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Abstract  7 

Novel biotic interactions in shifting communities play a key role in determining the ability of 8 

species’ ranges to track suitable habitat. To date, the impact of biotic interactions on range 9 

dynamics have predominantly been studied in the context of interactions between different 10 

trophic levels or, to a lesser extent, exploitative competition between species of the same 11 

trophic level. Yet, both theory and a growing number of empirical studies show that 12 

interspecific behavioural interference, such as interspecific territorial and mating interactions, 13 

can slow down range expansions, preclude coexistence, or drive local extinction, even in the 14 

absence of resource competition. We conducted a systematic review of the current empirical 15 

research into the consequences of interspecific behavioural interference on range dynamics. 16 

Our findings demonstrate there is abundant evidence that behavioural interference by one 17 

species can impact the spatial distribution of another. Furthermore, we identify several gaps 18 

where more empirical work is needed to robustly test predictions from theory. Finally, we 19 

outline several avenues for future research, providing suggestions for how interspecific 20 

behavioural interference could be incorporated into existing scientific frameworks for 21 

understanding how biotic interactions influence range expansions, such as species 22 

distribution models, to build a stronger understanding of the potential consequences of 23 

behavioural interference on the outcome of future range dynamics.  24 
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I. Introduction  45 

As anthropogenic changes continue to alter the availability and distribution of 46 

habitats, the spatial distribution of species’ niches will shift, in turn driving shifts in species' 47 

ranges (Parmesan and Yohe 2003). Given that species vary in their niches and in their 48 

responses to environmental change, communities will not shift in concert, resulting in a 49 

global reshuffling of diversity and the formation of novel species assemblages. Similarly, 50 

invasions due to anthropogenic factors can have disruptive effects on species assemblages. 51 

Interactions between species—whether between previously coexisting species or between 52 

newly co-occurring species in shifting communities—play key roles in determining the 53 

ability of species’ ranges to track suitable habitats (Alexander, Diez, and Levine 2015; Blois 54 

et al. 2013; Early and Keith 2019; Ockendon et al. 2014). For instance, the arrival of novel 55 

predators can drive prey species to extinction (e.g., brown tree snakes [Boiga irregularis] 56 

drove the local extinction of several bird species after they were introduced to Guam, 57 

(Savidge 1987); conversely, the local extinction of one species can destabilize interaction 58 

networks, driving secondary extinctions (e.g., experimental removal of a keystone predator 59 

[Pisaster ochraceus] led to a decline in diversity in the marine intertidal zone, (Paine 1966)). 60 

By and large, studies on the impacts of biotic interactions on population and range dynamics 61 

have predominantly focused on interactions across trophic levels or, to a lesser extent, 62 

exploitative competition between species of the same trophic level (Sirén and Morelli 2020; 63 

Early and Keith 2019; Louthan, Doak, and Angert 2015; Svenning et al. 2014; Legault et al. 64 

2020; Ortego and Knowles 2020). 65 

Yet, an important type of competition between closely related animal species is often 66 

overlooked: interspecific behavioural interference (Grether et al. 2017). Behavioural 67 

interference encompasses any aggressive or mating behaviour by one species that is directed 68 

toward and has a negative impact on the fitness of another species (Grether et al. 2017; 69 
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Gröning and Hochkirch 2008; Burdfield-Steel and Shuker 2011). For instance, both territorial 70 

aggression between individuals of different species and courtship displays directed by males 71 

of one species toward females of another species fall under the umbrella of 'behavioural 72 

interference'. Behavioural interference has been documented across a wide range of taxa 73 

(Gröning and Hochkirch 2008; Peiman and Robinson 2010), and in general, such aggressive 74 

and sexual interactions arise between species that are phenotypically and ecologically similar 75 

owing to recent shared ancestry (e.g., species with similar sexual signals and/or perceptual 76 

systems), though in some cases, behavioural interference may occur across large 77 

phylogenetic distances (e.g., indiscriminate aggression from noisy miners toward a broad 78 

range of bird species throughout much of Australia, MacNally et al. 2012, Fig. 1C). Such 79 

interactions are costly and lead to decreased fitness as individuals waste energy, are driven to 80 

use suboptimal habitat, or miss out on mating opportunities with conspecifics. Consequently, 81 

behavioural interference can decrease population growth rates, cause exclusion from 82 

adequate habitat, and reduce or prevent dispersal into novel areas (Grether et al. 2017). Thus, 83 

interspecific behavioural interference is likely to have important impacts on range dynamics.  84 

Several theoretical investigations of behavioural interference have modelled the 85 

factors that promote or preclude coexistence (T. J. Case and Gilpin 1974; Kuno 1992; Liou 86 

and Price 1994; Amarasekare 2002; Mikami and Kawata 2004; Kishi and Nakazawa 2013; 87 

Kyogoku and Sota 2017; Iritani and Noriyuki 2021; Irwin and Schluter 2022; Grether and 88 

Okamoto 2022) and a handful have even explicitly analysed how processes affecting 89 

coexistence locally scale up to influence the outcome of movement across landscapes 90 

(Ribeiro and Spielman 1986; Crowder et al. 2011; Nishida, Takakura, and Iwao 2015; 91 

Ruokolainen and Hanski 2016; Legault et al. 2020). One key insight from these models is 92 

that the impact of interspecific behavioural interference will be highest on the rarer species, 93 

and the magnitude of this impact increases as the asymmetry in frequency increases (e.g., 94 
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Amarasekare 2002; Kuno 1992). In other words, as interactions between the rarer species and 95 

heterospecifics become increasingly more common than interactions with conspecifics. 96 

Consequently, Allee effects resulting from behavioural interference may make it very 97 

difficult for viable populations to become established in novel geographic areas (Grether et 98 

al. 2017) or may drive precipitous local extinction once population densities fall below a 99 

certain threshold. A common result in models incorporating behavioural interference is the 100 

formation and maintenance of abutting (parapatric) range limits, which may move according 101 

to the magnitude of and degree of asymmetry in interference (Ribeiro and Spielman 1986; 102 

Nishida, Takakura, and Iwao 2015). Another insight from these models relates to the 103 

interactive effect of resource competition and behavioural interference--several models also 104 

show dynamics of systems with both resource competition and behavioural interference are 105 

markedly different than systems with resource competition alone (Ribeiro and Spielman 106 

1986; Amarasekare 2002; Crowder et al. 2011), which underscores the importance of further 107 

research into behavioural interference in attempts at predicting species responses to shifting 108 

assemblages.  109 

Insights derived from theory about the impact of behavioural interference on range 110 

dynamics are now backed up by a growing body of empirical research. Interspecific 111 

behavioural interference has been shown to impact a range of spatial dynamics, ranging from 112 

local-scale habitat use (Vallin et al. 2012) to large-scale range limit shifts (Duckworth and 113 

Badyaev 2007). Here we present the results of the first synthesis of this body of work through 114 

a systematic literature review, and, in light of the widespread evidence that behavioural 115 

interference impacts range dynamics, we discuss patterns emerging from existing studies, 116 

highlight key gaps in the literature, and suggest several avenues for future research. 117 

II. Systematic literature review 118 
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To identify examples of interspecific behavioural interference influencing the spatial 119 

distribution of a species, we conducted a literature search using the “all databases” option in 120 

Web of Science (https://www.webofscience.com/). We used the search term 121 

“TS=(((behaviour*  OR behavior*) NEAR/6 interference) OR (reproduct* NEAR/6 122 

interference) OR (interspecific NEAR/6 (behaviour* OR behavior*) NEAR/6 competition)  123 

OR ((interspecific OR heterospecific) NEAR/6 aggress*)  OR ((interspecific OR 124 

heterospecific)  NEAR/6 dominan*)  OR ((interspecific OR heterospecific) NEAR/6 territor*)  125 

OR ((interspecific OR heterospecific)  NEAR/6 interference) OR (sister AND (taxa OR 126 

species) AND (competition OR aggress* OR territor*OR dominan* OR interference))) AND 127 

TS= ((range* NEAR/6 shift*) OR (species NEAR/6 distribution*)  OR (range* NEAR/6 128 

expansion*)  OR (range* NEAR/6 dynamic*)  OR (species NEAR/6 displace*)  OR (species 129 

NEAR/6 replace*) OR (Altitud* NEAR/6 (zonat* OR zone)))” (NEAR/6 returns search results 130 

that contain the first phrase within six words of the later phrase). While we designed this set 131 

of search terms to focus on behavioural interference, we note that hybridization falls under 132 

the general umbrella term of 'reproductive interference'. There is a large, related literature 133 

covering the spatial dynamics of hybrid zones (Barton 1979; Barton and Hewitt 1989; Buggs 134 

2007), which focuses on the way that clines form in the presence of selection acting on 135 

hybrid genotypes. Here, however, we focus on the outcome of reproductive behavioural 136 

interactions per se, regardless of whether those interactions result in the formation of hybrids.  137 

We note that, although some treatments of reproductive interference include aggression in the 138 

context of access to mates (e.g., Groning & Hochkirk 2008), we follow recent literature on 139 

behavioural interference in classifying all agonistic interactions directed toward 140 

heterospecifics as agonistic interference (Grether et al. 2017).  141 

As of the search date (2022-10-13), we obtained a database of 338 unique peer-142 

reviewed articles, which both authors contributed to reading and extracting data from. To 143 

https://www.webofscience.com/
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reduce bias in data extraction between readers, the first 37 papers (10%) were independently 144 

read by both of us and data extraction compared. Across all 37 papers, the interpretation of 145 

the paper and data extracted was concordant. We only included cases for which there are 146 

direct observations of interspecific behavioural interference and an explicit link between that 147 

interference to spatial dynamics, which totalled 72 papers in our final set. For instance, in 148 

cases where species have abutting boundaries (e.g., parapatric range limits), we only included 149 

cases where behavioural interference has been documented and this boundary does not also 150 

coincide with clear shifts in habitat types. Similarly, for instances of microhabitat segregation 151 

or mosaic distribution patterns, we required the study to demonstrate that shifts in habitat use 152 

directly result from behavioural interference. While reading these papers, we also noted 153 

papers that the authors cited as further evidence for behavioural interference and/or range 154 

dynamics within their own or other study systems which added 26 additional papers to our 155 

final set. Of the 98 studies in our final set, 62 studies provided clear evidence that 156 

interspecific behavioural interference impacts the spatial distribution of a species, with 19 157 

additional studies providing corroborating evidence in combination with other papers. The 158 

remaining papers either found no effect (n = 15) or were inconclusive (n = 2). The 81 papers 159 

that, either provide evidence directly or in collaboration with other studies, found clear 160 

evidence in favour of interspecific behavioural interference impacting the spatial distribution 161 

of a species and were sorted into 54 unique study systems (Figure 1, Table 1). Each of the 54 162 

study systems is descripted in greater detail in Supplementary Table 1. 163 
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 164 

Figure 1. There is widespread evidence that behavioural interference (costly aggressive or 165 

reproductive interactions between species) influences spatial dynamics in animals. A. The 166 

breakdown of study systems that directly measured the impact of interspecific behavioural 167 

interference on the spatial distribution of one of more species by phylum, class, and whether 168 

the study covered aggressive, reproductive behavioural interference, or both. All study 169 

systems investigated the impact of intraclass behavioural interference, except for one case of 170 

interphylum behavioural interference between a Crustacean and Actinopterygii (Bubb et al. 171 

2009). The interphyla system is counted here as Crustacea study as the crustacean was the 172 

more aggressive species. The Sankey diagram was created using the R package ggsankey 173 

(https://github.com/davidsjoberg/ggsankey). B. In Thailand, white-handed gibbons 174 

(Hylobates lar) (left) and pileated gibbons (Hylobates pileatus) (right) are interspecifically 175 
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territorial at their parapatric range boundary, reinforcing that boundary and, likely, decreasing 176 

the frequency of hybridization (Asensio et al. 2017). C. Indiscriminate hyperaggression of 177 

Noisy miners (Manorina melanocephala) has led to shift in the whole structure of avian 178 

communities (Mac Nally et al. 2012). D. In Japan, the invasive bumblebee Bombus terrestris 179 

(left) engages in reproductive interference with two species of native bumblebee species, 180 

driving rapid declines in B. ignities (right) and B. h. sapporeenis (Tsuchida et al. 2019). E. 181 

The accidental introduction of guppies (Poecilia reticulata) (left) led to the eradication of 182 

invasive mosquito fish (Gambusia affinis) (right) in Okinawa owing to reproductive 183 

interference, and consequently guppies have been proposed as a potential control agent for 184 

mosquito fish elsewhere (Tsurui-Sato et al. 2019). F. Pied flycatchers (Ficedula hypoleuca) 185 

(left) are driven to use sub-optimal habitat by the high aggression of collared flycatchers 186 

(Ficedula albicollis) (right) (Vallin et al. 2012; Rybinski et al. 2016). All photos under 187 

creative commons by Wikimedia-user:Kongkham6211, JJ Harrison, flickr-188 

user:coniferconifer, Vera Buhl, Rex Boggs, Andrej Chudý, Ron Knight, Holger Krisp, and 189 

Wikimedia-user:Fredlyfish4. 190 

 191 

  192 
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Table 1: All 54 study systems identified during the literature review that found clear 193 

evidence that interspecific behavioural interference (IBI) impacts the spatial distribution of a 194 

species. An expanded table which includes a description of each study system can be found in 195 

Supplementary Table 1. The elevational column indicates whether the study investigated 196 

range dynamics across an elevational gradient. The invasion column indicates whether the 197 

study contained a species outside of its native range. The comparative column indicates 198 

whether the study examined variation in behavioural interference across many species and/or 199 

environments. 200 

Interacting Species IBI 

Type 

Elevational 

(Y/N) 

Invasion 

(Y/N) 

Comparative 

(Y/N) 

References 

Aves      

Great reed warblers (Acrocephalus arundinaceus) 

& marsh warblers (Acrocephalus palustris) 

Aggression N N N (Rolando and Palestrini 

1989) 

Bicknell's thrushes (Catharus bicknelli) & 

Swainson's thrushes (Catharus ustulatus) 

Aggression Y N N (Freeman and 

Montgomery 2015) 

Black-headed nightingale thrushes (Catharus 
mexicanus) & ruddy-capped nightingale-thrushes 

(Catharus frantzii) 

Aggression Y N N (Jones et al. 2020) 
 

Collared (Ficedula albicollis) & pied (Ficedula 

hypoleuca) flycatchers 

Aggression N N N (Vallin et al. 2012; 

Rybinski et al. 2016) 

Several species of wood wrens (Henicorhina 

leucophrys & Henicorhina leucosticta) and 
thrushes (Catharus mexicanus & Catharus 

aurantiirostris) along an elevational gradient in 

Costa Rica. 

Aggression Y N N (Jankowski, Robinson, and 

Levey 2010) 

Narrow-billed woodcreepers (Lepidocolaptes 
angustirostris) & scaled woodcreepers 

(Lepidocolaptes squamatus) 

Aggression N N N (Maldonado-Coelho et al. 
2017) 

Common nightingales (Luscinia megarhynchos) 

& thrush nightingales (Luscinia luscinia) 

Aggression N N N (Sorjonen 1986; Reif et al. 

2015; 2018) 

Noisy miners (Manorina melanocephala) & local 

bird assemblages 

Aggression N N N (Mac Nally et al. 2012; 

Lill and Muscat 2015) 

Flame robins (Petroica phoenicea) & Norfolk 

robins (Petroica multicolor) 

Aggression N N N (Robinson 1992) 

Carolina chickadees (Poecile carolinensis) and 

black-capped chickadees (Poecile atricapillus) 

Aggression 

and 

Reproductive 
Interference 

N N N (Bronson et al. 2003; 

McQuillan and Rice 2015) 

Invasive ring-necked parakeets (Psittacula 

krameri) and native communities 

Aggression N Y N (Hernández-Brito et al. 

2014) 

Townsend's warblers (Setophaga townsendi) and 

hermit warblers (Setophaga occidentalis) 

Aggression 

and 
Reproductive 

Interference 

N N N (Pearson 2000; Pearson 

and Rohwer 2000) 
 

Western bluebirds (Sialia mexicana) & mountain 

bluebirds (Sialia currucoides) 

Aggression N N N (Duckworth and Badyaev 

2007; Duckworth 2013; 
Duckworth, Belloni, and 

Anderson 2015) 

Spotted owls (Strix occidentalis) & barred owls 

(Strix varia) 

Aggression N Y N (Gutiérrez et al. 2007; Van 

Lanen et al. 2011; Wiens, 

Anthony, and Forsman 
2014) 
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Dominant and subordinate congeneric birds in 

urban environments 

Aggression N N Y (Martin and Bonier 2018; 

Martin, Burke, and Bonier 

2021) 

Dominant and subordinate birds from North 

America 

Aggression N N Y (Freshwater, Ghalambor, 

and Martin 2014) 

Birds along an elevational gradient in Borneo Aggression Y N Y (Boyce and Martin 2019) 
 

North American perching birds (passerines) Aggression 

and 

Reproductive 
Interference 

N N Y (Cowen, Drury, and 

Grether 2020) 

Birds along an elevational gradient in Papua New 

Guinea 

Aggression Y N Y (Freeman, Class Freeman, 

and Hochachka 2016) 

Amphibia      

Southern Appalachian salamander (Plethodon 

teyahalee) & red-cheeked salamanders 

(Plethodon jordani) 

Aggression Y N N (Hairston, Nishikawa, and 

Stenhouse 1987; Gifford 

and Kozak 2012) 

 

Actinopterygii      

Damselfish (Dischistodus spp.) in the Great 
Barrier Reef 

Aggression N N N (Bay, Jones, and 
McCormick 2001) 

Guppies (Poecilia reticulata) & mosquitofish 

(Gambusia affinis) 

Reproductive 

Interference 

N Y N (Tsurui-Sato et al. 2019) 

Obscure damselfish (Pomacentrus adelus) & 

speckled damselfish (Pomacentrus bankanensis) 

Aggression N N N (Eurich, McCormick, and 

Jones 2018) 

Invasive brown trout (Salmo trutta) & white-

spotted charr (Salvelinus leucomaenis) in Japan 

Aggression N Y N (Takami et al. 2002; 

Hasegawa et al. 2004; 
Hasegawa and Maekawa 

2009) 

 

Gopher rockfish (Sebastes carnatus) & Black-
and-yellow rockfish (Sebastes chrysomelas) 

Aggression N N N (Larson 1980) 

Arachnida      

Invasive sheet-web spiders (Linyphia 
triangularis) & bowl-and-doily spiders 

(Frontinella communis) 

Aggression N Y N (Houser, Ginsberg, and 
Jakob 2014) 

Copepoda      

Skistodiaptomus copepods Reproductive 

Interference 

N N N (Thum 2007) 

Crustacea      

Invasive rusty crayfish (Orconectes rusticus) and 

native Sanborn crayfish (Orconectes sanborni)  

Aggression 

and 

Reproductive 
Interference 

N Y N (Butler and Stein 1985) 

Invasive signal crayfish (Pacifastacus 

leniusculus) in Europe & native communities. 

This includes an example interphylum 
behavioural interference: aggression by signal 

crayfish toward native bullhead fish (Cottus 

gobio). 

Aggression 

and 

Reproductive 
Interference 

N Y N (Björn Söderbäck 1994; B. 

Söderbäck 1995; Westman 

and Savolainen 2001; 
Westman, Savolainen, and 

Julkunen 2002; Bubb et al. 

2009; Svärdson, Fürst, and 
Fjälling 1991) 

Gastropoda      

Keyhole limpets (Siphonaria lessonii) & 
pulmonate limpets (Fissurella crassa) 

Aggression N N N (Aguilera and Navarrete 
2012) 

 

Insecta      

Aedes mosquitos (Ae. albopictus & Ae. aegypti) Reproductive 

Interference 

N Y N (Nasci, Hare, and Willis 

1989; Irka E. 

Bargielowski, Lounibos, 
and Carrasquilla 2013; 

Irka Ewa Bargielowski 

and Lounibos 2016; 
Lounibos and Juliano 

2018; Zhou et al. 2022) 
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Two tick species (Amblyomma variegatum & 

Amblyomma hebraeum) 

Reproductive 

Interference 

N N N (Bournez et al. 2015) 

Whiteflies (Bemisia tabaci spp.) Reproductive 

Interference 

N Y N (Liu et al. 2007; Crowder 

et al. 2011; Wang, 

Crowder, and Liu 2012) 

Invasive buff-tailed bumblebees (Bombus 
terrestris) & native bumblebees (Bombus h. 

sapporoensis & Bombus ignitus) in Japan 

Reproductive 
Interference 

N Y N (Tsuchida et al. 2019) 

Rubyspot damselflies (Hetaerina spp.) Aggression N N Y (McEachin et al. 2022) 

Two ant species (Iridomyrmex spp.) Aggression N N N (Haering and Fox 1987) 

 

Arboreal termite species in Papua New Guinea 

(Microcerotermes biroi, Nasutitermes 
novarumhebridiarum, & Nasutitermes princeps) 

Aggression N N Y (Leponce, Roisin, and 

Pasteels 1997) 

White-crossed seed bugs (Neacoryphus bicrurus) 

and co-occurring insect communities 

Aggression 

and 

Reproductive 
Interference 

N N N (McLain and Shure 1987) 

Invasive southern green stink bugs (Nezara 

viridula) & native green stink bugs (Nezara 

antennata) 

Reproductive 

Interference 

N Y N (Kiritani 2011) 

 

Alpine dark bush-crickets (Pholidoptera aptera) 
& Transylvanian dark bush-crickets 

(Pholidoptera transsylvanica) 

Reproductive 
Interference 

N N N (Dorková et al. 2020) 

Eastern subterranean termites (Reticulitermes 

flavipes) & Western subterranean termites 
(Reticulitermes grassei) 

Aggression N Y N (Perdereau et al. 2011) 

 

Invasive Asian blue ticks (Rhipicephalus 

[Boophilus] microplus) & African blue ticks 

(Rhipicephalus [Boophilus] decoloratus) in South 
Africa  

Reproductive 

Interference 

N Y N (Sutherst 1987; Tønnesen 

et al. 2004) 

Cepero's groundhoppers (Tetrix ceperoi) & 
slender groundhoppers (Tetrix subulata) 

Reproductive 
Interference 

N N N (Gröning et al. 2007; 
Hochkirch, Gröning, and 

Bücker 2007; Hochkirch 

and Gröning 2012) 

Arboreal ant species in Papua New Guinea Aggression N N Y (Mottl et al. 2021) 

Mammalia      

Fallow deer (Dama dama) & roe deer (Capreolus 

capreolus) 

Aggression N Y N (Ferretti and Mori 2020) 

 

White-handed gibbons (Hylobates lar) & Pileated 
gibbons (Hylobates pileatus)  

Aggression N N N (Suwanvecho and 
Brockelman 2012; 

Asensio et al. 2017) 

Least chipmunks (Neotamias minimus) & yellow-

pine chipmunks (Neotamias amoenus) 

Aggression Y N N (Chappell 1978; Heller 

1971) 

Townsend's chipmunks (Neotamias townsendii) 

& yellow-pine chipmunks (Neotamias amoenus) 

Aggression N N N (Trombulak 1985) 

Uinta chipmunks (Neotamias umbrinus) & 

Colorado chipmunks (Neotamias quadrivittatus) 

Aggression Y N N (Bergstrom 1992) 

Stoats (Mustela erminea) & least weasels 

(Mustela nivalis) 

Aggression N N N (Erlinge and Sandell 1988) 

 

Pied tamarins (Saguinus bicolor) & Golden-

handed tamarins (Saguinus midas) 

Aggression N N N (Sobroza et al. 2021) 

Chiriquí singing mice (Scotinomys xerampelinus) 
& Alston's singing mice (Scotinomys teguina) 

Aggression Y N N (Pasch, Bolker, and Phelps 
2013) 

 

Reptilia      

Invasive house geckos (Hemidactylus frenatus) & 

native communities 

Aggression 

and 

Reproductive 
Interference 

N Y N (Bolger and Case 1992; 

Petren, Bolger, and Case 

1993; Ted J. Case, Bolger, 
and Petren 1994; Dame 

and Petren 2006) 

 201 

  202 
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(1) Reproductive interference versus interspecific aggression 203 

Our search terms returned more study systems where aggressive interference (n = 44) 204 

influenced range dynamics than reproductive interference (n = 17) (Figure 1A, Table 1, 205 

Supplementary Table 1). At face value, these figures suggest that competitive exclusion via 206 

aggressive interference is more widespread than sexual exclusion. Yet, this conclusion may 207 

be premature. For one thing, we avoided searching for cases of hybrid tension zones (see 208 

"Systematic literature review", above), and hybridization is among the more highly studied 209 

forms of reproductive interference. Moreover, other forms of reproductive interference 210 

include behaviours such as misdirected courtship, signal jamming, and heterospecific mating 211 

(Groning & Hochkirch 2008), all of which are difficult to detect, especially in species where 212 

these processes occur rapidly.  213 

 Seven study systems found that both reproductive and aggression influence range 214 

dynamics. For instance, where collared (Ficedula albicollis) & pied (Ficedula hypoleuca) 215 

flycatchers have recently (150 years ago) come into sympatry (Fig. 1F), collared flycatchers 216 

are more aggressive, which shifts the nest occupancy of pied flycatchers into suboptimal 217 

habitat. However, pied flycatchers that nest in suboptimal habitat are less likely to hybridise 218 

with collared flycatchers, which reenforces the habitat segregation of the two species (Vallin 219 

et al. 2012). Given that interspecific aggression often arises as an adaptive response to 220 

reproductive interference (Drury et al. 2015; Drury, Cowen, and Grether 2020; Grether et al. 221 

2020; Payne 1980), the abundance of examples of aggressive interference influencing spatial 222 

dynamics in vertebrates may be indicative of undetected reproductive interference. Further 223 

empirical and theoretical work would help clarify the relative importance as well as the 224 

interactive, potentially non-additive, impacts of different types of behavioural interference on 225 

spatial dynamics. 226 
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The taxonomic distribution of case studies was the most apparent difference among 227 

the factors associated with different types of behavioural interference (Figure 1). Most 228 

examples of reproductive interference influencing range dynamics were conducted on 229 

arthropods (9 out of 10). This contrasts with studies of aggressive interference that were 230 

dominated by vertebrates (30 out of 37), especially birds (n = 17). Empirical examples of 231 

reproductive interference are taxonomically widespread (Gröning and Hochkirch 2008), so it 232 

is surprising to see that evidence of reproductive interference influencing the spatial 233 

dynamics of a species come predominantly from insects and arachnids. One potential 234 

explanation for this apparent bias is that it reflects a biological reality about the costs of 235 

reproductive interference in arthropods; the fitness cost of reproductive interference may be 236 

especially high in arthropods because of females’ short reproductive lifespans, and, because 237 

in some species, females produce no viable offspring after interspecific mating (Ribeiro and 238 

Spielman 1986), which makes a species particularly vulnerable to local extinction (Irwin and 239 

Schluter 2022). Alternatively, the bias may reflect a methodological convenience of working 240 

with invertebrates—reproductive interference may be hard to measure in the field without 241 

experimental mating trials, making larger scale field research of the sort necessary to build a 242 

link between reproductive interference and range dynamics more feasible on arthropods.  243 

 244 

(2) Elevational gradients  245 

Range dynamics along elevational gradients have long been of interest to ecologists 246 

and evolutionary biologists. For instance, a classic hypothesis posits that abiotic factors are 247 

likely to play a more important role than biotic factors at high-elevation range limits 248 

(Louthan, Doak, and Angert 2015). As a result, there may be an increased risk of extinction 249 

in montane ecosystems caused by the ‘escalator to extinction’ (Sekercioglu et al. 2008; 250 

Freeman et al. 2018) in which warming conditions cause high-elevation species' climate 251 
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niches to disappear. Given the interest in biotic interactions along elevational gradients, it is 252 

not surprising that we identified multiple examples of interspecific behavioural interference 253 

of one species influencing the elevational distribution of another species (17% of cases 254 

documenting an impact of behavioural interference on range dynamics). Due to rapid habitat 255 

turnover with altitude, range boundaries across elevational gradient are often sharply defined, 256 

making studies of range limits inherently simpler along an elevational gradient (Žagar et al. 257 

2015; Pasch, Bolker, and Phelps 2013; Jones et al. 2020), so it would be premature to 258 

conclude how likely that behavioural interference is to influence elevational range limits in 259 

comparison to range boundaries across landscape scales.  260 

Several key patterns emerge from studies along elevational gradients. First, 261 

interspecific territoriality plays a key role in creating and maintaining elevational range 262 

limits. Comparative analyses, for instance, have shown that bird species have wider 263 

elevational ranges in mountains without competitors (Burner et al. 2020). Additionally, the 264 

response of several species of montane birds to heterospecific songs decreases with distance 265 

from their parapatric boundary, indicating a learned response to the presence of an aggressive 266 

congener (Jankowski, Robinson, and Levey 2010; Freeman and Montgomery 2015; Freeman, 267 

Class Freeman, and Hochachka 2016; Jones et al. 2020; Boyce and Martin 2019). Secondly, 268 

asymmetries in dominance are not consistently biased in favour of low elevation species, as 269 

there are examples of species pairs with subordinate high elevation species (e.g., Catharus 270 

thrushes, (Freeman and Montgomery 2015) and of pairs in which the lower elevation species 271 

is subordinate (e.g., Scotinomys singing mice (Pasch, Bolker, and Phelps 2013), Neotamias 272 

chipmunks (Bergstrom 1992) and, if aquatic depth gradients are comparable to elevational 273 

gradients, Pomacentrus damselfish (Eurich, McCormick, and Jones 2018)) (see also Freeman 274 

2020). These examples demonstrate the varied and often unpredictable role that behavioural 275 

interference can play in influencing elevational range limits, thereby challenging the 276 
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hypothesis that abiotic factors are likely to play a more important role than biotic factors at 277 

high-elevation range limits (Louthan, Doak, and Angert 2015). Finally, we also note a bias in 278 

the geographic locations of studies investigating behavioural interference across elevational 279 

gradients, with two exceptions in Borneo and Papa New Guinea, all study systems were 280 

located Northern and Central America (Figure 2). Studies across landscapes were found 281 

across a wider area, but still with noted gaps in Africa and Asia, likely due to an underlying 282 

geographic bias in scientific research (Culumber et al. 2019).  283 

  284 
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 285 

286 

Figure 2. The global distribution of field studies that found an effect of interspecific 287 

behavioural interference on the spatial distribution of one or more species. Colour denotes 288 

whether the study investigated the spatial distributions across a landscape (i.e., latitude and 289 

longitude), across an elevational gradient (altitudinal), or across a sea-depth gradient (marine 290 

depth). Size indicates the maximum spatial extent for where data was collected for study but 291 

is not to scale, excluding comparative studies that had a greater than 1000km global 292 

distribution (n = 7). Across landscapes, we found examples of behavioural interference 293 

influencing the spatial distributions of species in studies ranging in spatial scope from local 294 

(<1km) scales (e.g. Hochkirch and Gröning 2012, found that, within a single nature reserve, 295 

reproductive interference causes two groundhopper species to exhibit a mosaic of small scale 296 

habitat use) to continental (<1000km) scales (e.g. Reif et al. 2018; 2015, found that across 297 
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Eastern Europe, aggression drives shifts in habitat preferences in sympatry compared to 298 

allopatric populations of common Luscinia megarhynchos, and thrush nightingales, Luscinia 299 

luscinia). 300 

  301 
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(3) Invasion biology 302 

Anthropogenic influences have led to a dramatic rise in the number of non-native 303 

species that become invasive after being translocated to novel regions (Blackburn et al. 304 

2011). As the ranges of invasive species expand they may engage in interspecific behavioural 305 

interference, driving displacement of native species (Rowles and O’Dowd 2007; Lounibos 306 

and Juliano 2018; Pereira, Lourenço, and Mota 2020; Kyogoku and Sota 2017). The 307 

systematic review identified multiple examples of invasive species engaging in reproductive 308 

interference (Tsurui-Sato et al. 2019; Lounibos and Juliano 2018; Tsuchida et al. 2019; 309 

Tønnesen et al. 2004; Westman, Savolainen, and Julkunen 2002) and aggressive interference 310 

(Bubb et al. 2009; Houser, Ginsberg, and Jakob 2014; Westman, Savolainen, and Julkunen 311 

2002; Rowles and O’Dowd 2007) with native species (15/54 =28% of cases). For instance, 312 

invading Argentine ants in Australia outcompete native ant species through direct aggressive 313 

interactions (Rowles & O’Dowd 2007). Similarly, in Japan, invasive buff-tailed bumblebees 314 

(Bombus terrestris) engage in reproductive interference with two species of native bumblebee 315 

species (Fig. 1D). Copulation between male B. terrestris and female 316 

Bombus hypocrite sapporoensis or Bombus ignites results in unviable eggs being laid the 317 

following spring when there are no further intraspecific mating opportunities. Consequently, 318 

B. ignities and B. h. sapporeenis have declined rapidly in areas with B. terrestris, and further 319 

declines could lead to the extinction of the native bumblebee species (Tsuchida et al. 2019). 320 

Other well-established cases where invading lineages quickly replace previously established 321 

lineages include the replacement of asexual gecko lineages throughout the Pacific that have 322 

been displaced by interference from invasive common house geckos (Dame & Petren 2016, 323 

Bolger & Case 1992, Petren et al. 1993), and the replacement of Aedes aegypti by Ae. 324 

albopictus both throughout the southern U.S. (Nasci, Hare, and Willis 1989) and in China 325 

(Zhou et al. 2022).  326 



 21 

Yet, behavioural interference is not always beneficial to invasive species and 327 

detrimental to native species. Invasive species may be unable to establish in areas which 328 

contain a more aggressive congener, and higher levels of aggressive or reproductive 329 

interference could allow native species to tolerate the presence of the invading species 330 

(Crowder et al. 2011), or even prevent its spread. For instance Australian house geckos, 331 

Gehyra dubia, are more aggressive than the globally invasive Asian house gecko, 332 

Hemidactylus frenatus which could prevent the invasive species replacing the native 333 

(Cisterne, Schwarzkopf, and Pike 2019). Additionally. conservation efforts towards the 334 

critically endangered Nashville crayfish, Orconectes shoupi, may be aided by its higher 335 

aggression toward the invasive bigclaw crayfish, Orconectes placid (Bizwell and Mattingly 336 

2010). Whether asymmetries in behavioural interference generally influence the outcome of 337 

translocations of animal species is, therefore, an important open question. 338 

In addition to being a potentially accelerating factor in biological invasions, 339 

behavioural interference has also been suggested as a management tool for invasive species. 340 

On Okinawa, for instance, the accidental introduction of guppies (Poecilia reticulata) led to 341 

the eradication of invasive mosquito fish (Gambusia affinis) (Fig. 1E, Tsurui-Sato et al. 342 

2019). Laboratory experiments indicate that male guppies attempt to mate with female 343 

mosquito fish, thereby reducing their reproductive output. Introduced guppies also have 344 

negative impacts on native taxa, but by introducing only males, or mixed populations into 345 

environments with lethal winter temperatures, guppies could be used to eradicate mosquito 346 

fish from other river systems (Tsurui-Sato et al. 2019). Similarly, a study on aggression 347 

between invasive brown trout and native white-spotted charr demonstrated that habitat 348 

modifications in the form of visual barriers could reduce observed levels of interspecific 349 

aggression (Hasegawa & Maekawa 2009).  350 

 351 
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(4) Empirical validation of theoretical predictions 352 

The formation of parapatric ranges, where two species have adjacent ranges with little 353 

or no overlap, is a key prediction of the theorical models of how interspecific behavioural 354 

interference impacts range dynamics when the impacts of behavioural interference are 355 

symmetrical (Ribeiro and Spielman 1986). In line with this prediction, we found that, where 356 

the impact of behavioural interference is equal, the ranges of interacting species pairs are 357 

stable (Asensio et al. 2017; Bull and Burzacott 1994; Thum 2007). For instance, in Thailand, 358 

two species of gibbon, white-handed gibbons (Hylobates lar) and pileated gibbons 359 

(Hylobates pileatus), have a parapatric distribution with only a small (<1km wide) boundary 360 

where the species are found in sympatry. Both H. lar and H. pileatus hold territories that are 361 

controlled exclusively by monogamous pairs. Detailed mapping of territories and observation 362 

of conflict events show that, where the two species are found in sympatry, pairs of both 363 

species defend territories against both conspecifics and heterospecifics (Fig. 1B, Asensio et 364 

al. 2017). If the impact of behavioural interference is asymmetrical, however, replacement of 365 

one species by the other commonly results (Tønnesen et al. 2004; Tsuchida et al. 2019; 366 

Tsurui-Sato et al. 2019; Duckworth and Badyaev 2007; Vallin et al. 2012; Sobroza et al. 367 

2021). Some studies found that the ranges of the two species were stable even in the presence 368 

of asymmetrical behavioural interference because the more dominant species was limited by 369 

an abiotic or a different biotic factor (Pasch, Bolker, and Phelps 2013; Bergstrom 1992).  370 

Although Allee effects are common in theoretical models of behavioural interference, 371 

relatively few case studies identified by our literature review explicitly tested for Allee 372 

effects, though several investigators of these studies suggest that Allee effects generate range 373 

turnovers (Soderback 1994, Tønnesen et al. 2004, Thum 2007, Kiritani 2011). The paucity of 374 

direct evidence for Allee effects was surprising, given documented Allee effects in laboratory 375 

studies (e.g., Kyogoku & Nishida 2012) and frequency- and/or density-dependent impacts of 376 
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interspecific interference in the field (Gómez-Llano et al. 2023; Svensson et al. 2018). Future 377 

research, therefore, should aim to understand the importance of Allee effects in determining 378 

the outcome of spatial dynamics. For instance, a key test of the impact of behavioural 379 

interference on range dynamics would be to artificially induce an Allee effect in field systems 380 

known to engage in behavioural interference, by heightening or inversing the densities and/or 381 

frequencies of two species that engage in behavioural interference.  382 

Similarly, though several models incorporate both behavioural interference and 383 

resource competition (Ribeiro and Spielman 1986; Amarasekare 2002; Crowder et al. 2011), 384 

our literature search found few explicit analyses disentangling the relative impacts of 385 

behavioural interference and resource competition, or the predicted interactive dynamics of 386 

both, on range dynamics (but see (Duckworth 2013; Cowen, Drury, and Grether 2020). 387 

 388 

III. Future Directions 389 

Our systematic literature review demonstrated that there are now many studies that 390 

show varied impacts of behavioural interference on range expansion, but it also highlighted 391 

several gaps in our understanding. Here, we argue that further research is needed in several 392 

key areas, including the role that behavioural interference has played in shaping historical 393 

patterns of range dynamics, the impacts of behavioural interference on future range dynamics 394 

under climate change, and the extent to which evolution influences outcomes.  395 

 396 

(1) Identifying the impact of behavioural interference on historical spatial processes 397 

There are several existing approaches for studying historical range dynamics that 398 

would be useful to develop further to understand outcomes of behavioural interference across 399 

a range of timescales. For instance, at a deep evolutionary timescale, models of ancestral 400 

biogeography have proven to be useful tools for making inferences about the pace and 401 
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trajectory of range evolution within independently evolving lineages (Ronquist 2011). 402 

Recently, there have been calls for extending these methods to incorporate ecological factors 403 

such as species interactions (Sukumaran and Knowles 2018), and the development of tools 404 

for identifying the signature of competitive exclusion in range data (Quintero and Landis 405 

2020). Incorporating the possibility for the presence and/or magnitude of behavioural 406 

interference to modulate the impacts of competition on range dynamics into these models, 407 

similar to advances already developed for trait-mediated dispersal (Klaus and Matzke 2020), 408 

could provide a novel tool that would make it possible to test a range of hypotheses that 409 

cannot be tested with current methods (Fig 3A).  410 

At shallower evolutionary scales, existing population genomic techniques leverage the 411 

signatures of historical processes preserved in genomes to test hypotheses about spatial (Peter 412 

and Slatkin 2013; Petkova, Novembre, and Stephens 2015; Al-Asadi et al. 2019; He, Prado, 413 

and Knowles 2017) and demographic (Gutenkunst et al. 2009; Gronau et al. 2011; Excoffier 414 

et al. 2021) dynamics that have unfolded over scales of thousands to millions of years. 415 

Largely, these developments have been designed to examine dynamics within independently 416 

evolving lineages. Within this constraint, one way forward would be to conduct comparative 417 

analyses to test the hypothesis that lineages (e.g., populations, species) experiencing higher 418 

levels of behavioural interference expand their ranges at different rates than lineages 419 

experiencing little or no behavioural interference (Fig 3B). Recently, Ortego & Knowles 420 

(2020) developed an analytical pipeline that explicitly tests for the impact of facilitation 421 

and/or competition between species on generating contemporary geographic patterns of 422 

genomic diversity. Extending these models to explicitly test for impacts of behavioural 423 

interference is an exciting possibility that would generate new insights.  424 

On a more contemporary scale, long-term census data have proven to be a useful tool 425 

for monitoring dynamics of species assemblages over the past century (Rosenberg et al. 2019, 426 



 25 

Saunders et al. 2022). Such datasets contain interacting species, and understanding how those 427 

interactions impact temporal dynamics is one way forward. One recent attempt has shown 428 

that stably coexisting species-pairs that are interspecifically territorial have increased their 429 

fine scale habitat overlap more than non-interspecifically territorial pairs, suggesting that 430 

interspecific territoriality may actually stabilise coexistence in species that would otherwise 431 

engage in high levels of exploitative competition (Nesbit et al. 2023). Future applications 432 

could use tools developed for network analyses (Blonder et al. 2012) to examine how 433 

behavioural interference influences dynamics within assemblages (Fig 3C). 434 

 435 

(2) Predicting the impact of behavioural interference in novel assemblages 436 

Insights generated from investigations of the impacts of behavioural interference on 437 

historical range dynamics will be essential for generating predictions about the future impacts 438 

of behavioural interference on climate-change driven range dynamics. At the heart of 439 

attempts to predict how species’ ranges will shift in response to global changes are species 440 

distribution models (SDMs). SDMs use measures of abiotic factors and presence-absence 441 

data to predict species’ future ranges under different climate scenarios (Elith and Leathwick 442 

2009; Titley et al. 2021). 443 

 Attempts to incorporate biotic factors into species distribution models have given rise 444 

to joint species distribution models (JSDMs) (Wilkinson et al. 2019; Tikhonov et al. 2017). 445 

Yet, implementing and validating JSDMs is fraught with difficulties because positive and 446 

negative occurrence patterns often correlate with abiotic factors (Poggiato et al. 2021). 447 

Consequently, although some attempts to implement behavioural interference into 448 

SDMs/JSDMs have been conducted (Bastianelli et al. 2017; Engler et al. 2013), many 449 

examples of interspecific behavioural interference limiting the spatial distribution of species 450 

would not be detected using JSDMs. Despite challenges, joint species distribution modelling 451 
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remains an active area of research with many promising recent developments (Pichler and 452 

Hartig 2021; Escamilla Molgora et al. 2022). For instance, joint dynamic species distribution 453 

models (JDSDMs) use time-series data on abundance to examine the impact of concurrent 454 

changes in abundance across assemblages more directly (Thorson, Pinsky, and Ward 2016; 455 

Elo et al. 2023). Consequently, we imagine that these tools will be useful for generating 456 

predictive models of future range dynamics in the presence of behavioural interference (Fig. 457 

3D), for instance by comparing the marginal predictions of such models (i.e., the effects of 458 

environmental variables only), to conditional predictions which also incorporate impacts of 459 

changing species interactions (Wilkinson et al. 2019; 2021). Recently, for instance, (Novella-460 

Fernandez et al. 2021) devised an index of ‘geographic avoidance’ by comparing species 461 

suitable ranges (calculated from SDMs) to their observed ranges. Using this index, they 462 

found that two pairs of cryptic species of bats in Europe exhibited spatial partitioning 463 

consistent with interspecific competition driving exclusion. They then examined range 464 

overlap under future climate projections, demonstrating that some predicted range shifts may 465 

not be possible due to predicted range overlap with competitors (Novella-Fernandez et al. 466 

2021, see also Engler et al. 2013 and McQuillan and Rice 2015 for a similar approach). 467 

Future attempts to generate predictions of range dynamics in the presence of behavioural 468 

interference could also be used to disentangle and quantify the differing impacts of 469 

behavioural interference versus resource competition.  470 
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Fig 3. Possible directions for future research into the historical (A-C) and forecasted (D) 474 

impacts of behavioural interference (BI) on range dynamics. Approaches to test for historical 475 

impacts of BI include (A) extending models of ancestral biogeography to include separate 476 

parameters for species that engage in BI and those that do not, (B) deploying genomic tools 477 

to test whether the historical dynamics of range expansion differ between species that engage 478 

in BI (sp. 2, in this example) and species that do not by calculating pairwise indices of 479 

directional movement such as the ψ index (Peter and Slatkin 2013), and (C) using long-term 480 

census data to analyse how BI has impacted dynamics of species cooccurrence through time 481 

using tools from network analyses (e.g., indices of network centrality). Developments for 482 

forecasting and mitigating the impacts of BI on global-change induced range shifts might 483 

include (D) fitting joint dynamic species distribution models (JDSDMs) and using model 484 

inferences to compare future ranges under pure climate-tracking scenarios to scenarios that 485 

incorporate species interactions inferred from JDSDMs. 486 

487 
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 The preceding approaches largely rely on metrics of cooccurrence to make inferences 488 

about the impacts of behavioural interference, under the assumption that cooccurring lineages 489 

are likely to interact. Yet, range overlap per se is not robust evidence that interactions occur. 490 

One way forward is to use measurements of fine-scale range overlap (i.e., 'syntopy'), which 491 

may be more indicative of the opportunity for species interactions (Drury, Cowen, and 492 

Grether 2020). Still, there is no substitute for direct observations of behaviour across large 493 

spatiotemporal scales. For instance, a large-scale study of spatiotemporal variation in 494 

agonistic behaviour in damselfish shows that interactions between individuals of different 495 

species increase after coral bleaching events (Keith et al. 2023). Future studies should 496 

directly observe behaviours to demonstrate concrete links between behavioural interference 497 

and range dynamics.  498 

 499 

(3) The role of evolution in mediating responses to behavioural interference 500 

Historically, empirical research into behavioural interference has largely focused on 501 

understanding factors that lead to behavioural interference (e.g., Drury, Cowen, and Grether 502 

2020; Leighton et al. 2023) and its evolutionary consequences, such as its impact on trait 503 

evolution (Grether et al. 2009; Pfennig and Pfennig 2009) or other aspects of the speciation 504 

cycle (Tobias, Ottenburghs, and Pigot 2020). This work has shown that the likelihood of 505 

behavioural interference decreases with increasing divergence time (e.g., Drury, Cowen, and 506 

Grether 2020; Barley et al. 2022) likely owing to the relative similarity in perceptual systems 507 

and agonistic and/or mating signals used in closely related species (Grether et al. 2009; 508 

Orians and Willson 1964). Consequently, behavioural interference is thought to have a strong 509 

impact on the rate of speciation by limiting the rate at which two recently diverged allopatric 510 

lineages can coexist in secondary sympatry (Tobias, Ottenburghs, and Pigot 2020). One 511 

possible evolutionary outcome of behavioural interference is divergent reproductive or 512 
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agonistic character displacement, in which selection acts on mating or agonistic signals or 513 

perceptual systems to prevent or reduce the occurrence of behavioural interference (Grether 514 

et al. 2009; Pfennig and Pfennig 2009). Yet, the benefits of diverging in signals and/or 515 

perceptual systems do not always outweigh the costs--for instance, because of the continued 516 

pressure of stabilising selection for intraspecific mate recognition (Drury et al. 2019) or 517 

because interspecific competitor recognition may be an adaptive pathway to interspecific 518 

resource partitioning (Grether and Okamoto 2022) -- and consequently, selection may 519 

preclude divergence or even drive convergence between interacting lineages. 520 

The evolutionary responses to behavioural interference in shifting ranges should, 521 

therefore, play an important role in determining the outcome of range dynamics. For instance, 522 

in the case of Aedes mosquitoes, reproductive character displacement appears to have slowed 523 

down the invasion of Ae. albopictus in Florida (Irka E. Bargielowski, Lounibos, and 524 

Carrasquilla 2013; I. Bargielowski, Blosser, and Lounibos 2015). Similarly, native 525 

bumblebees in Japan have evolved polyandrous mating systems in response to reproductive 526 

interference from invasive buff-tailed bumblebees (Tsuchida et al. 2019). Yet it is unknown 527 

under which circumstances, and to what extent, evolutionary changes might mediate the 528 

impact of behavioural interference on range dynamics. Future long-term studies of zones 529 

where behavioural interference occurs, in addition to comparisons between sympatric and 530 

allopatric populations, could shed further light on these questions. 531 

 532 

IV. Concluding remarks 533 

(1) Multiple lines of evidence now demonstrate that interspecific behavioural interference can 534 

limit the spatial distribution of species. Case studies demonstrate that this is true across a 535 

wide range of animal taxa, and that both reproductive interference and interspecific 536 

aggression can influence spatial dynamics. 537 
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 538 

(2) In line with predictions derived from theoretical models of behavioural interference, the 539 

case studies we compiled demonstrate that symmetry (or lack thereof) in behavioural 540 

interference determines the spatial outcome of interactions. Further work is necessary to test 541 

other key predictions of theoretical models, such as the presence of Allee effects and 542 

interactive impacts of behavioural interference and exploitative competition for resources.  543 

 544 

(3) We identified several other gaps that remain in our broad-scale understanding of the 545 

impacts of behavioural interference on spatial dynamics. For instance, which factors (e.g., 546 

phylogenetic distance, life history, climate niche, etc.) explain variation in the presence or 547 

magnitude of the effect of behavioural interference on range dynamics?  548 

 549 

(4) Several recent developments have paved the way for modelling the impacts of species 550 

interactions on both historical and future spatial dynamics, and future work adapting these 551 

methods to further explore the links between behavioural interference and range dynamics is 552 

an important way forward. 553 

 554 

(5) In addition to modelling approaches, further work aimed at quantifying the interactive 555 

effects of evolutionary change and spatial movement is crucial for predicting the outcome of 556 

range dynamics in the presence of behavioural interference. 557 

 558 

(6) The spatial distribution of species has implication for conservation, human health, and 559 

agriculture. Alongside other abiotic and biotic factors, our study highlights the need to 560 

include interspecific behavioural interference in predicting and managing the current and 561 

future distribution of species.  562 
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Supplementary Table 1: All 54 study systems identified during the literature review that found clear evidence that interspecific behavioural interference (IBI) 1152 

impacts the spatial distribution of a species. The elevational column indicates whether the study investigate range dynamics across an elevational gradient. 1153 

The invasion column indicates whether the study contained a species outside of its native range. The comparative column indicates whether the study derived 1154 
inference from comparing species pairs that engage in behavioural interference with species pairs that do not engage in behavioural interference. 1155 

Interacting Species IBI.Type Elevational 

(Y/N) 

Invasion 

(Y/N) 

Comparative 

(Y/N) 

Impacts of IBI on Spatial Dynamics References Additional Explanations? 

Aves        

Great reed warblers 

(Acrocephalus arundinaceus) & 

marsh warblers (Acrocephalus 

palustris) 

Aggression N N N Territorial mapping and behavioural observations demonstrate 

that great reed warblers and marsh warblers are interspecifically 
territorial, with great reed warblers dominating interactions. In 

areas where both species occur, marsh warblers use habitat 

further from reed habitats than sites where great reed warblers 
are absent.  

(Rolando and Palestrini, 

1989) 

 

Bicknell's thrushes (Catharus 

bicknelli) & Swainson's thrushes 

(Catharus ustulatus) 

Aggression Y N N Playback experiments between two parapatric thrush species. 
Lower elevation Swaison's thruses respond aggresively to the 

calls of  higher elevation Bikcnells thrushes, but not vice versa. 

The aggressive responses of Swaison's thrush toward 
heterospecifics increases with altitude (i.e., closer to range 

boundary). 

(Freeman and 
Montgomery, 2015) 

 

Black-headed nightingale 

thrushes (Catharus mexicanus) & 

ruddy-capped nightingale-

thrushes (Catharus frantzii) 

Aggression Y N N Playback experiments showed that lower elevation black-capped 

nightingale-thrushes respond aggressively to the ruddy-capped 

nightingale-thrush, but not vice-versa. 

(Jones et al., 2020) 

 

Habitat segregation  

Collared (Ficedula albicollis) & 

pied (Ficedula hypoleuca) 

flycatchers 

Aggression N N N For instance, collared (Ficedula albicollis) & pied (Ficedula 

hypoleuca) flycatchers have recently (150 years ago) come into 
sympatry. Collared flycatchers are more aggressive, which shifts 

the nest occupancy of pied flycatchers into suboptimal habitat. 

However, pied flycatchers that nest in suboptimal habitat are less 
likely to hybridise with collared flycatchers, which reenforces 

the habitat segregation of the two species. 

(Vallin et al., 2012; 

Rybinski et al., 2016) 
 

 

Exploitative competition for 

nestboxes (but nestbox access 
mediated by aggression) 

Several species of wood wrens 

(Henicorhina leucophrys & 

Henicorhina leucosticta) and 

thrushes (Catharus mexicanus & 

Catharus aurantiirostris) along an 

elevational gradient in Costa Rica. 

Aggression Y N N Playback experiments show aggressive responses to 

heterospecific congeners, with the magnitude of such responses 
increase toward contact zones. 

(Jankowski, Robinson and 

Levey, 2010) 

Habitat turnover 

Narrow-billed woodcreepers 

(Lepidocolaptes angustirostris) & 

scaled woodcreepers 

(Lepidocolaptes squamatus) 

Aggression N N N Fragmentation of the Atlantic Forest in Brazil has facilitated 

range expansion of narrow-billed woodcreepers. Scaled 

woodcreepers have been forced to recede into the remaining 
fragments of forest. However, narrow-billed woodcreepers 

regularly join mixed-species flocks within the forest and 

aggressively exclude scaled woodcreepers from joining flocks 

(Maldonado-Coelho et al., 

2017) 
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Common nightingales (Luscinia 

megarhynchos) & thrush 

nightingales (Luscinia luscinia) 

Aggression N N N Common and thrush nightingales are interspecifically territorial 

and exhibit evidence of song convergence in sympatry. This 

aggression drives shifts in habitat preferences in sympatry 
compared to allopatric populations.  

(Sorjonen, 1986; Reif et 

al., 2015, 2018) 

 

Noisy miners (Manorina 

melanocephala) & local bird 

assemblages 

Aggression N N N Noisy miners are extremely aggressive towards nearly all 
heterospecific birds, even those with little overlap in diet and 

foraging behaviour, and their presence shapes the structure of 

entire avian assemblages. 

(Mac Nally et al., 2012; 
Lill and Muscat, 2015) 

 

Flame robins (Petroica phoenicea) 

& Norfolk robins (Petroica 

multicolor) 

Aggression N N N Both species are interspecifically territorial. Migratory flame 
robins  displace the less aggressive Norfolk robin upon returning 

to breeding habitat, likely displacing Norfolk robins into 

suboptimal habitat. 

(Robinson, 1992)  

Carolina chickadees (Poecile 

carolinensis) and black-capped 

chickadees (Poecile atricapillus) 

Aggression and 
Reproductive 

Interference 

N N N Carolina chickadees are more aggressive (dominant) than black-
capped chickadees, and that dominant chickadees are prefered by 

females of both species in mate choice trails. SDMs show that 

Carolina chickadees' distribution limit largely matches climatic 
predictors, whereas black-capped chickadee distribution does 

nor, suggesting that it is limited instead by interactions with 

Carolina chickadees.  

(Bronson et al., 2003; 
McQuillan and Rice, 2015) 

 

Invasive ring-necked parakeets 

(Psittacula krameri) and native 

communities 

Aggression N Y N Invasive ring-necked parakeets tend to be dominant in aggressive 
interactions, and consequnetly the parakeets exclude other 

species that use tree cavities, including greater noctules 

(Nyctalus lasiopterus), a threatened bat species. Although many 
birds currently appear to benefit from parakeet aggression 

towards predators, greater noctules decline where parakeets 

occur. 

(Hernández-Brito et al., 
2014) 

 

Townsend's warblers (Setophaga 

townsendi) and hermit warblers 

(Setophaga occidentalis) 

Aggression and 
Reproductive 

Interference 

N N N Moving hybrid zone attributed to asymmetries in behavioural 
interference. Both species defend mutually exclusive territories, 

though Townsend warbler's are likely to be more aggressive 

toward hermit warblers than vice versa. Similarly, though mating 
is largely assortative, exceptions are more likely with Townsend 

males mating with hermit females (not vice versa). 

(Pearson, 2000; Pearson 
and Rohwer, 2000) 

 

 

Western bluebirds (Sialia 

mexicana) & mountain bluebirds 

(Sialia currucoides) 

Aggression N N N As western bluebirds range shifts into mountain bluebirds range, 

mountain bluebird populations are going locally extinct due to 
aggression from western bluebirds limiting nesting opportunities.  

(Duckworth and Badyaev, 

2007; Duckworth, 2013; 
Duckworth, Belloni and 

Anderson, 2015) 

Exploitative competition for 

nestboxes (but nestbox access 
mediated by aggression) 

Spotted owls (Strix occidentalis) & 

barred owls (Strix varia) 

Aggression N Y N Barred owls are invading spotted owls' range and driving 

declines in spotted owls. Playback experiments with mounts 

demonstrate asymmetric aggression from barred owls toward 
spotted owls, and tracking data suggest they exclude spotted 

owls from breeding territories.  

(Gutiérrez et al., 2007; Van 

Lanen et al., 2011; Wiens, 

Anthony and Forsman, 
2014) 

 

Habitat loss, exploitative 

competition 

Dominant and subordinate 

congeneric birds in urban 

environmetns 

Aggression N N Y Subordinate species are less likely to occur and less abundant in 

cities where dominant species are widespread breeders 
(compared to in cities where the sub-dominant species is found 

in allopatry).  

(Martin and Bonier, 2018; 

Martin, Burke and Bonier, 
2021) 

Exploitative competition for 

resources not ruled out 



 59 

Dominant and subordinate birds 

from North America 

Aggression N N Y Subordinate species migrate further distances than dominant 

species 

(Freshwater, Ghalambor 

and Martin, 2014) 

 

Birds along an elevational 

gradient in Borneo 

Aggression Y N Y Simulated instrusion paper testing whether interspecific 

aggression drives parapatric ranges along an elevational gradient 
for different pairs of birds. They found support for this 

hypothesis in bulbuls: ochraceus bulbuls (Alophoixus ochraceus) 

respond aggressivly to pale-faced bulbuls (Pycnonotus leucops). 
However, they did not find evidence that parapatric white-eyes 

(Zosterops sp.) are aggressive to congeners. 

(Boyce and Martin, 2019) 

 

 

North american perching birds 

(passerines) 

Aggression and 

Reproductive 

Interference 

N N Y Analyses of sister taxa show that transitions from allopatry to 

secondary sympatry are best predicted by the interactive effect of 

interspecific territoriality and hybridization. 

(Cowen, Drury and 

Grether, 2020) 

 

Birds along an elevational 

gradient in Papua New Guinea 

Aggression Y N Y Playback experiments on five species pairs demonstrate that the 
lower elevation species are more aggressive toward 

heterospecifics than upper elevation confamilial counterparts, 

and that species only engaged in aggression towards HS at the 
range boundary, for three of the five species pairs. 

(Freeman, Class Freeman 
and Hochachka, 2016) 

 

Amphibia        

Southern Appalachian 

salamander (Plethodon teyahalee) 

& red-cheeked salamanders 

(Plethodon jordani) 

Aggression Y N N Extensive observational and experimental data (from removal 
experiments and behavioural experiments) demonstrate that 

aggressive interference is the cause of the species parapatric 

elevational ranges in the Great Smokey Mountains. Later 
modelling suggesting interspecific interactions prevent the low 

elevation southern Appalachian salamander from expanding into 

higher elevations. 

(Hairston, Nishikawa and 
Stenhouse, 1987; Gifford 

and Kozak, 2012) 

 

 

Actinopterygii        

Damselfish (Dischistodus spp.) in 

the Great Barrier Reef 

Aggression N N N Four species of damselfish have non overlapping habitat use 
within reef. Aquarium studies show the damselfish have wider 

habitat use than seen in the field and simulated intruder 

experiments in the field reveal high levels of interspecific 
aggression between species that use adjacent habitat. 

(Bay, Jones and 
McCormick, 2001) 

Habitat segregation 

Guppies (Poecilia reticulata) & 

mosquitofish (Gambusia affinis) 

Reproductive 

Interference 

N Y N Mosquitofish decline upon introduction of guppies, and 

experimental evidence shows that reproductive interference 

occurrs asymetrically, with negative fitness impacts on 
mosquitofish, but not guppies.  

(Tsurui-Sato et al., 2019)  

Obscure damselfish (Pomacentrus 

adelus) & speckled damselfish 

(Pomacentrus bankanensis) 

Aggression N N N Species are interspecifically territorial, and upon removal of 

obscure damsels, speckled damsels expand territories to occupy 

vacant space, with knock-on effects for other habitat use of other 
reef fish. 

(Eurich, McCormick and 

Jones, 2018) 

 

Invasive brown trout (Salmo 

trutta) & white-spotted charr 

(Salvelinus leucomaenis) in Japan 

Aggression N Y N Introduced brown trout has expanded throughout drainage, 
except upstream of weirs where white-spotted charr are more 

abundant. Experimental data shows that brown trout are 

dominant in behavioural trials. 

(Takami et al., 2002; 
Hasegawa et al., 2004; 

Hasegawa and Maekawa, 

2009) 
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Gopher rockfish (Sebastes 

carnatus) & Black-and-yellow 

rockfish (Sebastes chrysomelas) 

Aggression N N N Lab experiments show interspecific aggression for territories and  

removal experiments in the field show that the removal of both 

species allows the other to expand is depth range.  

(Larson, 1980)  

Arachnida        

Invasive sheet-web spiders 

(Linyphia triangularis) & bowl-

and-doily spiders (Frontinella 

communis) 

Aggression N Y N An invasive species of spider displaces a native species from 

their contructed web. Furthermore, field experiments 
demonstrate that bowl-and-doily spiders are less likely to settle 

in plots where the invasive species is present and that introducing 

the invasive species leads to declines in bowl-and-doily spiders. 

(Houser, Ginsberg and 

Jakob, 2014) 

Exploitative competition for 

resources ruled out 

Copepoda        

Skistodiaptomus copepods Reproductive 

Interference 

N N N S. oregonensis and S. pygmaeus exhibit a parapatric boundary. 

Laboratory studies demonstrate high levels of reproductive 
interference (though no evidence of introgression), suggesting 

that Allee effects generated by  reproductive interference 

maintain this parapatric boundary. 

(Thum, 2007) Ecological gradients ruled out 

as possible explanation 

Crustacea        

Invasive rusty crayfish 

(Orconectes rusticus) and native 

Sanborn crayfish (Orconectes 

sanborni)  

Aggression and 

Reproductive 
Interference 

N Y N An invasive crayfish (O. rusticus) that replaces native crafish (O. 

sanborni) tends to be dominant, and because females of the 
invasive species are larger, males of the native species prefer to 

mate with invasive females, reducing native female fitness. 

(Butler and Stein, 1985) Juvenile susceptibility to 

predation of native species 

Invasive signal crayfish 

(Pacifastacus leniusculus) in 

Europe & native communities 

Aggression and 

Reproductive 
Interference 

N Y N Signal crayfish have been introduced in many locations 

throughout Europe, and In several instances, have coincided with 
decline of native species. In Finland & Sweden, longitudinal data 

show replacement of native Astacus astacus, with experimental 

evidence that both reproductive interference and aggression 
implicated in the decline. Agonistic interactions with bullhead 

(Cottus gobio) drive bullhead out of shelters, which may explain 

pattern where density of signal crayfish is negatively correlated 
with that of bullhead. 

Svärdson et al. 1991 

 
(Söderbäck, 1994, 1995; 

Westman and Savolainen, 

2001; Westman, 
Savolainen and Julkunen, 

2002; Bubb et al., 2009) 

Signal crayfish are resistent to 

crayfish plague that contributes 
to decline of native crayfish 

species; Life history traits (e.g., 

developmental time) 

Gastropoda        

Keyhole limpets (Siphonaria 

lessonii) & pulmonate limpets 

(Fissurella crassa) 

Aggression N N N Mesocosm experiments demonstrate that large keyhole limpets 
aggressively displace smaller pulmonate limpets from crevices, 

and that displacement has fitness consequences not related to 

exploitative competition. 

(Aguilera and Navarrete, 
2012) 

 

 

Insecta         

Aedes mosquitos (Ae. albopictus & 

Ae. aegypti) 

Reproductive 

Interference 

N Y N In places where Ae. aegypti is established, males in invading 

populations of Ae. albopictus mate with Ae. aegypti females, 
greatly reducing their fitness and leading to replacement of Ae. 

aegypti by Ae. albopictus.  

(Nasci, Hare and Willis, 

1989; Bargielowski, 
Lounibos and Carrasquilla, 

2013; Bargielowski and 

Lounibos, 2016; Lounibos 
and Juliano, 2018; Zhou et 

al., 2022) 

Larval resource competition 
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Two tick species (Amblyomma 

variegatum & Amblyomma 

hebraeum) 

Reproductive 

Interference 

N N N Two species of tick are larglely parapatric . In sympatry, 

interspecific copulations are commonly observed, with little 

geographic overlap, suggesting symmetric reproductive 
interference may maintain parapatric boundary. 

(Bournez et al., 2015)  

Whiteflies (Bemisia tabaci spp.) Reproductive 
Interference 

N Y N Invading whitefly species have replaced  native strains in several 
locations owing to asymmetric reproductive interference, in 

which matings from invading males reduce fitness of native 

females. 

(Liu et al., 2007; Crowder 
et al., 2011; Wang, 

Crowder and Liu, 2012) 

Life history traits (e.g., 
developmental time, relative 

fecundity; though not sufficient 

without asymmetric 
reproductive interference to 

explain rapid replacement) 

Invasive buff-tailed bumblebees 

(Bombus terrestris) & native 

bumblebees (Bombus h. 

sapporoensis 7 Bombus ignitus) in 

Japan 

Reproductive 

Interference 

N Y N The invasive bumblebee species bombus terrestris engages in 

reproductive interference with two species of native bumblebee. 

Copulation between B. terrestris and B. h. sapporoensis or B. 

ignitus results in unviable eggs being laid the following spring, 

driving declines native bumblebee species. 

(Tsuchida et al., 2019) Exploitative competition for 

nectar and nest sites 

Rubyspot damselflies (Hetaerina 

spp.) 

Aggression N N Y Rubyspot damselflies, which engage in high levels of 
reproductive interference and interspecific territoriality, have 

diverged in microhabitat use in a way that reduces the effects of 

behavioural interference. 

(McEachin et al., 2022)  

Two ant species (Iridomyrmex 

spp.) 

Aggression N N N Removal experiments that two species hold mutually exclusive 
territories and compete for space to build colonies. Over a short 

period of time (11 months), one species ("C") replaced by 

another ("A"), in part due to asymmetric competition. 

(Haering and Fox, 1987) 
 

Habitational succession 

Arboreal termite species in Papua 

New Guinea (Microcerotermes 

biroi, Nasutitermes 

novarumhebridiarum, &  

Nasutitermes princeps) 

Aggression N N Y Long term mapping of arboreal termite nests and their territories 

in combination with behavioural observations shows that species 

defend mutually exclusive territories. Removal experiments of N. 

princeps drives concomitant increase in M. biroi home range.   

(Leponce, Roisin and 

Pasteels, 1997) 

 

White-crossed seed bugs 

(Neacoryphus bicrurus) and co-

occurring insect communities 

Aggression and 

Reproductive 

Interference 

N N N White-crossed seed bugs engage in asymmetrical reproductive 

interference (misdirected courtship) and aggression towards 

many species, and removal experiments demonstrate that several 
other species increase in density when white-crossed seed bugs 

are removed. 

(McLain and Shure, 1987)  

Invasive southern green stink 

bugs (Nezara viridula) & native 

green stink bugs (Nezara 

antennata) 

Reproductive 

Interference 

N Y N Invasive southern green stink bugs are expanding in Japan into 

the range of and replacing native green stink bugs. In regions of 

coexistence, heterospecific copulations are commonly observed, 
and reproductive interference is suspected to drive declines of 

native species.  

(Kiritani, 2011) 

 

Shifting climatic suitability 

Alpine dark bush-crickets 

(Pholidoptera aptera) & 

Transylvanian dark bush-crickets 

(Pholidoptera transsylvanica) 

Reproductive 

Interference 

N N N Bush-crickets exhibit a 'mosaic' pattern of distribution, where the 

two species are rarely found in syntopy. Experiments 
demonstrate that heterospecific matings resulting in transfer of 

spermatophores are common. 

(Dorková et al., 2020) Habitat segregation ruled out 

Eastern subterranean termites 

(Reticulitermes flavipes) & 

Aggression N Y N Invasive eastern subterranean termites are dominant in 

aggressive interactions over  native western subterranean 
termites; success of invasion is attributed to this asymmetry.  

(Perdereau et al., 2011) 

 

Lack of intraspecific aggression 

in invasive species; 
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Western subterranean termits 

(Reticulitermes grassei) 

demographic factors (large 

colony size) 

Invasive Asian blue ticks 

(Rhipicephalus [Boophilus] 

microplus) & African blue ticks 

(Rhipicephalus [Boophilus] 

decoloratus) in South Africa  

Reproductive 

Interference 

N Y N Invasive Asian blue ticks have replaced African blue ticks in 

South Africa. Interspecific matings lead to sterile hybrids, so 
rapid demographic increases in invader populations lead to Allee 

effects driving local extinction of native species. 

(Sutherst, 1987; Tønnesen 

et al., 2004, 2004) 

Life history traits (e.g., 

developmental time); host 
resistance 

Cepero's groundhoppers (Tetrix 

ceperoi) & slender groundhoppers 

(Tetrix subulata) 

Reproductive 

Interference 

N N N Groundhoppers exhibit a 'mosaic' pattern of distribution, where 

the two species are rarely found in syntopy. Laboratory and field 
experiments demonstrate that extensive reproductive interference 

is likely responsible for this spatial distribution. 

(Gröning et al., 2007; 

Hochkirch, Gröning and 
Bücker, 2007; Hochkirch 

and Gröning, 2012) 

Habitat segregation ruled out 

Arboreal ant species in Papua 

New Guinea 

Aggression N N Y Colony mapping and behavioural experiments demonstrate that 

interspecific aggression is the key factor shaping the spatial 
distribution of ant species in a 9 hectare plot 

(Mottl et al., 2021) Habitat segregation ruled out 

Mammalia        

Fallow deer (Dama dama) &  roe 

deer (Capreolus capreolus) 

Aggression N Y N Fallow deer displace  roe deer but not vice versa, and that habitat 
use by roe deer is affected by presence of fallow dear. Together, 

these suggest behavioural interference has led to decline in roe 

deer populations as fallow deer populations have increased.  

(Ferretti and Mori, 2020) 
 

Exploitative competition for 
resources not ruled out 

White-handed gibbons (Hylobates 

lar) & Pileated gibbons (Hylobates 

pileatus)  

Aggression N N N Two species of gibbon are largely parapatric, with a small 
contact zone that is maintained by interspecific territorial 

aggression. 

(Suwanvecho and 
Brockelman, 2012; Asensio 

et al., 2017) 

Niche partitioning (via habitat 
segregation or diet divergence) 

ruled out. 

Least chipmunks (Neotamias 

minimus) & yellow-pine 

chipmunks (Neotamias amoenus) 

Aggression Y N N Removal experiments of two species of chipmunk that engage in 

aggressive interference. When yellow-pine chipmunks were 
removed, least chipmunks captures increased; the converse did 

not occur.  

(Chappell, 1978; Heller, no 

date) 

 

Townsend's chipmunks 

(Neotamias townsendii) & yellow-

pine chipmunks (Neotamias 

amoenus) 

Aggression N N N Removal experiments of two species of chipmunk that engage in 

aggressive intractions with one another show that when 
heterospecifics are removed, the range size of the retained 

species and juvenile recruitment increases. 

(Trombulak, 1985) Habitat segregation ruled out 

Uinta chipmunks (Neotamias 

umbrinus) & Colorado chipmunks 

(Neotamias quadrivittatus) 

Aggression Y N N Colorado chipmunks cannot move into higher elevational 

because of  aggressive interactions with Uinta chipmunks. Uinta 
chipmunks hypothesised to be restricted to higher elevations 

because of the high parasitic load of a bot file found at lower 

elevations. 

(Bergstrom, 1992)  

Stoats (Mustela erminea) & least 

weasels (Mustela nivalis) 

Aggression N N N Experimental data demonstrates that stoats are dominant over 

weasels, and observational data shows that weasels are very 
rarely found in prefered habitat when a stoats held a territory in 

the area. Distributional data collected over several years shows 

that when stoats declined, weasels increased locally. 

(Erlinge and Sandell, 1988) 

 

 

Pied tamarins (Saguinus bicolor) 

& Golden-handed tamarins 

(Saguinus midas) 

Aggression N N N Playback experiment of two species on Tarmarin, in allopatry 
and sympatry. Pied tamarins are critically edangered and 

experiencing range fragmentation, while red-handed tamarins 

have expanded their range into the range of pied tamarins. 

(Sobroza et al., 2021)  
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Playback experiments show that  red-handed tarmarin respond 

more agressively  than the pied tamarins. 

Chiriquí singing mice (Scotinomys 

xerampelinus) & Alston's singing 

mice (Scotinomys teguina) 

Aggression Y N N Playback experiments, laboratory experiments, and removal 

experiments all demonstrate that the higher elevation species 

(Scotinomys xerampelinus) is dominant and preempts range 
intrusions from lower elevation species. In  removal experiments, 

Scotinomys xerampelinus didn't descend to occupy areas where 

Scotinomys teguina was removed, but Scotinomys teguina did 
invade higher elevation areas when Scotinomys xerampelinus 

was removed. 

(Pasch, Bolker and Phelps, 

2013) 

 

 

Reptilia        

Invasive house geckos 

(Hemidactylus frenatus) & native 

communities 

Aggression and 

Reproductive 

Interference 

N Y N Comprehensive longitudinal data, in combination with laboratory 

and field experiments, show that introduced house geckos are 

aggressive to and avoided by native species, leading to the 
decline of native species accross many different locations. 

Reproductive interference has also been demonstrated in some 

locations. 

(Bolger and Case, 1992; 

Petren, Bolger and Case, 

1993; Case, Bolger and 
Petren, 1994; Dame and 

Petren, 2006) 

 

Competitive exclusion due to 

differential resource acquisition 

(though this results from 
interference competition) 
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