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ABSTRACT21

It is generally thought that behavioral flexibility, the ability to change behavior when circumstances change,22

plays an important role in the ability of species to rapidly expand their geographic range. Great-tailed23

grackles (Quiscalus mexicanus) are a social, polygamous species that is rapidly expanding its geographic24

range by settling in new areas and habitats. They are behaviorally flexible and highly associated with25

human-modified environments, eating a variety of human foods in addition to foraging on insects and on the26

ground for other natural food items. They offer an opportunity to assess the role of behavior change over27

the course of their expansion. We compare behavior in wild-caught grackles from two populations across28

their range (an older population in the middle of the northern expansion front: Tempe, Arizona, and a more29

recent population on the northern edge of the expansion front: Woodland, California) to investigate whether30
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certain behaviors (flexibility, innovativeness, exploration, and persistence) have higher averages and variances31

in the newer or older population. We find that grackles in the edge population were more innovative and32

less exploratory, and that there were no population differences in flexibility (measured by reversal learning)33

or persistence (the proportion of trials participated in). Results elucidate that the rapid geographic range34

expansion of great-tailed grackles is associated with individuals differentially expressing particular behaviors.35

Our findings highlight the value of population studies and of breaking down cognitive concepts into direct36

measures of individual abilities to better understand how species might adapt to novel circumstances.37

INTRODUCTION38

It is generally thought that behavioral flexibility, the ability to change behavior when circumstances change39

through packaging information and making it available to other cognitive processes (see Mikhalevich et al.,40

2017 for theoretical background on our flexibility definition), plays an important role in the ability of a41

species to rapidly expand their geographic range (Chow et al., 2016; Griffin & Guez, 2014; e.g., Lefebvre et42

al., 1997; Sol et al., 2002, 2005, 2007; Sol & Lefebvre, 2000). These ideas predict that flexibility, exploration,43

and innovation (creating new behaviors or using existing behaviors in a new context, Griffin & Guez, 2014)44

facilitate the expansion of individuals into completely new areas and that their role diminishes after a certain45

number of generations (Wright et al., 2010). In support of this, experimental studies have shown that latent46

abilities are primarily expressed in a time of need (A. Auersperg et al., 2012; Bird & Emery, 2009; Laumer47

et al., 2018; Manrique & Call, 2011; e.g., Taylor et al., 2007). Therefore, we do not expect the founding48

individuals who initially dispersed out of their original range to have unique behavioral characteristics that49

are passed on to their offspring. Instead, we expect that the actual act of continuing a range expansion relies50

on flexibility, exploration, innovation, and persistence, and that these behaviors are therefore expressed more51

on the edge of the expansion range where there have not been many generations to accumulate relevant52

knowledge about the environment.53

To determine whether behavior is involved in a rapid geographic range expansion, direct measures of individ-54

ual behavioral abilities must be collected in populations across the range of the species (see the discussion on55

the danger of proxies of flexibility in Logan et al., 2018). Our study aims to test whether behavioral flexibility56

plays a role in the rapid geographic range expansion of great-tailed grackles (Quiscalus mexicanus). Great-57

tailed grackles are behaviorally flexible (Logan, 2016a), rapidly expanding their geographic range (Wehtje,58

2003), and highly associated with human-modified environments (Johnson & Peer, 2001), thus offering an59

opportunity to assess the role of behavior changes over the course of their expansion. This social, polygamous60

species eats a variety of human foods in addition to foraging on insects and on the ground for other natural61

food items (Johnson & Peer, 2001). This feature increases the ecological relevance of comparative cognition62

experiments that measure individual behavior abilities: grackles eat at outdoor cafes, from garbage cans, and63

on crops. As such, they generally gain experience in the wild with approaching and opening novel objects64

to seek food (e.g., attempting to open a ketchup packet at an outdoor cafe, climbing into garbage cans to65

get french fries at the zoo, dunking sugar packets in water), which makes the tests involving human-made66

apparatuses ecologically relevant for this species.67

We aim to compare behavior in wild-caught great-tailed grackles from two populations across their range68

(an older population in the middle of the northern expansion front: Tempe, Arizona using previously pub-69

lished data from Logan et al. (2023), and a more recent population on the northern edge of the expansion70

front: Woodland, California) (Figure 1, Table 1). We investigate whether certain behaviors have higher71

averages and variances in the edge population relative to the older population. Specifically, we investigate72

behavioral flexibility measured as reversal learning of food-filled colored tube preferences (Logan, 2016b;73

Logan et al., 2023); innovativeness, measured as the number of loci they solve to access food on a puzzlebox74

(AMI. Auersperg et al., 2011; Logan et al., 2023); exploration, measured as the latency to approach a novel75

environment in the absence of nearby food (McCune KB et al., 2019; Mettke-Hofmann et al., 2009); and per-76

sistence, measured as the proportion of sessions they participate in during the flexibility and innovativeness77

experiments (Figure 2).78

There could be multiple mechanisms underpinning the results, however our aim is to narrow down the role of79

changes in behavior in the range expansion of great-tailed grackles. Our results demonstrate that the rapid80
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geographic range expansion of great-tailed grackles is associated with individuals differentially expressing81

particular behaviors in the edge compared to the older population.82

Table 1. Population characteristics for the field sites. The number of generations at a site is based on a83

generation length of 5.6 years for this species [BirdLife_International (2018); note that this species starts84

breeding at age 1] and on the first year in which this species was reported (or estimated) to breed at each85

location (Woodland, California: Yolo Audubon Society’s newsletter The Burrowing Owl from July 2004; and86

Tempe, Arizona: estimated based on 1945 first-sighting report in nearby Phoenix, Arizona (Wehtje, 2004)87

to which we added 6 years to account for the average time between first-sighting and first-breeding - see88

Table 3 in Wehtje (2003). The average number of generations was calculated up to 2020, the final year of89

data collection in Tempe, and 2022, the final year of data collection in Woodland.90

Site Range position Breeding since Number of
years breeding

Average
number of

generations

Citation

Tempe,
Arizona

Middle of
expansion

1951 69 12.3 Wehtje 2003,
2004

Woodland,
California

Northern edge 2004 18 3.2 Burrowing
Owl July 2004,
Pandolfino et
al. 2009

91

RESEARCH QUESTION: Are there differences in behavioral traits (flexibility, innovation,92

exploration, and persistence) between populations across the great-tailed grackle’s geographic93

range?94

Prediction 1: If behavior modifications are needed to adapt to new locations, then there is a95

higher average and/or larger variance of at least some traits thought to be involved in range96

expansions (behavioral flexibility: speed at reversing a previously learned color preference based on it97

being associated with a food reward; innovativeness: number of options solved on a puzzle box; exploration:98

latency to approach/touch a novel object; and persistence: proportion of trials participated in with higher99

numbers indicating a more persistent individual) in the grackles sampled from the more recently100

established population relative to the individuals sampled in the older population (Table 1).101

Higher averages in behavioral traits indicate that each individual can exhibit more of that trait (e.g., they102

are more flexible/innovative/exploratory/persistent). Perhaps in newly established populations, individuals103

need to learn about and innovate new foraging techniques or find new food sources. Perhaps grackles104

require flexibility to visit these resources according to their temporal availability and the individual’s food105

preferences. Perhaps solving such problems requires more exploration and persistence. Higher variances in106

behavioral traits indicate that there is a larger diversity of individuals in the population, which means that107

there is a higher chance that at least some individuals in the population could innovate foraging techniques108

and be more flexible, exploratory, and persistent, which could be learned by conspecifics and/or future109

generations. This supports the hypothesis that changes in behavioral traits facilitate the great-tailed grackle’s110

geographic range expansion.111

METHODS112

Sample113

Great-tailed grackles are caught in the wild in Woodland and in the Bufferlands of Sacramento, California.114

Some of our banded individuals were found at both sites, therefore we consider this one population. We aim115

to bring adult grackles, rather than juveniles, temporarily into the aviaries for behavioral choice tests to avoid116

the potential confound of variation in cognitive development due to age, as well as potential variation in fine117

motor-skill development (e.g., holding/grasping objects; early-life experience plays a role in the development118

of both of these behaviors; e.g., Collias & Collias (1964), Rutz et al. (2016)) with variation in our target119
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Figure 1: Great-tailed grackle field sites: Woodland is a recently established population (first breeding at
the trapping location recorded in 2004) on the northern edge of the range, and Tempe is an older population
(established in 1951) in the middle of the northern expansion front. Data from eBird.org).
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Figure 2: Experimental protocol. Great-tailed grackles from the older and newer populations are tested
for their: (top left) flexibility (number of trials to reverse a previously learned color tube-food association);
(middle) innovativeness (number of options [lift, swing, pull, push] solved to obtain food from within a
multiaccess log); (bottom left) persistence (proportion of trials participated in during flexibility and innova-
tiveness tests); and (far right) exploration (latency to approach a novel environment).
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variables of interest. However, due to difficulties in trapping this species at this site, we also tested some120

juveniles. This should not pose a problem because we found that the two juveniles (Taco and Chilaquile)121

we tested in the Tempe population did not perform differently from adults (Blaisdell et al., 2021; Logan et122

al., 2021; Logan et al., 2023; Seitz, 2021). Adults are identified from their eye color, which changes from123

brown to yellow upon reaching adulthood (Johnson & Peer, 2001). We apply colored leg bands in unique124

combinations for individual identification. Some individuals (33) are brought temporarily into aviaries for125

behavioral choice tests, and then are released back to the wild at their point of capture. We catch grackles126

with walk-in traps and mist nets. Mist nets decrease the likelihood of a selection bias for exploratory and127

bold individuals because grackles cannot see the trap. Grackles are individually housed in an aviary (each128

244 cm long by 122 cm wide by 213 cm tall) for three weeks to six months where they have ad lib access to129

water at all times and are fed Mazuri Small Bird maintenance diet ad lib during non-testing hours (minimum130

20 h per day), and various other food items (e.g., peanuts, bread, goldfish crackers) during testing (up to131

4 h per day per bird). Individuals Are given three to four days to habituate to the aviaries and then their132

test battery begins on the fourth or fifth day (birds were usually tested six days per week, therefore if their133

fourth day occurrs on a day off, they are tested on the fifth day instead).134

While our ideal plan was to conduct the same tests at an additional field site in Central America, due to135

restrictions around COVID-19 and also to issues with sexual abuse at the planned field site, it was not136

possible for us to accomplish this goal within our current funding period.137

We test as many great-tailed grackles as we can during the 2 years we spend at each of our field sites given138

that the birds are only brought into the aviaries during the non-breeding season (September through April).139

It is time intensive to conduct the aviary test battery (3 weeks-6 months per bird), therefore we aim to140

meet the minimum sample sizes in Supplementary Material Table SM1. We aim for an equal sex ratio of141

subjects (50% female) and achieved an overall 47% female (this percentage differs depending on the test).142

We expected to test 20 grackles per site. See the gxpopbehaviorhabitat_data_testhistory.csv data sheet at143

Logan CJ et al. (2023) for a list of the order of experiments for each individual at the Woodland site, and144

g_flexmanip_data_AllGrackleExpOrder.csv at C. Logan et al. (2023) for the Tempe grackles.145

Data collection stopping rule146

We stop collecting data on wild-caught great-tailed grackles once we complete one year at the site and meet147

our minimum sample size.148

Protocols and open materials149

• Experimental protocols are online here.150

• Flexibility protocol (from Logan et al., 2023) using reversal learning with color tubes. Grackles are151

first habituated to a yellow tube and trained to search for hidden food. A light gray tube and a dark152

gray tube are placed on the table or floor: one color always contains a food reward (not visible by the153

bird) while the other color never contains a reward. The bird is allowed to choose one tube per trial.154

An individual is considered to have a preference if it chose the rewarded option at least 85% of the time155

(17/20 correct) in the most recent 20 trials (with a minimum of 8 or 9 correct choices out of 10 on the156

two most recent sets of 10 trials). We use a sliding window in 1-trial increments to calculate whether157

they passed after their first 20 trials. Once a bird learns to prefer one color, the contingency is reversed:158

food is always in the other color and never in the previously rewarded color. The flexibility measure is159

how many trials it takes them to reverse their color preference using the same passing criterion.160

• Innovativeness protocol AMI. Auersperg et al. (2011) using a multiaccess log. Grackles are first161

habituated to the log apparatus with all of the doors locked open and food inside each locus. After162

habituation, the log, which has four ways of accessing food (pull drawer, push door, lift door up, swing163

door out), is placed on the ground and grackles are allowed to attempt to solve or successfully solve one164

option per trial. Once a bird has successfully solved an option three times, it becomes non-functional165
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(the door is locked open and there is no food at that locus). The experiment ends when all four loci166

become non-functional, if a bird does not come to the ground within 10 min in three consecutive test167

sessions, or if a bird does not obtain the food within 10 min (or 15 min if the bird was on the ground168

at 10 min) in three consecutive test sessions.169

• Persistence is measured as the proportion of trials participated in during the flexibility and innova-170

tiveness experiments (after habituation, thus it is not confounded with neophobia). The higher the171

number, the more persistent they are. This measure indicates that those birds who do not participate172

as often are less persistent in terms of their persistence with engaging with the task. We generally offer173

a grackle the chance to participate in a trial for 5 min. If they do not participate within that time, we174

record -1 in the data sheet, the apparatus is removed and the trial is re-attempted later.175

• Exploration is measured as the latency to approach within 20 cm of a novel environment inside of176

their familiar aviary environment, averaged across Time 1 (on the individual’s 8th day in the aviary)177

and Time 2 (1 week after Time 1). The bird’s regular food is moved to one end of the aviary, away178

from the novel environment, and a motivation test precedes the session. The bird is then exposed to179

first a familiar environment (45 min) and then a novel environment (45 min). If an individual does not180

approach within 20 cm, it is given a latency of 2701 sec (45 min plus 1 sec).181

Open data182

The data and code are publicly available at the Knowledge Network for Biocomplexity’s data repository183

(Logan CJ et al., 2023).184

Randomization and counterbalancing185

Experimental order: The order of experiments, reversal learning or multiaccess log, is counterbalanced186

across birds.187

Reversal learning: The first rewarded color in reversal learning is counterbalanced across birds. The188

rewarded option is pseudorandomized for side (and the option on the left is always placed first). Pseudo-189

randomization consists of alternating location for the first two trials of a session and then keeping the same190

color on the same side for at most two consecutive trials thereafter. A list of all 88 unique trial sequences191

for a 10-trial session, following the pseudorandomization rules, is generated in advance for experimenters to192

use during testing (e.g., a randomized trial sequence might look like: LRLLRRLRLR, where L and R refer193

to the location, left or right, of the rewarded tube). Randomized trial sequences are assigned randomly to194

any given 10-trial session using a random number generator (random.org) to generate a number from 1-88.195

Analyses196

We use simulations and design customized models to determine what sample sizes allow us to detect197

differences between sites (Supplementary Material 2; see chapter 5.3 in Bolker (2008) for why simulations198

perform more powerful power analyses). We do not exclude any data, and data that are missing (e.g. if a199

bird participates in one of the two experiments) for an individual in a given experiment, then this individual200

is not included in that analysis. Analyses are conducted in R [current version 4.1.2; R Core Team (2017)] and201

Stan (version 2.18, Carpenter et al., 2017) using the following packages: psych (Revelle, 2017), irr (Gamer202

et al., 2012), rethinking (McElreath, 2020), rstan (Stan Development Team, 2020), knitr (Xie, 2013, 2017,203

2018), dplyr (Wickham et al., 2021), tidyr (Wickham et al., 2023), cmdstanr (Gabry & Češnovar, 2021),204

DHARMa (Hartig, 2019), lme4 (Bates et al., 2012; Bates et al., 2015), and Rcpp (Eddelbuettel & François,205

2011). Interobserver reliability scores indicate high agreement across coders for all dependent variables (see206

Supplementary Material 3 for details).207
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Flexibility analyses208

Model and simulation209

We modify the reversal learning Bayesian model in Blaisdell et al. (2021) to simulate and analyze population210

differences in reversal learning, and calculate our ability to detect differences between populations. The model211

accounts for every choice made in the reversal learning experiment and updates the probability of choosing212

either option after the choice is made depending on whether that choice contains a food reward or not. It213

does this by updating three main components for each choice: an attraction score, a learning rate (𝜙), and214

a rate of deviating from learned attractions (𝜆).215

As in Blaisdell et al. (2021), we, too, use previously published data on reversal learning of color tube prefer-216

ences in great-tailed grackles in Santa Barbara, California (Logan, 2016b) to inform the model modifications.217

We modified the Blaisdell et al. (2021) model in a two ways: 1) we set the initial attraction score assigned218

to option 1 and option 2 (the light gray and dark gray tubes) to 0.1 rather than 0.0. This change assumes219

that there would be some inclination (rather than no inclination) for the bird to approach the tubes when220

they are first presented because they are previously trained to expect food in tubes. This also allows the221

attraction score to decrease when a non-rewarded choice is made near the beginning of the experiment. With222

the previous initial attraction scores set to zero, a bird would be expected to choose the rewarded option in223

100% of the trials after the first time it chose that option (attraction cannot be lower than zero, and choice224

is shaped by the ratio of the two attractions so that when one option is zero and the other is larger than225

zero, the ratio will be 100% for the rewarded option). 2) We changed the updating so that an individual226

only changes the attraction toward the option they chose in that trial (either decreasing their attraction227

toward the unrewarded option or increasing their attraction toward the rewarded option). Previously, both228

attractions were updated after every trial, assuming that individuals understand that the experiment is set229

up such that one option is always rewarded. For our birds, we instead assumed that individuals will focus on230

their direct experience rather than making abstract assumptions about the test. Our modification resulted231

in needing a higher 𝜙 to have the same learning rate as a model where both attraction scores update after232

every trial. This change also appears to better reflect the performance of the Santa Barbara grackles, because233

they had higher 𝜙 values, which, in turn, meant lower 𝜆 values to reflect the performance during their initial234

learning. These lower 𝜆 values better reflect the birds’ behavior during the first reversal trials: a large 𝜆235

value means that birds continue to choose the now unrewarded option almost 100% of the time, whereas the236

lower 𝜆 values mean that birds start to explore the rewarded option relatively soon after the switch of the237

rewarded option.238

We first reanalyze the Santa Barbara grackle data to obtain the phi and lambda values with this revised239

model, which informs our expectations of what a site’s mean and variance might be. Then we run simulations,240

where we determined that we wanted to make the previously mentioned modifications to the stan (Team et241

al., 2019) model [in R, current version 4.1.2; R Core Team (2017)]. This model is used to analyze the actual242

data after it is collected.243

Innovation analysis244

Model and simulation245

Expected values for the number of options solved on the multiaccess log were set to 0-4 (out of 4 options246

maximum) because this apparatus had been used on two species of jays who exhibited individual variation247

in the number of loci solved between 0-4 (California scrub-jays, Aphelocoma californica, and Mexican jays,248

Aphelocoma wollweberi: McCune, 2018; McCune et al., 2019).249

locisolved ~ Binomial(4, p) [likelihood]250

logit(p) ~ 𝛼[site] [model]251

locisolved is the number of loci solved on the multiaccess box, 4 is the total number of loci on the multiaccess252

box, p is the probability of solving any one locus across the whole experiment, 𝛼 is the intercept, and each253

site gets its own intercept. After running simulations, we identify the following distribution to be the most254

likely priors for our expected data:255

𝛼 ~ Normal(0,1) [𝛼 prior]256
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We use a normal distribution for 𝛼 because it is a sum (see Figure 10.6 in McElreath (2016)) and a logit link257

to ensure the values are between 0 and 1. We set the mean to 0 on a logit scale, which means an individual258

solves 2 loci on average on the actual scale at a probability of 0.5.259

Note that two grackles, Kau and Galandra, were accidentally able to pull 2 and 1, respectively, locus doors260

open during habituation to the multi-access box. Because habituation was not observed by an experimenter,261

the birds had the possibility to learn how these doors worked. Therefore, these doors were locked open and262

non-functional throughout their entire experiment. We accommodated for this in the model by replacing263

the 4 (as in 4 possible loci were available to solve) with a column of data that listed the maximum possible264

loci available to each bird.265

Exploration analysis266

Model and simulation267

We model the average latency to approach a novel environment and compare these between sites. We268

simulate data and set the model as follows:269

latency ~ gamma-Poisson(𝜆𝑖, 𝜙) [likelihood]270

log(𝜆𝑖) ~ 𝛼[site] [the model]271

latency is the average latency to approach a novel environment, 𝜆𝑖 is the rate (probability of approaching272

the novel environment in each second) per bird (and we take the log of it to make sure it is always positive;273

birds with a higher rate have a smaller latency), 𝜙 is the dispersion of the rates across birds, and 𝛼 is the274

intercept for the rate per site.275

Expected values for the latency to approach a novel environment range from 0-2700 sec, which encompasses276

the time period during which they are exposed to the novel environment (sessions last up to 45 min).277

However, we do not provide an upper limit for the model because those birds that do not approach within278

2700 sec would eventually have had to approach the novel environment to access their food (it is just that279

sessions did not run that long). After running simulations, we identify the following distribution and priors280

to be the most likely for our expected data:281

𝜙 ~ 1/(Exponential(1)) [𝜙 prior]282

𝛼 ~ Normal(1350,500) [𝛼 prior]283

We use a gamma-Poisson distribution for latency because it constrains the values to be positive. For 𝜙, we284

used an exponential distribution because it is standard for this parameter. We used a normal distribution285

for 𝛼 because it is a sum with a large mean (see Figure 10.6 in McElreath (2016)). We estimate that the286

grackles might approach the novel environment at any time in the session, therefore we hold the 𝛼 mean of287

1350 sec in mind as we conduct the modeling. We set the 𝛼 standard deviation to 500 because this puts the288

range of seconds for the distribution in the possible range.289

Persistence analysis290

Model and simulation291

Expected values for the number of trials not participated in can range from 0-125. The likely maxima for292

reversal learning is 300 trials based on data from Santa Barbara (Logan, 2016a) and Tempe grackles (Logan293

et al., 2023) where, on average, individuals participate in 70 trials in the initial discrimination, a maximum294

of 130 trials in the reversal, and up to 100 non-participation trials across the initial discrimination and295

reversal. On the multiaccess log, grackles participated in a maximum of 50 trials and there were up to 25296

non-participation trials. The estimated maximum number of non-participation trials is based on what might297

be expected from an individual who does not participate very often. After running simulations, we identify298

the following distribution and priors most likely for our expected data:299

participated ~ Binomial(totaltrials, p) [likelihood]300

logit(p) ~ 𝛼[site] [model]301
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participated indicates whether the bird participated or not in a given trial, total trials is the total number302

of trials offered to the individual (those participated in plus those not participated in), p is the probability303

of participating in a trial, 𝛼 is the intercept, and each site gets its own intercept. We use a logit link to304

constrain the output to between 0 and 1. After running simulations, we identify the following distribution305

and priors most likely for our expected data:306

𝛼 ~ Normal(0,0.5) [𝛼 prior]307

We use a normal distribution for 𝛼 because it is a sum (see Figure 10.6 in McElreath, 2016). We set the308

mean to 0 (on a logit scale, which is a probability of 0.5 that a bird will participate in every other trial on309

average on the actual scale).310

Repeatability of exploration and persistence311

Analysis: We obtain repeatability estimates that account for the observed and latent scales, and then312

compare them with the raw repeatability estimate from the null model. The repeatability estimate indicates313

how much of the total variance, after accounting for fixed and random effects, is explained by individual314

differences (bird ID). We run this GLMM using the MCMCglmm function in the MCMCglmm package315

((Hadfield, 2010)) with a Poisson distribution and log link using 13,000 iterations with a thinning interval316

of 10, a burnin of 3,000, and minimal priors (V=1, nu=0) (Hadfield, 2014). We ensure the GLMM shows317

acceptable convergence (i.e., lag time autocorrelation values <0.01; (Hadfield, 2010)), and adjust parameters318

if necessary.319

Post-study choices made since receiving in principle recommendation320

In the preregistration, we said that for the exploration measure we would use the “Latency to approach321

within 20 cm of an object (novel or familiar, that does not contain food) in a familiar environment (that322

contains maintenance diet away from the object) - OR - closest approach distance to the object (choose the323

variable with the most data for the analysis).” We had data for both exploration measures and we used the324

latency measure because this was the variable that our preregistered analysis was designed for.325

In the peer review history of the preregistration, we said that we would use whichever exploration test was326

repeatable with the Tempe grackles (novel object and/or novel environment) (round 1, response 16, https://327

ecology.peercommunityin.org/articles/rec?id=98). The methods for both novel stimuli were exactly the same328

and there was little variation in whether, or for how long, individuals went into the novel environment (i.e.,329

most individuals did not go in the novel environment). However, the Tempe grackles responded differently330

to the novel environment and novel object, therefore they did not perceive the stimuli as the same. From the331

Tempe grackle data, we found that responses were only repeatable for the novel environment test (McCune332

KB et al., 2019). Therefore, we conducted this assay (and not the novel object assay) with the Woodland333

grackles and compared the two populations on this one assay.334

For the repeatability of persistence, the preregistered model had Test (reversal or multiaccess box) as the335

explanatory variable and ID as the random variable. However, we believe we made an error in choosing336

the explanatory variable because we are interested in whether the trait is repeatable across populations337

regardless of test. Therefore, we replaced Test with Population in the model. In addition, we realized that338

our measure of persistence (proportion of trials participated in) is not appropriate for a Poisson model, as339

preregistered. Consequently, we use a likelihood ratio test to compare a mixed model to a model without340

the ID random effect, and the function rpt from the package: rptR (Stoffel et al., 2017) to estimate the341

variance in the dependent variable attributable to consistent differences among individuals across the two342

tests. We previously found that this method produces the same repeatability results as the MCMCglmm343

method using a Gaussian distribution (K. McCune et al., 2022).344

The exploration data for the repeatability calculation were heteroscedastic and overdispersed. Additionally,345

53% of the data were at the ceiling value (i.e., the bird did not approach the novel environment). Conse-346

quently, the model that best fit the data and was appropriate for the repeatability analysis was a binomial347

model, where the response was 0 (the grackle never approached the novel environment during exploration348

trials) or 1 (the grackle approached the novel environment).349
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RESULTS350

Flexibility351

There are no strong site differences for either component of reversal learning: 𝜙 or 𝜆 (Figure 3). However, 𝜙352

differs by only 0.0005 (Woodland=0.0306, Tempe=0.0301) and 𝜆 by 0.26 (Woodland=4.78, Tempe=4.52),353

and the compatibility intervals for the estimated differences for both parameters cross zero (Table 2). With354

our sample size, we only have the power to reliably detect differences between the populations if they are355

larger than 0.01 for 𝜙 and 1.4 for 𝜆 (based on our power analysis in Supplementary Material 2, summarized in356

Table SM1). Accordingly, we cannot exclude that the two populations are different, howeve we can estimate357

the range for how small the difference can be. Based on the estimated 89% compatibility intervals for phi358

and lambda in Table 2, the two populations are unlikely to differ by more than 0.01 for 𝜙 and 3 for 𝜆 (Table359

2). Plotting the values (Figure 3) suggests no differences in the variances because similar minimum and360

maximum values are observed in both populations.361

Table 2. Contrasts (indicated by “diff”) between populations for the flexibility measure of reversal learning:362

phi and lambda.363

Mean Standard
deviation

Lower 89
percentile

compatibility
interval (5.5%)

Upper 89
percentile

compatibility
interval (94.5%)

Woodland Phi 0.03 0.01 0.02 0.05
Woodland
Lambda

5.84 5.96 1.79 12.00

Tempe Phi 0.03 0.01 0.02 0.04
Tempe Lambda 5.51 3.93 1.43 11.40
diff_Phi 0.00 0.01 -0.01 0.01
diff_Lambda 0.26 0.68 -0.73 1.40

364

365
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366

Figure 3. Measures of flexibility from the reversal learning experiment: 𝜙 and 𝜆 per individual in each367

population. The boxplots show the minimum, maximum, lower and upper quartiles, and median values.368

The blue circles are outliers associated with the boxplots. The black circles are the raw data from each369

individual.370

Innovation371

Individuals in the more recent population, Woodland, California, are more innovative than individuals in the372

older population in Tempe, Arizona (Figure 4). Woodland grackles solve a higher proportion of loci on the373

multiaccess box as indicated by the contrast that showed that the compatibility interval did not cross zero374

(diff_12 in Table 3). Plotting the values (Figure 4) suggests no clear differences in the variances between375

the two populations because some individuals in both populations solved zero and some solved all four loci.376

Table 3. Contrasts between populations for the innovation measure: the proportion of loci solved on the377

multi-access box.378

Mean Standard
deviation

Lower 89
percentile

compatibility
interval (5.5%)

Upper 89
percentile

compatibility
interval (94.5%)

Woodland 0.76 0.04 0.69 0.83
Tempe 0.50 0.06 0.41 0.60
diff_12 0.26 0.07 0.14 0.37

379

380
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381

Figure 4. Number of loci solved on the multiaccess box in the innovativeness test per individual at each382

site (n=21 birds in Woodland, n=15 birds in Tempe). The boxplots show the minimum, maximum, lower383

and upper quartiles, and median values. The blue circles are outliers associated with the boxplots. The384

black circles are the raw data from each individual.385

Exploration386

Individuals in the older population, Tempe, Arizona, are more exploratory than individuals in the more387

recent population in Woodland, California (Figure 5). Tempe grackles are faster (have lower latencies) to388

approach a novel environment as indicated by the contrast that shows that the compatibility interval does389

not cross zero (diff_12 in Table 4). Plotting the values (Figure 5) suggest no clear differences in the variances390

between the two populations because there is a similar spread of latencies.391

Table 4. Contrasts (indicated by “diff”) between populations for the exploration measure: latency to392

approach within 20 cm of a novel environment. Note that “phi” in this table refers to a term in the gamma393
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poisson model and not to what we refer to as the phi parameter in reversal learning.394

Mean Standard
deviation

Lower 89
percentile

compatibility
interval (5.5%)

Upper 89
percentile

compatibility
interval (94.5%)

Woodland 1697.40 229.76 1368.91 2058.43
Tempe 1137.56 181.84 875.64 1448.64
phi 1.59 0.29 1.15 2.09
diff_12 559.84 285.99 103.84 1017.56

395

396

397

Figure 5. Average latency to approach within 20 cm of a novel environment in the exploration assay per398

individual at each site (n=32 Woodland, n=19 Tempe). Note that if an individual does not approach within399

20 cm of the novel environment at Time 1 or 2, they are given a ceiling value of 2701, which is one second400

longer than the session length. The boxplots show the minimum, maximum, lower and upper quartiles, and401
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median values. The black circles are the raw data from each individual.402

Persistence403

There are no strong site differences for persistence quantified as the proportion of trials participated in across404

the reversal and multiaccess box experiments (Figure 6). We would need a difference of more than 0.08 in405

the proportion of trials participated in to detect a difference between the sites (based on our power analysis406

in Supplementary Material 2, summarized in Table SM1). However, the proportion differs by only 0.08407

(Woodland=0.72, Tempe=0.80), and the site differences are unlikely to be larger than 0.08 (Table 5). Visual408

interpretation, through plotting the values (Figure 6), could suggest that the variance in persistence might409

be larger among the individuals in Woodland compared to Tempe because some of the Woodland individuals410

show lower persistence values than those in the Tempe individuals. We conducted an UNREGISTERED411

ANALYSIS which finds no support that the variances differ between the two populations (Levene’s test for412

homogeneity of variance: df=1, F value=1.9, p=0.17).413

Table 5. Contrasts (indicated by “diff”) between populations for the persistence measure: proportion of414

trials participated in across the reversal and multiaccess box experiments.415

Mean Standard
deviation

Lower 89
percentile

compatibility
interval (5.5%)

Upper 89
percentile

compatibility
interval (94.5%)

Woodland 0.78 0.01 0.77 0.80
Tempe 0.79 0.01 0.78 0.80
diff_12 0.00 0.01 -0.02 0.01

416

417
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418

Figure 6. The proportion of trials participated in across the reversal and multiaccess box experiments is419

the measure of persistence per individual at each site (n=25 Woodland, n=20 Tempe). The boxplots show420

the minimum, maximum, lower and upper quartiles, and median values. The black circles are the raw data421

from each individual.422

Repeatability of exploration and persistence423

Exploration of the novel environment is repeatable in the Woodland population (current study: likelihood424

ratio test: R=0.70, p=0.001, confidence interval=0.2-1.0). Our previous analysis found that novel envi-425

ronment exploration was repeatable in the Tempe (McCune KB et al., 2019: R=0.72, p<0.001, confidence426

interval=0.42-0.88) grackles. Persistence is repeatable across both populations (likelihood ratio test: R=0.24,427

p=0.03, confidence interval=0.03-0.46).428
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DISCUSSION429

We conduct behavioral experiments with great-tailed grackles from two populations: an older population in430

the middle of the expansion front (Tempe, Arizona), and a more recent population on the northern edge of431

their expansion in Woodland, California. Our measures of flexibility (using serial reversals in the Tempe pop-432

ulation, K. McCune et al., 2022), exploration (Tempe, McCune KB et al., 2019, Woodland, reported here),433

and persistence (both populations reported here) are repeatable and show large inter-individual variation,434

which validates that these are stable traits that can be meaningfully compared. We find that individuals435

in the edge population are more innovative and less exploratory than the population in the middle of the436

expansion front, and that there are no population differences in behavioral flexibility or persistence. This437

supports the hypothesis that changes in particular behavioral traits are potentially important for facilitating438

a species’ rapid geographic range expansion.439

We find no support for the hypothesis that flexibility plays an important role in rapid geographic range440

expansions (Chow et al., 2016; Griffin & Guez, 2014; e.g., Lefebvre et al., 1997; Sol et al., 2002, 2005, 2007;441

Sol & Lefebvre, 2000; Wright et al., 2010). The finding that flexibility is not higher among individuals at the442

edge of the expansion range indicates that flexibility is not a latent trait that is called upon when individuals443

move into new areas.444

It is possible that behavioral flexibility facilitated the increase of this species’ habitat breadth beyond marshes445

when humans started to modify the environment thousands of years ago (Christensen, 2000). Great-tailed446

grackles are now almost exclusively associated with human modified environments Wehtje (2003), and when447

planning study sites, we initially wanted to compare forest versus urban grackle populations. However, we448

are unable to find a population that exclusively exists in forests (based on eBird.org data, Logan, pers.449

obs.). In another article produced from the same preregistration, Logan CJ et al. (2020), as the current450

article, we investigate the role of increased habitat availability in geographic range expansions by comparing451

rapidly expanding great-tailed grackles with their closest relative that is not rapidly expanding its range,452

boat-tailed grackles (Q. major) (Summers et al., 2023). We predict that great-tailed grackles expanded their453

range because suitable habitat (i.e., human modified environments) increased (prediction 1 alternative 1 in454

the preregistration). Results show that, between 1979 and 2019, great-tailed grackles increased their habitat455

breadth to include more urban, arid environments. In contrast, boat-tailed grackles moved into new suitable456

habitat that was made available by climate change. These results support the possibility that flexibility457

played a role in the ability to increase habitat breadth. We are currently conducting a behavioral flexibility458

experiment in boat-tailed grackles to determine whether they are less flexible than great-tailed grackles,459

which would further support the hypothesis that flexibility was involved in the great-tailed grackle rapid460

range expansion (in the same preregistration as the current study: Logan CJ et al., 2020). Unfortunately,461

we discovered in our first boat-tailed grackle field season in 2022 that they do not do well in captivity.462

Consequently, we will not continue the aviary tests in this species. Therefore, we only have comparable463

data from the aviary tests for two (reversal), four (multiaccess box), and five (persistence) individuals. The464

boat-tailed grackle exploration videos are not coded and therefore not included in the analysis. Although the465

boat-tailed grackle sample size is too small to arrive at robust conclusions, we analyze their data here to give466

an indication of useful directions for future research. We find that boat-tailed grackles have similar levels467

of flexibility as both populations of great-tailed grackles; boat-tailed grackles are less innovative than468

the Woodland, but not the Tempe great-tailed grackles; and boat-tailed grackles are less persistent than469

both great-tailed grackle populations (see model outputs in Supplementary Material 4). This suggests that470

we might not find differences in flexibility between the two species. However, we are currently conducting471

reversal learning experiments in the wild in both species to determine whether this is a robust result Logan472

et al. (2022).473

The ability of great-tailed grackles to move into new habitats might be a species specific ability that has474

been ongoing for many years, which could be linked to the high levels of flexibility in this species being475

relatively fixed (Wright et al., 2010). great-tailed grackles are flexible on the reversal learning task and are476

perhaps at their upper limit uniformly across their range. With an average reversal learning speed of 74477

trials (using the data in the current article), great-tailed grackles are as flexible as great (Parus major) and478

blue (Cyanistes caeruleus) tits [average 59 trials; Morand-Ferron et al. (2022)] and three species of Darwin’s479

finches (average 89 trials); and more flexible than Pinyon jays (average 155 trials), Clark’s nutcrackers480
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(average 143 trials), California scrub jays (average 191 trials), pigeons (average 168 trials) Lissek et al.481

(2002), and mice (average approximately 150 trials, Laughlin et al., 2011). Perhaps great-tailed grackles482

maintain a high level of flexibility across their range in response to daily changes in their local environment483

(e.g., the changing schedules of cafes with outdoor seating areas and garbage pick up times), rather than484

specifically in response to larger changes that might occur less frequently (e.g., traveling farther to exploit485

new foraging opportunities or moving to a new area).486

Another alternative is that we measured the edge population too long after their initial establishment,487

during which time they potentially exhibited more flexibility for their initial adaptation phase to the new488

area (Wright et al., 2010). If the sampled individuals had already been living at this location for long enough489

(or for their whole lives) to have learned what they need to about this particular environment (e.g., there490

may no longer be evidence of increased flexibility/innovativeness/exploration/persistence), there may be no491

reason to maintain population diversity in these traits to continue to learn about this environment. In this492

case, because differences in innovativeness are found, this trait could have different timing in the process493

of establishing in a new location (i.e., be required for longer). Great-tailed grackles occur more irregularly494

in areas further north of our edge site, and flexibility might be higher in more northern individuals from495

areas where stable populations are not yet established. However, evidence from experimental evolution496

suggests that, even after 30 generations there is no change in exploration of a novel environment or other497

behaviors (aggression, social grooming, courtship, and orientation) when comparing domestic guinea pigs498

with 30 generations of wild-caught captive guinea pigs (Künzl et al., 2003), whereas artificial selection can499

induce changes in spatial ability in as little as two generations (Kotrschal et al., 2013). This means it is500

likely that we would have detected population differences if such differences were linked with adapting to a501

new environment.502

Differences in innovativeness and exploration are associated with the great-tailed grackle’s rapid geographic503

range expansion. An increase in innovation in newly established populations can facilitate innovating new504

foraging techniques and exploiting new food sources, while a decrease in exploration can reduce their risk of505

encountering danger in a new area. The relatively little evidence from invasive species that are also expanding506

their geographic ranges shows similar results. Common mynas (Acridotheres tristis) on the invasion front507

are more innovative than those from populations away from the front and in their native range (Cohen et al.,508

2020), and spiders from edge populations are less exploratory than those from core populations (Chuang &509

Riechert, 2021). While great-tailed grackles are not considered an invasive species because they introduced510

themselves rather than being introduced by humans, comparing them with invasive species is useful because511

the dynamics after the introduction stage should be similar (i.e., establishing in a new area and spreading512

out from there) (Chapple et al., 2012). Note that wild great-tailed grackles were caught from north of Rio513

de la Antigua, Mexico by the Aztec emperor, Auitzotl (1486-1502), and introduced approximately 370 km514

inland to the Valley of Mexico (Tenochititlan & Tlatelolco) where they reproduced and spread (P. Haemig,515

2014; P. D. Haemig, 2011, 2012). By 1577, they spread at least 100 km including back to their native516

range (P. D. Haemig, 2011). This indicates that great-tailed grackles had already spread this far north by517

themselves before the introduction at a parallel latitude, and that they continued their spread without the518

help of human-facilitated introductions.519

Flexibility is causally related with innovativeness in great-tailed grackles (Logan et al., 2023, measured on520

the Tempe individuals included in the current study). We manipulated flexibility in the Tempe grackles521

by giving a manipulated group serial reversals until they passed quickly. The manipulated grackles were522

then given an innovation test (the multiaccess box) and found to be more innovative (solved more loci)523

compared to control grackles who only experienced one reversal. Flexibility, the ability to recognize that524

something about the environment has changed and decide to consider other options for deploying behavior525

(Mikhalevich et al., 2017), is distinct from innovation, which is the specific stringing together of particular526

behaviors in response to the decision to change behavior in some way (Griffin & Guez, 2014). That they are527

causally related does not mean that they must always be associated to the same degree because there can528

be other variables that additionally influence one or both traits differentially across time and space (e.g.,529

environmental unpredictability, features of the items they forage on that differ and require different access530

methods). We are currently investigating how flexibility and exploration, and flexibility and a different531

measure of persistence (number of functional and/or non-functional touches to test apparatuses) are related532

in the Tempe grackles (McCune KB et al., 2019). Additionally, we are determining to what extent the aviary533
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measure of exploration is a proxy for how the Tempe individuals use space in the wild after their release534

(McCune KB et al., 2020).535

In conclusion, rather than flexibility being associated with a rapid geographic range expansion, as is widely536

hypothesized, we find that higher innovation and lower exploration levels are the key behavioral traits537

associated with the great-tailed grackle’s edge population in comparison with an older population closer538

to the original range. The term “behavioral flexibility” is defined and measured in a variety of ways in539

the literature (or it is not defined at all). For example, the detour task (individuals must walk around a540

transparent barrier to access a food reward) is sometimes considered a test of flexibility, sometimes a test541

of self control, and sometimes a test of both. However, theoretically and empirically it measures a trait542

that is not, and is not related to, flexibility or self control, but rather a different trait: motor inhibition543

(Logan et al., 2021). We argue that calling many types of traits “flexibility” without proper (or sometimes544

any) theoretical justification and without validating methods is detrimental because it confounds our ability545

to answer questions about the broader significance of flexibility and how it is genuinely involved in large546

scale changes (Logan et al., 2017; Mikhalevich et al., 2017). Our research program shows the value of547

clearly defining terms for behavioral traits, validating the methods intended to measure those traits, and548

understanding how certain traits relate to each other (causally if possible) before attempting to answer549

broader cross population questions.550
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SUPPLEMENTARY MATERIAL 1: Sample size rationale583

We summarize the minimum sample sizes and their associated detection limits in Table SM1, which allows584

us to determine whether populations are different from each other (detailed in the Analysis section for each585

experiment).586

Table SM1. A summary of the measure of interest in each experiment, the distribution used for the analysis,587

the minimum detectable difference between site means, and the minimum sample size that goes with the588

minimum detectable difference.589

Experiment Measurement Distribution Minimum
difference between
site means

Minimum sample
size

Reversal Phi (learning rate) Gamma Differences of 0.01
are likely to be
detected (based on
models with 20
individuals per
site, however this
is likely to hold for
the the minimum
sample size as
well) (Figures
SM2.1 and SM2.2

15

Reversal Lambda (random
choice rate)

Gamma Differences of 3
are likely to be
detected (based on
models with 20
individuals per
site, however this
is likely to hold for
the the minimum
sample size as
well) (Figures
SM2.1 and SM2.2)

15

Multiaccess box Number of loci
solved

Binomial Differences of 1.2
loci are likely to
be detected (Table
SM2)

15

Exploration Latency to
approach novel
object

Gamma-Poisson Differences of at
least 450 seconds
are likely to be
detected (Table
SM2)

15

Persistence Percent of trials
participated in

Normal Difference of at
least 0.08 in the
proportion of
trials participated
in (Table SM2)

18

590
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SUPPLEMENTARY MATERIAL 2: Simulations for power analyses591

Hypothesis-specific mathematical model592

Following procedures in McElreath (2016), we construct a hypothesis-appropriate mathematical model593

for each of the response variables that examines differences in the response variable between sites (each site594

represents a grackle population). These models take the form of:595

y ~ 𝛼[site]596

y is the response variable (flexibility, innovation, exploration, or persistence). There is one intercept, 𝛼, per597

site and we estimate the site’s average and standard deviation of the response variable.598

We formulate these models in a Bayesian framework. We determine the priors for each model by performing599

prior predictive simulations based on ranges of values from the literature to check that the models are600

covering the likely range of results.601

We then perform pairwise contrasts to determine at what point we can detect differences between sites602

by manipulating sample size, and 𝛼 means and standard deviations. Before running the simulations, we603

decided that a model would detect an effect if 89% of the difference between two sites is on the same side604

of zero (following McElreath (2016)). We are using a Bayesian approach, therefore comparisons are based605

on samples from the posterior distribution. We draw 10,000 samples from the posterior distribution, where606

each sample has an estimated mean for each population. For the first contrast, within each sample, we607

subtract the estimated mean of the edge population from the estimated mean of the core population. For608

the second contrast, we subtract the estimated mean of the edge population from the estimated mean of609

the middle population. For the third contrast, we subtract the estimated mean of the middle population610

from the estimated mean of the core population. We now have samples of differences between all of the611

pairs of sites, which we can use to assess whether any site is systematically larger or smaller than the others.612

We determine whether this is the case by estimating what percentage of each sample of differences is either613

larger or smaller than zero. For the first contrast, if 89% of the differences are larger than zero, then the614

core population has a larger mean. If 89% of the differences are smaller than zero, then the edge population615

has a larger mean.616

Flexibility analysis617

Power analyses: We also use the simulations to estimate our ability to detect differences in 𝜙 and 𝜆 between618

sites based on extracting samples from the posterior distribution. We run two different sets of simulations:619

we first sample between 9 and 24 birds from populations with pre-specified 𝜙 and 𝜆 means to determine620

the minimum sample size required to detect whether two populations are different. This set of simulations621

shows how different site sample sizes change detection levels: once a sample size of 15 is reached, there are622

only minimal differences in detection abilities compared to larger sample sizes (Figure SM2.1). The second623

set of simulations recreates choices for 20 birds per population across initial learning and reversal trials from624

which we estimate their 𝜙 and 𝜆. We simulate 20 birds per population because this number is above the625

threshold we detected in the first set of simulations and it appears a feasible sample size. We expect that the626

noise in the probabilistic choices of individuals might reduce the differences that can be detected compared627

to the first simulation where 𝜙 and 𝜆 are assumed to be exactly known for each individual. This second628

set of simulations shows that we have a very high chance of detecting that two sites are different from each629

other if the difference in their 𝜙 is 0.01 or greater and/or if the difference in their 𝜆 is 3 or greater, based630

on data from 20 simulated individuals per site (Figure SM2.2). It appears that there is more variability in631

the 𝜆 estimates for each bird based on their choices, meaning that with the learning model, which estimates632

𝜆 from the choices, the differences between sites have to be larger (than if we were able to infer lambda633

directly) to be reliably detected. The power curves in Figure SM2.1 are more reliable than those in Figure634

2.2.635
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636

Figure SM2.1. How small of a site difference in phi and lambda can we detect? The probability that637

the model estimates that the difference shown on the x axis is zero, meaning that the model assumes638

that it is possible that these two estimates come from a population with the same phi or lambda. Each639

point is the mean phi or mean lambda from one site minus the mean phi or mean lambda from another640

site (calculated from 20 individuals per site) for all pairwise comparisons for all 32 sites (for a total of641

496 pairwise comparisons). Left panels: error bars=89% compatibility intervals. Right panels: shaded642

areas=97% prediction intervals.643
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Figure SM2.2. How do detection differences vary according to sample size differences? The probability645

that the model estimates that the difference shown on the x axis is zero, meaning that the model assumes646

that it is possible that these two estimates come from a population with the same phi or lambda. The x-axis647

is the mean phi or mean lambda from one site minus the mean phi or mean lambda from another site for648

all pairwise comparisons for all 14 sites (for a total of 91 pairwise comparisons). Each shaded region is the649

97% prediction interval for that particular sample size.650

Innovation analysis651

After building the model (see Methods), we then run the mathematical model and perform pairwise652

contrasts and determine that we are able to detect differences between sites with a sample size of 15 at each653

site if the average number of loci solved differs by 1.2 loci or more and the standard deviation is generally654

a maximum of 0.9 at each site (Table SM2). For a sample size of 20 at each site, we are able to detect site655

differences if the average number of loci solved differs by 0.7 of a locus or more and the standard deviation is656

generally a maximum of 1 at each site (Table SM2). Note: the Arizona sample size is 11 for the multiaccess657

log and 17 on a similar multiaccess box.658

Table SM2. Simulation outputs from varying sample size (n), and 𝛼 means and standard devia-659

tions. We calculate pairwise contrasts between the estimated means from the posterior distribution: if for660

a large sample the difference is both positive and negative and crosses zero (yes), then we are not able to661

detect differences between the two sites. If the differences between the means are all on one side of zero662

for 89% of the posterior samples (no), then we are able to detect differences between the two sites. We663

chose the 89% interval based on (McElreath, 2016). Note that for latency, there is no mu_sd, but rather664

one phi that is the same for all sites. The numbers 1-3 in the column titles refer to sites 1-3 as do S1-3665

(the simulations were run on a total of three sites because we originally planned to collect data at two666

to three sites), mu=average, sd=standard deviation. Loci solved is the innovativeness measure, latency667

is the exploration measure, and trials participated in is the persistence measure. Note that the full table668

can be viewed at https://raw.githubusercontent.com/corinalogan/grackles/master/Files/Preregistrations/669

gxpopbehaviorhabitat_table_simoutputs.csv670
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Response
vari-
able

n mu site
1

mu site
2

mu site
3

mu_sd
site 1

mu_sd
site 2

mu_sd
site 3

Difference
crosses
zero?
Sites 1
vs 2

Difference
crosses
zero?
Sites 1
vs 3

Difference
crosses
zero?
Sites 2
vs 3

Notes

loci
solved

60 1.90 2.10 3.60 0.50 0.50 0.50 No No No

loci
solved

60 1.90 2.10 2.20 0.50 0.50 0.50 Yes Yes Yes

loci
solved

60 1.90 2.10 2.30 0.50 0.50 0.50 Yes Yes Yes

loci
solved

60 1.90 2.10 3.50 0.50 0.50 0.50 No No No

loci
solved

60 1.90 2.10 3.00 0.50 0.50 0.50 Yes No No

loci
solved

60 1.90 2.10 2.80 0.50 0.50 0.50 Yes No Yes

loci
solved

60 1.80 2.10 3.00 0.50 0.50 0.50 Yes Yes No

loci
solved

60 2.00 2.50 3.00 0.50 0.50 0.50 No Yes No

loci
solved

60 2.00 2.50 3.10 0.50 0.50 0.50 No No Yes

loci
solved

60 1.90 2.50 3.20 0.50 0.50 0.50 Yes No No

loci
solved

60 1.80 2.50 3.30 0.50 0.50 0.50 No No Yes

loci
solved

60 1.70 2.50 3.40 0.50 0.50 0.50 No No No

loci
solved

60 1.70 2.50 3.40 1.00 1.00 1.00 No No No

loci
solved

60 1.70 2.50 3.40 1.50 1.50 1.50 Yes No No

loci
solved

60 1.70 2.50 3.40 1.30 1.30 1.30 Yes Yes Yes

loci
solved

60 1.00 2.00 3.00 0.50 0.50 0.50 No No Yes

loci
solved

60 1.00 2.00 3.00 0.50 0.50 0.50 No No No

loci
solved

60 1.00 2.00 3.00 0.30 0.40 0.50 No No No

loci
solved

60 1.00 2.00 3.00 0.60 0.70 0.50 No No No

loci
solved

60 1.00 2.00 3.00 0.70 0.70 0.70 No No No

loci
solved

60 1.00 2.00 3.00 0.90 0.90 0.90 No No No

loci
solved

60 1.00 2.00 3.00 1.00 1.00 1.00 No No No

loci
solved

60 1.00 2.00 3.00 1.50 1.50 1.50 Yes No No

loci
solved

60 1.00 2.00 3.00 1.30 1.50 1.50 Yes No No

loci
solved

60 1.00 2.00 3.00 1.10 1.50 1.50 No No No

loci
solved

60 1.00 2.00 3.00 1.20 1.50 1.50 No No No

loci
solved

45 1.00 2.00 3.00 0.50 0.50 0.50 Yes No No

loci
solved

45 0.90 2.00 3.10 0.50 0.50 0.50 No No Yes

loci
solved

45 0.80 2.00 3.20 0.50 0.50 0.50 No No No

loci
solved

45 0.80 2.00 3.20 1.00 1.00 1.00 Yes No No

loci
solved

45 0.80 2.00 3.20 0.90 0.90 0.90 No No No

latency 45 5.70 6.90 7.60 1000.00 1000.00 1000.00 No No No
latency 45 5.80 6.90 7.50 1000.00 1000.00 1000.00 No No No
latency 45 6.00 6.90 7.20 1000.00 1000.00 1000.00 No No Yes
latency 45 6.00 6.90 7.30 1000.00 1000.00 1000.00 No No Yes
latency 45 6.00 6.90 7.40 1000.00 1000.00 1000.00 No No Yes
latency 45 6.00 6.90 7.50 1000.00 1000.00 1000.00 Yes No No
latency 45 5.90 6.90 7.50 1000.00 1000.00 1000.00 No No Yes
latency 45 5.90 6.90 7.60 1000.00 1000.00 1000.00 No No No
latency 45 5.90 6.90 7.60 1000.00 1000.00 1000.00 No No No
latency 45 5.90 6.90 7.60 1000.00 1000.00 1000.00 No No No
latency 45 4.60 6.30 7.10 1000.00 1000.00 1000.00 No No Yes
latency 45 4.60 6.30 7.20 1000.00 1000.00 1000.00 No No No
latency 45 4.60 6.30 7.20 1000.00 1000.00 1000.00 No No Yes
latency 45 4.60 6.30 7.20 1000.00 1000.00 1000.00 No No Yes
latency 45 4.60 6.30 7.30 1000.00 1000.00 1000.00 No No No
latency 45 4.60 6.30 7.30 1000.00 1000.00 1000.00 No No No
latency 45 4.60 6.30 7.30 1000.00 1000.00 1000.00 No No No
latency 60 5.70 6.90 7.60 1000.00 1000.00 1000.00 No No Yes
latency 60 5.70 6.90 7.60 1000.00 1000.00 1000.00 No No Yes
latency 60 5.70 6.90 7.70 1000.00 1000.00 1000.00 No No No
latency 60 5.90 6.90 7.60 1000.00 1000.00 1000.00 No No Yes
latency 60 5.90 6.90 7.60 1000.00 1000.00 1000.00 No No Yes
latency 60 4.60 6.20 7.10 1000.00 1000.00 1000.00 Yes No No
latency 60 4.60 6.20 7.10 1000.00 1000.00 1000.00 Yes No No
latency 60 4.60 6.40 7.10 1000.00 1000.00 1000.00 No No No
latency 60 4.60 6.30 7.10 1000.00 1000.00 1000.00 No No Yes
latency 60 4.60 6.30 7.20 1000.00 1000.00 1000.00 No No Yes
latency 60 4.60 6.30 7.30 1000.00 1000.00 1000.00 No No Yes
latency 60 4.60 6.30 7.30 1000.00 1000.00 1000.00 No No No
latency 60 4.60 6.30 7.30 1000.00 1000.00 1000.00 No No No
latency 60 4.60 6.30 7.30 1000.00 1000.00 1000.00 No No Yes
latency 60 4.60 6.30 7.40 1000.00 1000.00 1000.00 No No No
latency 60 4.60 6.30 7.40 1000.00 1000.00 1000.00 No No No
latency 60 4.60 6.30 7.40 1000.00 1000.00 1000.00 No No No
latency 60 4.70 6.30 7.40 1000.00 1000.00 1000.00 Yes No No
trials
partici-
pated

45 0.65 0.75 0.90 0.25 0.25 0.25 No No No

trials
partici-
pated

45 0.70 0.75 0.82 0.25 0.25 0.25 Yes No No

trials
partici-
pated

45 0.67 0.75 0.85 0.25 0.25 0.25 No Yes No

trials
partici-
pated

45 0.67 0.75 0.90 0.25 0.25 0.25 No No No

trials
partici-
pated

45 0.67 0.75 0.90 0.25 0.25 0.25 No No No

trials
partici-
pated

45 0.67 0.75 0.90 0.25 0.25 0.25 No No No

trials
partici-
pated

45 0.67 0.75 0.90 0.35 0.35 0.35 Yes No No

trials
partici-
pated

45 0.67 0.75 0.90 0.30 0.30 0.30 Yes No No

trials
partici-
pated

60 0.67 0.75 0.90 0.30 0.30 0.30 No No No

trials
partici-
pated

60 0.70 0.75 0.81 0.30 0.30 0.30 No Yes No

trials
partici-
pated

60 0.70 0.75 0.81 0.25 0.25 0.25 No Yes No

trials
partici-
pated

60 0.68 0.75 0.83 0.25 0.25 0.25 Yes No No

trials
partici-
pated

60 0.67 0.75 0.83 0.25 0.25 0.25 No No Yes

trials
partici-
pated

60 0.67 0.75 0.83 0.25 0.25 0.25 No No No

trials
partici-
pated

60 0.67 0.75 0.83 0.25 0.25 0.25 No No No

trials
partici-
pated

60 0.67 0.75 0.83 0.25 0.25 0.25 No No No

trials
partici-
pated

60 0.67 0.75 0.84 0.25 0.25 0.25 Yes No Yes Model
breaks
if I in-
crease
the SD
to 0.3

671
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672

Because the mean and the variance are linked in the binomial distribution, and because the variance sim-673

ulations in the flexibility analysis showed that we are not able to robustly detect differences in variance674

between sites, we plot the variance in the number of loci solved between sites to determine whether the edge675

population has a wider or narrower spread than the other two populations.676

Exploration analysis677

After building the model (see Methods), we then run the mathematical model and perform pairwise678

contrasts and determine that we are able to detect differences between sites with a sample size of 15 or 20 at679

each site if the average latency to approach the novel environment differs by at least 450 sec between sites680

(Table SM2). We keep the shape of the curve (which can be thought of as similar to a standard deviation or681

the variance) the same across sites because we do not think this assumption will change across populations682

(i.e., there will be lots of variation at each site with some individuals approaching almost immediately, others683

in the middle of the session, and others near the end).684

Because the mean and the variance are linked in the gamma-Poisson distribution, and because the variance685

simulations in the flexibility analysis showed that we will not be able to robustly detect differences in686

variance between sites, we plot the variance in the latency to approach the novel environment between sites687

to determine whether the edge population has a wider or narrower spread than the other two populations.688

Persistence analysis689

After building the model (see Methods), we then run the mathematical model and perform pairwise690

contrasts and determine that we are able to detect differences between sites with a sample size of 15 or 20691

per site if the average proportion of trials participated in differs by at least 0.08 and the standard deviation692

is generally a maximum of 0.25 at each site (Table SM2).693

Because the mean and the variance are linked in the binomial distribution, and because the variance simu-694

lations in the flexibility analysis show that we are not able to robustly detect differences in variance between695

sites, we plot the variance in the proportion of trials participated in between sites to determine whether the696

edge population has a wider or narrower spread than the other two populations.697
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SUPPLEMENTARY MATERIAL 3: Interobserver reliability of dependent vari-698

ables699

To determine whether experimenters coded the dependent variables in a repeatable way, hypothesis-blind700

video coders were first trained in video coding the dependent variables (reversal learning and multiaccess701

log: whether the bird made the correct choice or not; exploration: latency to approach), requiring a Cohen’s702

unweighted kappa (reversal and multiaccess categorical variables) or an intra-class correlation coefficient703

(ICC; exploration continuous variable) of 0.90 or above to pass training. This threshold indicated that704

the two coders (the experimenter and the video coder) agreed with each other to a high degree (kappa:705

Landis & Koch (1977); ICC: Hutcheon et al. (2010)). After passing training, the video coders coded 20%706

of the videos for each experiment (except for exploration for which 15% of the videos were coded due to707

an unexpectedly high sample size for this assay). The kappa and ICC were calculated to determine how708

objective and repeatable scoring was for each variable, while noting that the experimenter has the advantage709

over the video coder because watching the videos is not as clear as watching the bird participate in the710

trial from the aisle of the aviaries. The unweighted kappa was used when analyzing a categorical variable711

where the distances between the numbers are meaningless (0=incorrect choice, 1=correct choice, -1=did not712

participate), and the ICC was used for continuous variables where distances are meaningful (e.g., if coders713

disagree by a difference of 2 s rather than 5 s, this is important to account for).714

Interobserver reliability training715

To pass interobserver reliability (IOR) training, video coders needed an ICC or Cohen’s unweighted716

kappa score of 0.90 or greater to ensure the instructions were clear and that there was a high degree of717

agreement across coders. Video coders, Alexis Breen and Vincent Kiepsch, passed interobserver reliability718

training for exploration in a previous article (McCune KB et al., 2019) where their training results can be719

found.720

Lea Gihlein (compared with experimenter’s live coding):721

• Reversal learning: correct choice unweighted Cohen’s Kappa=1.00 (confidence boundaries=1.00-1.00,722

n=21 data points)723

• Multiaccess box: correct choice unweighted Cohen’s Kappa=1.00 (confidence boundaries=1.00-1.00,724

n=29 data points)725

• Multiaccess box: correct choice unweighted Cohen’s Kappa=1.00 (confidence boundaries=1.00-1.00,726

n=29 data points)727

Interobserver reliability728

Interobserver reliability scores (minimum 15% of the videos) were as follows:729

Lea Gihlein (compared with experimenter’s live coding):730

• Reversal learning (5/19 birds): correct choice unweighted Cohen’s Kappa=1.00 (confidence731

boundaries=0.99-1.00, n=707 data points)732

• Multiaccess box (5/23 birds): correct choice unweighted Cohen’s Kappa=0.92 (confidence733

boundaries=0.81-1.00, n=63 data points)734

• Multiaccess box (5/23 birds): locus solved unweighted Cohen’s Kappa=1.00 (confidence boundaries=1.00-735

1.00, n=48 data points)736

Vincent Kiepsch (compared with Breen’s video coding):737
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• Exploration (5/34 birds): latency to land on the ground unweighted Cohen’s Kappa=0.998 (confidence738

boundaries=0.997-0.999, n=32 data points)739
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SUPPLEMENTARY MATERIAL 4: Boat-tailed grackle model outputs740

Table SM4. Results for the comparison between the boat-tailed grackle (BTGR) population in Lake Placid741

and Venus, Florida and the great-tailed grackle populations in Tempe, Arizona and Woodland, California.742

Contrasts (indicated by “diff”) between populations show whether there was a difference (compatibility743

interval does not cross zero) or not (compatibility interval crosses zero) for that pair of populations. Popu-744

lations are labeled as follows: 1=boat-tailed grackles (BTGR), 2=Woodland great-tailed grackles, 3=Tempe745

great-tailed grackles (e.g., diff_12 means that BTGR and Woodland are being compared).746

Mean Standard
deviation

Lower 89
percentile

compatibility
interval (5.5%)

Upper 89
percentile

compatibility
interval (94.5%)

FLEXIBILITY NA NA NA NA
BTGR phi 0.03 0.01 0.02 0.04
BTGR lambda 4.51 1.34 3.11 5.93
diff_12 phi 0.00 0.01 -0.01 0.01
diff_12 lambda 0.23 0.97 -1.06 1.97
diff_13 phi 0.00 0.01 -0.01 0.01
diff_13 lambda 0.43 1.01 -0.79 2.32

NA NA NA NA
INNOVATIVENESS NA NA NA NA
BTGR 0.36 0.11 0.19 0.53
Woodland 0.76 0.04 0.69 0.83
Tempe 0.50 0.06 0.40 0.60
diff_12 -0.41 0.12 -0.59 -0.22
diff_13 -0.14 0.13 -0.34 0.07

NA NA NA NA
PERSISTENCE NA NA NA NA
BTGR 0.69 0.02 0.66 0.72
Woodland 0.78 0.01 0.77 0.79
Tempe 0.79 0.01 0.78 0.80
diff_12 -0.10 0.02 -0.13 -0.06
diff_13 -0.10 0.02 -0.13 -0.06

747

748
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