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Abstract  7 

Novel biotic interactions in shifting communities play a key role in determining the ability of 8 

species’ ranges to track suitable habitat. To date, the impact of biotic interactions on range 9 

dynamics have predominantly been studied in the context of interactions between different 10 

trophic levels or, to a lesser extent, exploitative competition between species of the same 11 

trophic level. Yet, both theory and a growing number of empirical studies show that 12 

interspecific behavioural interference, such as interspecific territorial and mating interactions, 13 

can slow down range expansions, preclude coexistence, or drive local extinction, even in the 14 

absence of resource competition. We conducted a systematic review of the current empirical 15 

research into the consequences of interspecific behavioural interference on range dynamics. 16 

Our findings demonstrate there is abundant evidence that behavioural interference by one 17 

species can impact the spatial distribution of another. Furthermore, we identify several gaps 18 

where more empirical work is needed to robustly test predictions from theory. Finally, we 19 

outline several avenues for future research, providing suggestions for how interspecific 20 

behavioural interference could be incorporated into existing biotic-interactions frameworks of 21 

range expansion, such as species distribution models, to build a stronger understanding of the 22 

potential consequences of behavioural interference on the outcome of future range dynamics.  23 
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I. Introduction  44 

As anthropogenic changes continue to alter the availability and distribution of 45 

habitats, the spatial distribution of species’ niches will shift, in turn driving shifts in species' 46 

ranges (Parmesan and Yohe 2003). Given that species vary in their niches and in their 47 

responses to environmental change, communities will not shift in concert, resulting in a 48 

global reshuffling of diversity and the formation of novel species assemblages. Similarly, 49 

invasions due to anthropogenic factors can have disruptive effects on species assemblages. 50 

Interactions between species--whether between previously coexisting species or between 51 

newly co-occurring species in shifting communities--play key roles in determining the ability 52 

of species’ ranges to track suitable habitats (Alexander, Diez, and Levine 2015; Blois et al. 53 

2013; Early and Keith 2019; Ockendon et al. 2014). For instance, the arrival of novel 54 

predators can drive prey species to extinction (e.g., brown tree snakes [Boiga irregularis] 55 

drove the local extinction of several bird species after they were introduced to Guam, 56 

(Savidge 1987); conversely, the local extinction of one species can destabilize interaction 57 

networks, driving secondary extinctions (e.g., experimental removal of a keystone predator 58 

[Pisaster ochraceus] led to a decline in diversity in the marine intertidal zone, (Paine 1966)). 59 

By and large, studies on the impacts of biotic interactions on population and range dynamics 60 

have predominantly focused on interactions across trophic levels or, to a lesser extent, 61 

exploitative competition between species of the same trophic level (Sirén and Morelli 2020; 62 

Early and Keith 2019; Louthan, Doak, and Angert 2015; Svenning et al. 2014; Legault et al. 63 

2020; Ortego and Knowles 2020). 64 

Yet, an important type of competition between closely related animal species is often 65 

overlooked: interspecific behavioural interference (Grether et al. 2017). Behavioural 66 

interference encompasses any aggressive, territorial, or mating behaviour by one species that 67 

has a negative impact on the fitness of another species (Grether et al. 2017; Gröning and 68 
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Hochkirch 2008; Burdfield-Steel and Shuker 2011) and has been documented across a wide 69 

range of taxa (Gröning and Hochkirch 2008; Peiman and Robinson 2010). In general, 70 

aggressive and sexual interactions arise between species that are phenotypically and 71 

ecologically similar owing to recent shared ancestry (e.g., species with similar sexual signals 72 

and/or perceptual systems). Such interactions are costly and lead to decreased fitness as 73 

individuals waste energy, are driven to use suboptimal habitat, or miss out on mating 74 

opportunities with conspecifics. Consequently, behavioural interference can decrease 75 

population growth rates, cause exclusion from adequate habitat, and reduce or prevent 76 

dispersal into novel areas (Grether et al. 2017). Thus, interspecific behavioural interference is 77 

likely to have important impacts on range dynamics.  78 

Several theoretical investigations of behavioural interference have modelled the 79 

factors that promote or preclude coexistence (T. J. Case and Gilpin 1974; Kuno 1992; Liou 80 

and Price 1994; Amarasekare 2002; Mikami and Kawata 2004; Kishi and Nakazawa 2013; 81 

Kyogoku and Sota 2017; Iritani and Noriyuki 2021; Irwin and Schluter 2022; Grether and 82 

Okamoto 2022) and a handful have even explicitly analysed how processes affecting 83 

coexistence locally scale up to influence the outcome of movement across landscapes 84 

(Ribeiro and Spielman 1986; Crowder et al. 2011; Nishida, Takakura, and Iwao 2015; 85 

Ruokolainen and Hanski 2016; Legault et al. 2020). One key insight from these models is 86 

that the impact of interspecific behavioural interference is likely to be highest when one of 87 

the interacting species occurs at a much lower frequency than the other, as interspecific 88 

interference will be more common than intraspecific interactions for the rarer species (e.g., 89 

(Amarasekare 2002; Kuno 1992). Consequently, Allee effects resulting from behavioural 90 

interference may make it very difficult for viable populations to become established in novel 91 

geographic areas (Grether et al. 2017) or may drive precipitous local extinction once 92 

population densities fall below a certain threshold. A common result in models incorporating 93 
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behavioural interference is the formation and maintenance of abutting (parapatric) range 94 

limits, which may move according to the magnitude of and degree of asymmetry in 95 

interference (Ribeiro and Spielman 1986; Nishida, Takakura, and Iwao 2015). Another 96 

insight from these models relates to the interactive effect of resource competition and 97 

behavioural interference--several models also show dynamics of systems with both resource 98 

competition and behavioural interference are markedly different than systems with resource 99 

competition alone (Ribeiro and Spielman 1986; Amarasekare 2002; Crowder et al. 2011), 100 

which underscores the importance of further research into behavioural interference in 101 

attempts at predicting species responses to shifting assemblages.  102 

Insights derived from theory about the impact of behavioural interference on range 103 

dynamics are now backed up by a growing body of empirical research. Interspecific 104 

behavioural interference has been shown to impact a range of spatial dynamics, ranging from 105 

local-scale habitat use (Vallin et al. 2012) to large-scale range limit shifts (Duckworth and 106 

Badyaev 2007). Here we present the results of the first synthesis of this body of work through 107 

a systematic literature review, and, in light of the widespread evidence that behavioural 108 

interference impacts range dynamics, we discuss patterns emerging from existing studies, 109 

highlight key gaps in the literature, and suggest several avenues for future research. 110 

 111 

II. Systematic literature review 112 

To identify examples of interspecific behavioural interference influencing the spatial 113 

distribution of a species, we conducted a search of peer-review literature using the “all 114 

databases” option in Web of Science (https://www.webofscience.com/). We used the search 115 

term “TS=(((behaviour*  OR behavior*) NEAR/6 interference) OR (reproduct* NEAR/6 116 

interference) OR (interspecific NEAR/6 (behaviour* OR behavior*) NEAR/6 competition)  117 

OR ((interspecific OR heterospecific) NEAR/6 aggress*)  OR ((interspecific OR 118 

https://www.webofscience.com/
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heterospecific)  NEAR/6 dominan*)  OR ((interspecific OR heterospecific) NEAR/6 territor*)  119 

OR ((interspecific OR heterospecific)  NEAR/6 interference) OR (sister AND (taxa OR 120 

species) AND (competition OR aggress* OR territor*OR dominan* OR interference))) AND 121 

TS= ((range* NEAR/6 shift*) OR (species NEAR/6 distribution*)  OR (range* NEAR/6 122 

expansion*)  OR (range* NEAR/6 dynamic*)  OR (species NEAR/6 displace*)  OR (species 123 

NEAR/6 replace*) OR (Altitud* NEAR/6 (zonat* OR zone)))”. As of the search date (2022-124 

10-13), this produced a database of 338 unique peer-reviewed articles, which both authors 125 

contributed to reading and extracting data from. To reduce bias in data extraction between 126 

readers, the first 37 papers (10%) were independently read by both of us and data extraction 127 

compared. For the 10% of papers initially read by both readers, the interpretation of the paper 128 

and data extracted was concordant. We only included cases for which there are direct 129 

observations of interspecific behavioural interference and an explicit link between that 130 

interference to spatial dynamics, which added 72 papers in our final set. For instance, in cases 131 

where species have abutting boundaries (e.g., parapatric range limits), we only included cases 132 

where behavioural interference has been documented and this boundary does not also 133 

coincide with clear shifts in habitat types. Similarly, for instances of microhabitat segregation 134 

or mosaic distribution patterns, we required the study to demonstrate that shifts in habitat use 135 

directly result from behavioural interference. While reading these papers, we also noted 136 

papers that the authors cited as further evidence for behavioural interference and/or range 137 

dynamics within their own or other study systems which added 26 additional papers to our 138 

final set. Of the 98 studies in our final set, 62 studies provided clear evidence that 139 

interspecific behavioural interference impacts the spatial distribution of a species, with 19 140 

additional studies providing corroborating evidence in combination with other papers. The 141 

remaining papers either found no effect (n=15) or were inconclusive (n=2). The 81 papers 142 

that, either provide evidence directly or in collaboration with other studies, found clear 143 
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evidence in favour of interspecific behavioural interference impacting the spatial distribution 144 

of a species and were sorted into 54 unique study systems (Figure 1, Table 1). 145 

 146 

Figure 1. There is widespread evidence that behavioural interference influences spatial 147 

dynamics in animals. A. The breakdown of study systems that directly measured the impact 148 

of interspecific behavioural interference on the spatial distribution of one of more species by 149 

phylum, class, and whether the study covered aggressive, reproductive behavioural 150 

interference, or both. All studies investigated the impact of intraclass behavioural 151 

interference, except for one case of interphylum behavioural interference between a 152 

Crustacean and Actinopterygii (Bubb et al. 2009). The interphyla study is counted here as 153 

Crustacea study as the Crustacea was the more aggressive species. Sankey diagram was 154 
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created using the R package ggsankey B. In Thailand, two species of gibbon, the white-155 

handed gibbon (Hylobates lar) and the pileated gibbon (Hylobates pileatus), have a 156 

parapatric distribution with only a small (<1km wide) boundary where the species are found 157 

in sympatry. Both H. lar and H. pileatus hold territories that are controlled exclusively by 158 

monogamous pairs. Detailed mapping of territories and observation of conflict events show 159 

that where the two species are found in sympatry, pairs defend territories from conspecifics 160 

and heterospecifics (Asensio et al. 2017). The relatively low abundance of hybrids at the 161 

boundary suggests that there is strong reproductive isolation between the two species. 162 

However, interspecific aggression persists which prevents the two species from dispersing 163 

into each other’s ranges. C. Indiscriminate hyperaggression of Noisy miners (Manorina 164 

melanocephala) has led to shift in the whole structure of avian communities (Mac Nally et al. 165 

2012). D. In Japan, the invasive bumblebee Bombus terrestris engages in reproductive 166 

interference with two species of native bumblebee species. Copulation between male B. 167 

terrestris and female Bombus hypocrita sapporoensis or Bombus ignites results in unviable 168 

eggs being laid the following spring when there are no further intraspecific mating 169 

opportunities. Consequently, B. ignities and B. h. sapporeenis have declined rapidly in areas 170 

with B. terrestris and could lead to the extinction of the native bumblebee species (Tsuchida 171 

et al. 2019). (https://github.com/davidsjoberg/ggsankey). E. The accidental introduction of 172 

guppies Poecilia reticulata) led to the eradication of invasive mosquito fish 173 

(Gambusia affinis) in Okinawa owing to reproductive interference, and consequently guppies 174 

have been proposed as a potential control agent for mosquito fish elsewhere (Tsurui-Sato et 175 

al. 2019). F. Pied flycatchers (Ficedula hypoleuca) are driven to use sub-optimal habitat by 176 

the high aggression of collared flycatchers (Ficedula albicollis) (Vallin et al. 2012; Rybinski 177 

et al. 2016). All photos under creative commons by Wikimedia-user:Kongkham6211, JJ 178 
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Harrison, flickr-user:coniferconifer, Vera Buhl, Rex Boggs, Andrej Chudý, Ron Knight, 179 

Holger Krisp, and Wikimedia-user:Fredlyfish4. 180 

 181 

  182 
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Table 1: All 54 study systems identified during the literature review that found clear 183 

evidence that interspecific behavioural interference (IBI) impacts the spatial distribution of a 184 

species. An expanded table which includes a description of each study system can be found in 185 

Supplementary Table 1. 186 

Interacting Species IBI.Type Elevational 

(Y/N) 

Invasion 

(Y/N) 

Comparative 

(Y/N) 

References 

Aves      

Great reed warblers (Acrocephalus arundinaceus) 

& marsh warblers (Acrocephalus palustris) 

Aggression N N N (Rolando and Palestrini 

1989) 

Bicknell's thrushes (Catharus bicknelli) & 

Swainson's thrushes (Catharus ustulatus) 

Aggression Y N N (Freeman and 

Montgomery 2015) 

Black-headed nightingale thrushes (Catharus 

mexicanus) & ruddy-capped nightingale-thrushes 
(Catharus frantzii) 

Aggression Y N N (Jones et al. 2020) 

 

Collared (Ficedula albicollis) & pied (Ficedula 

hypoleuca) flycatchers 

Aggression N N N (Vallin et al. 2012; 

Rybinski et al. 2016) 

Several species of wood wrens (Henicorhina 

leucophrys & Henicorhina leucosticta) and 
thrushes (Catharus mexicanus & Catharus 

aurantiirostris) along an elevational gradient in 

Costa Rica. 

Aggression Y N N (Jankowski, Robinson, and 

Levey 2010) 

Narrow-billed woodcreepers (Lepidocolaptes 
angustirostris) & scaled woodcreepers 

(Lepidocolaptes squamatus) 

Aggression N N N (Maldonado-Coelho et al. 
2017) 

Common nightingales (Luscinia megarhynchos) 

& thrush nightingales (Luscinia luscinia) 

Aggression N N N (Sorjonen 1986; Reif et al. 

2015; 2018) 

Noisy miners (Manorina melanocephala) & local 

bird assemblages 

Aggression N N N (Mac Nally et al. 2012; 

Lill and Muscat 2015) 

Flame robins (Petroica phoenicea) & Norfolk 
robins (Petroica multicolor) 

Aggression N N N (Robinson 1992) 

Carolina chickadees (Poecile carolinensis) and 

black-capped chickadees (Poecile atricapillus) 

Aggression 

and 

Reproductive 
Interference 

N N N (Bronson et al. 2003; 

McQuillan and Rice 2015) 

Invasive ring-necked parakeets (Psittacula 

krameri) and native communities 

Aggression N Y N (Hernández-Brito et al. 

2014) 

Townsend's warblers (Setophaga townsendi) and 

hermit warblers (Setophaga occidentalis) 

Aggression 

and 

Reproductive 
Interference 

N N N (Pearson 2000; Pearson 

and Rohwer 2000) 

 

Western bluebirds (Sialia mexicana) & mountain 

bluebirds (Sialia currucoides) 

Aggression N N N (Duckworth and Badyaev 

2007; Duckworth 2013; 
Duckworth, Belloni, and 

Anderson 2015) 

Spotted owls (Strix occidentalis) & barred owls 

(Strix varia) 

Aggression N Y N (Gutiérrez et al. 2007; Van 

Lanen et al. 2011; Wiens, 

Anthony, and Forsman 
2014) 

 

Dominant and subordinate congeneric birds in 

urban environmetns 

Aggression N N Y (Martin and Bonier 2018; 

Martin, Burke, and Bonier 
2021) 

Dominant and subordinate birds from North 

America 

Aggression N N Y (Freshwater, Ghalambor, 

and Martin 2014) 

Birds along an elevational gradient in Borneo Aggression Y N Y (Boyce and Martin 2019) 

 

North american perching birds (passerines) Aggression 

and 

N N Y (Cowen, Drury, and 

Grether 2020) 
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Reproductive 

Interference 

Birds along an elevational gradient in Papua New 

Guinea 

Aggression Y N Y (Freeman, Class Freeman, 

and Hochachka 2016) 

Amphibia      

Southern Appalachian salamander (Plethodon 

teyahalee) & red-cheeked salamanders 
(Plethodon jordani) 

Aggression Y N N (Hairston, Nishikawa, and 

Stenhouse 1987; Gifford 
and Kozak 2012) 

 

Actinopterygii      

Damselfish (Dischistodus spp.) in the Great 

Barrier Reef 

Aggression N N N (Bay, Jones, and 

McCormick 2001) 

Guppies (Poecilia reticulata) & mosquitofish 

(Gambusia affinis) 

Reproductive 

Interference 

N Y N (Tsurui-Sato et al. 2019) 

Obscure damselfish (Pomacentrus adelus) & 

speckled damselfish (Pomacentrus bankanensis) 

Aggression N N N (Eurich, McCormick, and 

Jones 2018) 

Invasive brown trout (Salmo trutta) & white-

spotted charr (Salvelinus leucomaenis) in Japan 

Aggression N Y N (Takami et al. 2002; 

Hasegawa et al. 2004; 

Hasegawa and Maekawa 

2009) 
 

Gopher rockfish (Sebastes carnatus) & Black-

and-yellow rockfish (Sebastes chrysomelas) 

Aggression N N N (Larson 1980) 

Arachnida      

Invasive sheet-web spiders (Linyphia 

triangularis) & bowl-and-doily spiders 

(Frontinella communis) 

Aggression N Y N (Houser, Ginsberg, and 

Jakob 2014) 

Copepoda      

Skistodiaptomus copepods Reproductive 

Interference 

N N N (Thum 2007) 

Crustacea      

Invasive rusty crayfish (Orconectes rusticus) and 

native Sanborn crayfish (Orconectes sanborni)  

Aggression 

and 

Reproductive 

Interference 

N Y N (Butler and Stein 1985) 

Invasive signal crayfish (Pacifastacus 

leniusculus) in Europe & native communities 

Aggression 

and 
Reproductive 

Interference 

N Y N Svärdson et al. 1991 

 
(Björn Söderbäck 1994; B. 

Söderbäck 1995; Westman 

and Savolainen 2001; 
Westman, Savolainen, and 

Julkunen 2002; Bubb et al. 

2009) 

Gastropoda      

Keyhole limpets (Siphonaria lessonii) & 

pulmonate limpets (Fissurella crassa) 

Aggression N N N (Aguilera and Navarrete 

2012) 
 

Insecta      

Aedes mosquitos (Ae. albopictus & Ae. aegypti) Reproductive 
Interference 

N Y N (Nasci, Hare, and Willis 
1989; Irka E. 

Bargielowski, Lounibos, 

and Carrasquilla 2013; 
Irka Ewa Bargielowski 

and Lounibos 2016; 

Lounibos and Juliano 
2018; Zhou et al. 2022) 

Two tick species (Amblyomma variegatum & 

Amblyomma hebraeum) 

Reproductive 

Interference 

N N N (Bournez et al. 2015) 

Whiteflies (Bemisia tabaci spp.) Reproductive 

Interference 

N Y N (Liu et al. 2007; Crowder 

et al. 2011; Wang, 
Crowder, and Liu 2012) 

Invasive buff-tailed bumblebees (Bombus 

terrestris) & native bumblebees (Bombus h. 

sapporoensis 7 Bombus ignitus) in Japan 

Reproductive 

Interference 

N Y N (Tsuchida et al. 2019) 

Rubyspot damselflies (Hetaerina spp.) Aggression N N Y (McEachin et al. 2022) 
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Two ant species (Iridomyrmex spp.) Aggression N N N (Haering and Fox 1987) 

 

Arboreal termite species in Papua New Guinea 

(Microcerotermes biroi, Nasutitermes 

novarumhebridiarum, & Nasutitermes princeps) 

Aggression N N Y (Leponce, Roisin, and 

Pasteels 1997) 

White-crossed seed bugs (Neacoryphus bicrurus) 
and co-occurring insect communities 

Aggression 
and 

Reproductive 

Interference 

N N N (McLain and Shure 1987) 

Invasive southern green stink bugs (Nezara 
viridula) & native green stink bugs (Nezara 

antennata) 

Reproductive 
Interference 

N Y N (Kiritani 2011) 
 

Alpine dark bush-crickets (Pholidoptera aptera) 

& Transylvanian dark bush-crickets 
(Pholidoptera transsylvanica) 

Reproductive 

Interference 

N N N (Dorková et al. 2020) 

Eastern subterranean termites (Reticulitermes 
flavipes) & Western subterranean termits 

(Reticulitermes grassei) 

Aggression N Y N (Perdereau et al. 2011) 
 

Invasive Asian blue ticks (Rhipicephalus 

[Boophilus] microplus) & African blue ticks 
(Rhipicephalus [Boophilus] decoloratus) in South 

Africa  

Reproductive 

Interference 

N Y N (Sutherst 1987; Tønnesen 

et al. 2004) 

Cepero's groundhoppers (Tetrix ceperoi) & 

slender groundhoppers (Tetrix subulata) 

Reproductive 

Interference 

N N N (Gröning et al. 2007; 

Hochkirch, Gröning, and 
Bücker 2007; Hochkirch 

and Gröning 2012) 

Arboreal ant species in Papua New Guinea Aggression N N Y (Mottl et al. 2021) 

Mammalia      

Fallow deer (Dama dama) & roe deer (Capreolus 

capreolus) 

Aggression N Y N (Ferretti and Mori 2020) 

 

White-handed gibbons (Hylobates lar) & Pileated 

gibbons (Hylobates pileatus)  

Aggression N N N (Suwanvecho and 

Brockelman 2012; 
Asensio et al. 2017) 

Least chipmunks (Neotamias minimus) & yellow-

pine chipmunks (Neotamias amoenus) 

Aggression Y N N (Chappell 1978; Heller 

1971) 

Townsend's chipmunks (Neotamias townsendii) 

& yellow-pine chipmunks (Neotamias amoenus) 

Aggression N N N (Trombulak 1985) 

Uinta chipmunks (Neotamias umbrinus) & 

Colorado chipmunks (Neotamias quadrivittatus) 

Aggression Y N N (Bergstrom 1992) 

Stoats (Mustela erminea) & least weasels 
(Mustela nivalis) 

Aggression N N N (Erlinge and Sandell 1988) 
 

Pied tamarins (Saguinus bicolor) & Golden-

handed tamarins (Saguinus midas) 

Aggression N N N (Sobroza et al. 2021) 

Chiriquí singing mice (Scotinomys xerampelinus) 

& Alston's singing mice (Scotinomys teguina) 

Aggression Y N N (Pasch, Bolker, and Phelps 

2013) 

 

Reptilia      

Invasive house geckos (Hemidactylus frenatus) & 
native communities 

Aggression 
and 

Reproductive 

Interference 

N Y N (Bolger and Case 1992; 
Petren, Bolger, and Case 

1993; Ted J. Case, Bolger, 

and Petren 1994; Dame 
and Petren 2006) 

 187 

 188 

  189 
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(1) Reproductive interference versus interspecific aggression 190 

We identified more study systems where aggressive interference (N = 37) influenced range 191 

dynamics than reproductive interference (N = 10). Seven study systems found both 192 

reproductive and aggression influencing range dynamics (Figure 1, Table 1). This suggest 193 

that competitive exclusion via interference competition is likely to be more widespread than 194 

sexual exclusion. Nevertheless, it is also possible that the role of reproductive interference in 195 

such cases has been overlooked. Indeed, interspecific territoriality often occurs between 196 

species that engage in reproductive interference (Drury et al. 2015; Drury, Cowen, and 197 

Grether 2020; Grether et al. 2020; Payne 1980), including in several case studies uncovered 198 

by the systematic literature review (Vallin et al. 2012; Wiens, Anthony, and Forsman 2014; 199 

Reif et al. 2018), so the abundance of examples of aggressive interference influencing spatial 200 

dynamics in vertebrates may also be indicative of undetected reproductive interference. 201 

Further empirical and theoretical work would help clarify the relative importance as well as 202 

the interactive, potentially non-additive, impacts of different types of behavioural interference 203 

on spatial dynamics. 204 

The taxonomic distribution of case studies was the most apparent difference among 205 

the factors associated with different types of behavioural interference (Figure 1). Most 206 

examples of reproductive interference influencing range dynamics were conducted on 207 

arthropods (9 out of 10). This contrasts with studies of aggressive interference that were 208 

dominated by vertebrates (30 out of 37), especially birds (n = 17). Empirical examples of 209 

reproductive interference are taxonomically widespread (Gröning and Hochkirch 2008), so it 210 

is surprising to see that evidence of reproductive interference influencing the spatial 211 

dynamics of a species come predominantly from insects and arachnids. One potential 212 

explanation for this apparent bias is that it reflects a biological reality about the costs of 213 

reproductive interference in arthropods; the fitness cost of reproductive interference may be 214 
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especially high in arthropods because of females’ short reproductive lifespans, and, because 215 

in some species, females produce no viable offspring after interspecific mating (Ribeiro and 216 

Spielman 1986), which makes a species particularly vulnerable to local extinction (Irwin and 217 

Schluter 2022). Alternatively, the bias may reflect a methodological convenience of working 218 

with invertebrates—reproductive interference may be hard to measure in the field without 219 

experimental mating trails, making larger scale field research of the sort necessary to build a 220 

link between reproductive interference and range dynamics more feasible on arthropods.  221 

 222 

(2) Elevational gradients  223 

Range dynamics along elevational gradients have long been of interest to ecologists 224 

and evolutionary biologists. For instance, a classic hypothesis posits that abiotic factors are 225 

likely to play a more important role than biotic factors at high-elevation range limits 226 

(Louthan, Doak, and Angert 2015). As a result, there may be an increased risk of extinction 227 

in montane ecosystems caused by the ‘escalator to extinction’ (Sekercioglu et al. 2008; 228 

Freeman et al. 2018) in which warming conditions cause high-elevation species' climate 229 

niches to disappear. Given the interest in biotic interactions along elevational gradients, it is 230 

not surprising that we identified multiple examples of interspecific behavioural interference 231 

of one species influencing the elevational distribution of another species (17% of cases 232 

documenting an impact of behavioural interference on range dynamics). Due to rapid habitat 233 

turnover with altitude, range boundaries across elevational gradient are often sharply defined, 234 

making studies of range limits inherently simpler along an elevational gradient (Žagar et al. 235 

2015; Pasch, Bolker, and Phelps 2013; Jones et al. 2020), so it would be premature to 236 

conclude how likely that behavioural interference is to influence elevational range limits in 237 

comparison to range boundaries across landscape scales.  238 
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Several key patterns emerge from studies along elevational gradients. First, 239 

interspecific territoriality plays a key role in creating and maintaining elevational range 240 

limits. Comparative analyses, for instance, have shown that bird species have wider 241 

elevational ranges in mountains without competitors (Burner et al. 2020). Moreover, the 242 

response of several species of montane birds to heterospecific songs decreases with distance 243 

from their parapatric boundary, indicating a learned response to the presence of an aggressive 244 

congener (Jankowski, Robinson, and Levey 2010; Freeman and Montgomery 2015; Freeman, 245 

Class Freeman, and Hochachka 2016; Jones et al. 2020; Boyce and Martin 2019). 246 

Additionally, asymmetries in dominance are not consistently biased in favour of low 247 

elevation species, as there are examples of species pairs with subordinate high elevation 248 

species (e.g., Catharus thrushes, (Freeman and Montgomery 2015) and of pairs in which the 249 

lower elevation species is subordinate (e.g., Scotinomys singing mice (Pasch, Bolker, and 250 

Phelps 2013), Neotamias chipmunks (Bergstrom 1992) and, if aquatic depth gradients are 251 

comparable to elevational gradients, Pomacentrus damselfish (Eurich, McCormick, and Jones 252 

2018)) (see also Freeman 2020). These examples demonstrate the varied and often 253 

unpredictable role that behavioural interference can play in influencing elevational range 254 

limits, thereby challenging the hypothesis that abiotic factors are likely to play a more 255 

important role than biotic factors at high-elevation range limits (Louthan, Doak, and Angert 256 

2015). We also note a bias in the geographic locations of studies investigating behavioural 257 

interference across elevational gradients, with two exceptions in Borneo and Papa New 258 

Guinea, all study systems were located Northern and Central America (Figure 2). Studies 259 

across landscapes were found across a wider area, but still with noted gaps in Africa and 260 

Asia, likely due to an underlying geographic bias in scientific research (Culumber et al. 261 

2019). 262 
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263 

Figure 2. The global distribution of field studies that found an effect of Interspecific 264 

behavioural interference on the spatial distribution of a one of more species. Colour denotes 265 

whether the study investigated the spatial distributions across a landscape (i.e., latitude and 266 

longitude), across an elevational gradient (altitudinal), or across a sea-depth gradient (marine 267 

depth). Size indicates the maximum spatial extent for where data was collected for study but 268 

is not to scale, excluding comparative studies which had a greater than 1000km global 269 

distribution (N = 7). 270 

  271 
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 272 

(3) Invasion biology 273 

Anthropogenic influences have led to a dramatic rise in the number of non-native 274 

species that become invasive after being translocated to novel regions (Blackburn et al. 275 

2011). As the ranges of invasive species expand they may engage in interspecific behavioural 276 

interference, driving displacement of native species (Rowles and O’Dowd 2007; Lounibos 277 

and Juliano 2018; Pereira, Lourenço, and Mota 2020; Kyogoku and Sota 2017). The 278 

systematic review identified multiple examples of invasive species engaging in reproductive 279 

interference (Tsurui-Sato et al. 2019; Lounibos and Juliano 2018; Tsuchida et al. 2019; 280 

Tønnesen et al. 2004; Westman, Savolainen, and Julkunen 2002) and aggressive interference 281 

(Bubb et al. 2009; Houser, Ginsberg, and Jakob 2014; Westman, Savolainen, and Julkunen 282 

2002; Rowles and O’Dowd 2007) with native species (15/54 =28% of cases). For instance, 283 

invading Argentine ants in Australia outcompete native ant species through direct aggressive 284 

interactions (Rowles & O’Dowd 2007). Similarly, in Japan, invasive buff-tailed bumblebees 285 

(Bombus terrestris) engage in reproductive interference with two species of native bumblebee 286 

species. Copulation between male B. terrestris and female Bombus hypocrite sapporoensis or 287 

Bombus ignites results in unviable eggs being laid the following spring when there are no 288 

further intraspecific mating opportunities. Consequently, B. ignities and B. h. sapporeenis 289 

have declined rapidly in areas with B. terrestris, and further declines could lead to the 290 

extinction of the native bumblebee species (Tsuchida et al. 2019). Other well-established 291 

cases where invading lineages quickly replace previously established lineages include the 292 

replacement of asexual gecko lineages throughout the Pacific that have been displaced by 293 

interference from invasive common house geckos (Dame & Petren 2016, Bolger & Case 294 

1992, Petren et al. 1993), and the replacement of Aedes aegypti by Ae. albopictus both 295 

throughout the southern U.S. (Nasci, Hare, and Willis 1989) and in China (Zhou et al. 2022).  296 
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Yet, behavioural interference is not always beneficial to invasive species and 297 

detrimental to native species. Invasive species may be unable to establish in areas which 298 

contain a more aggressive congener, and higher levels of aggressive or reproductive 299 

interference could allow native species to tolerate the presence of the invading species 300 

(Crowder et al. 2011), or even prevent its spread (Cisterne, Schwarzkopf, and Pike 2019; 301 

Bizwell and Mattingly 2010). Whether asymmetries in behavioural interference generally 302 

influence the outcome of translocations of animal species is, therefore, an important open 303 

question. 304 

In addition to being a potentially accelerating factor in biological invasions, 305 

behavioural interference has also been suggested as a management tool for invasive species. 306 

On Okinawa, for instance, the accidental introduction of guppies (Poecilia reticulata) led to 307 

the eradication of invasive mosquito fish (Gambusia affinis) (Tsurui-Sato et al. 2019). 308 

Laboratory experiments indicate that male guppies attempt to mate with female mosquito 309 

fish, thereby reducing their reproductive output. Introduced guppies also have negative 310 

impacts on native taxa, but by introducing only males, or mixed populations into 311 

environments with lethal winter temperatures, guppies could be used to eradicate mosquito 312 

fish from other river systems (Tsurui-Sato et al. 2019). Similarly, a study on aggression 313 

between invasive brown trout and native white-spotted charr demonstrated that habitat 314 

modifications in the form of visual barriers could reduce observed levels of interspecific 315 

aggression (Hasegawa & Maekawa 2009).  316 

 317 

(4) Empirical validation of theoretical predictions 318 

The formation of parapatric ranges, where two species have adjacent ranges with little 319 

or no overlap, is a key prediction of the theorical models of how interspecific behavioural 320 

interference impacts range dynamics when the impacts of behavioural interference are 321 
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symmetrical (Ribeiro and Spielman 1986). In line with this prediction, we found that, where 322 

the impact of behavioural interference is equal, the ranges of interacting species pairs are 323 

stable (Asensio et al. 2017; Bull and Burzacott 1994; Thum 2007). If the impact of 324 

behavioural interference is asymmetrical, however, replacement of one species by the other 325 

commonly results (Tønnesen et al. 2004; Tsuchida et al. 2019; Tsurui-Sato et al. 2019; 326 

Duckworth and Badyaev 2007; Vallin et al. 2012; Sobroza et al. 2021). Some studies found 327 

that the ranges of the two species were stable even in the presence of asymmetrical 328 

behavioural interference because the more dominant species was limited by an abiotic or a 329 

different biotic factor (Pasch, Bolker, and Phelps 2013; Bergstrom 1992).  330 

Although Allee effects are common in theoretical models of behavioural interference, 331 

relatively few case studies identified by our literature review explicitly tested for Allee 332 

effects, though several investigators of these studies suggest that Allee effects generate range 333 

turnovers (Soderback 1994, Tønnesen et al. 2004, Thum 2007, Kiritani 2011). The paucity of 334 

direct evidence for Allee effects was surprising, given documented Allee effects in laboratory 335 

studies (e.g., Kyogoku & Nishida 2012) and frequency- and/or density-dependent impacts of 336 

interspecific interference in the field (Svensson et al. 2018, Gomez-Llano et al. 2018). Future 337 

research, therefore, should aim to understand the importance of Allee effects in determining 338 

the outcome of spatial dynamics. For instance, a key test of the impact of behavioural 339 

interference on range dynamics would be to artificially induce an Allee effect in field systems 340 

known to engage in behavioural interference, by heightening or inversing the densities and/or 341 

frequencies of two species that engage in behavioural interference.  342 

Similarly, though several models incorporate both behavioural interference and 343 

resource competition (Ribeiro and Spielman 1986; Amarasekare 2002; Crowder et al. 2011), 344 

our literature search found few explicit analyses disentangling the relative impacts of 345 
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behavioural interference and resource competition, or the predicted interactive dynamics of 346 

both, on range dynamics (but see Duckworth 2014, Cowen 2020). 347 

 348 

III. Future Directions 349 

Our systematic literature review demonstrated that there are now many studies that 350 

show varied impacts of behavioural interference on range expansion, but it also highlighted 351 

several gaps in our understanding. Here, we argue that further research is needed in several 352 

key areas, including the role that behavioural interference has played in shaping historical 353 

patterns of range dynamics, the impacts of behavioural interference on future range dynamics 354 

under climate change, and the extent to which evolution influences outcomes.  355 

 356 

(1) Identifying the impact of behavioural interference on historical spatial processes 357 

There are several existing approaches for studying historical range dynamics that 358 

would be useful to develop further to understand outcomes of behavioural interference across 359 

a range of timescales. For instance, at a deep evolutionary timescale, models of ancestral 360 

biogeography have proven to be useful tools for making inferences about the pace and 361 

trajectory of range evolution within independently evolving lineages (Ronquist 2011). 362 

Recently, there have been calls for extending these methods to incorporate ecological factors 363 

such as species interactions (Sukumaran and Knowles 2018), and the development of tools 364 

for identifying the signature of competitive exclusion in range data (Quintero and Landis 365 

2020). Incorporating the possibility for the presence and/or magnitude of behavioural 366 

interference to modulate the impacts of competition on range dynamics into these models, 367 

similar to advances already developed for trait-mediated dispersal (Klaus and Matzke 2020), 368 

could provide a novel tool that would make it possible to test a range of hypotheses that 369 

cannot be tested with current methods (Fig 3A).  370 
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At shallower evolutionary scales, existing population genomic techniques leverage the 371 

signatures of historical processes preserved in genomes to test hypotheses about spatial (Peter 372 

and Slatkin 2013; Petkova, Novembre, and Stephens 2015; Al-Asadi et al. 2019; He, Prado, 373 

and Knowles 2017) and demographic (Gutenkunst et al. 2009; Gronau et al. 2011; Excoffier 374 

et al. 2021) dynamics that have unfolded over scales of thousands to millions of years. 375 

Largely, these developments have been designed to examine dynamics within independently 376 

evolving lineages. Within this constraint, one way forward would be to conduct comparative 377 

analyses to test the hypothesis that lineages (e.g., populations, species) experiencing higher 378 

levels of behavioural interference expand their ranges at different rates than lineages 379 

experiencing little or no behavioural interference (Fig 3B). Recently, Ortego & Knowles 380 

(2020) developed an analytical pipeline that explicitly tests for the impact of facilitation 381 

and/or competition between species on generating contemporary geographic patterns of 382 

genomic diversity. Extending these models to explicitly test for impacts of behavioural 383 

interference is an exciting possibility that would generate new insights.  384 

On a more contemporary scale, long-term census data have proven to be a useful tool 385 

for monitoring dynamics of species assemblages over the past century (Rosenberg et al. 2019, 386 

Saunders et al. 2022). Such datasets contain interacting species, and understanding how those 387 

interactions impact temporal dynamics is one way forward (Fig 3C). One recent attempt has 388 

shown that species-pairs that are interspecifically territorial have increased their fine scale 389 

habitat overlap more than non-interspecifically territorial pairs (Nesbit et al. 2022). 390 

 391 

(2) Predicting the impact of behavioural interference in novel assemblages 392 

Insights generated from investigations of the impacts of behavioural interference on 393 

historical range dynamics will be essential for generating predictions about the future impacts 394 

of behavioural interference on climate-change driven range dynamics. At the heart of 395 
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attempts to predict how species’ ranges will shift in response to global changes are species 396 

distribution models (SDMs). SDMs use measures of abiotic factors and presence-absence 397 

data to project the species’ current released range onto future climate models (Elith and 398 

Leathwick 2009; Titley et al. 2021). 399 

Attempts to incorporate biotic factors into species distribution models have given rise to joint 400 

species distribution models (JSDMs) (Wilkinson et al. 2019; Tikhonov et al. 2017). Yet, 401 

implementing and validating JSDMs is fraught with difficulties because positive and negative 402 

occurrence patterns often correlate with abiotic factors (Poggiato et al. 2021). Consequently, 403 

many examples of interspecific behavioural interference limiting the spatial distribution of 404 

species would not be detected using JSDMs, although some attempts to implement 405 

behavioural interference into SDMs/JSDMs have been conducted (Bastianelli et al. 2017; 406 

Engler et al. 2013). Despite challenges, joint species distribution modelling remains an active 407 

area of research with many promising recent developments (Pichler and Hartig 2021; 408 

Escamilla Molgora et al. 2022). For instance, joint dynamic species distribution models 409 

(JDSDMs) use time-series data on abundance to examine the impact of concurrent changes in 410 

abundance across assemblages more directly (Thorson, Pinsky, and Ward 2016; Elo et al. 411 

2023). Consequently, we imagine that these tools will be useful for generating predictive 412 

models of future range dynamics in the presence of behavioural interference (Fig. 3d), for 413 

instance by comparing the marginal predictions of such models (i.e., the effects of 414 

environmental variables only), to conditional predictions which also incorporate impacts of 415 

changing species interactions (Wilkinson et al. 2021) (Wilkinson et al. 2020). Recently, for 416 

instance, (Novella-Fernandez et al. 2021) devised an index of ‘geographic avoidance’ by 417 

comparing species suitable ranges (calculated from SDMs) to their observed ranges. Using 418 

this index, they found that two pairs of cryptic species of bats in Europe exhibited spatial 419 

partitioning consistent with interspecific competition driving exclusion. They then examined 420 
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range overlap under future climate projections, demonstrating that some predicted range 421 

shifts may not be possible due to predicted range overlap with competitors (Novella-422 

Fernandez et al. 2021), see also Engler et al. 2013 and McQuillan and Rice 2015 for a similar 423 

approach). Future attempts to generate predictions of range dynamics in the presence of 424 

behavioural interference could also be used to disentangle and quantify the differing impacts 425 

of behavioural interference versus resource competition.  426 
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 429 
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Fig 3. Possible directions for future research into the historical (A-C) and forecasted (D) 430 

impacts of behavioural interference (BI) on range dynamics. Approaches to test for historical 431 

impacts of BI include (A) extending models of ancestral biogeography to include separate 432 

parameters for species that engage in BI and those that do not, (B) deploying genomic tools 433 

to test whether the historical dynamics of range expansion differ between species that engage 434 

in BI (sp. 2, in this example) and species that do not by calculating pairwise indices of 435 

directional movement such as the ψ index (Peter and Slatkin 2013), and (C) using long-term 436 

census data to analyse how BI has impacted dynamics of species cooccurrence through time 437 

using tools from network analyses (e.g., indices of network centrality). Developments for 438 

forecasting and mitigating the impacts of BI on global-change induced range shifts might 439 

include (D) fitting joint dynamic species distribution models (JDSDMs) and using model 440 

inferences to compare future ranges under pure climate-tracking scenarios to scenarios that 441 

incorporate species interactions inferred from JDSDMs. 442 

443 
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 The preceding approaches largely rely on metrics of cooccurrence to make inferences 444 

about the impacts of behavioural interference, under the assumption that cooccurring lineages 445 

are likely to interact. Yet, range overlap per se is not robust evidence that interactions occur. 446 

One way forward is to use measurements of fine-scale range overlap (i.e., 'syntopy'), which 447 

may be more indicative of the opportunity for species interactions (Drury, Cowen, and 448 

Grether 2020). Still, there is no substitute to direct observations of behaviour across large 449 

spatiotemporal scales. For instance, a large-scale study of spatiotemporal variation in 450 

agonistic behaviour in damselfish shows that interactions between individuals of different 451 

species increase after coral bleaching events (Keith et al. 2023). Future studies should 452 

directly observe behaviours to demonstrate concrete links between behavioural interference 453 

and range dynamics.  454 

 455 

(3) The role of evolution in mediating responses to behavioural interference 456 

Historically, empirical research into behavioural interference has largely focused on 457 

understanding factors that lead to behavioural interference (e.g., Drury, Cowen, and Grether 458 

2020; Leighton et al. 2023) and its evolutionary consequences, such as its impact on trait 459 

evolution (Grether et al. 2009; Pfennig and Pfennig 2009) or other aspects of the speciation 460 

cycle (Tobias, Ottenburghs, and Pigot 2020). This work has shown that the likelihood of 461 

behavioural interference decreases with increasing divergence time (e.g., Drury, Cowen, and 462 

Grether 2020; Barley et al. 2022) likely owing to the relative similarity in perceptual systems 463 

and agonistic and/or mating signals used in closely related species (Grether et al. 2009; 464 

Orians and Willson 1964). Consequently, behavioural interference is thought to have a strong 465 

impact on the rate of speciation by limiting the rate at which two recently diverged allopatric 466 

lineages can coexist in secondary sympatry (Tobias, Ottenburghs, and Pigot 2020). One 467 

possible evolutionary outcome of behavioural interference is divergent reproductive or 468 
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agonistic character displacement, in which selection acts on mating or agonistic signals or 469 

perceptual systems to prevent or reduce the occurrence of behavioural interference (Grether 470 

et al. 2009; Pfennig and Pfennig 2009). Yet, the benefits of diverging in signals and/or 471 

perceptual systems do not always outweigh the costs--for instance, because of the continued 472 

pressure of stabilising selection for intraspecific mate recognition (Drury et al. 2019) or 473 

because interspecific competitor recognition may be an adaptive pathway to interspecific 474 

resource partitioning (Grether and Okamoto 2022) -- and consequently, selection may 475 

preclude divergence or even drive convergence between interacting lineages. 476 

The evolutionary responses to behavioural interference in shifting ranges should, 477 

therefore, play an important role in determining the outcome of range dynamics. For instance, 478 

in the case of Aedes mosquitoes, reproductive character displacement appears to have slowed 479 

down the invasion of Ae. albopictus in Florida (Irka E. Bargielowski, Lounibos, and 480 

Carrasquilla 2013; I. Bargielowski, Blosser, and Lounibos 2015). Similarly, native 481 

bumblebees in Japan have evolved polyandrous mating systems in response to reproductive 482 

interference from invasive buff-tailed bumblebees (Tsuchida et al. 2019). The extent to which 483 

and circumstances under which evolutionary changes mediate the impact of behavioural 484 

interference on range dynamics are thus open questions. Future long-term studies of zones 485 

where behavioural interference occurs, in addition to comparisons between sympatric and 486 

allopatric populations, could shed further light on these questions. 487 

 488 

IV. Concluding remarks 489 

(1) Multiple lines of evidence now demonstrate that interspecific behavioural interference can 490 

limit the spatial distribution of species. Case studies demonstrate that this is true across a 491 

wide range of animal taxa, and that both reproductive interference and interspecific 492 

aggression can influence spatial dynamics. 493 
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 494 

(2) In line with predictions derived from theoretical models of behavioural interference, the 495 

case studies we compiled demonstrate that symmetry (or lack thereof) in behavioural 496 

interference determines the spatial outcome of interactions. Further work is necessary to test 497 

other key predictions of theoretical models, such as the presence of Allee effects and 498 

interactive impacts of behavioural interference and exploitative competition for resources.  499 

 500 

(3) We identified several other gaps that remain in our broad-scale understanding of the 501 

impacts of behavioural interference on spatial dynamics. For instance, which factors (e.g., 502 

phylogenetic distance, life history, climate niche, etc.) explain variation in the presence or 503 

magnitude of the effect of behavioural interference on range dynamics?  504 

 505 

(4) Several recent developments have paved the way for modelling the impacts of species 506 

interactions on both historical and future spatial dynamics, and future work adapting these 507 

methods to further explore the links between behavioural interference and range dynamics is 508 

an important way forward. 509 

 510 

(5) In addition to modelling approaches, further work aimed at quantifying the interactive 511 

effects of evolutionary change and spatial movement is crucial for predicting the outcome of 512 

range dynamics in the presence of behavioural interference. 513 

 514 

(6) The spatial distribution of species has implication for conservation, human health, and 515 

agriculture. Alongside other abiotic and biotic factors, our study highlights the need to 516 

include interspecific behavioural interference in predicting and managing the current and 517 

future distribution of species.  518 
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SUPPLEMENTARY INFORMATION 1062 

Supplementary Table 1: All 54 study systems identified during the literature review that found clear evidence that interspecific behavioural interference (IBI) 1063 

impacts the spatial distribution of a species. 1064 

Interacting Species IBI.Type Elevational 

(Y/N) 

Invasion 

(Y/N) 

Comparative 

(Y/N) 

Impacts of IBI on Spatial Dynamics References Additional Explanations? 

Aves        

Great reed warblers 

(Acrocephalus arundinaceus) & 

marsh warblers (Acrocephalus 

palustris) 

Aggression N N N Territorial mapping and behavioural observations demonstrate that 

great reed warblers and marsh warblers are interspecifically territorial, 

with great reed warblers dominating interactions. In areas where both 

species occur, marsh warblers use habitat further from reed habitats 

than sites where great reed warblers are absent.  

(Rolando and Palestrini, 1989)  

Bicknell's thrushes (Catharus 

bicknelli) & Swainson's thrushes 

(Catharus ustulatus) 

Aggression Y N N Playback experiments between two parapatric thrush species. Lower 

elevation Swaison's thruses respond aggresively to the calls of  higher 
elevation Bikcnells thrushes, but not vice versa. The aggresive 

responses of Swaison's thrush toward heterospecifics increases with 

altitude (i.e., closer to range boundary). 

(Freeman and Montgomery, 

2015) 

 

Black-headed nightingale 

thrushes (Catharus mexicanus) & 

ruddy-capped nightingale-

thrushes (Catharus frantzii) 

Aggression Y N N Playback experiments showed that lower elevation black-capped 

nightingale-thrushes respond aggressively to the ruddy-capped 

nightingale-thrush, but not vice-versa. 

(Jones et al., 2020) 

 

Habitat segregation  

Collared (Ficedula albicollis) & 

pied (Ficedula hypoleuca) 

flycatchers 

Aggression N N N Collared and pied flycatchers have recently (150 years ago) come into 
sympatry. Collared flycatchers are more aggressive, which shifts the 

nest occupancy of pied flycatchers into suboptial habitat. However, 

pied flycatchers that nest in suboptimal habitat are less likely to 
hybridise with Collared flycatchers, this reenforces the habitat use of 

the two species. 

(Vallin et al., 2012; Rybinski et 
al., 2016) 

 

 

Exploitative competition for 
nestboxes (but nestbox access 

mediated by aggression) 

Several species of wood wrens 

(Henicorhina leucophrys & 

Henicorhina leucosticta) and 

thrushes (Catharus mexicanus & 

Catharus aurantiirostris) along an 

elevational gradient in Costa Rica. 

Aggression Y N N Playback experiments show aggressive responses to heterospecific 

congeners, with the magnitude of such responses increase toward 
contact zones. 

(Jankowski, Robinson and 

Levey, 2010) 

Habitat turnover 

Narrow-billed woodcreepers 

(Lepidocolaptes angustirostris) & 

scaled woodcreepers 

(Lepidocolaptes squamatus) 

Aggression N N N Fragmentation of the Atlantic Forest in Brazil has facilitated range 

expansion of narrow-billed woodcreepers. Scaled woodcreepers have 

been forced to recede into the remaining fragments of forest. However, 
narrow-billed woodcreepers regularly join mixed-species flocks within 

the forest and aggressively exclude scaled woodcreepers from joining 

flocks 

(Maldonado-Coelho et al., 

2017) 

 

Common nightingales (Luscinia 

megarhynchos) & thrush 

nightingales (Luscinia luscinia) 

Aggression N N N Common and thrush nightingales are interspecifically territorial and 
exhibit evidence of song convergence in sympatry. This aggression 

drives shifts in habitat preferences in sympatry compared to allopatric 

populations.  

(Sorjonen, 1986; Reif et al., 
2015, 2018) 
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Noisy miners (Manorina 

melanocephala) & local bird 

assemblages 

Aggression N N N Noisy miners are extremely aggressive towards nearly all heterospecific 

birds, even those with little overlap in diet and foraging behaviour, and 

their presence shapes the structure of entire avian assemblages. 

(Mac Nally et al., 2012; Lill 

and Muscat, 2015) 

 

Flame robins (Petroica phoenicea) 

& Norfolk robins (Petroica 

multicolor) 

Aggression N N N Both species are interspecifically territorial. Migratory flame robins  
displace the less aggressive Norfolk robin upon returning to breeding 

habitat, likely displacing Norfolk robins into suboptimal habitat. 

(Robinson, 1992)  

Carolina chickadees (Poecile 

carolinensis) and black-capped 

chickadees (Poecile atricapillus) 

Aggression and 

Reproductive 

Interference 

N N N Carolina chickadees are more aggressive (dominant) than black-capped 

chickadees, and that dominant chickadees are prefered by females of 

both species in mate choice trails. SDMs show that Carolina 
chickadees' distribution limit largely matches climatic predictors, 

whereas black-capped chickadee distribution does nor, suggesting that 

it is limited instead by interactions with Carolina chickadees.  

(Bronson et al., 2003; 

McQuillan and Rice, 2015) 

 

Invasive ring-necked parakeets 

(Psittacula krameri) and native 

communities 

Aggression N Y N Invasive ring-necked parakeets tend to be dominant in aggressive 
interactions, and consequnetly the parakeets exclude other species that 

use tree cavities, including greater noctules (Nyctalus lasiopterus), a 

threatened bat species. Although many birds currently appear to benefit 
from parakeet aggression towards predators, greater noctules decline 

where parakeets occur. 

(Hernández-Brito et al., 2014)  

Townsend's warblers (Setophaga 

townsendi) and hermit warblers 

(Setophaga occidentalis) 

Aggression and 

Reproductive 
Interference 

N N N Moving hybrid zone attributed to asymmetries in behavioural 

interference. Both species defend mutually exclusive territories, though 
Townsend warbler's are likely to be more aggressive toward hermit 

warblers than vice versa. Similarly, though mating is largely 

assortative, exceptions are more likely with Townsend males mating 
with hermit females (not vice versa). 

(Pearson, 2000; Pearson and 

Rohwer, 2000) 
 

 

Western bluebirds (Sialia 

mexicana) & mountain bluebirds 

(Sialia currucoides) 

Aggression N N N As western bluebirds range shifts into mountain bluebirds range, 

mountain bluebird populations are going locally extinct due to 

aggression from western bluebirds limiting nesting opportunities.  

(Duckworth and Badyaev, 

2007; Duckworth, 2013; 

Duckworth, Belloni and 
Anderson, 2015) 

Exploitative competition for 

nestboxes (but nestbox access 

mediated by aggression) 

Spotted owls (Strix occidentalis) & 

barred owls (Strix varia) 

Aggression N Y N Barred owls are invading spotted owls' range and driving declines in 

spotted owls. Playback experiments with mounts demonstrate 

asymmetric aggression from barred owls toward spotted owls, and 
tracking data suggest they exclude spotted owls from breeding 

territories.  

(Gutiérrez et al., 2007; Van 

Lanen et al., 2011; Wiens, 

Anthony and Forsman, 2014) 
 

Habitat loss, exploitative 

competition 

Dominant and subordinate 

congeneric birds in urban 

environmetns 

Aggression N N Y Subordinate species are less likely to occur and less abundant in cities 

where dominant species are widespread breeders (compared to in cities 
where the sub-dominant species is found in allopatry).  

(Martin and Bonier, 2018; 

Martin, Burke and Bonier, 
2021) 

Exploitative competition for 

resources not ruled out 

Dominant and subordinate birds 

from North America 

Aggression N N Y Subordinate species migrate further distances than dominant species (Freshwater, Ghalambor and 
Martin, 2014) 

 

Birds along an elevational 

gradient in Borneo 

Aggression Y N Y Simulated instrusion paper testing whether interspecific aggression 

drives parapatric ranges along an elevational gradient for different pairs 

of birds. They found support for this hypothesis in bulbuls: ochraceus 
bulbuls (Alophoixus ochraceus) respond aggressivly to pale-faced 

bulbuls (Pycnonotus leucops). However, they did not find evidence that 

parapatric white-eyes (Zosterops sp.) are aggressive to congeners. 

(Boyce and Martin, 2019) 
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North american perching birds 

(passerines) 

Aggression and 

Reproductive 

Interference 

N N Y Analyses of sister taxa show that transitions from allopatry to 

secondary sympatry are best predicted by the interactive effect of 

interspecific territoriality and hybridization. 

(Cowen, Drury and Grether, 

2020) 

 

Birds along an elevational 

gradient in Papua New Guinea 

Aggression Y N Y Playback experiments on five species pairs demonstrate that the lower 
elevation species are more aggressive toward heterospecifics than upper 

elevation confamilial counterparts, and that species only engaged in 

aggression towards HS at the range boundary, for three of the five 
species pairs. 

(Freeman, Class Freeman and 
Hochachka, 2016) 

 

Amphibia        

Southern Appalachian 

salamander (Plethodon teyahalee) 

& red-cheeked salamanders 

(Plethodon jordani) 

Aggression Y N N Extensive observational and experimental data (from removal 
experiments and behavioural experiments) demonstrate that aggressive 

interference is the cause of the species parapatric elevational ranges in 

the Great Smokey Mountains. Later modelling suggesting interspecific 
interactions prevent the low elevation southern Appalachian salamander 

from expanding into higher elevations. 

(Hairston, Nishikawa and 
Stenhouse, 1987; Gifford and 

Kozak, 2012) 

 

 

Actinopterygii        

Damselfish (Dischistodus spp.) in 

the Great Barrier Reef 

Aggression N N N Four species of damselfish have non overlapping habitat use within 

reef. Aquarium studies show the damselfish have wider habitat use than 

seen in the field and simulated intruder experiments in the field reveal 
high levels of interspecific aggression between species that use adjacent 

habitat. 

(Bay, Jones and McCormick, 

2001) 

Habitat segregation 

Guppies (Poecilia reticulata) & 

mosquitofish (Gambusia affinis) 

Reproductive 

Interference 

N Y N Mosquitofish decline upon introduction of guppies, and experimental 

evidence shows that reproductive interference occurrs asymetrically, 

with negative fitness impacts on mosquitofish, but not guppies.  

(Tsurui-Sato et al., 2019)  

Obscure damselfish (Pomacentrus 

adelus) & speckled damselfish 

(Pomacentrus bankanensis) 

Aggression N N N Species are interspecifically territorial, and upon removal of obscure 

damsels, speckled damsels expand territories to occupy vacant space, 

with knock-on effects for other habitat use of other reef fish. 

(Eurich, McCormick and Jones, 

2018) 

 

Invasive brown trout (Salmo 

trutta) & white-spotted charr 

(Salvelinus leucomaenis) in Japan 

Aggression N Y N Introduced brown trout has expanded throughout drainage, except 
upstream of weirs where white-spotted charr are more abundant. 

Experimental data shows that brown trout are dominant in behavioural 

trials. 

(Takami et al., 2002; Hasegawa 
et al., 2004; Hasegawa and 

Maekawa, 2009) 

 

 

Gopher rockfish (Sebastes 

carnatus) & Black-and-yellow 

rockfish (Sebastes chrysomelas) 

Aggression N N N Lab experiments show interspecific aggression for territories and  
removal experiments in the field show that the removal of both species 

allows the other to expand is depth range.  

(Larson, 1980)  

Arachnida        

Invasive sheet-web spiders 

(Linyphia triangularis) & bowl-

and-doily spiders (Frontinella 

communis) 

Aggression N Y N An invasive species of spider displaces a native species from their 

contructed web. Furthermore, field experiments demonstrate that bowl-

and-doily spiders are less likely to settle in plots where the invasive 
species is present and that introducing the invasive species leads to 

declines in bowl-and-doily spiders. 

(Houser, Ginsberg and Jakob, 

2014) 

Exploitative competition for 

resources ruled out 

Copepoda        

Skistodiaptomus copepods Reproductive 

Interference 

N N N S. oregonensis and S. pygmaeus exhibit a parapatric boundary. 

Laboratory studies demonstrate high levels of reproductive interference 

(Thum, 2007) Ecological gradients ruled out 

as possible explanation 
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(though no evidence of introgression), suggesting that Allee effects 

generated by  reproductive interference maintain this parapatric 

boundary. 

Crustacea        

Invasive rusty crayfish 

(Orconectes rusticus) and native 

Sanborn crayfish (Orconectes 

sanborni)  

Aggression and 

Reproductive 
Interference 

N Y N An invasive crayfish (O. rusticus) that replaces native crafish (O. 

sanborni) tends to be dominant, and because females of the invasive 
species are larger, males of the native species prefer to mate with 

invasive females, reducing native female fitness. 

(Butler and Stein, 1985) Juvenile susceptibility to 

predation of native species 

Invasive signal crayfish 

(Pacifastacus leniusculus) in 

Europe & native communities 

Aggression and 

Reproductive 

Interference 

N Y N Signal crayfish have been introduced in many locations throughout 

Europe, and In several instances, have coincided with decline of native 

species. In Finland & Sweden, longitudinal data show replacement of 
native Astacus astacus, with experimental evidence that both 

reproductive interference and aggression implicated in the decline. 

Agonistic interactions with bullhead (Cottus gobio) drive bullhead out 
of shelters, which may explain pattern where density of signal crayfish 

is negatively correlated with that of bullhead. 

Svärdson et al. 1991 

 

(Söderbäck, 1994, 1995; 
Westman and Savolainen, 2001; 

Westman, Savolainen and 

Julkunen, 2002; Bubb et al., 
2009) 

Signal crayfish are resistent 

to crayfish plague that 

contributes to decline of 
native crayfish species; Life 

history traits (e.g., 

developmental time) 

Gastropoda        

Keyhole limpets (Siphonaria 

lessonii) & pulmonate limpets 

(Fissurella crassa) 

Aggression N N N Mesocosm experiments demonstrate that large keyhole limpets 

aggressively displace smaller pulmonate limpets from crevices, and that 

displacement has fitness consequences not related to exploitative 
competition. 

(Aguilera and Navarrete, 2012) 

 

 

Insecta         

Aedes mosquitos (Ae. albopictus & 

Ae. aegypti) 

Reproductive 

Interference 

N Y N In places where Ae. aegypti is established, males in invading 

populations of Ae. albopictus mate with Ae. aegypti females, greatly 

reducing their fitness and leading to replacement of Ae. aegypti by Ae. 
albopictus.  

(Nasci, Hare and Willis, 1989; 

Bargielowski, Lounibos and 

Carrasquilla, 2013; 
Bargielowski and Lounibos, 

2016; Lounibos and Juliano, 

2018; Zhou et al., 2022) 

Larval resource competition 

Two tick species (Amblyomma 

variegatum & Amblyomma 

hebraeum) 

Reproductive 
Interference 

N N N Two species of tick are larglely parapatric . In sympatry, interspecific 
copulations are commonly observed, with little geographic overlap, 

suggesting symmetric reproductive interference may maintain 

parapatric boundary. 

(Bournez et al., 2015)  

Whiteflies (Bemisia tabaci spp.) Reproductive 

Interference 

N Y N Invading whitefly species have replaced  native strains in several 

locations owing to asymmetric reproductive interference, in which 
matings from invading males reduce fitness of native females. 

(Liu et al., 2007; Crowder et 

al., 2011; Wang, Crowder and 
Liu, 2012) 

Life history traits (e.g., 

developmental time, relative 
fecundity; though not 

sufficient without asymmetric 

reproductive interference to 
explain rapid replacement) 

Invasive buff-tailed bumblebees 

(Bombus terrestris) & native 

bumblebees (Bombus h. 

sapporoensis 7 Bombus ignitus) in 

Japan 

Reproductive 

Interference 

N Y N The invasive bumblebee species bombus terrestris engages in 

reproductive interference with two species of native bumblebee. 

Copulation between B. terrestris and B. h. sapporoensis or B. ignitus 
results in unviable eggs being laid the following spring, driving 

declines native bumblebee species. 

(Tsuchida et al., 2019) Exploitative competition for 

nectar and nest sites 
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Rubyspot damselflies (Hetaerina 

spp.) 

Aggression N N Y Rubyspot damselflies, which engage in high levels of reproductive 

interference and interspecific territoriality, have diverged in 

microhabitat use in a way that reduces the effects of behavioural 
interference. 

(McEachin et al., 2022)  

Two ant species (Iridomyrmex 

spp.) 

Aggression N N N Removal experiments that two species hold mutually exclusive 

territories and compete for space to build colonies. Over a short period 

of time (11 months), one species ("C") replaced by another ("A"), in 
part due to asymmetric competition. 

(Haering and Fox, 1987) 

 

Habitational succession 

Arboreal termite species in Papua 

New Guinea (Microcerotermes 

biroi, Nasutitermes 

novarumhebridiarum, &  

Nasutitermes princeps) 

Aggression N N Y Long term mapping of arboreal termite nests and their territories in 
combination with behavioural observations shows that species defend 

mutually exclusive territories. Removal experiments of N. princeps 

drives concomitant increase in M. biroi home range.   

(Leponce, Roisin and Pasteels, 
1997) 

 

White-crossed seed bugs 

(Neacoryphus bicrurus) and co-

occurring insect communities 

Aggression and 

Reproductive 

Interference 

N N N White-crossed seed bugs engage in asymmetrical reproductive 

interference (misdirected courtship) and aggression towards many 

species, and removal experiments demonstrate that several other 
species increase in density when white-crossed seed bugs are removed. 

(McLain and Shure, 1987)  

Invasive southern green stink 

bugs (Nezara viridula) & native 

green stink bugs (Nezara 

antennata) 

Reproductive 

Interference 

N Y N Invasive southern green stink bugs are expanding in Japan into the 

range of and replacing native green stink bugs. In regions of 

coexistence, heterospecific copulations are commonly observed, and 
reproductive interference is suspected to drive declines of native 

species.  

(Kiritani, 2011) 

 

Shifting climatic suitability 

Alpine dark bush-crickets 

(Pholidoptera aptera) & 

Transylvanian dark bush-crickets 

(Pholidoptera transsylvanica) 

Reproductive 

Interference 

N N N Bush-crickets exhibit a 'mosaic' pattern of distribution, where the two 

species are rarely found in syntopy. Experiments demonstrate that 

heterospecific matings resulting in transfer of spermatophores are 

common. 

(Dorková et al., 2020) Habitat segregation ruled out 

Eastern subterranean termites 

(Reticulitermes flavipes) & 

Western subterranean termits 

(Reticulitermes grassei) 

Aggression N Y N Invasive eastern subterranean termites are dominant in aggressive 

interactions over  native western subterranean termites; success of 
invasion is attributed to this asymmetry.  

(Perdereau et al., 2011) 

 

Lack of intraspecific 

aggression in invasive 
species; demographic factors 

(large colony size) 

Invasive Asian blue ticks 

(Rhipicephalus [Boophilus] 

microplus) & African blue ticks 

(Rhipicephalus [Boophilus] 

decoloratus) in South Africa  

Reproductive 

Interference 

N Y N Invasive Asian blue ticks have replaced African blue ticks in South 

Africa. Interspecific matings lead to sterile hybrids, so rapid 
demographic increases in invader populations lead to Allee effects 

driving local extinction of native species. 

(Sutherst, 1987; Tønnesen et 

al., 2004, 2004) 

Life history traits (e.g., 

developmental time); host 
resistance 

Cepero's groundhoppers (Tetrix 

ceperoi) & slender groundhoppers 

(Tetrix subulata) 

Reproductive 

Interference 

N N N Groundhoppers exhibit a 'mosaic' pattern of distribution, where the two 

species are rarely found in syntopy. Laboratory and field experiments 
demonstrate that extensive reproductive interference is likely 

responsible for this spatial distribution. 

(Gröning et al., 2007; 

Hochkirch, Gröning and 
Bücker, 2007; Hochkirch and 

Gröning, 2012) 

Habitat segregation ruled out 

Arboreal ant species in Papua 

New Guinea 

Aggression N N Y Colony mapping and behavioural experiments demonstrate that 

interspecific aggression is the key factor shaping the spatial distribution 
of ant species in a 9 hectare plot 

(Mottl et al., 2021) Habitat segregation ruled out 

Mammalia        
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Fallow deer (Dama dama) &  roe 

deer (Capreolus capreolus) 

Aggression N Y N Fallow deer displace  roe deer but not vice versa, and that habitat use by 

roe deer is affected by presence of fallow dear. Together, these suggest 

behavioural interference has led to decline in roe deer populations as 
fallow deer populations have increased.  

(Ferretti and Mori, 2020) 

 

Exploitative competition for 

resources not ruled out 

White-handed gibbons (Hylobates 

lar) & Pileated gibbons (Hylobates 

pileatus)  

Aggression N N N Two species of gibbon are largely parapatric, with a small contact zone 
that is maintained by interspecific territorial aggression. 

(Suwanvecho and Brockelman, 
2012; Asensio et al., 2017) 

Niche partitioning (via 
habitat segregation or diet 

divergence) ruled out. 

Least chipmunks (Neotamias 

minimus) & yellow-pine 

chipmunks (Neotamias amoenus) 

Aggression Y N N Removal experiments of two species of chipmunk that engage in 

aggressive interference. When yellow-pine chipmunks were removed, 
least chipmunks captures increased; the converse did not occur.  

(Chappell, 1978; Heller, no 

date) 

 

Townsend's chipmunks 

(Neotamias townsendii) & yellow-

pine chipmunks (Neotamias 

amoenus) 

Aggression N N N Removal experiments of two species of chipmunk that engage in 

aggressive intractions with one another show that when heterospecifics 

are removed, the range size of the retained species and juvenile 
recruitment increases. 

(Trombulak, 1985) Habitat segregation ruled out 

Uinta chipmunks (Neotamias 

umbrinus) & Colorado chipmunks 

(Neotamias quadrivittatus) 

Aggression Y N N Colorado chipmunks cannot move into higher elevational because of  

aggressive interactions with Uinta chipmunks. Uinta chipmunks 

hypothesised to be restricted to higher elevations because of the high 
parasitic load of a bot file found at lower elevations. 

(Bergstrom, 1992)  

Stoats (Mustela erminea) & least 

weasels (Mustela nivalis) 

Aggression N N N Experimental data demonstrates that stoats are dominant over weasels, 
and observational data shows that weasels are very rarely found in 

prefered habitat when a stoats held a territory in the area. Distributional 

data collected over several years shows that when stoats declined, 
weasels increased locally. 

(Erlinge and Sandell, 1988) 
 

 

Pied tamarins (Saguinus bicolor) 

& Golden-handed tamarins 

(Saguinus midas) 

Aggression N N N Playback experiment of two species on Tarmarin, in allopatry and 

sympatry. Pied tamarins are critically edangered and experiencing 
range fragmentation, while red-handed tamarins have expanded their 

range into the range of pied tamarins. Playback experiments show that  

red-handed tarmarin respond more agressively  than the pied tamarins. 

(Sobroza et al., 2021)  

Chiriquí singing mice (Scotinomys 

xerampelinus) & Alston's singing 

mice (Scotinomys teguina) 

Aggression Y N N Playback experiments, laboratory experiments, and removal 

experiments all demonstrate that the higher elevation species 
(Scotinomys xerampelinus) is dominant and preempts range intrusions 

from lower elevation species. In  removal experiments, Scotinomys 

xerampelinus didn't descend to occupy areas where Scotinomys teguina 
was removed, but Scotinomys teguina did invade higher elevation areas 

when Scotinomys xerampelinus was removed. 

(Pasch, Bolker and Phelps, 

2013) 
 

 

Reptilia        

Invasive house geckos 

(Hemidactylus frenatus) & native 

communities 

Aggression and 

Reproductive 

Interference 

N Y N Comprehensive longitudinal data, in combination with laboratory and 

field experiments, show that introduced house geckos are aggressive to 

and avoided by native species, leading to the decline of native species 
accross many different locations. Reproductive interference has also 

been demonstrated in some locations. 

(Bolger and Case, 1992; Petren, 

Bolger and Case, 1993; Case, 

Bolger and Petren, 1994; Dame 
and Petren, 2006) 

 

Competitive exclusion due to 

differential resource 

acquisition (though this 
results from interference 

competition) 
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