact that 378 

auxiliary data are relatively accessible in this area. 379 

Our key finding is that the ability to bring the distributions of auxiliary variables in the sample closer 380 

to those in the population does not automatically mean that an adjustment will produce a more 381 

accurate estimate of a population quantity. For example, poststratification and superpopulation 382 

modelling were highly successful at redistributing the auxiliary variables in the samples (Figs 5 and 383 

6). However, this did not translate into large improvements in the estimates of mean occupancy in 384 

each time-period or the trend (Figs 3 and 4). It must be the case that the auxiliary variables were not 385 

sufficient to describe the key differences between sample and population.  386 

So, what makes a good auxiliary variable? Caughey et al. (2020) listed three criteria: 1) it should 387 

predict the response; 2) it should predict sample inclusion; and 3) its distribution in the population 388 

should be known. Four of the five auxiliary variables in our example were chosen on the basis that 389 

they predict sample inclusion, whereas only one was thought to be a reasonable predictor of the 390 

response (occupancy). Whilst it might seem like we prioritised the second criterion over the first, note 391 

that we originally included additional predictors of the response. These included soil pH, a known 392 

predictor of C. vulgaris occupancy (Stroh et al., 2023), and the first and second principal components 393 



of climate space in Britain, which we previously found to be important predictors of C. vulgaris 394 

habitat suitability (Boyd, Harvey, et al., 2023). Including these variables did not improve the estimates 395 

of mean occupancy or the trend, as we show in supplementary material 2. We suspect that these 396 

variables were redundant, because they are highly correlated with those in Table 1, so it is of little 397 

consequence which of these auxiliaries we included.  398 

Identifying auxiliary variables that satisfy Caughey and colleagues' (2020) criteria is likely to be the 399 

most challenging part of adjusting samples in biodiversity monitoring. In many situations, predictors 400 

of the variable of interest and sample inclusion are unknown. Where they are known, data might not 401 

be available at the required scale (i.e. their distribution in the population is not known). To illustrate 402 

this point, consider the hoverfly Criorhina asilica, whose larvae require decaying timber from 403 

particular tree species (Stubbs & Falk, 2002). Without data on the locations of those decaying trees, it 404 

would likely be impossible to adjust for what is presumably a major determinant of its distribution. 405 

For taxa whose habitat requirements are well understood and reflected in available data (e.g. birds), 406 

selecting auxiliary variables should be simpler. Nevertheless, in practice, the analyst does not know 407 

the truth, so there will always be some guesswork (if this were not the case, statistical modelling 408 

would not be required). Transparency regarding availability and choice of auxiliary variables should 409 

be an important component of reporting for all biodiversity monitoring.  410 

Whilst we are confident that the appropriateness of the auxiliary variables was the limiting factor in 411 

our example, it is possible that improvements to the estimators themselves could have improved 412 

matters. Potential improvements to MRP are most obvious. For example, interactions between the 413 

auxiliary variables could be included in the multilevel model (Ghitza & Gelman, 2013), and multiple 414 

time-periods could be modelled at once (Gelman et al., 2018). The question is whether fine-tuning 415 

models, which might make them more expensive to run (including interactions in MRP certainly 416 

does), is worth marginal gains in accuracy. As Mercer et al., (2018), writing in the context of 417 

adjusting survey samples, put it, “[t]he right variables make a big difference for accuracy. Complex 418 

statistical methods, not so much.”  419 

Some have questioned whether it is worth weighting nonprobability samples at all. In opinion polling, 420 

for example, there are many examples where weighting or other adjustments did little or nothing to 421 

improve the accuracy of inference from nonprobability samples, or even made matters worse (Bailey, 422 

2023). In terms of the accuracy of the sample-based estimates, our results suggest that the situation in 423 

biodiversity monitoring is similar. Importantly, however, we have also showed that most adjustment 424 

methods do what they are supposed to: they turn an unrepresentative sample into a representative one, 425 

albeit strictly with respect to the chosen auxiliaries. First principles dictate that, if the auxiliaries are 426 

appropriate, this would translate into a more representative sample in terms of the variable of interest 427 

and improve the accuracy of inference. We see taxon experts as having a crucial role in identifying 428 

appropriate auxiliaries (e.g. Boyd, Harvey, et al., 2023; Smart et al., 2019).  429 

It is worth commenting on how we measured the accuracy of the estimated trends. We compared the 430 

magnitudes of the estimated and true trends and assessed whether the estimates’ confidence/credible 431 

intervals covered the true value. Others defined accuracy as the power to “detect” a trend, whereby a 432 

method is considered successful if it gets the sign of the trend correct and its uncertainty interval does 433 

not span zero (e.g. Valdez et al., 2023). In this power setting, four of the estimators that we considered 434 

were able to detect the true trend, including the difference between the naive sample means.  435 

We prefer to use the magnitude of the trend as a measure of accuracy for biodiversity monitoring, 436 

because many applications in this area are descriptive-inferential, not decision-theoretic (Greenland, 437 

2022; Hurlbert et al., 2019; Oliver L. Pescott et al., 2019). That is to say, the final objective of 438 

exercises in biodiversity trend estimation is frequently a descriptive indicator, not a binary 439 

accept/reject conclusion of change or no change (e.g. Dennis et al., 2019; Powney et al., 2019). The 440 

link between Neyman-Pearsonian power and such exercises is often unclear (Amrhein et al., 2019): 441 



they are essentially descriptive exercises and as such should be evaluated in terms of the closeness of 442 

the sample-based estimate to the truth, not merely in terms of rejecting (typically unrealistic) null 443 

hypotheses. The ability to report and consider uncertainty in the trend estimation is essential in 444 

making judgements about the risk of bias in biodiversity data (Boyd et al., 2022). 445 

Also worth remembering is that we have only applied the adjustments to one species and using a 446 

relatively “good” dataset. It is plausible that the adjustments would improve estimates from a smaller 447 

or less representative dataset to a greater extent. They will certainly work better for species whose 448 

auxiliary variables are easier to identify and reflected in available data.  449 

Repeating our analysis with other taxa and datasets would provide a better understanding of in what 450 

circumstances we can expect adjustments to perform well. The difficulty will be finding species 451 

whose true occupancy (or other variable of interest) is known. One option is to use simulations, but it 452 

is extremely important that they are not designed in such a way that the auxiliary variables explain 453 

sample inclusion and the variable of interest completely. In this case, the methods will all work very 454 

well, but that is not a true reflection of reality.  455 

Our concluding message is that statistical adjustments might improve descriptive statistical inference 456 

in ecology, but only when combined with expert knowledge and appropriate data. Where there is 457 

doubt about the suitability of available auxiliary variables, a safer strategy is to assess the risk of bias 458 

qualitatively (Boyd et al., 2022; Meineke & Daru, 2021). If there is deemed to be a risk, it should be 459 

reflected in the way that findings are reported (Boyd, Powney, et al., 2023; O L Pescott et al., 2022). 460 

This might include using more conservative language and acknowledging that traditional uncertainty 461 

intervals are not guaranteed (or even likely) to cover the truth (X.-L. Meng, 2022).  462 
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