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Simple Summary: The concept of “structural epistasis” express the emergence of new phenotypes 12 
which are not based on changes in the products and functions of genes, but on the changes in the 13 
physical-mechanical interactions between  biological structural pieces and components of the bac- 14 
terial cell architecture. These interactions are fostered by primary physical changes in the shape and 15 
size of the pieces or in spatial (topological) alterations driven by changes in their quantity or local 16 
density in the cell compartments, and might have consequences in antibiotic resistance phenotypes. 17 

Abstract: Epistasis refers to how genetic interactions between some genetic loci affect phenotypes 18 
and fitness. In this study, we propose the concept “structural epistasis” to emphasize the role of the 19 
variable physical interactions between molecules located at particular spaces inside the bacterial cell 20 
in the emergence of novel phenotypes. The architecture of the bacterial cell (typically a gram-nega- 21 
tive), which consists of concentrical layers of membranes, particles, and molecules with differing 22 
configurations and densities (from the outer membrane to the nucleoid) determines and is at its turn 23 
determined by the cell´s shape and size, depending on the growth phases, and exposure to toxic 24 
conditions, stress responses, and the bacterial environment. Antibiotics change the bacterial cell’s 25 
internal molecular topology, producing unexpected interactions among molecule. In contrast, 26 
changes in shape and size might alter antibiotic action. The mechanisms of antibiotic resistance (and 27 
their vectors, as mobile genetic elements) also influence molecular connectivity in the bacterial cell 28 
and can produce unexpected phenotypes, influencing the action of other antimicrobial agents. 29 

Keywords: Bacterial subcellular architecture; Structural epistasis; Cellular shape and volume; Anti- 30 
biotic mode of action; Antibiotic Resistance.  31 
 32 
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1-Introduction.  36 

Etymologically, the term “epistasis” means the “act of stopping” (any “on-off” action) and can be 37 
applied to the case where a mutation influences the effect of other mutations, in an specific or un- 38 
specific and less evolutionarily stable manner (1,2). Epistasis is also a phenomenon in which one or 39 
more  genes influences the function of others. The related term “epigenetics” refers to studies 40 
“above the gene” and refers to heritable (reproducible) changes in gene function that cannot be ex- 41 
plained by DNA sequence mutations (3). In both cases, the organism exhibits a function that cannot 42 
be fully explained by the sequence of a single gene. The most classic cases of epistasis rely on the 43 
interconnection of regulatory networks. For instance, a mutation that alters the concentration of a 44 
metabolite that regulates the expression of other metabolic routes might deeply alter the bacterial 45 
physiology, thereby modifying the activities of other genes/proteins. Examples of this include the 46 
modification of the physiology of antibiotic resistant mutants (4, 5) or the various evolutionary path- 47 
ways towards resistance that bacteria, with differing genomic backgrounds can follow, which is an 48 
example of historical contingency (6). However, these regulatory and functional alterations can have 49 
an important structural role, a feature largely underexplored.  50 

In general, and in the above mentioned epistatic examples, a phenotype is the result of the intercon- 51 
nected functions of an ensemble of genes (not necessarily linked),- as in the case of an operon en- 52 
coding for antibiotic resistance-, or in biosynthetic pathways. In the last case, however, the function 53 
of each involved gene is autonomous and specific, for instance, encoding an enzyme needed for a 54 
particular biochemical reaction. The operational molecules involved in epistasis are the products of 55 
the interacting genes: proteins interact with other proteins, small molecules or nucleic acids. In Esch- 56 
erichia coli, the concentration of these macromolecules can exceed 300 g/L, occupying approximately 57 
30% of cell volume (7).  58 

In population genetics, epistasis refers to how genetic interactions between some loci affect pheno- 59 
types and fitness (8). The concept of structural epistasis helps to explain the emergence of new phe- 60 
notypes that are not based on changes in gene function, but on the physical-mechanical interactions 61 
between the  biological “structural pieces” or components of the cell. These interactions results 62 
from primary physical changes in the piece’s shape and size or in the spatial (topological) alterations 63 
driven by changes in their quantity or local density. This might result in spatial heterogeneities 64 
leading to various cell-to-cell physical interactions, that also have consequences in microbial cell 65 
biology. The term “cell topology” is employed in studies on the structure of tissues, where spatial 66 
heterogeneity might produce differing biological outcomes (9). Starting about one decade ago, new 67 
technologies have become available to study intracellular topology, as multi-scale fluorescence 68 
cross-correlation spectroscopy (10).  69 

A bacterial cell is composed of complex physical multimolecular objects, which include: 1) ball- 70 
shaped complex structures, such as ribosomes, supercoiled DNA in the chromosome (forming a 71 
nucleoid) or in bacterial plasmids;  2) lamellar structures such as the cell wall, membranes, or cap- 72 
sules; 3) elongated structures such as fimbriae and flagella; 4) complex-shaped  functional orga- 73 
nelles, ranging from low complexity, as porins, to high complexity, such as extrusion pumps, nee- 74 
dle-like protein complexes in the Type III secretion system, or trans-envelope flagella machines; and 75 
5) ball-shaped inclusion bodies, typically water-insoluble protein aggregates or condensates, glyco- 76 
gen poly-beta-hydroxybutyrate granules, or cyclic polyphosphate inclusions. These complex struc- 77 
tures in the bacterial cytoplasm, and the molecular crowded cytoplasm itself, have inherent physical 78 
properties, such as viscoelasticity (11), or electric charge, which affect their function (12). Molecules 79 
have both a physical, and chemical, dimension. For instance, the interaction and function of proteins 80 
depends on their tertiary structure, the three-dimensional arrangement (folding) of its polypeptide 81 
chain in space, and on their four-dimensional (protein-assembly in multimeric proteins) and fifth- 82 
dimensional (quinary structure, see below) structures, ensuring the interactions between macromol- 83 
ecules that organize the interior of the cell.  84 

Similarly and most importantly, DNA topology influences replication and gene expression. The 85 
bacterial chromosome is a highly structured molecule organized into various domains (including 86 
macrodomains and replichores) showing varying degrees of gene expression, supercoiling, protein 87 
occupancy, and binding of xenogeneic silencing proteins (e.g; H-NS, histone-like nucleoid-structur- 88 
ing proteins) (13, 14, 15). All these physical objects are arranged in a physiological intracellular “mo- 89 
lecular ecology-topology”, based on physical (structural) properties that vary over time (according 90 
to growth phases) and should be tightly regulated. For instance, the cell should manage the 91 
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encounters between replication and transcription machineries, given that conflicts between them 92 
can lead to genome instability and reduced fitness (16).  93 

In turn, healthy topology contributes to molecular (e.g. rRNA, proteins, nutrients) mobility and in- 94 
teraction, at times mediated by particular compounds, such as histone like nucleoid-structuring H- 95 
NS proteins, which interact with both proteins and DNA (17). The bacterial cell therefore exhibits a 96 
well-controlled spatial organization, with particular degrees of flexibility (adaptive organization) 97 
that are beginning to be explored (18) There are precedents for such type of exploration in the mor- 98 
phogenetic studies of the past century; in 1952, Alan Turing (the godfather of modern computing), 99 
proposed that biological morphogenesis could be explained by an stochastic activator-inhibitory 100 
system, that gives rise to particular organizational patterns, with modern modeling studies showing 101 
the plausibility of this approach (19). In the following section a succinct description of the architec- 102 
tural components of the bacterial cell is presented (Figure 1). 103 

 104 

 105 

 106 
Figure 1. Conceptual illustration of structural epistasis. Left side, simplified concentrical structure 107 
of a normal Gram-negative bacteria. From outside to inside, in pink, bilayer outer membrane (OM), 108 
in grey, the peptidoglycan; in blue, the bilayer internal membrane (IM); in brown, the ribosome- 109 
dense crown; in red, the nucleoid. Proteins (not represented) are particularly dense at the neighbor- 110 
hood of the most external layers.  Black rectangles illustrate structural connections across layers 111 
(for simplicity only four are depicted), successively, OM-IM, IM-ribosomes, ribosomes-nucleoid. 112 
Continuous red-lines across the connections illustrate the integrity of the structure. At the right, a 113 
distorted cellular structure where the layers are losing their normal connectivity (stars) producing 114 
wider spaces in some areas and narrower spaces in others. The result of the architectonical distortion 115 
influences the relative molecular interactions (interrupted red lines), changing the local protein den- 116 
sities and interactions (see figure 2). 117 

2. The molecular components involved in structural epistasis  118 

         The bacterial cell envelopes: The complex molecular structure of the bacterial cell enve- 119 
lope, consisting of the inner membrane, the peptidoglycan sacculus, and the external membrane, is 120 
the reactive interphase of the bacterial cell with the environment, and is therefore critical for the 121 
bacterial mode of life (20). The inner membrane (IM, cytoplasmic membrane) in bacteria (as E. coli) 122 
has a bilayer structure mostly composed of alpha-helical proteins and phospholipids. Membrane 123 
lipids have a critical architectural value, given that small changes in the lipid acyl chains or head 124 
groups alters lipids packaging, helping maintain the architectural robustness when the cell is con- 125 
fronted by environmental changes, including antibiotic exposure (21,22).. The outer membrane 126 
(OM, external to the cell wall) is also formed by a bilayer but has an also has an asymmetrical struc- 127 
ture, with phospholipids and mostly beta-barrel lipoproteins in the inner layer (with more than 100 128 
types in E.coli). Lpp, one of these lipoproteins, is the most abundant protein in E. coli and is cova- 129 
lently attached to the peptidoglycan, providing a critical connection between the OM and cell wall 130 
(23). In the OM layer, there is a external dense lipopolysaccharide (LPS) composed of an LPS-core, 131 
as well as an extended polysaccharide chains stabilized by divalent cations (Mg2+, Ca2+) forming 132 
the highly variable  O-antigen. This layer also includes transmembrane proteins organized in tri- 133 
mers to form cylinders (outer membrane proteins, OMPs) which can have functional ectodomains 134 
with enzymatic activity (e.g; protease in OmpT), but are essentially involved in water and nutrients 135 
uptake and the export of waste products. The biogenesis and integrity of the vital OM requires a 136 
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constant supply of locally-recruited (secreted) OMPs and lipoproteins. Most secretion occurs 137 
through the Sec translocon, where unfolded OMP polypeptides are delivered to the beta-barrel as- 138 
sembly machine (in turn composed by OMPs and lipoproteins) by periplasmic chaperones for in- 139 
sertion into the OM. Protein-protein interactions produce  an spatiotemporal patterning of the OM 140 
into micro-domains and are the basis of beta-barrel protein turnover (24).  141 

In-between the outer and inner membranes, there is a more rigid physical structure, the peptidogly- 142 
can sacculus, which is essential for providing the cell’s shape and volume. The various shapes dur- 143 
ing growth phases are ensured by the modularity of the core components of the peptidoglycan syn- 144 
thesis (25). The peptidoglycan molecular network is formed by sequential chains of the disaccharide 145 
N-acetyl glucosamine-N-acetyl muramic acid, which are cross-linked by small pentapeptide chains 146 
(26). The space between the IM and OM is known as the “periplasmic space” or simply “periplasm”, 147 
and is an aqueous space extremely rich in proteins and has a higher viscosity than the cytoplasm 148 
(27). An important aspect of the membranes is the physical-structural relationship among IM, PG 149 
and OM, constituting an unified network with obviously influences the periplasm. As it stated ear- 150 
lier, there are membrane adhesion sites joining the IM and OM, such as efflux pumps (28), and other 151 
cross-envelope structures such as flagella machinery, and type III secretion systems. 152 

       The envelope-associated protein-rich peripheral cytoplasm: The vital multilayered cell en- 153 
velope determines in the bacterial cytoplasm other weakly structured molecular layers (protein-rich 154 
rings, ribosomes crown) (figure 1). In fact almost a half of the total bacterial proteome associates 155 
with the bacterial cell envelope (29). constituting a complex proteomic sacculus. It is to be noticed 156 
that at least 25% of the total cell proteome is bound and interact with the IM, frequently under the 157 
form of structural oligomeric complexes; many of these proteins are essential to maintain bacterial 158 
life (30).  159 

        The envelope-associated ribosomes-rich peripheral cytoplasm: In total, there are approx- 160 
imately 50,000 ribosomes per cell, although this number greatly depends on the physiological state 161 
(i.e., feast or famine) (31). There is a crown of ribosomes (the so-called protein factory) bound or in 162 
close vicinity (within 50 nm) to the IM, which is compatible with the “transertion hypothesis” (see 163 
next section) (31,32,33). In this ribosome-rich compartment, half of the total osmolality (depending 164 
on the number of osmotically-active biopolymers per volume unit) is due to ribosomal particles, 165 
producing a substantial excluded-volume effect that influences protein diffusion (34). By contrast, 166 
the density of ribosomes is low in the cytoplasmic spaces near the bacterial nucleoid (35). Ribosome 167 
density is also affected by changes in their shape and volume, not only as a result of synthesis and 168 
degradation (recycling), but also through the polymerization of 70S ribosomes into inactive 100S ri- 169 
bosomes, which allow bacteria to hibernate during stress periods (36).  170 

      The nucleic acids structures in the bacterial cytoplasm. The bacterial nucleoid is composed 171 
of the (most frequently) circular DNA chromosome, floating in the cytosol but forming in a distinct 172 
cell pseudo-compartment, that occupies 10%-20% of the bacterial cell volume (37, 38). The chromo- 173 
some has a complex and functionally efficient topology, with plectonemically wound loops of DNA, 174 
more or less tightly coiled (positively or negatively supercoiled) and forming approximately 500 175 
supercoiled domains. The multiplicity of domains of limits general damages, and facilitates repair 176 
processes or relaxation of a single domain without consequences in the superhelicity of other DNA 177 
regions. Proteins, particularly topoisomerases, ensure the maintenance, relaxation and restoration 178 
of this supercoiled structure, allowing the large RNA polymerase complex to progress along the 179 
individual helical turns of DNA. Histone-like proteins such as the inversion stimulation protein 180 
(Fis), the integration host factor (IHF), the heat stable nucleoid-structuring protein (H-NS), and the 181 
heat-unstable protein (HU) also contributes to the nucleoid’s dynamics. During chromosomal seg- 182 
regation, Structural Maintenance of Chromosome (SMC) protein complexes ensure de nucleoid’s 183 
architectural preservation (“the choreography”) (39). Interestingly, the nucleoid might interact with 184 
the bacterial envelopes, mostly to fulfill the suggested coupled transcription and translation (CTT) 185 
process of membrane proteins (transertion) which means that ribosomes initiate translation of 186 
mRNAs whose transcription from DNA has not yet concluded, giving rise to “RNA polymerase- 187 
.mRNA-ribosome” complexes. The involved gene loci (uracil richness appears to characterize mem- 188 
brane-traversing domains) migrate from the nucleoid complex topology to the vicinity of the inner 189 
membrane and thus become exposed to close ribosome-rich crown in the peripheral cytoplasm; in 190 
such a process additional regulatory mechanisms are involved, such as the levels of the alarmone 191 
(p)ppGpp (40).  192 

https://en.wiktionary.org/wiki/plectonemically
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In the case of plasmid DNA the replication, partition, and transfer processes have been proposed to 193 
be dependent on the interaction of plasmid DNA with a limited number of membrane structures 194 
(domains) (41); however, the full demonstration of this plausible hypothesis remains elusive (42). 195 
The localization of plasmid DNA in the cell depends on plasmid-encoded partition genes, moving 196 
from the mid-cell position to the 1/4 and 3/4 positions at the time of cell division (43).  197 

      The molecular structures in the bacterial cytoplasm fluid: Unlike eukaryotic cells, bacteria 198 
are devoid of a endoplasmic membranaceous reticulum formed by cytoskeletal proteins, which are 199 
mostly involved in cellular functions such as protein synthesis, folding, modification, compartmen- 200 
talization, and transport.  However, the bacterial cytoplasm has cytoskeletal-like proteins, that 201 
might be involved in polymerizing activities (44). Even in the absence of a real cytoplasmic com- 202 
partmentalization, the bacterial cytoplasmic organization is ensured by constructing proteins and 203 
nucleic acids scaffolds that form, through liquid-liquid phase separation (LLPS), local dynamic 204 
membrane-less functional condensates that can enrich specific nucleic acid and protein components 205 
(45, 46). In addition, there are bacterial cytoskeletal protein filaments, involved in various processes, 206 
including cell elongation, cell division (such as the treadmilling protein, tubulin-homolog,  FtsZ), 207 
chromosomal and plasmid segregation, and cell motility (47). The structure of the bacterial cyto- 208 
plasm allows for temporal and spatial localization of proteins (“check points”) involved in growth 209 
cycle progression, maintaining a “cell memory” ensuring the right topological distributions re- 210 
quired for division planes, as it occurs in eukaryotic cells (48). The preservation of molecular cross- 211 
road interactions among nucleotides and proteins is certainly critical at the time of bacterial division 212 
(49). In summary, the bacterial cytoplasm is indeed a crowded microenvironment where numerous 213 
potential physical interactions among molecules, macromolecules, and protein condensates occur, 214 
facilitating structural epistasis. 215 

3- The bacterial cell molecular architecture and shape is altered by antibiotic exposure:  216 

Aminoglycosides and fluoroquinolones induce cytoplasmic condensation resulting from cellular 217 
membrane damage, with changes in lipid composition and outflow of the cytoplasmic content, sep- 218 
aration of the OM and IM (larger periplasmic space) ultimately resulting in the release of reactive 219 
oxygen species. Cytoplasmic condensation favors macromolecules compactification and eventually 220 
structural interactions (figure 2), resulting in either positive (favoring functional enzyme clustering) 221 
or negative (by the aggregation of interfering proteins in these functional clusters) epistasis (50, 51, 222 
52). In addition, antibiotics that inhibit transcription (as rifamycins) or ribosomal protein synthesis 223 
(as chloramphenicol) alters the spatial organization of the bacterial chromosome and ribosomal par- 224 
ticles, possibly as a result of changes in cytoplasmic crowding density (53, 54) Consequently, there 225 
are changes in intracellular protein and nucleic acids mobility (55), influencing unspecific (resulting 226 
from both unspecific (i.e. resulting from Brownian motion) and specific associations between mole- 227 
cules, such as in multiprotein complexes. Proteins diffuse to reach their functional target locations 228 
(figure 2). Protein and nucleic acids motility and diffusion are critical in the exponential growth; 229 
their impairment, resulting in diminished intracellular dynamics, could be a reason for the faster 230 
antimicrobial effect in fast-growing cells (56).  231 

 232 

 233 
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Figure 2. Effect of structural distortion in the protein-protein and protein-OM interactions. The  235 
left upper panel shows, a normal density of proteins (ovals) in a structured space; functional con- 236 
nections (double-headed broken arrows) between particular proteins (light-dark red and light-dark 237 
green) occur normally. If the protein density in very high (left mid panel), these interactions might 238 
be prevented; on the contrary, if the density is too low (left lower panel) the connections cannot be 239 
established. The right upper panels illustrate the 3D folding of proteins (orange crumpled lines). If 240 
the protein density is increased, the proteins might unspecifically interact and eventually change 241 
their shape. Eventually, conglomerates of the same protein might occur, producing protein inclu- 242 
sion bodies. At the right lower panel, examples of distortion of the normal topology of the OM (up 243 
in the panel) due to the overproduction of membrane components (middle panel) or the location of 244 
a protein inclusion body (e.g., an hyperproduced protein, such as a beta-lactamase). In both cases, 245 
the distortion of the OM might alter the location/interaction of particular proteins (including porins, 246 
specific receptors, and pumps proteins, not represented for simplicity) which results in altered phe- 247 
notypes. 248 

 249 

Due their specific mechanisms of action, numerous antibiotics affect the architecture and shape of 250 
bacterial cells, modifying their normal physical interactions among molecules. Typically, the subin- 251 
hibitory action of various beta-lactams results (for instance in E. coli) in cell elongation or filamenta- 252 
tion, as happens in ampicillin exposure, or cellular rounding, blebbing, and dimpling, as during 253 
carbapenems challenge (57), which is due to the inhibition of particular penicillin-binding proteins 254 
(PBPs) involved in the cell wall synthesis; PBP3 inhibition produces elongated cells, while PBP2 255 
inhibition results spherical cells (58). Changes in shapes can also be due to the effect of stress re- 256 
sponses; for instance, DNA-targeting antibiotics induce an SOS response involving elongation (59, 257 
60, 61). In certain other cases, the mechanism of action provokes and adaptive response, modifying 258 
the cell size and shape; for instance, if the number of active ribosomes is reduced by ribosome-tar- 259 
geting drugs, there is a compensatory over-synthesis of ribosomes, and the cells invest in growth 260 
rather than in replication, which results in smaller cells (62). Protein synthesis inhibition could result 261 
in a disbalance in the number of proteins and protein-nucleic acid interactions, thereby deeply af- 262 
fecting bacterial fitness. This disbalance can cause a disturbance in protein and mRNA content that 263 
propagates through genetic networks, thereby altering interactions between genes. For instance, 264 
microbial cells must coordinate gene expression with cell size and shape (63), and this coordination 265 
is essential for phenotypes that affect local fitness, such as motility (64). Disturbing this coordination 266 
have significant effects on cellular phenotypes.  267 

Any change in the cell’s shape requires an expansion or constriction of membrane layers (and the 268 
volume of the periplasm) involving a quantitative change in their molecular components, or the 269 
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distance between them and therefore in their physical interaction. The concept of structural epistasis 270 
is applied here to discuss whether these changes might have functional consequences (65, 66). Pro- 271 
tein folding, and hence protein functionality and connectivity, can be altered by membrane molec- 272 
ular changes in the lipid bilayer composition,  particularly if influencing the systems (translocons, 273 
insertases, and chaperones) assuring a correct folding in the membrane (67). Interestingly, biophys- 274 
ical forces that affect the molecular topology of bacterial cells are still active during cell death, for 275 
instance, nanotubes, resulting from the cannibalization of the disintegrated cell membrane, are a a 276 
post-mortem manifestation (68). 277 

4. The bacterial cell architecture and shape is altered by antibiotic resistance 278 

Antibiotics frequently promote (or select for) a few phenotypic variants in the population (known 279 
as “persisters”) that tolerate the antibiotics´action at the expense of changing the cellular architec- 280 
ture, resulting in altered cell shapes. In E. coli tolerating ampicillin exposure, the  persisters are 281 
frequently smaller and the cells are swollen, altering physical molecular interactions by changing 282 
elasticity or surface/volume ratio (69). In Staphylococcus aureus, antibiotic persisters are usually rec- 283 
ognized as “small colony variants”, frequently changing the envelope (thicker cell walls) and, cor- 284 
respondingly, a denser granulation in the peripheral cytoplasm, or have branched or multiple cross 285 
walls, which are sometimes defective (70). In addition, exposure to bacteriostatic agents such as 286 
macrolides and chloramphenicol result in small colony variants (71). Given that it also occurs in pH- 287 
driven transitions, bacterial dormancy or persistence could possibly be due to a transition of the 288 
cytoplasm from a fluid-to a gel-solid-like state (72, 73).  289 

Changes in cell shape induced by antibiotic action have real consequences for the molecular mobil- 290 
ity inside the cells (and consequently metabolic activity), which has been tested by using the intra- 291 
cellular diffusion of green fluorescent protein (GFP) in the presence of antibiotics (74, 75, 76). The 292 
hyperexpression of resistance mechanisms might also affect bacterial architecture. In general, pro- 293 
tein hyperexpression leads to the formation of small colony variants and reduce bacterial growth, 294 
as was signaled in recombinant  strains modified to hyperproduce (for instance using strong pro- 295 
moters) industrial proteins. To address this problem, the shape of the bacteria should be modified 296 
(through morphology engineering) (77). High levels of TEM-1 beta-lactamase expression results in 297 
sequestration of the mature excreted polypeptide in insoluble protein aggregates (inclusion bodies) 298 
located within the periplasmic space; given that correct protein folding is altered in these aggre- 299 
gates, the function is lost (78). The constitutive hyperexpression of the AmpC-type beta-lactamase 300 
might also have a deleterious effect on cellular fitness (79, 80)  Studies on Salmonella, the only En- 301 
terobacteriaceae that does not possess AmpC, have shown that acquisition of exogenous AmpC 302 
causes changes in cellular morphology, with longer cells, indicating an effect on septation, and pro- 303 
duces small changes in the structure of the peptidoglycan. These effects fully abolish Salmonella 304 
Typhimurium viability, unless ampC  expression is under control of its regulator AmpR (79). A sim- 305 
ilar effect of severe fitness cost occurs in Pseudomonas aeruginosa (80). The metallo-carbapenemase 306 
NDM-1 is related with lipoproteins of the OM, and can be packaged into the periplasmic space by 307 
physical interactions with the OM layer, determining “envelope stress” and facilitating its extrusion 308 
inside membrane vesicles (81). MDR efflux pumps hyperexpression should also physically disturb 309 
the anatomical and functional structure of the cell envelope with consequent effects of an altered 310 
cell physiology. However, this structural disturbance is still an underexplored area. The fact that 311 
particulat Stenotrophomonas maltophilia resistant mutants present a reduced cell size and a lower 312 
plate efficiency might shed light on go in this direction (82). 313 

Nevertheless, efflux pump overexpression, modifies the activity of other-unrelated cell machineries, 314 
thereby providing an example of structural epistasis. This is the case for MexEF-OprN in the Pseu- 315 
domonas aeruginosa, whose overexpression increases oxygen respiration, modifies the intracellular 316 
pH, and triggers the activation of the nitrate respiratory pathway (83). Notably MexEF-OprN over- 317 
expression is associated with a reduction in Type III secretion (84), and Type III secretion requires 318 
significant activity of the proton motive force (85). Whether MexEF-OprN overexpression inacti- 319 
vates Type III secretion by modifying of the proton motive force, thereby impeding the simultane- 320 
ous induction of these two energetically costly cell machineries, is a question that remains to be 321 
answered. 322 

The conjugative process of plasmids (which eventually encodies  antibiotic resistance), might pro- 323 
duce (probably small)  alterations in the bacterial architecture of the donor cell, because of the re- 324 
laxosome protein complex (docked to the Type IV secretion system) and the entire conjugative ap- 325 
paratus, forming an envelope structure bridging the IM and OM (86). In the donor and recipient 326 
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cells, the exit and the entry of the ssDNA plasmid in triggers the local recruitment of Ssb (single- 327 
strand binding protein) molecules, and   the formation of membrane conjugative foci, which are 328 
apparently located at specific membrane positions, possibly related to the density and stability of 329 
the outer membrane protein OmpA, a beta-barrel porin, collaborating in the process (87). Eventu- 330 
ally, mobile genetic elements (possibly small plasmids?) might contribute to increasing particular 331 
gene dosages and thus gene dosage toxicity based on abnormal protein abundance levels. Dihydro- 332 
folate reductase overexpression in E. coli causes a metabolic imbalance reducing bacterial fitness 333 
(88).  334 

5. Cell architecture and cell size influences antibiotic effects 335 

Any change in the cell shape requires an expansion or constriction of the membrane layers (and the 336 
periplasm volume), which involves a quantitative change in their molecular components or in the 337 
distance between them and therefore in their physical interaction. The concept of structural epistasis 338 
is applied here to discuss whether these changes might have functional consequences, including 339 
susceptibility to antimicrobial action (63).  Quantitative modeling has shown that bacteria might 340 
adapt (reduce their susceptibility) to antibiotic challenges by reducing the surface to-volume (S/V) 341 
ratio, and consequently the antibiotic influx and intracellular concentration.  In certain cases, how- 342 
ever, increasing this ratio might provide an increase in antibiotic efflux rate and thereby reduced 343 
susceptibility (62). In fact, most tested antibiotics decrease the S/V ratio. Such reduction also de- 344 
creases the nutrient’s uptake, slowing the bacterial metabolism and consequently the antibiotic ac- 345 
tion (89). As expected, the morphological cell response to membrane-targeting and membrane 346 
transport-targeting antibiotics, is a reduction in the cell surface area. Other effects of S/V can be 347 
considered secondary to the bacteria’s adaptation to the drug action; for instance, the inhibition of 348 
translation by ribosome-targeting antibiotics (as chloramphenicol) is compensated by a higher ribo- 349 
somal biosynthesis, leading to the predominance of growth versus replication, with the conse- 350 
quences of an increased cell volume (89) 351 

Membrane changes are not necessarily global. Different bacterial processes are confined to mem- 352 
brane microdomains that are similar to lipid eukaryotic cells' lipid rafts, which accumulates multi- 353 
meric protein complexes favoring their oligomerization. One of these proteins, PBP2a,  causes beta- 354 
lactam resistance in methicillin-resistant Staphylococcus aureus (MRSA). Notably, disruption of these 355 
membrane microdomains with available drugs (such as statins, regularly used for treating hyper- 356 
cholesterolemia) interferes with PBP2a oligomerization resulting in MRSA infections that are treat- 357 
able with penicillin (90). This example shows that structural alterations in a cellular element (the cell 358 
membrane) impedes the structural changes (oligomerization) required for the activity of a wide- 359 
spread antibiotic resistance gene.  360 

In addition, bacteria readily alter their shape in response to non-antibiotic cues. For instance, during 361 
urinary tract infections, for example, E. coli produces long multi-nucleated filaments in response to 362 
a still unknown urine component (91). In addition to decreasing the S/V ratio, filamentation has 363 
numerous consequences for the bacterial lifestyle. For instance, filamented bacteria are less likely to 364 
be attacked by phagocytes (92), and thanks to the extra body-mass, filamented bacteria might have 365 
an improved ability to resist shear forces in the bladder and to adhere to the epithelium (93, 94). 366 
Beyond the urinary tract, filamentation allows intracellular bacteria to spread among host cells (95) 367 
and might promote the evolution of antibiotic resistance (96), which provides an excellent example 368 
of how physical changes in cell structure can shape numerous, non-related phenotypes. 369 

6. Spatial cell biology, molecular interactome, and antibiotic actions.  370 

The main concept suggested in this review is that antibiotics and antibiotic resistance modifies the 371 
intracellular “molecular ecology” (97), particularly the structural (membranes, cytoskeleton) and 372 
functional (proteins, nucleic acids) components that determine the spatial bacterial cell biology. 373 
More than 1,300 unique proteins have been identified in E. coli (98). Most functional molecules 374 
should move within the cell to localize their target sites, which may change according to the cell 375 
phase and stress conditions. In the case of proteins, localization is frequently determined by binding 376 
to another previously-localized protein that serves to target a particular functional site  (98). Bind- 377 
ing to the signaling protein can be expected to be hampered by molecular crowding and loss of 378 
cytoplasmic fluidity, and might produce abnormalities if the right site is not reached by the guiding 379 
protein. Moreover, the number of potential protein-protein interactions (PPI) inside the cell is huge; 380 
in E. coli, there are several hundreds macromolecular complexes, and the total PPIs in these groups 381 
probably exceeds 10,000. However, many PPIs are not in complexes or are difficult to detect because 382 
they are transient (99). However, transient interactions between proteins determine the “quinary 383 
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structure” (meta-PPI in multimeric proteins) which provides important features regarding intracel- 384 
lular organization and compartmentalization. In fact, an increase in nonspecific interactions (e.g., 385 
mediated by protein membrane charge) in the crowded cellular space should compete with specific 386 
interactions and interfere with cellular functions (100, 101). It could be expected that forced PPIs 387 
derived from alterations in protein density following cellular architectural alterations might result 388 
in aggregation, misfolding, and functional impairment (Figure 2), but this is still an open field for 389 
further research. Bioinformatic techniques based on deep learning are expected to be applied soon 390 
to predict PPIs (also proteins domain-domain and protein-RNA interactions) and to ascertain their 391 
possible consequences in the presence of changes in the presence of architectural and physical cel- 392 
lular damage (103, 104).  393 

Conclusion 394 

We are far from understanding the effects of the alterations in the balance and physical (structural) 395 
molecular interactions among the various gene products, which should produce functional abnor- 396 
malities in the bacterial cell, eventually pushing cells to death. Bacterial death -any death- is the 397 
result of cellular architectural disorganization (105). Unfortunately, establishing a catalog of conse- 398 
quences of the modifications in the interactome that result from changes in the cellular shape and 399 
architecture, caused by either antimicrobial exposure or the expression of antibiotic resistance, is 400 
not an easy task. We should expect, however, that these changes should necessarily occur. How the 401 
architecture of bacterial cells have evolved, so that differing lineages exposed to different environ- 402 
ments and requiring different adaptive needs have different cellular shapes and subcellular spatial 403 
compartmentalization is a starting field of research (106). The acquisition of this knowledge, in com- 404 
bination with the establishment of a physical interactive landscape of various intracellular interac- 405 
tions, under differing conditions of growth and stress is certainly needed. Such knowledge could 406 
contribute to the better understanding of the mechanism of action of antimicrobials (107), of the 407 
mechanisms governing the laws of association between drugs, and the fitness costs of the acquisi- 408 
tion of antibiotic resistance determinants.  409 
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