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Highlights 

● Replacing exotic trees with native seedlings complicates forest carbon monitoring 

● Multilevel allometric growth equations borrow strength from sampling many species 

● Generic equations sacrifice accuracy and precision for smaller, atypical plants 

● Underestimating C differences before and after restoration influences management 
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Abstract: Managing disturbed forests for climate mitigation and biodiversity requires monitoring the 

carbon (C) cycle consequences of replacing established exotic vegetation with native seedlings. Standard 

approaches rely on allometric growth equations with unexplored limitations for measuring C changes 

during restoration. Most plants lack species-specific allometric growth equations, which may perform 

poorly for different growth forms, especially when applied to both mature trees and seedlings. To address 

these limitations, we generated and compared allometric growth equations for four woody species with 

different biogeographic origins and growth forms, including two high impact invasive species, 

Cupaniopisis anacardioides and Schinus terebinthifolia. By borrowing strength from sampling across 

species to reduce estimation error within species, Bayesian multilevel models generated more accurate 

and precise estimates than either independent species-level models or generic equations. Because errors 

increased for smaller plants and species with unusual growth forms, allometric growth equations from 

custom multilevel models generated higher baseline aboveground biomass estimates and lower post-

restoration estimates, which has important implications for monitoring C consequences of invasive tree 

management. 

Keywords: afforestation, Bayesian models, Brazilian Peppertree, Carrotwood, forest carbon, invasive 

species control, restoration 

Abbreviations: 

AGB Aboveground biomass 

AGE Allometric Growth Equation 

AICc Bias Corrected Akaike Information Criterion (Hurvich and Tsai 1989) 

Bdia Stem basal diameter 

BP Brazilian Peppertree, Schinus terebinthifolia 

CD90 Canopy diameter perpendicular to midpoint of Cdmax 

CDmax Broadest canopy diameter 

CI Confidence interval 

CW Carrotwood, Cupaniopsis anacardioides 
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D130 Stem diameter at 130 cm 

D140 Stem diameter at 140 cm 

Dia Diameter covariate 

DIC Deviance Information Criterion (Spiegelhalter et al. 2002) 

DRC Stem diameter at Root Collar 

Hgt Plant height from ground to tallest observed point 

Len Length from observer to canopy high point 

Sdmwmr Sample dry mass wet mass ratio 

SH Florida native shrubs represented in this study (i.e., SS, WM) 

SS Simpson's stopper, Myrcianthes fragrans 

WM Southern wax mytle, Morella cerifera 
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1 Introduction 

For mitigating biodiversity loss and climate change, forest management often prioritizes restoring 

native species and increasing carbon (C) storage (Dickie et al., 2014; Oberle et al., 2022). If target 

vegetation eventually stores more C than baseline conditions, these objectives may reinforce over time. 

However, restoration risks short-term C losses from forests dominated by woody invasives (Liao et al., 

2008). Killing mature trees and replacing them with native seedlings changes biomass and stem size 

distributions with immediate consequences for C stocks and fluxes. As invasive necromass is removed, 

burned or decomposes, initial efflux may require decades before total ecosystem C storage recovers with 

native plant regrowth (Marchante et al., 2009). Documenting if and when restored forests recover C 

requires measurements and models with consistent performance across baseline and target stands that 

have radically different structures. 

Standard methods for translating stand measurements into C estimates rely on allometric growth 

equations (AGEs, Eggleston et al., 2006). This class of models exploits the proportionality between 

different aspects of an organism’s size to express biomass as a mathematical function of simpler non-

destructive measurements, like stem diameter and height. In principle, these relationships reflect 

biophysical and anatomical constraints on development (West et al., 1999). In practice, AGEs are 

empirically parameterized (Chave et al., 2014; Conti et al., 2019). A set of individuals that vary in size are 

measured, felled, dissected, weighed and then analyzed for moisture and C content (Picard et al., 2012). 

The resulting biomass and size measurements generally exhibit a power-law relationship that can be 

parameterized using different modeling techniques and simplified under various model adequacy criteria 

(Clifford et al., 2013; see also Picard et al., 2015). Following best practices at every step, from species 

and stem selection (Roxburgh et al., 2015), to measurement and model fitting (Picard et al., 2012), 

typically yields relationships with high accuracy and precision, supporting their application to a range of 

basic and applied forest research questions. 

While indispensable and ubiquitous, AGEs have at least three specific limitations when applied to 

C monitoring during forest restoration. First, although growing databases include hundreds of species-
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level AGEs (Henry et al., 2013), they constitute a small, unrepresentative fraction of the more than 

150,000 global woody species (FitzJohn et al., 2014). Many impactful invasive trees and most natives 

from biodiversity hotspots are unrepresented. Although researchers have developed generic AGEs to 

apply to any unidentified species (e.g. Chave et al., 2014; Paul et al., 2016), few apply to all growth forms 

and many perform differently across the size classes (Conti et al., 2019; Duncanson et al., 2015). Whether 

or not generic AGEs provide sufficient accuracy and precision for C monitoring during forest restoration 

is unknown. Second, all AGEs, whether species-specific or generic, depend on one or more non-

destructive size measurements. Those which predominate for trees, like diameter at breast height (DBH), 

are unmeasurable for seedlings shorter than the standard height, 1.3 m. Few studies have evaluated the 

reliability of AGEs when applied across both the mature trees that are removed and the seedlings used to 

replace them. Finally, standard statistical techniques for fitting power-law AGEs produce expected values 

of biomass that depend not only on covariate effects for non-destructive measurements, but also on error 

variance (Clifford et al., 2013). Error variance, in turn, depends on unstandardized features of study 

design, like sample size and measurement precision (Roxburgh et al., 2015). Consequently, researchers’ 

decisions about allocating sampling effort within versus between species can have direct impacts on 

biomass projections from AGEs. While techniques have been proposed to leverage the strength of 

sampling both within and between species, this class of multilevel model has seldom been applied to 

AGEs (Price et al., 2009; Zapata-Cuartas et al., 2012). 

We quantify some consequences of these issues and propose solutions for monitoring C during 

forest restoration in Florida. The state has a very high proportion of invasive plants that threaten 

biologically diverse forests and the ecosystem services they provide (Gordon, 1998). We present new 

AGEs and C estimates for two high-impact invasive species and two important natives that are widely 

used for revegetation. We use a range of measurements applicable across mature trees and small 

seedlings. We also test alternative model fitting and simplification approaches, including generalized 

linear models, multimodel inference and Bayesian Multilevel regression. Finally, we compare estimates 



7 

from customized multilevel versus generic AGEs for aboveground biomass (AGB) and C for inventories 

of baseline conditions in two forest restoration projects. 

2 Materials and Methods 

2.1 Study system and focal species 

The study occurred in Sarasota and Manatee Counties, near the Gulf of Mexico in Florida, USA. 

Regional climate is humid temperate-subtropical with mean annual temperature of 22.8°C and annual 

precipitation of approximately 1.35 m varying between a hot summer wet season and a cool winter dry 

season. The study included two invasive species that had spontaneously established and two native 

species that had been propagated in nurseries.   

The first woody invasive species was Schinus terbinthifolia (Anacardiaceae, Brazilian Peppertree 

or BP). A shrub or small tree native to open habitats of eastern South America, BP has become a high 

impact invader on several other continents (Mukherjee et al., 2012). In south Florida, the plant was 

introduced in the mid-19th century for horticulture and currently occupies over 280,000 ha, or about 2% 

of the land area of the State (Cuda et al., 2006). Existing research includes two analyses of size and 

growth form. Spector and Putz (2006) found that crowding changed stem shape to be longer for a given 

diameter, as individuals began scrambling over adjacent vegetation, but they did not report biomass. 

Erickson et al. (2017) found that aboveground biomass (AGB) scaled differently with stem diameter for 

plants with different genetic backgrounds. However, they did not measure other aspects of plant size, like 

stem length or height, and used an unconventional polynomial regression without reporting model fit 

statistics. 

The second high impact invasive species, Cupaniopsis anacardioides (Sapindaceae, Carrotwood 

or CW) is a small tree that naturally occurs across a broad range of habitats in northern Australasia 

(Reynolds, 1985). It was introduced to Sarasota County, Florida for horticulture in 1968 (Enloe and 

Langeland, 2001). Since then, it has rapidly naturalized into a range of habitats and has become a 

particular conservation concern along the southwest Florida coasts where it co-occurs with other invasive 

trees at the margins of disturbed mangroves (Lockhart et al., 1999). Despite its local importance and 
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recognition from regional exotic plant management authorities, CW has attracted relatively little research 

attention, with no published AGEs.  

The first native species assessed, Myrcianthes fragrans (Myrtaceae, Simpson’s stopper or SS) is a 

shrub species native to Florida and several other regions including the Caribbean, Mexico, Central 

America, Columbia and Venezuela (Armijos et al., 2018). This plant can thrive in different environments 

by tolerating high salinity and drought conditions. In addition to its importance in the wild, it has also 

become a useful landscaping plant with low maintenance needs. It has been identified as a threatened 

species within Florida (Ward et al., 2003). Research on this plant has been focused on the uses of its 

characteristic volatile oils (Armijos et al., 2018), with no published AGE. 

The second native species included in this study, Morella cerifera (L.) (Myricaceae, syn. Myrica 

cerifera, Wax Myrtle, or WM) is a small evergreen tree or large shrub. It is native to the southeastern 

United States, including Florida (Van Deelen, 1991). WM can grow 5-10 m tall and are considered to 

have a ‘fast’ growth rate. They can survive well in different levels of sunlight, and are highly salt tolerant 

and require little care after establishment. Experimental evidence suggests that WM is specifically 

resistant to allelopathic properties of BP (Dunevitz and Ewel, 1981). There are no published AGEs of this 

species. 

2.2 Non-destructive measurements 

For each species, we selected stems along a logarithmic size distribution and collected several 

non-destructive measurements before harvesting stems and then separating and weighing tissues. 

However, differences among species in their sizes, growth forms and published research required 

different field protocols. 

For CW, all plants had spontaneously recruited at the Tidy Island Preserve, a disturbed mangrove 

swamp, in sandy soils created from dredge spoil at the northeast corner of the property located at 

approximately 27° 27’ 5” N, 82° 39’ 14”W. We selected 19 individual stems along the diameter sequence 

exp({4:32}/10), with the smallest individual measuring 1.5 cm and the largest 25.4 cm DBH. We avoided 

individuals with deformities at the point of measurement. For each individual, we used diameter tapes to 
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measure diameter at three locations: above the root collar (DRC) as the lowest point above root flare, at 

130 cm (D130), and at 140 cm (D140).  We also measured three features of the tree canopy. After 

walking the canopy perimeter, we measured the longest canopy diameter (CDMAX) in meters using a 50 

meter tape held level. At the midpoint of CDMAX, we measured the perpendicular canopy diameter 

(CD90). From these two variables, we calculated the elliptical area of the canopy (Can) in m2 as 

CDMAX*CD90*𝝅. Then, from a location from which the highest point of the canopy and a point on the 

ground directly below it were both visible, we measured the distance from the high point projection onto 

the ground to the observer in m using a 50 meter tape held level (LEN) and the inclinations in degrees 

from the observer both to the top of the canopy (UP) and to the ground point beneath it (DOWN) using a 

clinometer. We calculated plant height (Hgt) in m as (tan(UP/180*𝝅)+tan(DOWN/180*𝝅))*LEN, except 

for the smallest plant, for which we directly measured height from the ground with a 50 m tape. 

Upon completing non-destructive measurements, we felled individuals at a point below D130 and 

as close to the ground as possible. We separated aboveground biomass into 2 to 4 tissue categories 

depending on plant size and reproductive status. For each individual plant, we separated (1) leaves, 

including petioles and flowers when present from (2) branches, representing stems less than 7.5 cm basal 

diameter branching above the main stem at 140 cm. We also separated (3) trunks, representing the main 

stem below 140 cm and all stem segments with basal diameter greater than 7.5 cm. Finally, for 

individuals that were fruiting we separated (4) fruits, including peduncles. We weighed the total wet mass 

(TWM) of each tissue to the nearest 100 g in the field using a Pesola scale. To determine dry mass, we 

collected a subsample of every tissue present from each individual. For the leaf subsample, we avoided 

leaves that were directly exposed to the soil or open air during weighing. For the branch subsample, we 

included subsamples roughly corresponding to every quartile of the branch size distribution. For the trunk 

subsample, when applicable, we used a chainsaw to cut a segment including the D130 and D140 

measurement locations. Fruit subsamples, when present, were also collected so as to avoid fruits that were 

exposed to the ground or the open air during weighing. We enclosed all tissue subsamples in sealed, 



10 

labeled 4L polyethylene bags, which we transported to the lab for temporary storage at 4°C for a 

maximum of 28 days until further processing. 

Because BP had some published biomass scaling information, we collected a smaller number of 

individuals and fewer non-destructive measurements. All individuals were growing on edges between 

unmanaged habitats and mowed lawns on the New College of Florida campus, near 27° 22' 50”N, 82° 33' 

45”W. We identified 11 stems approximately following the diameter sequence exp({-1:10}/*2.25), with 

the smallest individual measuring 0.8 cm  and the largest,  8.3 cm, D130, avoiding individuals with 

deformities or branches below 130 cm. We measured DRC, D130 and Hgt using the same methods 

described for CW. Because the vining growth habit complicated the delineation of individual canopies, 

we did not measure canopy dimensions. We separated BP individuals into only two tissue types: (1) 

leaves, including petioles and (2) stems. We weighed each tissue type separately in the field to the nearest 

100 g and gathered tissue subsamples following the same rules to minimize contamination and increase 

representativeness. We immediately processed BP tissue samples in the laboratory. 

For the two native shrub seedlings, SS and WM, we measured nursery-grown individuals in 3.78l 

pots that spanned the size range used for revegetation. Because these species’ seedlings tended to grow 

with multiple stems, we collected different sets of measurements for individual plants, defined as all of 

the tissues in a single pot, and every stem defined as a single shoot emerging from the surface of the 

potting soil. At the level of the individual, we measured Hgt in cm as the vertical distance from the soil to 

the top of the canopy. We also measured one canopy diameter in an arbitrary direction, followed by a 

second perpendicular diameter at the midpoint of the first and calculated elliptical canopy area using the 

same formula that we applied to CW. At the level of each stem, we also measured Hgt in cm using a 5 m 

tape and DRC in cm to the nearest mm immediately above the soil. 

For the shrubs, we separated individuals into two tissue types. For (1) stem wood, we cut stems at 

the point closest to the root flare or above the topmost root. We recorded the mass of the stems and 

branches then dried them at 65° C for three days and remeasured the dry mass. For (2) leaves, we 
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collected all of the leaves for every individual plant and dried them at 65° C for three days and recorded 

the dry mass. 

2.3 Biomass estimation 

We estimated the moisture content of every tissue type for every individual of each species by 

weighing, drying and reweighing the entire tissue subsample. To control for the effects of transpiration 

and condensation during CW transportation and storage, we measured the wet mass of the entire bagged 

subsample, then dried both the poly bags and contained subsamples. We then subtracted the dry mass of 

the bag from the total mass of the bagged subsample for the original subsample wet mass. We dried the 

leaf and fruit subsamples in paper bags at 65°C for two days. We dried branch and trunk subsamples at 

103°C for three days. Once dry, we reweighed subsamples and calculated the ratio of dry mass to wet 

mass (sdmwmr). We calculated the AGB of each individual by summing the products of the field 

measured wet mass for each tissue type present (i in 1…n) and the estimated sdmwm for the 

corresponding tissue subsample. 

𝐴𝐺𝐵 = ∑ 𝑇𝑊𝑀𝑖
𝑛
𝑖−1 ∗ 𝑠𝑑𝑚𝑤𝑚𝑟𝑖    (Eq. 1) 

2.4 Wood density and Carbon Content 

We measured wood density and C content of both wood and leaves for each species. At the Tidy 

Island site, we collected wood and leaf tissue samples from two mature individuals (i.e. D130 > 7.5 cm) 

of both CW and BP. We collected trunk wood samples using an increment borer driven to approximately 

the midpoint of the trunk from a location below D130. We collected leaf tissue samples from accessible 

branches on the same individuals and placed them in polyethylene bags. Samples were transported to the 

lab and stored temporarily at 4°C. 

For measuring wood density from trees, we split cores in half and measured the fresh volume of 

the inner and outer segments separately using the displacement method (Nicotra et al., 2010). We then 

dried the core segments at 103° C for three days and remeasured their dry mass. We calculated the wood 

density of each segment as the ratio of fresh volume to dry mass. For each individual we calculated the 
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wood density as the weighted average of the inner and outer segments. Finally, for each species, we 

calculated wood density as the raw average for each individual. 

We homogenized leaf and wood tissue sample using a Wiley Mill and physically aggregated 

homogenized subsamples for total carbon / nitrogen content analysis using a Thermo Electron Flash 

EA1112. We calculated mean C concentrations for each tissue and species as the simple average of 

collected samples. 

To estimate the overall C content of aboveground biomass for each species, we first calculated 

the ratio of wood dry mass to leaf dry mass for every individual, excluding reproductive tissues when 

present. Then, for each species, we tested whether the wood:leaf ratio varied with stem diameter (D130 

for BP and CW and DRC of the largest stem for the pooled shrub individuals), using linear regression. No 

species exhibited significant size-based variation in aboveground tissue ratios (BP p = 0.06, CW p = 0.86, 

combined shrubs p = 0.10), so we calculated each species’ aboveground C content as the mean of the 

tissue-mass weighted average C content of wood and leaves. We used a simple average of SS and WM 

for the combined category of shrubs. Trait measurements for all species are available in Supplementary 

Table S1. 

2.5 Data analysis 

2.5.1 Custom AGE fitting methods 

We investigated three different statistical methods for identifying the most adequate form for 

AGEs. We conducted all analyses in R version 4.0.2 (R Core Team, 2020). The first method, which 

focuses on the single best linear model, referred to hereafter simply as “Top”,  involves identifying a 

linear model for the natural logarithm of the response measurement (i.e. AGB or tissue mass) over a set of 

candidate models consisting of combinations of non-destructive candidate measurements (e.g. D130, Hgt, 

Can, etc.). While this approach is widely applied for estimating AGEs (Picard et al., 2012), it can 

eliminate information from alternative models that may have very similar adequacies. 

The second method, which involves inference across multiple models, referred to hereafter as 

“Multiple,” addresses the major limitation of the first by weighting coefficients for all candidate 
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predictors based on the cumulative information criterion scores. While multimodel inference has been 

widely applied in ecology (Grueber et al., 2011), it has been seldom used for estimating AGEs, potentially 

due to unclear methods for estimating weighted residual error variance, a necessary step for correcting for 

bias in lognormal regression. 

The third method, Bayesian Multilevel modeling, referred to hereafter simply as “Multilevel,” 

combines strengths of both the first and second approaches in that it explicitly specifies the error variance 

for the lognormal distribution while simultaneously estimating parameters with their relative weights 

(Ogle and Barber, 2008). Furthermore, the Multilevel approach enables flexible models for the parameters 

themselves, including by pooling the error variance estimates from several small studies for a potentially 

more robust estimate of the global error variance (Price et al., 2009).  

We fit AGEs using all three methods to two different datasets (Supplemental Table S2). The first 

dataset consisted of shoot wood mass measurements for every individual stem (56 total stems) as the 

response variable and corresponding non-destructive stem-level size measurements as covariates. The 

second dataset consisted of aboveground biomass measurements for every individual (40 total 

individuals) with applicable individual-level size measurements as covariates. The individual biomass 

dataset included only three individuals of WM so we pooled all individual level-measurements together 

for the aboveground biomass analysis of the two shrub species. Preliminary analyses indicated that 

different diameter measurements for the same stem were highly correlated (Pearson’s r > 0.95) so we 

included only one diameter measurement per stem in all analyses: D130 for the tree species and DRC for 

the shrub species. We natural-log transformed all continuous covariates prior to estimating parameter 

values. For the purposes of comparing modeling approaches, we mean centered all log-transformed 

covariates. 

To implement the first two AGE methods, Top and Multiple, we used an exhaustive search of 

candidate linear models defined by all possible combinations of covariates and ranked by the sample-size 

corrected Akaike Information Criterion (AICc, Hurvich and Tsai, 1989). We implemented the model 

search and weighting using the “glmulti” function in R Package “glmulti” (Calcagno and Mazancourt, 
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2010), specifying a natural log transformation of the response variable, all first order model terms for the 

candidate set, a linear model fit function and AICc as the information criterion. We identified the Top 

model by the lowest AICc. For all coefficient effects in the Top model as well as the error variance, we 

calculated the mean and 95% CI on the log-transformed scale using the “confint” function in R Package 

“stats”. We directly calculated the variance of the residuals and estimated 95% Cl as the ratio of the sum 

of the squared residuals to the 2.5% and 97.5% quantiles of a Chi-squared distribution with degrees of 

freedom equal to the degrees of freedom of the Top model. For the Multiple model, we characterized the 

AICc-weighted coefficients and corresponding 95% CI using the method proposed by Johnson and 

Omland (2004) as implemented by the function “coef” in R Package “glmulti”. We note that this method 

does not provide a straightforward estimate for the variance of the residuals, so it cannot predict unbiased 

values on the untransformed scale. Instead of using the Weighted model for prediction, we include these 

estimates and confidence intervals for the purpose of comparing coefficient estimates from all three 

methods. 

We estimated the Multilevel model in a Bayesian context using Gibbs sampling as implemented 

using JAGS software through the R Package “rjags” (Plummer et al., 2022). We directly specified a log-

normal likelihood for the response variable (i 1…n) for all species (k 1..m) with the log mean as a linear 

function of candidate predictors: 

𝑀𝑎𝑠𝑠𝑖~𝑙𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙(𝛽0 + 𝛽𝑑𝑘 ∗ 𝐶𝐷𝑖𝑎𝑖 + 𝛽ℎ𝑘 ∗ 𝐶𝐻𝑔𝑡𝑖 + 𝛽𝑐𝑘 ∗ 𝐶𝐶𝑎𝑛𝑖 + 𝛽𝑠𝑘 ∗ 𝐶𝑆𝑡𝑒𝑚𝑖, 𝜏. )  (Eq. 2) 

Where the ꞵ’s represent coefficients for the mean-centered log-transformed covariates for each species k, 

and τ. represents the precision, which is the inverse of the variance, σ2. We considered two different 

models for the error variance, σ2. The first gave every species an independent error variance (σ2
k), which 

is equivalent to independent regressions, while the second pools all of the i observations for a single error 

variance.  

For any covariate that was not applicable for a species or response variable, (e.g. D130 for 

shrubs), we fixed the corresponding coefficient (i.e. ꞵDsh) to zero. For all other coefficients, we estimated 
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their value and weight simultaneously using a latent indicator variable approach (O’Hara and Sillanpää, 

2009): 

 𝛽.𝑘 = 𝛽𝑡.𝑘 ∗ 𝑝.𝑘        (Eq. 3) 

Where 𝛽𝑡 .𝑘 is the latent unweighted coefficient value and 𝑝.𝑘 is a weight expressed as a proportion. We 

estimated each coefficient’s weight under a Bernoulli likelihood with a model-wide proportion of 

important coefficients (π): 

𝑝.𝑘~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜋)      (Eq. 4) 

We set vague priors for all regression and weighting coefficients. For the latent coefficient 

effects, 𝛽𝑡 .𝑘, we set broad normal priors (mean 0, standard deviation 100). For the global proportion of 

important coefficients, π, we use a vague Beta (0.5,0.5) hyperprior. For the error standard deviations σ2, 

we used broad (minimum 0, maximum 10) uniform priors. 

We characterized the posterior using three independent Markov Chain Monte Carlo simulations 

with an adaptive burn-in of 2,000 iterations, followed by 200,000 samples, discarding every 20th sample 

to reduce memory storage requirements. We checked to ensure that the effective sample sizes for all 

parameters of interest were greater than 1000 using the “effectiveSize” function in R package “coda” 

(Plummer et al., 2020) and characterized the posterior mean and 95% CI using the R function “summary.” 

We then drew 20,000 additional samples to estimate the Deviance Information Criterion (DIC, 
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Supplementary Table S3), which is an analog of AIC that is appropriate for Multilevel models 

(Spiegelhalter et al., 2002). 

2.5.2 Model Comparisons 

We quantified the accuracy and precision of two different custom and generic models for AGE in 

our dataset. The first custom model was the set of Top GLMs, which we used to generate predicted values 

on the original untransformed scale of the data: 

𝑀𝑎𝑠𝑠𝑖𝑘̂ = 𝑒𝑥𝑝 (𝛽0 + 𝛽.𝑘 ∗ log⁡(𝑋.𝑖𝑘 − 𝑋.𝑘̅̅ ̅̅ )…+
𝜎𝑘
2

2
)    (Eq. 5) 

Where the ꞵ’s represent coefficient estimates from the Top GLM model for each species k, including 

every covariate X and the final term is the standard bias correction for lognormal regression as a function 

of the error variance σ2. For projecting the Multilevel model, we included any covariate that occurred in a 

GLM with a weight greater than 20%, had an estimated importance value over 0.2 or had a posterior 95% 

CI that excluded 0. We refit the simplified Multilevel models using the same procedure described in 2.5.1 

for models with either independent error variance or pooled error variance approaches and recalculated 
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the DICs (Supplementary Table S3). We then applied Eq. 5 using the posterior mean estimates for the 

indicator-weighted simplified coefficients and the pooled error variance. 

The first generic AGE required the only variable that was approximately measured for every 

individual in the dataset: Basal Diameter (BDia). The specific equation was proposed by Paul et al. (2016) 

for multistemmed shrubs from Australia and has the form: 

 𝑀𝑎𝑠𝑠𝑖̂ = 1.128 ∗ 𝑒𝑥𝑝((2.474 ∗ log(𝐵𝐷𝑖𝑎𝑖)) − 2.757))   (Eq. 6) 

For BP and CW we used the DRC for BDia. For the shrubs we used the cumulative diameter at the root 

collar for all stems. We note that the measurement location was slightly different from the measurements 

used to parameterize the Paul et al. (2016) model, diameter at 10 cm. 

The second generic AGE approach applied two different models to the different growth forms in 

the dataset. For the small tree, CW, and the large shrub, BP, we used the global model proposed by Chave 

et al. (2014): 

 𝑀𝑎𝑠𝑠𝑖̂ = 0.0673 ∗ (𝜌 + 𝐷130𝑖
2 ∗ 𝐻𝑔𝑡𝑖)

0.976
   (Eq. 7) 

Where 𝜌 represents the stem wood density estimate for the species (Supplementary Table S1). 

For the shrub seedlings, we used the top global model proposed by Conti et al. (2019): 

𝑀𝑎𝑠𝑠𝑖̂ = 𝑒𝑥𝑝((−2.281 + 1.525 ∗ log(𝐵𝐷𝑖𝑎𝑖) + 0.831 ∗ log(𝐶𝐷𝑖) + 0.523 ∗ log(𝐻𝑔𝑡𝑖))   (Eq. 8) 

Where CD is the average canopy diameter.  

For both custom and generic AGEs, we compared predicted to observed AGB values to quantify 

model accuracy and precision. To quantify accuracy, we calculated the Root Mean Square Error (RMSE): 

𝑅𝑀𝑆𝐸 = √∑ (𝑀𝑎𝑠𝑠𝑖 −⁡𝑀𝑎𝑠𝑠𝑖̂ )
2 1

𝑛
𝑛
𝑖=1     (Eq. 9) 

To quantify bias, we calculated the average proportional difference between projected and 

observed values, relative to the observed values (Chave et al. 2016): 

𝐵𝑖𝑎𝑠 = √∑ (
⁡𝑀𝑎𝑠𝑠𝑖̂ −𝑀𝑎𝑠𝑠𝑖

𝑀𝑎𝑠𝑠𝑖
)
1

𝑛
𝑛
𝑖=1 ∗ 100%    (Eq. 10) 

We calculated both RMSE and Bias for species-level datasets and for the overall dataset. 
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2.5.3  Model Effects 

We compared AGB and C projections for two forest restoration projects. The first project 

occurred in the 2 ha dredge spoil mound at the Tidy Island Preserve. Focusing on how invasive removal 

and native revegetation influences C storage along the shore, the inventory consisted of 24 12.5 x 8 m 

monitoring plots arrayed every 25 m around the perimeter of the spoil mound. The center of each plot was 

located at mean high tide with the long axis perpendicular to the wrack line. Within the entire 100 m2 

plot, we identified every free standing tree greater than 7.5 cm at 130 cm height that was 50% rooted 

within the plot. Within a central 12.5 x 1 m transect we further identified every sapling greater than 2 cm 

at 130 cm height. We measured CW individuals using the same methodology used for parameterizing the 

AGEs. For BP, we measured stem diameter at 130 and 140 cm only. 

We quantified the proportion of total stems and basal area represented by the two focal species, 

BP and CW, in the upland 50 m2 portion of all 24 plots. For the best estimates from a customized model, 

we projected AGB and C using Eq 5. using posterior mean parameter estimates from the simplified 

Multilevel model with pooled errors (e.g Eq. 2-4, Supplementary Table S4). For the best estimates from a 

generic model, we projected AGB and C using Eq. 7 as originally estimated by Chave et al (2014). This 

equation requires individual height, which we did not measure for BP in the inventory because stems 

from many individuals overlapped in thickets where they grew. Instead, we substituted the 75th percentile 

of individual heights from our AGE dataset (4.4 m), which was approximately the same height as the BP 

thicket. Otherwise, we excluded two individuals of CW that had survived a blow down during a storm 

and had no canopy measurements. We converted AGB estimates from both AGE approaches to C 

concentration using species-level aboveground C concentrations (i.e. Section 2.4, Supplementary Tables 

S1, S4) and then scaled plot level concentrations to Mg C ha-1. Finally, we tested whether different AGEs 

would generate significantly different C concentration estimates under realistic survey conditions using 
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paired t-tests for each focal species by size class and their combined C concentrations across all 24 

inventory plots. 

The second project involved native afforestation over turf in a dredge spoil site fringed by the 

same invasive plants. The goal for the inventory was establishing a baseline C concentration for 

calculating sequestration during native regrowth. We recorded data for a total of 53 multiscale inventory 

plots on 5 parallel transects, with the three longest measuring 161 m and including 11 plots and two 

shorter transects with 10 plots each in between. We recorded aboveground biomass measurements for 

plots with more than 50% planted coverage for a total of 33 3 m radius plots surveyed for seedling 

biomass. For each woody seedling, we measured the DRC of the largest stem using calipers, the height 

using a 5 m tape, the length of the canopy going parallel to the transect using a 5 m tape, and the length of 

the canopy going perpendicular to the transect using a 5 m tape. We also recorded the number of stems. 

DRC was recorded immediately above the soil. To determine the height we recorded the highest point of 

the individual starting from the root collar and moving along the main stem. 

For the best projections from a customized model, we again used posterior mean estimates from 

the simplified Multilevel model as estimated by Eq. 2-5 for both shrub species combined (Supplementary 

Table S4). For the best estimates from a customized generic model, we used Eq. 8 as originally proposed 

by Conti et al. (2019). Because this equation requires basal diameter, whereas we had only measured the 

diameter at the root collar of the largest stem and the total number of stems, we estimated basal area for 

shrubs in the inventory using a regression fitted to the AGE dataset. Specifically, we use the R package 

“glmulti” to estimate weighted coefficients for total basal diameter from every first order model including 

both predictors, largest stem diameter at the root collar and total stem number. We then use the R function 

“predict” to estimate weighted values using the method proposed by Johnson and Omland (2004) for all 

individuals in the inventory dataset (Supplementary Table S4). We calculated the mean canopy diameter 
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from both diameter measurements we collected in the field. We tested for significant differences in C 

concentration estimates between AGE approaches using paired t-tests for all 33 inventory plots. 

3 Results 

3.1 Different methods generate similar covariate effects 

Aboveground biomass and stem wood mass varied with different sets of non-destructive 

covariates (Supplementary Table S4). All of the Top models for AGB included one or two covariates. For 

BP, the top model for AGB included only ln(D130) and contributed more than 84% of the cumulative 

model weight. The Top model for the small invasive tree, CW, included both ln(D130) and ln(Can) but 

contributed a smaller proportion of the model weight (53%), with an additional 30% of model weight 

contributed by a simpler model with only ln(D130). For the two native shrubs measured as seedlings, 

ln(Hgt) was the only covariate included in the Top model, but a model that added an effect for ln(DRC) 

also contributed more than 20% of the model weight. Models for wood mass by stem included similar 

sets of covariates and relative weights, with subtle differences, including the Top model for CW stem 

wood mass having only ln(D130) as a covariate and the disaggregated data for the native shrub SS 

including ln(DRC) in addition to ln(Hgt). 

 

Figure 1: Aboveground biomass allometric growth parameter estimates for Schinus terebinthifolia (BP), 

Cupaniopsis anacardioides (CW) and two native shrubs (SH) generated either by the single GLM with 

the lowest AICc (Top), multimodel inference across all possible GLMs weighted by their AICc (Multiple) 
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or a Bayesian Multilevel model with latent indicator weighting and pooled measurement error 

(Multilevel). Covariates were log transformed and mean centered prior to estimation. Error bars represent 

95% Confidence Intervals. Parameters for covariates that were excluded or unestimable are not depicted.  

 

Parameter estimates from the Top, Multiple and Multilevel methods were very similar (Figure 1, 

Supplementary Figure S1). All three methods generated intercept estimates that were within 1% of one 

another, although the CIs for the Multilevel method tended to be narrower than either GLM-based 

method. Estimated covariate effects were similar, but with noticeable differences between methods. 

Covariate effects that did not occur in the Top GLM generally had weighted estimates with 95% CIs that 

included 0. Otherwise, estimates varied with the concentration of model weight. For BP, which had very 

concentrated model weight in a simple model, the parameter estimates for ln(D130) were very similar 

(<1% absolute difference) between all methods with nearly identical 95% CIs. For CW, which had a 

larger set of models contributing weight, the parameter estimates for the effect of ln(D130) varied by 

more than 10% between methods and estimates for the effect of ln(Can) varied by almost 100%. 

However, the 95% confidence intervals broadly overlapped and all three methods generated 95% CIs that 

included 0. Variation in estimates for the native shrubs were more variable still, with up to 20% absolute 

differences for the effect of ln(Hgt) and much broader 95% CIs. Finally, the pooled estimate for the error 

standard deviation from the Multilevel model had a much smaller 95% CI than the corresponding 

estimates from the Top GLMs, and was lower in magnitude for both BP and SH, which had fewer 

samples. Variation in parameter estimates and uncertainty were similar for models of stem wood dry mass 

(Supplementary Figure S1). Disaggregated stem wood data for the two shrub species had much narrower 

and non-overlapping covariate 95% CIs than the corresponding covariates for individual-level shrub 

AGB. 

3.2  Custom models have higher accuracy and lower bias than generic methods 

Custom AGEs generated AGB predictions that were more accurate and precise than generic 

AGEs (Table 1, Table 2, Figure 2). Model accuracy, as measured using RMSE, also decreased with 
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increasing plant size, with the average errors differing by orders of magnitude between very small SH, 

intermediate BP and relatively large CW. The simplified Multilevel model performed best overall, with 

slightly lower RMSE and Bias than the set of Top GLM models. The Multilevel model made the most 

accurate predictions for CW AGB, which included the largest individuals in the study, and the least 

biased predictions for SH AGB, which was the group with the fewest individuals sampled. Otherwise, 

both custom models performed similarly and much better than either generic model. The AGE proposed 

by Paul et al. (2016), which was the only generic model suitable for all individuals in our dataset based on 

the measured covariates, performed most poorly, deviating from observed CW AGB by over 40 kg on 

average and producing estimates of SH AGB that were more than five times larger than actually 

observed. Compared to using a single AGE for all growth forms, using different generic models for trees 

(i.e. BP and CW using Chave et al. 2014) versus shrubs (i.e. SS and WM using Conti et al. 2019) 

produced more accurate biomass predictions, except for BP. 
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Table 1: Root Mean Squared Error (kg) of aboveground biomass predictions from four allometric growth 

equations for Brazilian Peppertree (BP), Carrotwood (CW) and two native shrubs (SH). Custom Top and 

Multilevel models are described in 2.5.1. The Generic Multistem equation was proposed by Paul et al. 

2016 and the Generic Tree and Shrub equations were proposed by Conti et al. 2019 and Chave et al. 2014 

respectively. 

Model BP CW SH Overall 

Custom Top 3.73 16.16 0.05 11.33 

Custom Multilevel 3.75 14.05 0.04 10.57 

Generic Multistem 4.23 43.16 0.61 29.84 

Generic Tree + Shrub 8.07 35.07 0.07 24.57 

Table 2: Bias (%) of aboveground biomass predictions from four allometric growth equations for 

Brazilian pepper (BP), Carrotwood (CW) and two native shrubs (SH). Custom Top and Multilevel models 



24 

are described in 2.5.1. The Generic Multistem equation was proposed by Paul et al. 2016 and the Generic 

Tree and Shrub equations were proposed by Conti et al. 2019 and Chave et al. 2014 respectively. 

Model BP CW SH Overall 

Custom Top 6.87 1.68 15.47 6.34 

Custom Multilevel 6.39 4.07 7.43 5.52 

Generic Multistem -28.73 24.80 529.00 122.19 

Generic Tree + Shrub -66.22 -20.49 63.64 -15.27 
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Figure 2: Two methods for generating custom aboveground biomass allometric growth equations, 

estimated as GLMs with the lowest AICc (Top) or a simplified Bayesian Multilevel model (Multilevel), 

outperform two generic approaches for plants of different size and growth form, either Paul et al. 2016 for 

all individuals or Chave et al. 2014 for trees combined with Conti et al. 2019 for shrubs. Axes are log 10 
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transformed to facilitate comparison across invasive small trees (CW), large shrubs (BP) and native shrub 

seedlings (SH). 

3.3 Custom models generate significantly different estimates of baseline C before invasive removal and 

after replanting 

Differences in accuracy and precision between custom and generic AGEs produced divergent 

estimates of aboveground C concentrations before and after forest restoration. At the pre-restoration 

location, either BP or CW was present in 19/24 0.05 ha inventory plots. Both focal species collectively 

accounted for 11.9% of tree basal area (>7.5 cm D130) and 44% of sapling basal area (2cm < D130 < 7.5 

cm). The remaining basal area was represented by species with existing AGEs that we did not include in 

our comparison. The Multilevel AGEs generated consistently higher estimates of aboveground C 

concentrations before removal (Table 3). Across both species and size classes combined, the Custom 

Multilevel AGE estimated 32% more C in invasive aboveground biomass than the best-performing 

Generic AGE for trees (i.e. Chave et al. 2014, difference = 2.81 Mg ha-1 of C, paired t-test, n = 24, t = 

2.64, p = 0.014). Divergence between estimates increased for smaller individuals, with the Custom AGEs 

estimating significantly higher C concentrations for both CW saplings (difference = 0.38 Mg ha-1 of C, 

paired t-test, n = 24, t = 2.63, p = 0.015) and BP adults (difference = 0.88 Mg ha-1 of C, paired t-test, n = 

24, t = 2.34, p = 0.029). Custom Multilevel AGEs also generated higher estimates for CW trees, which 

represented the majority of aboveground C for these two species, and BP saplings, which had the most 

divergent estimates, but estimates were not significantly different (p = 0.21 and p = 0.18 respectively). 
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Table 3: Aboveground C Density (average Mg ha-1 [s.e.]) estimated using either a custom Multilevel 

allometric growth equation or a generic model for trees (Chave et al. 2014) for Brazilian Peppertree (BP) 

and Carrotwood (CW) individuals in two size classes, saplings (2 - 7.5 cm DBH) and trees (>7.5 cm 

DBH), as encountered in 24 0.05 ha inventory plots of pre-restoration conditions at a preserve in 

southwest Florida. Asterices indicate categories for which the average C concentration differed 

significantly between estimation methods.  

Method BP Sapling BP Tree* CW Sapling* CW Tree Combined* 

Custom Multilevel 1.59 [1.14] 1.91 [0.84] 1.71 [0.64] 6.33 [2.43] 11.53 [3.32] 

Generic Tree  0.69 [0.49] 1.03 [0.46] 1.33 [0.51] 5.67 [2.04] 8.72 [2.46] 

At the second forest restoration site, where native seedlings had just been planted, Custom and 

Generic AGE methods also generated different C concentration estimates, but in the opposite direction. 

Based on 876 woody seedlings measured in 33 3 m radius inventory plots, the Custom Multilevel method 

estimated 12.5% less C in aboveground biomass compared to the best performing Generic AGE for 

shrubs (i.e. Conti et al. 2018, difference =  -0.008 Mg ha-1 of C, paired t-test, n = 33, t = -2.586, p = 

0.015). When scaled up to the entire 0.25 ha project area, the Custom Multilevel AGE estimated 0.070 

Mg C (± 0.004 S.E.) in aboveground biomass compared to 0.080 Mg C (± 0.005 S.E.) estimated using the 

Generic AGE. 

4 Discussion 

For monitoring C in forest restoration projects that replace established invasives with native 

seedlings, Multilevel allometric growth equations can address important limitations to conventional 

approaches. Compared to generic AGEs, which perform differently across size classes and growth forms 

(Conti 2019), custom AGEs provided more accurate AGB estimates, especially for small plants and 

species with unusual growth forms. In two forest restoration projects that controlled invasive trees by 
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replacing them with native seedlings, the choice of AGE significantly influenced estimates of baseline 

conditions. Compared to traditional statistical methods that identify the single top model for each species, 

multilevel methods, which borrow strength from sampling among species to reduce project-wide error 

and bias, can facilitate sampling more species with improved performance. 

4.1 Custom allometric growth equations outperform generic methods for monitoring biomass during 

invasive tree control 

New AGEs for two impactful invasive species, Brazilian Peppertree and Carrotwood, not only fill 

gaps in growing species-level AGE databases (Henry et al., 2013; McPherson et al., 2016), but also 

reinforce known limitations of generic AGEs for projecting aboveground biomass (Conti et al., 2019). 

Existing global models, while invaluable in the absence of species-specific information, focus on mature 

trees of intermediate size (Chave et al., 2014). Consequently, they may deviate more for both very large 

individuals, which contribute the most biomass (Gonzalez de Tanago et al., 2018), as well as the smallest 

individuals, including seedlings and shrubs. In an analysis of worldwide patterns of shrub biomass, Conti 

et al. (2019) found that several global models underestimated the biomass of the largest individuals by 

50% while overestimating the biomass of the smallest individuals by a similar magnitude. We observed 

similar patterns in both our training dataset and baseline inventories. Two generic models underestimated 

the biomass of species with larger individuals (BP and CW) while greatly overestimating the biomass of 

shrub seedlings. When compared to more accurate and precise custom AGEs, aboveground biomass 

projections from generic AGEs underestimated established invasive biomass and overestimated 

aboveground biomass of native shrub seedlings. Consequently, generic AGEs would project much shorter 

times for ecosystem C recovery following invasive removal and native replanting than custom AGEs. In 

situations where both the quantity and timing of C storage are important, such as restoration funded by C 

finance, custom AGEs may provide needed accuracy. 

The limitations of generic AGEs for both small individuals as well as species with unusual 

growth compounded in the case of Brazilian Peppertree. Typically classified as a shrub due to its 

relatively short stature and tendency to produce multiple stems below 130 cm, BP alters its growth when 
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crowded, producing longer stems that scramble over adjacent vegetation, somewhat like a liana (Spector 

and Putz, 2006). Growing this way intertwines the canopies of adjacent individuals, complicating height 

and canopy measurements that are required by several generic AGEs. Even with all necessary 

measurements, unusual growth may explain why generic methods underperformed in the training dataset. 

The Chave et al. (2014) model, which was parameterized for trees with a single upright stem, 

underestimated AGB of BP by 65%. Some of this “missing” biomass may occur in BP’s sprawling 

horizontal growth. To the extent that other invasive trees succeed because of unusual growth forms 

(Callaway and Ridenour, 2004) or idiosyncratic genetic histories (Erickson et al., 2017; Mukherjee et al., 

2012), site- and species-specific AGEs may improve accuracy for these widespread and impactful plants. 

4.2 Strengths, weakness and possible extensions of Multilevel methods for allometric growth equations 

In demonstrating improved performance for custom AGEs, our results reinforce previous 

analyses. However, generating quality AGEs requires considerable effort, expense and expertise (Picard 

et al., 2012). Best practices modeled on standard statistical approaches recommend harvesting more than 

30 individuals across the full size range for every species, which may be prohibitively expensive where 

uncharacterized species are prevalent and individuals can attain great size (Roxburgh et al., 2015). We 

present an alternative statistical approach that can facilitate a more efficient sampling design by 

simultaneously estimating AGEs for multiple species. Multilevel Bayesian modeling borrows strength 

from sampling across species to constrain project-wide error and generate more accurate and precise 

projections, especially for species represented by relatively few samples (Price et al., 2009). No single 

species in our study met the individual sampling threshold recommended for conventional analysis. The 

corresponding Top GLM method generated error estimates that tracked each species group’s sampling 

intensity. However, by pooling error variation across all species in the analysis, the Multilevel method 

generated error estimates that were lower and more precise for species with relatively fewer samples. 

While pooling error in a multilevel model increased overall performance, detailed differences in 

accuracy and precision between responses, species and methods indicated some limitations. The strongest 

pooling that we employed was for estimating aboveground biomass of two shrub species. With six and 
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three individuals sampled, neither SS nor WM had more individuals than candidate covariates, precluding 

statistical analysis of individual AGB by species (Roxburgh et al., 2015). However, when analyzing wood 

mass per stem, which involved more samples and fewer covariates, the estimated effects of stem diameter 

and height differed significantly between species, indicating different patterns of stem wood allocation. 

Pooling both species combined variation within and between species, which likely contributed to the 

larger 95% CIs for covariate effects in the individual-level AGB analysis. Even so, the pooled Multilevel 

method generated more accurate and precise estimates of shrub AGB than either generic model, which 

necessarily pool variation from even more species.  

A more subtle example of the effects of pooling comes from contrasting the bias estimates 

between custom methods for shrubs versus Carrotwoods. The overall reduction in bias for the Multilevel 

model compared to the Top model reflected much more precise estimates for 9 individual shrubs 

compensating for a slight increase in bias for 19 individual Carrotwoods. More consistent precision across 

groups may reflect the role of sampling error in the bias correction for log-normal models. The standard 

correction adds a fraction of the estimated error variance to the log linear equation for the mean (Clifford 

et al., 2013). High error variance associated with small sample sizes would tend to increase the magnitude 

of this correction factor and therefore the magnitude of upward bias correction in groups with fewer 

individuals. Pooling error estimates across species in the multilevel model moderated the differences in 

bias correction, possibly contributing to the slight overestimation of CW biomass in the training dataset. 

Alternative bias corrections may have different sensitivity to sampling error and could provide a valuable 

avenue for future research (Clifford et al., 2013), as would estimation methods that are less sensitive to 

bias, such as weighted regression (Parresol, 2001). 

Even though Multilevel methods cannot overcome fundamental sampling limitations, the 

flexibility of the approach provides promising avenues for future development. One technique applied 

here, latent variable weighting, simultaneously estimates covariate effects and their weights across models 

with every potential combination of terms (O’Hara and Sillanpää, 2009). Similar to multimodel inference 

for GLMs, latent variable weighting may have boosted the accuracy of carrotwood AGB relative to the 
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single Top model, which ignored information from other models with similar adequacy scores. Another 

potential extension for studies involving even more species is hierarchical parameter models. Analogous 

to random effects in GLMs, hierarchical models interpolate between complete pooling, which we 

employed for both shrub species, and no pooling, which corresponds to the conventional approach. Doing 

so may increase the power to characterize subtle differences between species with relatively few samples 

(Price et al., 2009). Furthermore, hierarchical models for both parameters and error can involve 

phylogenetic structure, further boosting accuracy (Oberle et al., 2016). Phylogenetic effect structures may 

also enable model-based projections for related species based on evolutionary rates, rather than the 

taxonomic aggregation and substitution advocated by some databasing efforts (McPherson et al., 2016). 

Finally, implementing multilevel models in a Bayesian context facilitates incorporating previously 

estimated equations through informative priors even when the original data are unavailable (Zapata-

Cuartas et al., 2012). For all of these reasons, we believe that Bayesian Multilevel methods provide a 

promising area for developing powerful, flexible AGEs.  

5 Conclusions 

Ultimately, the value of multilevel models and custom allometric growth equations depends on 

the research questions and restoration objectives at hand. For many purposes, including describing the 

stand structure and C dynamics of well-characterized boreal and temperate forests, existing models 

provide outstanding performance. However, in regions with less research and more tree species, but 

equally urgent goals to control invasive species while maximizing C storage, more precise estimation 

methods are necessary. Remotely sensed data may one day provide the geographic, temporal and 

taxonomic resolution necessary for accurate forest restoration monitoring (Gonzalez de Tanago et al., 

2018). In the meantime, stem-based surveys combined with custom multilevel allometric growth 



32 

equations can leverage the strength from sampling across species to improve projections across size 

classes and growth forms. 
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Supplementary Material 

Supplementary Table S1: Trait data for two Florida invasive species Schinus terebinthifolia (BP), 

Cupaniopsis anacardioides (CW), and two natives widely used in revegetation, Myrcianthes fragrans 

(Simpson’s stopper) and Morella cerifera (WM), including one value for both native shrub species pooled 

(SH). 

Taxon Trait (unit) Value 

BP Wood Density (g/cm^3) 0.5087 

BP Wood C (%) 46.71 

BP Leaf C (%) 46.1 

BP Wood N (%) 0.308 

BP Leaf N (%) 1.562 

BP Wood : Leaf Dry Mass 4.182 

CW Wood Density (g/cm^3) 0.5925 

CW Wood C (%) 48.16 

CW Leaf C (%) 46.58 

CW Wood N (%) 0.389 

CW Leaf N (%) 1.544 

CW Wood : Leaf Dry Mass 9.617 

SS Wood C (%) 45.69 
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SS Leaf C (%) 43.77 

SS Wood N (%) 0.48 

SS Leaf N (%) 0.86 

WM Wood C (%) 47.15 

WM Leaf C (%) 49.9 

WM Wood N (%) 0.89 

WM Leaf N (%) 1.84 

SH Wood : Leaf Dry Mass 6.528 
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Supplementary Table S2: covariate sampling by species code (Stems:Individuals) 

Covariate Units BP CW SS WM 

DRC cm 11:11 19:19 18:6 7:3 

D130 cm 11:11 19:19 NA NA 

D140 cm NA 19:19 NA NA 

Canopy Area m2 NA 19:19 NA:6 NA:3 

Height m 11:11 19:19 18:6 7:3 

Stem count n NA NA NA:6 NA:3 
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Supplementary Table S3: Deviance information criterion (DIC) scores for Multilevel models by 

response variable variance model and simplification. For details on taxon abbreviations, model fitting and 

simplification criteria, see Materials and Methods. For simplified equations, see Supplementary Table S4. 

Response Taxon (samples) Variance Model Covariates DIC 

Shoot Wood Dry Mass (kg) BP (11), CW (19), SS (18), 

WM (7) 

independent all -114.2 

Shoot Wood Dry Mass (kg) BP (11), CW (19), SS (18), 

WM (7) 

independent simplified -113.6 

Shoot Wood Dry Mass (kg) BP (11), CW (19), SS (18), 

WM (7) 

pooled all -122.2 

Shoot Wood Dry Mass (kg) BP (11), CW (19), SS (18), 

WM (7) 

pooled simplified -116.1 

Whole Plant Aboveground 

Biomass (kg) 

BP (11), CW (19), SH (9) independent all 102.3 

Whole Plant Aboveground 

Biomass (kg) 

BP (11), CW (19), SH (9) independent simplified 97.7 

Whole Plant Aboveground 

Biomass (kg) 

BP (11), CW (19), SH (9) pooled all 96.6 

Whole Plant Aboveground 

Biomass (kg) 

BP (11), CW (19), SH (9) pooled simplified 93.7 
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Supplementary Figure S1: Stem wood dry mass covariate effects for Schinus terebinthifolia (BP), 

Cupaniopsis anacardioides (CW), Myrcianthes fragrans (SS) and Morella cerifera (WM) generated 

either by the single GLM with the lowest AICc (Top), multimodel inference across all possible GLMs 

weighted by their AICc (Multiple) or a Bayesian Multilevel model with latent indicator weighting and 

pooled measurement error (Multilevel). Covariates were log transformed and mean centered prior to 

estimation and error bars represent 95% Confidence Intervals. Parameters for effects that were excluded 

or unestimable are not depicted.  


